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Abstract

In this paper, we consider a general family of asymmetric volatility models with sta-
tionary and ergodic coefficients. This family can nest several non-linear asymmetric
GARCH models with stochastic parameters into its ambit. It also generalizes Markov-
switching GARCH and GJR models. The geometric ergodicity of the proposed pro-
cess is established. Sufficient conditions for stationarity and existence of moments
have also been investigated. Geometric ergodicity of various volatility models with
stochastic parameters has been discussed as special cases.
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1 Introduction

The failure of GARCH models to account for the asymmetry and overestimation of
persistence of variance has led to plenty of research in conditional heteroscedastic
models. The findings of Black [4] about the asymmetric behavior of the market with
respect to news resulted in number of asymmetric volatility models, such as EGARCH,
GJR, AGARCH, TGARCH etc., see Engle and Ng [11] for details. Lamoureux and Las-
trapes [26] and recently, Hwang and Pereira [22] have claimed that the persistence
in variance may be overestimated because of the existence and failure to account for
structural shifts in the volatility processes. Mikosch and Starica [30] showed that struc-
tural breaks in the unconditional variance of the GARCH volatility process can cause
spurious high persistence. Moreover, these break points may be responsible for the
asymmetry and long range dependence in the data set.

The immense popularity of the problem of structural breaks has resulted in several
approaches of modeling the volatility with stochastically varying parameters, especially
in the form of Markov-switching ARCH and GARCH models, see for example [7], [18],
[16], [24], [23] and [17]. Ardia [1] modified Haas’ [17] model to a Markov-switching
asymmetric GJR model and discussed its Bayesian estimation procedures. Bauwens et
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Asymmetric volatility models with stochastic parameters

al. [2] have established the stability of a regime switching GARCH model. Also see [12],
[20] and [32] and references therein for various other approaches. In all the above
papers, authors consider only GARCH models with parameter variation restricted to a
finite state space.

Given the changing pace of the world economy at the time of various financial crises,
several authors have considered the continuous variation in the parameters of GARCH
models. Dahlhaus and Subba Rao [10], Č́ižek and Spokoiny [9] and Rohan and Ra-
manathan [33] developed inference procedures for the time varying ARCH (∞) and
GARCH models. Recently, Fryzlewicz and Subba Rao [14] proved the mixing proper-
ties of a time varying ARCH model. However, the variation considered in the param-
eters of time varying ARCH and GARCH models is deterministic. Asymmetric volatil-
ity models address the limitations of a simple GARCH model, such as persistence and
volatility clustering, and if we allow the coefficients of such models to vary stochasti-
cally according to time, then they can be better candidates for modeling volatility. In
fact, Granger [15] advocated the use of stochastically varying parameter models by
commenting ‘Most of the time varying parameters change stochastically rather than
deterministically’. In this paper, we introduce a general asymmetric volatility model
with stochastically varying parameters and study its probabilistic properties. Sufficient
conditions for the geometric ergodicity and stationarity of the chain associated with
the model are given. The results discussed here provide a basis for a similar investi-
gation on various other asymmetric volatility models with stochastic parameters. An
important implication of the geometric ergodicity is that the law of large numbers and
central limit theorems can be applied and therefore it becomes possible to develop a
rigorous asymptotic estimation theory.

Establishing the probabilistic properties of GARCH type models has always been a
dynamic topic of research due to the their vast applicability to financial data. Carrasco
and Chen [8] provided sufficient conditions for the β-mixing and existence of higher
order moments for various GARCH models as an application of a generalized random
coefficient autoregressive model. Later, Francq and Zakoïan [13] proved the geometric
ergodicity of a GARCH (1,1) process with rather mild conditions. Saïdi and Zakoïan
[34] introduced a class of non-linear ARCH models and studied its probabilistic aspects.
Using the similar ideas as in Carrasco and Chen [8], Meitz and Saikkonen [27] estab-
lished the mixing properties of a class of Markov models and applied their results to
the GARCH (1,1) model. However, all these papers study the probabilistic properties of
standard GARCH models with constant coefficients. This article has a different contri-
bution as it introduces various GARCH models with stationary and ergodic coefficients
and establishes their geometric ergodicity.

The paper is organized as follows. A family of asymmetric volatility models with
stochastic parameters is introduced in Section 2. In Section 3, we discuss the geomet-
ric ergodicity of the process and provide sufficient conditions for the strict and covari-
ance stationarity. Various stochastic parameter volatility models and their probabilistic
properties are also considered in Section 3.

2 A family of asymmetric volatility models with stochastic param-
eters

To define a family of asymmetric volatility models, we start from a general family of
GARCH type equation for the volatility process with coefficients modeled as a Markov
chain.

Definition 2.1. Let θt = (ωt, αt, βt, bt, ct, λt, νt) be a stationary and ergodic Markov
chain with state space D, a measurable subset of R2

+ × (0, 1)×R× [−1, 1]×R2
+, where
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R+ = (0,∞). Let {εt} be a process such that E(εt|Ft−1) = 0 and E(ε2t |Ft−1) = σ2
t , where

Ft−1 = σ{εt−1, εt−2, . . .}. Suppose {vt} is a sequence of real valued independent and
identically distributed (i.i.d.) random variables independent of {θt}, having mean 0 and
variance 1. The family of asymmetric volatility models with stochastic parameters is
defined as

εt = σtvt,

σλt
t+1 = ωt + {αtλt[|vt − bt| − ct(vt − bt)]νt + βt}σλt−1

t

(2.1)

for all t ∈ Z, the set of all integers.

We call the elements of D as regimes. The state space D is assumed to have a metric
inherited from some norm on R2

+ × (0, 1) × R × [−1, 1] × R2
+ and the Borel σ-algebra

B(D). This state space ensures the positivity of the variance process in every regime.
The function ∆(θ,D), θ ∈ D, D ∈ B(D) denotes the one-step Markov transition function
of the chain {θt}.

The model defined in (2.1) may be considered as a generalization of the family of
volatility models given by Hentschel [21], which can nest almost all the volatility mod-
els for different parameter choices. This definition of the process also generalizes other
Markov-switching models in two ways. First, it allows infinitely many regimes as op-
posed to only finite number of regimes in the other Markov-switching GARCH models.
Second, this general model also allows for a shift in the parameters of asymmetry of
both types i.e., the asymmetry due to shift, denoted by b, and that due to rotation, de-
noted by c, in the news impact curve, see [21]. It can handle the situations, where there
is asymmetry in one regime and symmetry in the other or one type of asymmetry in one
regime and another type in the other. Hence this model can capture different dynamics
in low and high volatility periods efficiently as it can take different asymmetric volatility
models into account.

3 Stationarity and geometric ergodicity

Due to the stochastic nature of the parameters, it would be interesting to establish
the existence of a stationary solution of the process defined in (2.1). Towards this, first
we make the following assumption.

A1: Let the parameter chain {θt} be such that E [log(α0λ0(|v0− b0| − c0(v0− b0))ν0 +

β0)] < 0 and E(logω0)+ <∞, where, (logω0)+ = max(0, logω0).

Theorem 3.1. The family of asymmetric volatility process defined in (2.1) has a unique
stationary solution, if A1 is satisfied. For a given sequence {θt}, the unique stationary
solution is

σ̄λt
t+1 = ωt +

∞∑
i=1

(
t∏

k=t−i+1

(αkλk[|vk − bk| − ck(vk − bk)]νk + βk)

)
ωt−i (3.1)

such that |σλt
t+1 − σ̄

λt
t+1| → 0 almost surely for t ≥ 1 with some well defined initial value

at t = 0, where σλt
t+1 satisfies (2.1). The series inside the bracket on the right hand side

of (3.1) converges absolutely almost surely. Moreover, inf
t
ωt/(1 − inf

t
βt) ≤ σλt

t+1 < ∞
almost surely.

Remark 3.2. 1. The top Lyapounov exponent associated with the model (2.1), de-
fined as

γ0 = inf

{(
1

t

t∑
i=1

log(αiλi[|vi − bi| − ci(vi − bi)]νi + βi)

)}
,

is strictly negative. In fact, it is equal to E [log(α0λ0[|v0 − b0| − c0(v0 − b0)]ν0 + β0)]

(see [5], [25] and [35]).
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2. If the random sequence {θt} is i.i.d., then the assumption A1 is also necessary for
the existence of a unique stationary solution (see [5]).

3. Under the i.i.d. assumption of the parameter chain {θt}, σλt−1

t and (At, Bt) are
independent, where At = (αtλt[|vt − bt| − ct(vt − bt)]νt + βt) and Bt = ωt. Also, σλ0

1

is equal in distribution to
[
ω0 + {α0λ0[|v0 − b0| − c0(v0 − b0)]ν0 + β0}σλ0

1

]
([6]).

Next, we consider general order moments of σλt
t+1. The following theorem puts an

upper and lower bound on the moments of σλt
t+1 and finds conditions for their existence.

Theorem 3.3. Suppose that the assumption A1 is satisfied. Then,[
{E(ωrt )}1/r +

∞∑
i=1

{E(ηi,tωt−i)
r}1/r

]r
≤ E(σrλt

t+1) ≤ E(ωrt ) +
∞∑
i=1

E(ηi,tωt−i)
r (3.2)

for 0 < r ≤ 1, where ηi,t =
t∏

k=t−i+1

[αkλk(|vk − bk| − ck(vk − bk))νk + βk] . When 1 ≤ r <

∞, then both the inequalities in (3.2) are reversed, that is,

E(ωrt ) +
∞∑
i=1

E(ηi,tωt−i)
r ≤ E(σrλt

t+1) ≤
[
{E(ωrt )}1/r +

∞∑
i=1

{E(ηi,tωt−i)
r}1/r

]r
. (3.3)

Also, the series on the right hand sides of (3.2) (for 0 < r ≤ 1) and (3.3) (for 1 < r <∞)
converge if

lim sup
n→∞

[
E

(
n∏
k=1

Art−k+1 ω
r
t−n

)]1/n
< 1 and E(ωt)

r <∞. (3.4)

where At = (αtλt[|vt − bt| − ct(vt − bt)]νt + βt). Further, E(σλt
t+1)r <∞ if (3.4) holds.

Remark 3.4. 1. If any of the expectations E(ωrt ) and E(ηi,tωt−i)
r in (3.2) does not

exist, then E(σrλt
t+1) = +∞.

2. If the chain {θt} is i.i.d., then the sufficient condition for the existence of rth mo-
ment (3.4) reduces to E(Art ) < 1 and E(ωrt ) < ∞, which is equivalent to the
condition assumed by Nelson [31] for a constant parameter stationary GARCH
models.

3. If the chain {θt} is degenerate at some constant θ, then the condition (3.4) reduces
to E (αλ[|vt − b| − c(vt − b)]ν + β)

r
< 1, which is a sufficient condition for the exis-

tence of rth moment of the Hentschel [21] family of models with constant param-
eters. This condition further reduces to E(2αv2t + β)r < 1 for a simple GARCH
model, which is same as the Nelson’s [31] condition for existence of moments.

To establish the geometric ergodicity of the variance process defined in (2.1), we
prove the same for zt = (ht, θt)

>, where ht = σλt
t+1. Notice that vt is independent of zt−1.

Suppose that the state space of the process {zt} is given by X ⊂ R+ × D, where this
subset X is such that all the sets in it with ht < inf

t
ωt/(1− inf

t
βt) have probability zero.

This restriction is due to the lower limit on ht established in Theorem 3.1. Since {θt} is
a vector Markov chain, there exists a measurable function Fθ : D × R7 → D such that
θt = Fθ(θt−1, ut), where the error term ut ∈ R7 is i.i.d. and independent of θt−1 and vt
(according to the definition of θt). Let ζt = (ut, vt). Then,

zt =

(
ht
θt

)
=

(
ωt + {αtλtfνtt (vt) + βt}ht−1

θt

)
= F (zt−1, ζt),
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where F : X ×R8 → X and ft(vt) = |vt − bt| − ct(vt − bt). Here, independence of vt with
zt−1 ensures that {zt} is a Markov chain. Hence, although the variance process alone in
model (2.1) is non-Markovian, the process zt = (ht, θt)

> is Markovian, which simplifies
our derivation. Now consider the following assumptions:

A2 : The random variable vt has a density g(·) with respect to Lebesgue measure on
real line, which is positive and continuous everywhere.

A3 : E(|vt|ϑ) <∞, E(ωt)
ϑ <∞ for some ϑ > 0.

The assumption A2 is required for the irreducibility of zt. A3 is used to prove its
geometric ergodicity.

Suppose B(X ) denotes the Borel sigma field of X and λ∗ is the measure associated
with the chain, such that λ∗(A) is well defined for every A ∈ B(X ). Here λ∗ = νL ⊗ φ
is the product measure on (X ,B(X )), where νL denotes the Lebesgue measure and
φ is an irreducibility measure on B(D). Denote pm(z0, B) = P (zt ∈ B|zt−m = z0),
B ∈ B(X ), z0 ∈ X , the probability that starting with z0, the process moves to B in m

steps.
The first major step towards establishing the geometric ergodicity of the process

{zt} is to prove the irreducibility. We deal with this in the following theorem.

Theorem 3.5. Let the chain {θt} be φ−irreducible and aperiodic. Suppose that the
assumption A2 regarding {vt} holds. Then the chain {zt} is λ∗-irreducible and aperiodic.
Further, there exists a probability measure Ψ on B(X ), called the maximal irreducibility
measure, such that {zt} is Ψ-irreducible.

The following corollary establishes that if transitions of the chain {θt} are continu-
ous, then the chain {zt} is weak Feller. We also prove that the process {zt} is a T-chain.
The definitions of small sets, petite sets, Feller chain and T-chain, which are used in
proving the geometric ergodicity, can be found in [29].

Corollary 3.6. (i) Suppose there exists a measurable function Fθ such that θt
= Fθ(θt−1, ut), where {ut} is an i.i.d. sequence independent of θt−1, assuming values
in the measurable space (D,B(D)) and Fθ(·, u) is continuous for any fixed u. Then, the
process {zt} is weak Feller.
(ii) Further, if the support of φ has a non-empty interior, that is, the measurable space
(D,B(D)) has at least one set with positive φ−measure, then the process {zt} is a T-
chain. Moreover, X can be written as the union of open small sets and every compact
set in X is petite.

Remark 3.7. The proof of the weak Feller property of {zt} is similar to the proof of
the Proposition 6.1.2 of Meyn and Tweedie [29], in which the weak Feller property of
nonlinear state space (NSS) model is proved. Compared to NSS model, which requires
the assumption of smoothness of F , our assumption is weaker because we do not impose
any differentiability restriction on F . In fact, F is not differentiable in our case.

Towards proving the geometric ergodicity of {zt}, we state the following lemma first.
The proof of the lemma is based on the idea that under the assumption A1, we can find
a drift function (see [29]) to show that the process (θt, vt) is geometrically ergodic.

Lemma 3.8. Let the assumptions of Theorem 3.5 and Corollary 3.6 hold. Then, the
process {(θt, vt)} is geometrically ergodic if the assumptions A1 to A3 are satisfied.

Now we prove the geometric ergodicity of the process zt with the help of an extra
assumption ensuring the existence of a small order moment of the process (2.1). Notice
that condition (3.5) in Theorem 3.9 below is sufficient for the existence of moment of
order ϑ, E(ht)

ϑ <∞ for some small ϑ > 0.
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Theorem 3.9. Suppose that the assumptions A1 to A3 along with those of Theorem 3.5
and Corollary 3.6 are satisfied. Then, the process {zt} is geometrically ergodic if the
following condition holds.

lim sup
n→∞

[
E

(
n∏
k=1

Aϑt−k+1 ω
ϑ
t−n

)]1/n
< 1 for some ϑ > 0 (3.5)

where At is as defined in Theorem 3.3.

Corollary 3.10. Let all the assumptions of Theorem 3.9 be satisfied. Then the process
{zt} is strictly stationary and strong or α−mixing if its initial distribution is same as the
stationary distribution.

As mentioned in Section 1, the model (2.1) nests several GARCH models with stochas-
tic parameters (SP hereafter) and hence provides the basis for investigation of their
probabilistic properties. In Table 1, we provide the constraints on the parameters of
model (2.1) which lead to a specific volatility model with stochastic parameters. In this
table, by equating some of the components of θt to a constant, we mean that, they are
degenerate or take a constant value with probability one.

The results of Theorems 1-4 and their corollaries are also applicable to the various
GARCH models with stochastic parameters mentioned in Table 1. That is, each of the
models is stationary and geometrically ergodic under the corresponding specific as-
sumptions subject to the constraints of Table 1. The stationary solution and conditions
for existence of moments for all the models can also be directly obtained using (3.1)
and (3.4) under the constraints mentioned in Table 1.

Table 1. Constraints on model (2.1) leading to specific stochastic parameter (SP)
volatility models

Model Constraints on model (2.1)
SPGARCH λt = νt = 2, bt = ct = 0

SPGJR λt = νt = 2, bt = 0

SPTGARCH λt = νt = 1, bt = 0

SPNAGARCH λt = νt = 2, ct = 0

SPNARCH λt = νt, bt = ct = 0

SPAPARCH λt = νt, bt = 0

SPAGARCH λt = νt = 1

SPEGARCH λt → 0, νt = 1, bt = 0

Remark 3.11. SPGARCH and SPGJR models (Table 1) can be considered as the gener-
alization of Markov-switching GARCH and GJR models with only finitely many regimes
of Haas et al. [17] and Ardia [1] respectively.

Remark 3.12. Meitz and Saikkkonen [28] studied the stability of a simple AR-GARCH
model. However, they require stringent smoothness assumptions and hence their re-
sults are not applicable to the threshold type non-linear volatility models. Our approach
differs from theirs in two ways. First, it considers several GARCH models with stochas-
tic parameters as discussed above. Second, due to moderate assumptions, it is possible
to take into account the threshold type non-linear models such as GJR and TGARCH
with stochastic parameters.

Appendix: Proofs

Proof of Theorem 3.1. The variance process (2.1) can be written as,

Yt+1 = AtYt +Bt,
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where Yt+1 = σλt
t+1 and At, Bt are as defined in Remark 3.2. Here (θt, vt) and hence

(At, Bt) is a stationary ergodic sequence. Therefore, the result immediately follows
from Brandt ([6], Theorem 1). Now from (3.1), we can write

σ̄λt
t+1 ≥ inf

t
ωt

(
1 +

∞∑
i=1

t∏
k=t−i+1

inf
t
βt

)
.

Hence, the lower limit for σλt
t+1 follows.

Proof of Theorem 3.3. Let 0 < r ≤ 1. From (3.1) and Minkowski’s integral inequality
(Hardy et al. [19], Theorem 199),

E(σrλt
t+1) ≤ E(ωrt ) +

∞∑
i=1

E

[(
t∏

k=t−i+1

(αkλk[|vk − bk| − ck(vk − bk)]νk + βk)

)
ωt−i

]r
. (3.6)

Now, using the Cauchy root criterion and assumption (3.4), the series on the right hand
side of (3.6) converges. We obtain the lower bound in (3.2) using Theorem 198 of Hardy
et al. [19] for 0 < r ≤ 1,

{E(σrλt
t+1)}1/r ≥ {E(ωrt )}1/r +

∞∑
i=1

{
E

[(
t∏

k=t−i+1

(αkλk[|vk − bk| − ck(vk − bk)]νk + βk)

)
ωt−i

]r}1/r

.

Similarly, for 1 < r < ∞, using Minkowski’s integral inequality (Hardy et al. [19],
Theorem 198) and (3.1),

{E(σrλt
t+1)}1/r ≤ {E(ωrt )}1/r +

∞∑
i=1

{
E

[(
t∏

k=t−i+1

(αkλk[|vk − bk| − ck(vk − bk)]νk + βk)

)
ωt−i

]r}1/r

.

Here as in (3.6), the series on the right hand side converges using Cauchy root criterion
and assumption (3.4). Also, using Theorem 199 of Hardy et al. [19] for r > 1,

E(σrλt
t+1) ≥ E(ωrt ) +

∞∑
i=1

E

[(
t∏

k=t−i+1

(αkλk[|vk − bk| − ck(vk − bk)]νk + βk)

)
ωt−i

]r
.

Hence the theorem follows.

Proof of Theorem 3.5. To prove the λ∗−irreducibility of the process, we need to show
that pk(z0, B) > 0 for some k ≥ 1 and ∀ z0 ∈ X , where B is any measurable set such
that B ∈ B(X ) with λ∗(B) > 0. This is done by showing that starting with an arbitrary
(h0, θ0) ∈ X , any point (h, θ) ∈ B can be reached in finite number of steps with a positive
probability. Denote the component sets of B as Bh and Bθ which are Borel sets such
that B ≡ Bh × Bθ. The φ−irreducibility of the process {θt} ensures that if φ(Bθ) > 0,
then there exists an m ≥ 0 (depending on θ0 and Bθ) such that ∆m+1(θ0, B

θ) > 0, where
∆m+1(θ0, B

θ) represents the (m + 1)-step transition probability of {θt} to the set Bθ,
starting with θ0. Thus there exist intermediate Borel sets Bθi ∈ B(D), i = 1, 2, . . . ,m

with φ(Bθi ) > 0 and ∆(θi−1, B
θ
i ) > 0, θi−1 ∈ Bθi−1, through which the chain {θt} transits

to B starting with θ0. Corresponding to such sets, identify the sets Bhi such that starting
with z0, the chain {zt} can reach to z through the Borel sets Bi ≡ Bhi ×Bθi in m+1 steps
with a positive probability. The sets Bhi are defined as

Bh1 =
{
h : h = ω1 + [α1λ1(|v1 − b1| − c1(v1 − b1))ν1 + β1]h0, θ1 ∈ Bθ1 , v1 ∈ R

}
,

Bhi =
{
h : h = ωi + [αiλi(|vi − bi| − ci(vi − bi))νi + βi]hi−1, θi ∈ Bθi , vi ∈ R, hi−1 ∈ Bhi−1

}
,

i = 2, 3, . . . ,m.
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Therefore, the chain {zt} can transit through the following path

(h0, θ0)→ (h1, θ1)→ · · · → (hm, θm)→ (h, θ).

Here each (hi, θi) ∈ Bi, i = 1, 2, . . . ,m. By the transition (hi−1, θi−1)→ (hi, θi), we mean
that the transition is from (hi−1, θi−1) ∈ Bi−1 to Bi. The probability of reaching z =

(h, θ) ∈ B from z0 = (h0, θ0) in the m intermediate steps through sets Bi, i = 1, 2, . . . ,m

is,

pm+1(z0, B) ≥
m+1∏
i=1

P (zi ∈ Bi|zi−1), where zi−1 ∈ Bi−1

=

m+1∏
i=1

P (hi ∈ Bhi |zi−1, θi ∈ Bθi )P (θi ∈ Bθi |zi−1)

=

m+1∏
i=1

P
(
(ωi + [αiλif

νi
i (vi) + βi]hi−1) ∈ Bhi |zi−1, θi ∈ Bθi

)
∆(θi−1, B

θ
i ) > 0

where fi(vi) = |vi − bi| − ci(vi − bi), Bm+1 = B and zm+1 = z. Here, the first probability
is strictly greater than zero under the assumption A2. In this way, each z ∈ B with
λ∗(B) > 0 can be reached in finite number of steps with a positive probability, i.e.,
pm+1(z0, B) > 0. Hence the process zt is λ∗−irreducible.

For B ∈ B(X ), define the probability measure Ψ as,

Ψ(B) =

∫
X

λ∗(dy)

∞∑
n=0

pn(y,B)2−(n+1).

Hence the Proposition 4.2.2 of Meyn and Tweedie ([29], page 90) implies that {zt} is
Ψ-irreducible where Ψ is a maximal irreducibility measure. Aperiodicity of the chain is
obvious as {θt} is aperiodic and corresponding to every Bθi there exist sets and Bhi as
shown above.

Proof of Corollary 3.6. (i) This proof is similar to the proof of the Proposition 6.1.2 of
Meyn and Tweedie [29]. Denote the class of all bounded continuous functions from X
to R by C(X ). Using the similar notations as in Meyn and Tweedie ([29], Section 6.1),
the transition probability kernel P acts on the bounded functions through the following
mapping

Ph(z) =

∫
P (z, dy)h(y).

where h ∈ C(X ) is a bounded continuous function. Then by the definition of the map-
ping F (z, ζ) and the continuity of Fθ, it is possible to claim that h(F (z, ζ)) is bounded
and continuous. Thus it follows that (Meyn and Tweedie [29], Section 3.5.5)

Ph(z) = E(h(zt+1)|zt = z) = E(h(F (zt, ζt+1))|zt = z) = E[h(F (z, ζ))]

is a continuous function of z ∈ X . Therefore, by the definition, {zt} is a weak Feller
chain.

(ii) Let z ∈ X be such that it can be reached from any z0 ∈ X in a finite number of
steps. First, we show that z is reachable, that is, every neighborhood of z is reachable
with a positive probability (see [29], Section 6.1.2). Let B ∈ B(X ) be any neighbor-
hood of z. It is shown in Theorem 3.5 that the chain {zt} is λ∗−irreducible. Also, the

EJP 18 (2013), paper 90.
Page 8/12

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v18-1871
http://ejp.ejpecp.org/


Asymmetric volatility models with stochastic parameters

λ∗-measure of the boundary points is zero and support of φ has a non-empty interior
(which implies that {θt} is a T-chain). Hence, there exists an open ball B′ ⊂ B with
λ∗(B′) > 0, such that all z ∈ B′ can be reached in a finite number of steps, starting with
any z0. This implies that for any open set B containing z, we have λ∗(B) ≥ λ∗(B′) > 0

and hence Ψ(B) ≥ Ψ(B′) > 0. Therefore, the point z is reachable and hence support of
Ψ has a non empty interior (Meyn and Tweedie [29], Lemma 6.1.4). We have already
shown that zt is a Ψ−irreducible Feller chain. Thus, {zt} is a T-chain (Meyn and Tweedie
[29], Theorem 6.2.9) and hence the state space can be written as a union of open small
sets (Meyn and Tweedie [29], Theorem 6.0.1).

Proof of Lemma 3.8. With the given assumptions, it can be easily proved that the chain
{(θt, vt)} is Ψ−irreducible, aperiodic and ergodic. To prove the geometric ergodicity,
we use the t−step drift criterion of Tjostheim [36] and Meyn and Tweedie [29]. Define
a function

g1(θ, v) = ω + [αλ[|v − b| − c(v − b)]ν + β],

and an associated drift function V (θ, v) : D ×R → [1,∞) as

V (θ, v) = 1 + [g1(θ, v)]k0 ,

for some 0 < k0 < ϑ. Define the test set as a compact set Cθ,v = {(θ, v) : [g1(θ, v)]k0 ≤
c∗}, where c∗ is a finite constant. Notice that under ergodicity assumption of {θt}, the
difference between the t−step ahead transition probability kernel of θt (given θ0) and
its unique invariant stationary probability is negligible for a sufficiently large t (Meyn
and Tweedie [29], Chapter 13). Therefore, for a sufficiently large t,

E(V (θt, vt)|θ0, v0) = E(V (θ0, v0)) ≤ 1 +E(ω0)k0 +E[α0λ0[|v0 − b0| − c0(v0 − b0)]ν0 + β0]k0 .

where the inequality on the right follows using the Cr inequality. Here the uncon-
ditional expectation is taken with respect to the stationary distribution of {(θt, vt)}.
Now, using similar arguments as in Remark 2.9 of Basrak et al. [3], we can show that
E[α0λ0[|v0 − b0| − c0(v0 − b0)]ν0 + β0]k0 < 1 for some 0 < k0 < ϑ, when the assumptions
A1 and A3 (E|v0|ϑ <∞) are satisfied. Therefore,

E(V (θt, vt)|θ0, v0) ≤ c∗1

for a sufficiently large t, where c∗1 = 1 + E(ω0)k0 + c∗2 and 0 < c∗2 < 1. Now let δθ0 =

([g1(θ0, v0)]k0 − c∗)/(1 + g1(θ0, v0)k0), where c∗ = (c∗2 + E(ω0)k0). Therefore, δθ0 > 0 for
θ0 ∈ C̄θ,v (complement of Cθ,v) and hence,

E(V (θt, vt)|θ0, v0) ≤ (1− δθ0)V (θ0, v0) if θ0 ∈ C̄θ,v

Clearly, if θ0 ∈ Cθ,v, then E(V (θt, vt)|θ0, v0) is bounded in view of the assumptions
A3 (E(ω0)ϑ <∞) and the fact that E[α0λ0[|v0− b0| − c0(v0− b0)]ν0 +β0]k0 < 1. Therefore
using Meyn and Tweedie ([29], Theorem 15.0.1) along with Theorem 3.5, it follows that
{(θt, vt)} is geometrically ergodic.

Proof of Theorem 3.9. We have shown in Lemma 3.8 that the assumptions A1 to A3

along with those of Theorem 3.5 and Corollary 3.6 are sufficient for {(θt, vt)} to be
geometrically ergodic. Now, we prove the geometric ergodicity of {zt}. By recursively
substituting for ht, the variance process (2.1) can be written as

ht =

t∏
i=1

(αiλif
νi
i (vi) + βi)h0 +

ωt +

t−1∑
j=1

t∏
k=t−j+1

(αkλkf
νk
k (vk) + βk)ωt−j

 . (3.7)
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Now, by the strong law of large numbers (SLLN), as t→∞

t∏
i=1

(αiλif
νi
i (vi) + βi)

1/t = exp

(
1

t

t∑
i=1

log(αiλif
νi
i (vi) + βi)

)
→ exp (γ∗) < 1 a.s.,

where γ∗ = E [ log(α0λ0[|v0 − b0| − c0(v0 − b0)]ν0 + β0)] < 0 using A1. Therefore, there
exists an N , sufficiently large such that ∀ t > N,(

t∏
i=1

(αiλif
νi
i (vi) + βi)

1/N

)
= exp

(
t

N

1

t

t∑
i=1

log(αiλif
νi
i (vi) + βi)

)
≤ ρ < 1. (3.8)

Using Cr inequality in (3.7), consider for some t > N,

E(h
1/N
t |z0 = (h0, θ0)) ≤ E

(
t∏
i=1

(αiλif
νi
i (vi) + βi)

1/N |θ0

)
h
1/N
0 +M, (3.9)

where M = E

[(
ωt +

t−1∑
j=1

t∏
k=t−j+1

(αkλkf
νk
k (vk) + βk)ωt−j

)
|θ0

]1/N
≤ E(ω

1/N
t |θ0) +

t−1∑
j=1

E

[(
t∏

k=t−j+1

(αkλkf
νk
k (vk) + βk)1/Nω

1/N
t−j

)
|θ0

]

≤ E(ω
1/N
t |θ0) +

∞∑
j=1

E

[(
t∏

k=t−j+1

(αkλkf
νk
k (vk) + βk)1/Nω

1/N
t−j

)
|θ0

]
Now for N → ∞, we have for t > N , E(ω

1/N
t |θ0) = E(ω

1/N
t ) due to ergodicity of {θt}.

Also, using assumption (3.5) and the Cauchy root criterion, M < ∞. Now, from (3.8)
and (3.9), we can write,

E(h
1/N
t |z0) ≤ ρh1/N0 +M,

where, 0 ≤ ρ < 1. Define a drift function V : X → [1,∞) as

V (z) = 1 + hϑ.

We define the test set as the compact set C = {(h, θ) ∈ X : hϑ ≤ c}, where c is a
constant. The drift function V is bounded on the set C, which is a petite set from
Corollary 3.6 and can serve as a test set for the drift criterion. Now,

E(V (zt)|z0) ≤ 1 +M + ρhϑ0

Define c = (1 +M − δ)/(δ − ρ), where δ is a constant satisfying ρ < δ < 1. Then, if
hϑ0 > c (z0 ∈ C̄, the complement of C),

E(V (zt)|z0) ≤ δ(1 + hϑ0 ) = δV (z0), for z0 ∈ C̄.

Now if z0 ∈ C, then the E(V (zt)|z0) is clearly bounded. Hence there exist constants
b <∞, 0 < δ < 1, a petite set C and the function V as defined above satisfying

E(V (zt)|z0) ≤ δV (z0) + bIz0∈C , z0 ∈ X .

Hence the drift criterion is satisfied which together with Theorem 3.5 and Corollary 3.6
implies that {zt} is geometrically ergodic (Meyn and Tweedie [29], Theorem 15.0.1).
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