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Abstract

One of the remarkable applications of the cavity method in the mean field spin glasses
is to prove the validity of the Thouless-Anderson-Palmer (TAP) system of equations in
the Sherrington-Kirkpatrick (SK) model in the high temperature regime. This natu-
rally leads us to the study of the limit laws for cavity and local fields. The first quanti-
tative results for both fields were obtained by Chatterjee [1] using Stein’s method. In
this paper, we approach these problems using the Gaussian interpolation technique
and establish central limit theorems for both fields by giving moment estimates of all
orders.
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1 Introduction and Main Results

1.1 The Sherrington-Kirkpatrick Model and TAP Equations

In the middle 70’s, Sherrington and Kirkpatrick [3] introduced a mean field spin
glass, now known as the SK model, with the aim of understanding the strange magnetic
behaviors of certain alloys. Even for such a seemingly simple formulation, the SK model
has already presented very beautiful and intricate structures conjectured by physicists
(see [2]) and has been intensively studied in the mathematical community in recent
decades. In particular, many results regarding the behavior of the overlap, a quantity
that measures the difference between two spin configurations sampled independently
from the Gibbs measure, on the high temperature phase are now well-known (see [5, 6]
for detailed account). From these, we will present an approach to central limit theorems
(CLT) for the cavity and local fields via the Gaussian interpolation technique.

Let us begin with the description of the SK model. For each positive integer N, we
consider the configuration space ΣN := {−1,+1}N . Every element σ = (σ1, . . . , σN ) ∈
ΣN is called a spin configuration and its coordinates are called spins. Let g = {gij}1≤i,j≤N
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CLT for cavity and local fields of the SK model

be r.v.s satisfying that gij = gji and {gij : 1 ≤ i ≤ j ≤ N} are i.i.d. standard Gaus-
sian. The Hamiltonian HN for the Sherrington-Kirkpatrick (SK) model is defined on ΣN
through

−HN (σ) =
β√
N

∑
i<j≤N

gijσiσj + h
∑
i≤N

σi. (1.1)

Here, β > 0 is the inverse temperature and h ∈ R stands for the strength of the external
field. We define the Gibbs measure GN by

GN ({σ}) =
exp (−HN (σ))

ZN
,

where ZN is the normalizing factor, called the partition function.
Throughout the paper, we denote by (σ`)`≥1 an i.i.d. sequence of configurations

sampled from GN (with the same given disorder g). These r.v.s are also called replicas
in physics. For each function f defined on ΣnN , we use 〈f〉 to denote the Gibbs average
of f corresponding to the Gibbs measure GN , namely,

〈f〉 =
∑

σ1,...,σn

f(σ1, . . . ,σn)GN ({σ1}) · · ·GN ({σn}).

In the present paper, we will focus on the high temperature (i.e. β small enough)
behavior of the SK model. Let us define the overlap of the configurations σ1 and σ2 as

R1,2 = R1,2(σ1,σ2) :=
1

N

∑
j≤N

σ1
jσ

2
j .

In the high temperature regime, it is well-known that as N tends to infinity, this quantity
under the Gibbs measure converges a.s. to a constant q, which is the unique solution to

q = E tanh2(βz
√
q + h), (1.2)

where z is a standard Gaussian r.v. More precisely, concluding from Theorem 1.4.1 in
Talagrand [5], for fixed β0 < 1/2, we have the quantitative result

E
〈
(R1,2 − q)2k

〉
≤ K

Nk
, (1.3)

for every β ≤ β0 and h, where K is a constant depending only on k and β0. Note that
for simplicity we will only restrict our discussion to the region β ≤ β0 < 1/2. Indeed,
it has been shown that the moment estimate (1.3) is valid on a rigorously defined high
temperature region in Talagrand [6] and such region contains the case β ≤ β0 < 1/2. By
a similar argument, our main results can be extended to this high temperature region
as well.

An important objective in the SK model is to understand the marginal distributions
of the spins. The key observation is that since each spin takes only two values, the
marginal distribution at site i can be completely determined by the Gibbs average 〈σi〉 .
This then leads to the computation for 〈σ1〉 , . . . , 〈σN 〉 via the approach of the Thouless-
Anderson-Palmer (TAP) system of equations as outlined in [7]:

〈σi〉 ≈ tanh

 β√
N

∑
j≤N,j 6=i

gij 〈σj〉+ h− β2(1− q) 〈σi〉

 , 1 ≤ i ≤ N.

Here ≈ means that two quantities are approximately equal with high probability. The
first rigorous proof of the validity of TAP equations in the high temperature phase was
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CLT for cavity and local fields of the SK model

established by Talagrand (see Theorem 2.4.20 [4]) based on the cavity method. In the
later book [5], Corollary 1.7.8 implies that all N equations hold simultaneously with
high probability.

The idea of the cavity method is to reduce the N -spin system to a smaller system by
removing a spin. More precisely the procedure can be described as follows. Recall the
Hamiltonian HN with inverse temperature β and external field h from (1.1). We define
the Hamiltonian H−N for a (N − 1)-spin system by removing the last spin,

−H−N (ρ) =
β−√
N − 1

∑
i<j≤N−1

gijσiσj + h
∑

i≤N−1

σi (1.4)

for ρ = (σ1, . . . , σN−1) ∈ ΣN−1, where β− =
√

(N − 1)/Nβ. Directly we can write

−HN (σ) = −H−N (ρ) + σN (βιN + h) , σ = (σ1, . . . , σN ),

where ιN is defined as

ιN =
1√
N

∑
j≤N−1

gNjσj . (1.5)

A straightforward computation yields that

〈σN 〉 =

∑
ρ∈ΣN−1

∑
σN∈Σ1

σN exp
(
−H−N (ρ) + σN (βιN + h)

)∑
ρ∈ΣN−1

∑
σN∈Σ1

exp
(
−H−N (ρ) + σN (βιN + h)

)
=

∑
ρ∈ΣN−1

exp
(
−H−N (ρ)

)
cosh (βιN + h)∑

ρ∈ΣN−1
exp

(
−H−N (ρ)

)
sinh (βιN + h)

.

Then the following fundamental identity holds

〈σN 〉 =
〈sinh(βιN + h)〉−
〈cosh(βιN + h)〉−

= 〈tanh(βιN + h)〉 , (1.6)

where 〈·〉− denotes the Gibbs average corresponding to the Hamiltonian H−N . Under
〈·〉−, we call ιN the cavity field and under 〈·〉 , we call ιN the local field. Now, to prove
the TAP equations, we are led to the study of the limit laws for cavity and local fields.
The key observation to establish the limit law for the cavity field is that the disorder
{gNj}j≤N−1 in ιN is independent of the disorder

{gij : 1 ≤ i < j ≤ N − 1}

in the definition of 〈·〉− , which motivates the use of Gaussian interpolation on the cavity
field. Consequently, from the CLT of the cavity field, we deduce the limit law for the
local field. In both cases, the relevant quantitative moment estimates will be stated in
the following section.

1.2 Main Results

For convenience, we first set up some definitions and notations that remain in force
throughout this paper. We set φµ,σ2 to be the Gaussian density with mean µ and variance
σ2. Suppose that U : Rd → R is continuous. We say that U is of moderate growth
provided lim|x|→∞ U(x) exp

(
−a|x|2

)
= 0 for every a > 0.
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1.2.1 Limit Law for the Cavity Field

Suppose that g1, . . . , gN are i.i.d. standard Gaussian r.v.s independent of the randomness
of {gij}i<j≤N . Define the cavity field ι with respect to the Gibbs average 〈·〉 by

ι =
1√
N

N∑
j=1

gjσj . (1.7)

The name “cavity field" is due to the important role of ι played in the cavity method as
we have already seen in Section 1.1. Let us emphasize that ι is the cavity field of the
N -spin system corresponding to 〈·〉, while from the definition (1.5), ιN is the cavity field
of the (N − 1)-spin system corresponding to 〈·〉− . If we replace N by N + 1, then ιN+1

is the cavity field of the N -spin system and its form

ιN+1 =
1√
N + 1

N∑
j=1

g(N+1)jσj =

√
N

N + 1
· 1√

N

N∑
j=1

g(N+1)jσj

is only different from ι in distribution by a factor
√
N/(N + 1) that converges to 1 and

that will not affect the asymptotic behavior of ι and ιN+1 as N tends to infinity.

Note that the Gibbs average of ι is

r = 〈ι〉 =
1√
N

N∑
j=1

gj 〈σj〉 . (1.8)

The limit law of the centered distribution ι−r under the Gibbs measure was first studied
by Talagrand and it is approximately a centered Gaussian distribution with variance
1− q. The exact quantitative result is stated as follows.

Theorem 1.1 ([4], Theorem 1.7.11). Let β0 < 1/2 and k ∈ N. Suppose that U is an
infinitely differentiable function defined on R and the derivatives of all orders of U are
of moderate growth. Then there exists a constant K depending only on k, U, and β0

such that for all N, β ≤ β0, and h,

E

[
〈U (ι− r)〉 −

∫
R

U(x)φ0,1−q(x)dx

]2k

≤ K

Nk
. (1.9)

From this theorem, Talagrand then deduced the validity of the TAP equations by
letting U(x) = exp (βx+ h), see Theorem 2.4.20 in [4] and Theorem 1.7.7 in [5]. However,
it seems very difficult to deduce the limit law for the local fields (defined by (1.11) below)
from Theorem 1.1. To overcome this difficulty, it would be very helpful if we have good
quantitative results for the limit law of ι, which is also one of the research problems
proposed by Talagrand ([5], Research Problem 1.7.12). In our study, using Gaussian
interpolation technique, we prove that the CLT holds for the cavity field by the following
quantitative moment estimates:

Theorem 1.2. Let β0 < 1/2 and k ∈ N. Suppose that U is an infinitely differentiable
function defined on R and the derivatives of all orders of U are of moderate growth.
Then there exists a constant K depending only on k, U, and β0 such that for all N,
β ≤ β0, and h,

E

[
〈U (ι)〉 −

∫
R

U(x)φr,1−q(x)dx

]2k

≤ K

Nk
. (1.10)
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In other words, the limit law of the cavity field is Gaussian with mean r and variance
1− q. Early study of the CLT for the cavity field was discussed in Talagrand’s book, see
Section 1.5 [5] and page 87 [4], where he explained informally why the cavity field is
Gaussian, but it is by no means obvious to use his arguments to obtain precise quantita-
tive results such as Theorem 1.2. Later, using Stein’s method, Chatterjee [1] obtained
the first quantitative result: when k = 1 and U is a bounded measurable function U , the
left-hand side of (1.10) has an error bound c(β0)‖U‖∞/

√
N, where c(β0) is a constant

depending only on β0. In our case, under more restrictive conditions on U we find mo-
ment estimates of all orders, which are going to be crucial in studying the CLT for local
fields. In addition, as will be shown in Corollary 1.4 below, these estimates also help
proving that the TAP equations hold simultaneously.

1.2.2 Limit Law for the Local Fields

For a fixed site 1 ≤ i ≤ N, we define the local field ιi at site i by

ιi =
1√
N

∑
j≤N,j 6=i

gijσj . (1.11)

Following a beautiful idea of Chatterjee [1], for 1 ≤ i ≤ N, we define νi to be a random
probability measure, whose density is the mixture of two Gaussian densities

piφγi+β(1−q),1−q + (1− pi)φγi−β(1−q),1−q, (1.12)

where

γi =
1√
N

∑
j≤N,j 6=i

gij 〈σj〉 − β(1− q) 〈σi〉 , (1.13)

pi =
eβγi+h

eβγi+h + e−βγi−h
.

Then we prove that the local field ιi under the Gibbs measure is close to νi in the
following sense:

Theorem 1.3. Let β0 < 1/2 and k ∈ N. Suppose that U is an infinitely differentiable
function defined on R and the derivatives of all orders of U are of moderate growth.
Then there exists a constant K depending only on k, U, and β0 such that for all N,
1 ≤ i ≤ N, β ≤ β0, and h,

E

[
〈U(ιi)〉 −

∫
U(x)νi(dx)

]2k

≤ K

Nk
. (1.14)

Again, by applying Stein’s method, Chatterjee [1] proved the first quantitative result
regarding the limit law for the local fields: when k = 1 and U is a bounded measurable
function U, the left-hand side of (1.14) has an error bound c(β0)‖U‖∞/

√
N , where c(β0)

is a constant depending on β0 only. In our case, the smoothness of U allows us to obtain
moment estimates of all orders. In particular, setting U(x) = tanh(βx + h), we obtain
the same quantitative result for the TAP equations as Theorem 1.7.7 and Corollary 1.7.8

in Talagrand [5] :

Corollary 1.4. Let β0 < 1/2 and k ∈ N. Then there exists a constant K depending only
on k, U, and β0 such that for all N, 1 ≤ i ≤ N, β ≤ β0, and h,

E

〈σi〉 − tanh

 β√
N

∑
j≤N,j 6=i

gij 〈σj〉+ h− β2(1− q) 〈σi〉

2k

≤ K

Nk
. (1.15)
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In addition, suppose that 0 < ε < 1/2. Then there is a constant K ′ depending only on β0

and ε such that

E max
1≤i≤N

∣∣∣∣∣∣〈σi〉 − tanh

 β√
N

∑
j≤N,j 6=i

gij 〈σj〉+ h− β2(1− q) 〈σi〉

∣∣∣∣∣∣ ≤ K ′

N1/2−ε (1.16)

for every N , β ≤ β0, and h.

Proof. Let us notice a useful formula from Chatterjee [1, (9)]: Suppose that X is a r.v.,
whose density is the mixture of two Gaussian densities: pφµ1,σ2 + (1 − p)φµ2,σ2 with
µ1 > µ2, σ > 0, and 0 < p < 1. Set

a =
µ1 − µ2

2σ2
, b =

1

2
log

p

1− p
− µ2

1 − µ2
2

4σ2
.

Then we have the identity,

E [tanh(aX + b)] = tanh(aE [X] + b− (2p− 1)a2σ2). (1.17)

In particular, consider a r.v. X whose density is given by (1.12). It follows that E [X] = γi
and from (1.15),∫

tanh(βx+ h)νi(dx) = E [tanh(βX + h)] = tanh
(
βγi + h− β2(1− q) 〈σi〉

)
.

Applying Theorem 1.3, (1.15) follows. Note that though in this case we apply U(x) =

tanh(βx + h), a function depending on h, to Theorem 1.3, the constant K still does not
depend on h, which can be verified by going through the proof for Theorem 1.3 and
using the uniform boundedness of U(x) = tanh(βx+h). For the proof of (1.16), it follows
by using (1.15) and Corollary 1.7.8. in [5].

2 Proofs

This section is devoted to proving Theorems 1.2 and 1.3. Before we proceed to prove
our main results, let us define some crucial quantities that will be used in our study.
Consider the replica σ` and define σ̇`j = σ`j − 〈σj〉 for 1 ≤ j ≤M. Define

T` =
1

N

∑
j≤N

σ̇`j 〈σj〉 , T`,` =
1

N

∑
j≤N

(σ̇`j)
2 − (1− q), T`,`′ =

1

N

∑
j≤N

σ̇`j σ̇
`′

j , ` 6= `′. (2.1)

By using replicas, these quantities can be controlled through the overlap (1.3) (see
Section 1.10 of [5] for details): For fixed β0 < 1/2 and k ∈ N, there exists some K

depending only on β0 and k such that for any β ≤ β0 and h,

max
1≤`,`′≤N, 6̀=`′

{
E
〈
|T`|2k

〉
, E

〈
|T`,`|2k

〉
, E

〈
|T`,`′ |2k

〉}
≤ K

Nk
. (2.2)

Note that in the following we use Eζ to denote the expectation with respect to the
randomness of ζ when ζ is a random variable.

2.1 Proof of Theorem 1.2

Using replicas, we set for 1 ≤ ` ≤ 2k,

ι` =
1√
N

N∑
j=1

gjσ
`
j . (2.3)
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Suppose that ξ, ξ1, . . . , ξ2k are i.i.d. Gaussian r.v.s with mean zero and variance 1−q and
they are independent of {gj}j≤N and {gij}i<j≤N . Recalling definitions (1.7), (1.8), and
(2.3), we consider the Gaussian interpolations,

u(t) =
√
t(ι− r) +

√
1− tξ,

u`(t) =
√
t(ι` − r) +

√
1− tξ`, 1 ≤ ` ≤ 2k.

(2.4)

Suppose that U is a smooth function defined on R and its derivatives of all orders are
of moderate growth. Define

V (x, y) = U(x+ y)− Eξ [U(ξ + y)] (2.5)

and

ψ(t) = E

〈∏
`≤2k

V (u`(t), r)

〉
. (2.6)

Notice that ψ(0) = 0 and ψ(1) equals the left-hand side of (1.10). Let us explain the
major difficulty that we will encounter in studying the CLT for the cavity field. Recall
that Talagrand’s main idea to prove the CLT for the centered cavity field in Theorem 1.1

is to study the following function:

ψ̂(t) := E

〈∏
`≤2k

V̂ (u`(t))

〉
, t ∈ [0, 1] , (2.7)

where V̂ (x) := U(x) − EξU(ξ). Notice that from (2.6) and (2.7), ψ and ψ̂ both use the
same Gaussian interpolations u`, but the functions V and V̂ in ψ and ψ̂ are defined
differently. By definition, ψ̂(1) gives the left-hand side of (1.9) and ψ̂(0) = 0. Using
Gaussian integration by parts, the derivative of ψ̂ can be computed up to any order and
further, ψ̂(n)(0) = 0 for 0 ≤ n < 2k and sup0≤t≤1 |ψ̂(2k)(t)| ≤ K/Nk. Consequently, the
mean value theorem yields (1.9) since

ψ̂(1) =

2k−1∑
n=0

1

n!
ψ̂(n)(0) +

1

(2k)!
ψ̂(2k)(c) =

1

(2k)!
ψ̂(2k)(c) ≤ K

Nk

for some c ∈ (0, 1) . For more details, one may refer to the proof of Theorem 1.7.11 in
[5]. In particular, the first derivative of ψ̂ is given by

ψ̂′(t) =
1

2

∑
`≤2k

E

〈
T`,`

∂2V̂

∂x2
(u`(t))

∏
`′≤2k,`′ 6=`

V̂ (u`′(t))

〉

+
1

2

∑
`,`′≤2k,` 6=`′

E

〈
T`,`′

∂V̂

∂x
(u`(t))

∂V̂

∂x
(u`′(t))

∏
`′′≤2k,`′′ 6=`,`′

V̂ (u`′′(t))

〉
.

In our case, this situation is more complicated since the first derivative of ψ, as will be
shown in Lemma 2.4 below, is given by

ψ′(t) =
1

2
ψ0(t) +

1

2
√
t
ψ1(t), (2.8)

where

ψ0(t) =
∑
`≤2k

E

〈
T`,`

∂2V

∂x2
(u`(t), r)

∏
`′≤2k,`′ 6=`

V (u`′(t), r)

〉

+
∑

`,`′≤2k,` 6=`′
E

〈
T`,`′

∂V

∂x
(u`(t), r)

∂V

∂x
(u`′(t), r)

∏
`′′≤2k,`′′ 6=`,`′

V (u`′′(t), r)

〉 (2.9)
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and

ψ1(t) =
∑
`≤2k

E

〈
T`

∂2V

∂x∂y
(u`(t), r)

∏
`′≤2k,`′ 6=`

V (u`′(t), r)

〉

+
∑

`,`′≤2k,` 6=`′
E

〈
T`
∂V

∂x
(u`(t), r)

∂V

∂y
(u`′(t), r)

∏
`′′≤2k,`′′ 6=`,`′

V (u`′′(t), r)

〉
.

(2.10)

One may find that from (2.9), the first part of the right-hand side of (2.8) is very similar to
ψ̂′(t) and can be controlled by Talagrand’s argument. Nonetheless, the main obstacles
come from the second part of the right-hand side of (2.8). First, it makes the higher
order derivatives of ψ even more complicated than that of ψ̂. Second, it is not continuous
at t = 0, which means that a direct application of mean value theorem to control ψ(1)

seems not applicable. To overcome these difficulties, instead, we will use Lemma 2.7

below.
We now state two calculus lemmas, whose proofs are defered to the appendix. The

first lemma says that mild composition and integration of functions of moderate growth
is still of moderate growth.

Lemma 2.1. Suppose that U, V : R → R are of moderate growth. Define U0(x) =

U(x) + V (x), U1(x) = U(x)k, U2(x) = U(rx), U3(x) = U(x + r), U4(x, y) = U(x + y), and
U5(x) = Eξ [U(ξ + x)] for k ∈ N, r ∈ R, and ξ a centered Gaussian r.v. with variance σ2.

Then all of the functions defined above are of moderate growth.

The second lemma establishes the differentiability properties of ψ.

Lemma 2.2. Let U : R → R be continuously differentiable. Suppose that U and its
derivative U ′ are of moderate growth. Define ψ(x) = Eξ [U(ξ + x)] for ξ a centered
Gaussian r.v. with variance σ2. Then ψ is differentiable and ψ′(x) = Eξ [U ′(ξ + x)] .

Recall that the constants K in the statements of Theorems 1.1, 1.2, and 1.3 are in-
dependent of N and β ≤ β0. The main reason is because, when conditioning on the
randomness of {gij}i<j≤N , the cavity field and its Gibbs average are centered Gaussian
distributions, whose variances are bounded above by some constants that are indepen-
dent of {gij}i<j≤N , N , and β. Therefore, we still have good control on the moment esti-
mates of the cavity field and its Gibbs average. This observation will be used repeatedly
and for convenience, we formulate it as Lemma 2.3.

Lemma 2.3. Let I, J ⊂ [0,∞) be two bounded intervals. Suppose that K1,K2,K3 are
positive constants and that the following assumptions hold.

i) Let z, gN1 , . . . , g
N
N be i.i.d. standard Gaussian r.v.s for N ∈ N.

ii) For N ∈ N, suppose that {
XN
j,β : 1 ≤ j ≤ N, β ∈ J

}
is a family of random variables such that |XN

j,β | ≤ K1 for 1 ≤ j ≤ N, and β ∈ J.
iii) Let f1, f2 : N× I × J → R be measurable functions such that

|f1(N, t, β)| ≤ K2/
√
N, |f2(N, t, β)| ≤ K3,

for (N, t, β) ∈ N× I × J.
iv) Let U : R → R be a continuous function. Suppose that there are some A > 0 and

some a with 0 < a < min{(4K2
1K

2
2 )−1, (4K2

3 )−1} such that |U(x)| ≤ A exp(ax2) for
all x ∈ R.
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Then there is a constant K > 0 such that

sup
N∈N,β∈J

E0

sup
t∈I

∣∣∣∣∣∣U
f1(N, t, β)

∑
j≤N

gNj X
N
j,β + f2(N, t, β)z

∣∣∣∣∣∣
 ≤ K, (2.11)

where E0 means the expectation with respect to {gNj : j ≤ N, N ∈ N} and z.

Proof. From the given conditions, we obtainf1(N, t, β)
∑
j≤N

gNj X
N
j,β + f2(N, t, β)z

2

≤ 2f1(N, t, β)2

∑
j≤N

gNj X
N
j,β

2

+ 2f2(N, t, β)2z2

≤ 2K2
2

 1√
N

∑
j≤N

gNj X
N
j,β

2

+ 2K2
3z

2

and so

sup
t∈I

∣∣∣∣∣∣U
f1(N, t, β)

∑
j≤N

gNj X
N
j,β + f2(N, t, β)z

∣∣∣∣∣∣
≤ A exp

2aK2
2

 1√
N

∑
j≤N

gNj X
N
j,β

2

+ 2aK2
3z

2

 .

Since N−1/2
∑
j≤N g

N
j X

N
j,β is a centered Gaussian r.v. with variance N−1

∑
i≤N (XN

j,β)2 ≤
K2

1 , from the assumption iv), the left-hand side of (2.11) is then bounded above by

E0

[
exp

(
2aK2

2g
2
)]
E0

[
exp

(
2aK2

3z
2
)]
<∞,

where g is a centered Gaussian r.v. with variance K2
1 . This completes our proof.

In the sequel, we use E0 to denote the expectation with respect to the randomness of
{gj}j≤N and {ξ`}`≤2k. Recall formulas (1.8) and (2.4) for r and u`, respectively. The fol-
lowing lemma, as an application of Gaussian integration by parts, is our main equation
to control the derivatives of all orders of ψ.

Lemma 2.4. Let k ∈ N. Suppose that V1, V2, . . . , V2k : R2 → R are twice continuously
differentiable functions and their first and second order partial derivatives are of mod-
erate growth. Define

ϕ(t) = E0

∏
`≤2k

V`(u`(t), r)

 , 0 ≤ t ≤ 1.

Then ϕ is differentiable on (0, 1) and

ϕ′(t) =
1

2
ϕ0(t) +

1

2
√
t
ϕ1(t), (2.12)
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where

ϕ0(t) =
∑
`≤2k

T`,`E0

∂2Vi
∂x2

(u`(t), r)
∏

`′≤2k,`′ 6=`

V`′(u`′(t), r)


+

∑
`,`′≤2k,` 6=`′

T`,`′E0

∂V`
∂x

(u`(t), r)
∂V`′

∂x
(u`′(t), r)

∏
`′′≤2k,`′′ 6=`,`′

V`′′(u`′′(t), r)

 (2.13)

and

ϕ1(t) =
∑
`≤2k

T`E0

 ∂2V`
∂x∂y

(u`(t), r)
∏

`′≤2k,`′ 6=`

V`′(u`′(t), r)


+

∑
`,`′≤2k,` 6=`′

T`E0

∂V`
∂x

(u`(t), r)
∂V`′

∂y
(u`′(t), r)

∏
`′′≤2k,`′′ 6=`,`′

V`′′(u`′′(t), r)

 .
(2.14)

Here, ∂a+bV`

∂ax∂by
means that we differentiate V` with respect to the first variable a times

and with respect to the second variable b times.

An immediate observation from (2.13) and (2.14) leads to the following remarks, that
will be very useful when we control the derivatives of all order of ψ :

Remark 2.5. In (2.13), the partial derivatives are only with respect to the x variable;
the partial derivative with respect to the y variable occurs in each term of (2.14).

Remark 2.6. Formula (2.12) implies that our computation on the derivative of ϕ can
be completely determined by T`,`, T`,`′ , and T` in the following manner. Each T`,` is

associated with ∂2V`

∂x2 (u`(t), r); each T`,`′ is associated with ∂V`

∂x (u`(t), r)
∂V`′
∂x (u`′(t), r). As

for each T`, it is associated with ∂2V`

∂x∂y (u`(t), r) and ∂V`

∂x (ui(t), r)
∂V`′
∂y (u`′(t), r) for 1 ≤ `′ ≤

2k with `′ 6= `.

Proof of Lemma 2.4. To prove the differentiability of ϕ, it suffices to prove, with the
help of the mean value theorem and the dominated convergence theorem, that for 0 <

δ < 1/2 and 1 ≤ ` ≤ 2k,

E0

 sup
δ≤t≤1−δ

|u′`(t)| sup
0≤t≤1

∣∣∣∣∂V`∂x
(u`(t), r)

∣∣∣∣ ∏
`′≤2k,`′ 6=`

sup
0≤t≤1

|V`′(u`′(t), r)|

 ≤ K, (2.15)

for some constant K. Note that

u′`(t) =
1

2
√
Nt

∑
j≤N

gj σ̇
`
j −

1

2
√

1− t
ξ`.

Since ∂V`

∂x and V` are of moderate growth, for any a > 0, there exists some A > 0 such
that ∣∣∣∣ V`∂x (x, y)

∣∣∣∣ , |V`′(x, y)| ≤ A exp(a(x2 + y2)), (x, y) ∈ R2. (2.16)

Set
(
z, gNj

)
=
(
(1− q)−1ξ`, gj

)
and also let

(
XN
j,β , f1(N, t, β), f2(N, t, β), U(x)

)
be any one
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of the following vectors(
σ̇`j ,

1

2
√
Nt

,− 1− q
2
√

1− t
, x2k+1

)
,(

σ̇`j ,

√
t√
N
, (1− q)

√
1− t, exp((4k + 2)ax2)

)
,(〈

σ`j
〉
,

1√
N
, 0, exp((4k + 2)ax2)

)
.

Then by choosing a small enough and applying Lemma 2.3, there exists a constant K
independent of β and N such that

E0

[
sup

δ≤t≤1−δ
|u′`(t)|2k+1

]
≤ K,

E0

[
sup

0≤t≤1
exp

(
(4k + 2)au`(t)

2
)]
≤ K,

E0

[
sup

0≤t≤1
exp

(
(4k + 2)ar2

)]
≤ K.

Therefore, from (2.16) and Cauchy-Schwarz inequality,

E0

[
sup

0≤t≤1

∣∣∣∣∂V`∂x
(u`(t), r)

∣∣∣∣2k+1
]
, E0

[
sup

0≤t≤1
|V`′(u`′(t), r)|2k+1

]
≤ K

and by Hölder’s inequality, (2.15) holds.
To prove (2.12), we use Gaussian integration by parts,

ϕ′(t)

=
∑
`≤2k

E0

u′`(t)∂V`∂x
(u`(t), r)

∏
`′≤2k,`′ 6=`

V`′(u`′(t), r)


=
∑
`≤2k

E0 [u′`(t)u`(t)]E0

∂2V`
∂x2

(u`(t), r)
∏

`′≤2k,`′ 6=`

V`′(u`′(t), r)


+

∑
`,`′≤2k,` 6=`′

E0 [u′`(t)u`′(t)]E0

∂V`
∂x

(u`(t), r)
∂V`′

∂x
(u`′(t), r)

∏
`′′≤2k,`′′ 6=`,`′

Vh(u`′′(t), r)


+
∑
`≤2k

E0 [u′`(t)r]E0

 ∂2V`
∂x∂y

(u`(t), r)
∏

`′≤2k,`′ 6=`

V`′(u`′(t), r)


+

∑
`,`′≤2k,` 6=`′

E0 [u′`(t)r]E0

∂V`
∂x

(u`(t), r)
∂V`′

∂y
(u`′(t), r)

∏
`′′≤2k,`′′ 6=`,`′

V`′′(u`′′(t), r)

 .
(2.17)

Recalling definition (2.1), a straightforward computation yields

E0 [u′`(t)u`(t)] = T`,`/2,

E0 [u′`(t)u`′(t)] = T`,`′/2, for ` 6= `′,

E0 [u′`(t)r] = T`/2
√
t.

(2.18)

Combining (2.17) and (2.18) gives (2.12).
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Lemma 2.4 will be used iteratively up to some optimal order. Since on each iteration,
equation (2.12) brings us many terms, we will finally obtain a huge number of summa-
tions. Therefore, in order to make our argument clearer, we formulate the following
lemma.

Lemma 2.7. Fix an integer m > 0 and let ψ and ψsn be real-valued smooth functions
defined on [0, 1] for every sn = (sn(1), . . . , sn(n)) ∈ {0, 1}n with 1 ≤ n ≤ m + 1. Suppose
that ψ(0) = 0 and ψsn(0) = 0 for every sn ∈ {0, 1}n with 1 ≤ n < m. If

ψ′(t) =
1

2
ψ(0)(t) +

1

2
√
t
ψ(1)(t) (2.19)

and

ψ′sn(t) =
1

2
ψ(sn,0)(t) +

1

2
√
t
ψ(sn,1)(t), (2.20)

for every sn ∈ {0, 1}n with 1 ≤ n ≤ m, then

ψ(t) =
1

2m

∑
sm

∫ t

0

∫ t1

0

. . .

∫ tm−1

0

1∏m
`=1 t

sm(`)/2
`

dtm . . . dt2dt1ψsm(0)

+
1

2m+1

∑
sm+1

∫ t

0

∫ t1

0

. . .

∫ tm

0

1∏m+1
`=1 t

sm+1(`)/2
`

ψsm+1
(tm+1)dtm+1 . . . dt2dt1.

(2.21)

Proof. It suffices to prove that

ψ(t) =
1

2m

∑
sm

∫ t

0

∫ t1

0

. . .

∫ tm−1

0

1∏m
`=1 t

sm(`)/2
`

ψsm(tm)dtm . . . dt2dt1. (2.22)

Indeed, if (2.22) holds, then (2.21) can be deduced by applying

ψsm(tm) =

∫ tm

0

ψ′sm(tm+1)dtm+1 + ψsm(0)

and (2.20) to (2.22).

Let us prove (2.22) by induction on m. If m = 1, from (2.19), (2.22) holds clearly by

ψ(t) =

∫ t

0

ψ′(t1)dt1 + ψ(0) =
1

2

∫ t

0

(
ψ(0)(t1) +

1√
t1
ψ(1)(t1)

)
dt1.

Suppose that the announced result is true for m − 1 ≥ 1. Let ψ and ψsn be real-valued
smooth functions for every sn ∈ {0, 1}n with n ≤ m + 1 satisfying the assumptions of
this lemma. Notice that from (2.20), we obtain

ψsm−1(tm−1) =

∫ tm−1

0

ψ′sm−1
(tm)dtm + ψsm−1(0)

=
1

2

∫ tm−1

0

(
ψ(sm−1,0)(tm) +

1√
tm
ψ(sm−1,1)(tm)

)
dtm

and also by induction hypothesis,

ψ(t) =
1

2m−1

∑
sm−1

∫ t

0

∫ t1

0

. . .

∫ tm−2

0

1∏m−1
`=1 t

sm−1(`)/2
`

ψsm−1(tm−1)dtm−1 . . . dt2dt1.
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Now (2.22) follows by combining last two equations together

ψ(t) =
1

2m−1

∑
sm−1

∫ t

0

∫ t1

0

. . .

∫ tm−2

0

∫ tm−1

0

1∏m−1
`=1 t

sm−1(`)/2
`

×
(

1

2
ψ(sm−1,0)(tm) +

1

2
√
tm
ψ(sm−1,1)(tm)

)
dtmdtm−1 . . . dt2dt1

=
1

2m

∑
sm

∫ t

0

∫ t1

0

. . .

∫ tm−1

0

1∏m
`=1 t

sm(`)/2
`

ψsm(tm)dtm−1 . . . dt2dt1.

Proof of Theorem 1.2 for k = 1. Recall formulas (2.5) and (2.6) for V and ψ, respec-
tively. From Lemmas 2.1 and 2.2, V is an infinitely differentiable function and the partial
derivatives of all orders of V are of moderate growth. We also note that ψ is infinitely
differentiable by applying the same argument as Lemma 2.4. Recall the definition of E0

and use Fubini’s theorem, we can write

ψ(t) = E 〈E0 [V (u1(t), r)V (u2(t), r)]〉 .

Lemma 2.4 implies that

ψ′(t) =
1

2
ψ(0)(t) +

1

2
√
t
ψ(1)(t),

where

ψ(0)(t) = E

〈
T1,1E0

[
∂2V

∂x2
(u1(t), r)V (u2(t), r)

]
+ T2,2E0

[
∂2V

∂x2
(u2(t), r)V (u1(t), r)

]〉
+ E

〈
T1,2E0

[
∂V

∂x
(u1(t), r)

∂V

∂x
(u2(t), r)

]
+ T1,2E0

[
∂V

∂x
(u1(t), r)

∂V

∂x
(u2(t), r)

]〉
and

ψ(1)(t) = E

〈
T1E0

[
∂2V

∂x∂y
(u1(t), r)V (u2(t), r)

]
+ T2E0

[
∂2V

∂x∂y
(u2(t), r)V (u1(t), r)

]〉
+ E

〈
T1E0

[
∂V

∂x
(u1(t), r)

∂V

∂y
(u2(t), r)

]
+ T2E0

[
∂V

∂x
(u2(t), r)

∂V

∂y
(u1(t), r)

]〉
.

Since

E0

[
∂2V

∂x2
(u`(0), r)V (u`′(0), r)

]
= E0

[
U ′′(ξ` + r)

]
E0

[
U(ξ`

′
+ r)− Eξ [U(ξ + r)]

]
= 0

for 1 ≤ `, `′ ≤ 2 with ` 6= `′ and 〈T1,2〉 = 0, we obtain ψ(0)(0) = 0. On the other hand,
since

E0

[
∂2V

∂x∂y
(u`(0), r)V (u`′(0), r)

]
= E0

[
U ′′(ξ` + r)

]
E0

[
U(ξ`

′
+ r)− Eξ [U(ξ + r)]

]
= 0

E0

[
∂V

∂x
(u`(0), r)

∂V

∂y
(u`′(0), r)

]
= E0

[
U ′(ξ` + r)

]
E0

[
U ′(ξ`

′
+ r)− Eξ [U ′(ξ + r)]

]
= 0

for 1 ≤ `, `′ ≤ 2 with ` 6= `′, this implies ψ(1)(0) = 0. Applying Lemma 2.4 again to ψ(0)

and ψ(1), we may write

ψ′(0)(t) =
1

2
ψ(0,0)(t) +

1

2
√
t
ψ(0,1)(t)

ψ′(1)(t) =
1

2
ψ(1,0)(t) +

1

2
√
t
ψ(1,1)(t)

(2.23)
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for four smooth functions ψ(0,0), ψ(0,1), ψ(1,0), ψ(1,1) on [0, 1] . Here come the crucial ob-
servations: First, from Remark 2.5, the partial derivatives in the expression of ψ(0) are
only respect to the x variable and the partial derivative with respect to the y variable
occurs in every term in the expression of ψ(1). Second, from Remark 2.6,

(i) each T`,` is associated with ∂2

∂x2

∣∣∣
(u`(t),r)

on V ;

(ii) each T1,2 is associated with ∂
∂x

∣∣
(u1(t),r)

· ∂
∂x

∣∣
(u2(t),r)

on V ;

(iii) each T` is associated with ∂2

∂x∂y

∣∣∣
(u`(t),r)

and ∂
∂x

∣∣
(u`(t),r)

· ∂
∂x

∣∣
(u`′ (t),r)

on V for `′ 6= `.

Based on these observations and our experience in obtaining ψ(0) and ψ(1), it should
be clear that for each s2 = (s2(1), s2(2)) ∈ {0, 1}2, ψs2 is given by the summation of the
terms that are of the form

E
〈
T
k1(1)
1,1 T

k1(2)
2,2 T

k2(1,2)
1,2 T

k2(2,1)
2,1 T

k3(1)
1 T

k3(2)
2

·E0

[
∂k4(1)+k5(1)V

∂xk4(1)∂yk5(1)
(u1(t), r)

∂k4(2)+k5(2)V

∂xk4(2)∂yk5(2)
(u2(t), r)

]〉 (2.24)

with

k1(1) + k1(2) + k2(1, 2) + k2(2, 1) + k3(1) + k3(2) = 2

2k1(`) + k1,2(`) + k2,1(`) + k3(`) = k4(`), ` = 1, 2

k3(1) + k3(2) = s2(1) + s2(2) = k5(1) + k5(2)

(2.25)

for some k1(`), k2(`, `′), k3(`), k4(`), and k5(`) nonnegative integers for 1 ≤ `, `′ ≤ 2 with
` 6= `′.

In the following we claim that ψs2(0) = 0 for every s2 ∈ {0, 1}2 except for s2 = (0, 0)

and

ψ(0,0)(0) = E
〈(

2T1,1T2,2 + 4T 2
1,2

)
E0

[
U ′′(ξ1 + r)U ′′(ξ2 + r)

]〉
. (2.26)

To this end, let us first prove some properties for k4. Assume that〈
T
k1(1)
1,1 T

k1(2)
2,2 T

k2(1,2)
1,2 T

k2(2,1)
2,1 T

k3(1)
1 T

k3(2)
2

〉
6= 0. (2.27)

If k4(1) = 1, that is, the index 1 appears only once in the subscript of

T
k1(1)
1,1 T

k1(2)
2,2 T

k2(1,2)
1,2 T

k2(2,1)
2,1 T

k3(1)
1 T

k3(2)
2 .

From (2.25), k1(1) = 0 and using the independence of σ1 and σ2, this yields that

1. if (k2(1, 2), k2(2, 1), k3(1)) = (1, 0, 0) or (0, 1, 0), then the left-hand side of (2.27)

equals 〈
T1,2T

k1(2)
2,2 T

k3(2)
2

〉
=

1

N

∑
j′≤N

〈
σ̇1
j′
〉 〈
σ̇2
j′T

k1(2)
2,2 T

k3(2)
2

〉
= 0;

2. if (k2(1, 2), k2(2, 1), k3(1)) = (0, 0, 1), then the left-hand side of (2.27) equals

〈
T1T

k1(2)
2,2 T

k3(2)
2

〉
=

 1

N

∑
j′≤N

〈
σ̇1
j′
〉 〈
σ2
j′
〉〈T k1(2)

2,2 T
k3(2)
2

〉
= 0.

EJP 18 (2013), paper 2.
Page 14/25

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v18-1763
http://ejp.ejpecp.org/


CLT for cavity and local fields of the SK model

Thus, if (2.27) occurs, then k4(1) ≥ 2 or = 0 and so is k4(2). Next, suppose that t = 0 and

E0

[
∂k4(1)+k5(1)V

∂xk4(1)∂yk5(1)
(u1(0), r)

∂k4(2)+k5(2)V

∂xk4(2)∂yk5(2)
(u2(0), r)

]
6= 0. (2.28)

We check that this will yield k4(1), k4(2) ≥ 1. Indeed, if k4(1) = 0, then the left-hand side
of (2.28) becomes

E0

[
∂k5(1)V

∂yk5(1)
(u1(0), r)

∂k4(2)+k5(2)V

∂xk4(2)∂yk5(2)
(u2(0), r)

]
= E0

[
U (k5(1))(ξ1 + r)− Eξ

[
U (k5(1))(ξ + r)

]]
E0

[
∂k4(2)+k5(2)V

∂xk4(2)∂yk5(2)
(u2(t), r)

]
= 0,

which contradicts to (2.28). So we conclude that k4(1) ≥ 1 and the same argument also
implies k4(2) ≥ 1. To sum up, if (2.24) does not vanish, then both (2.27) and (2.28) must
occur and hence, k4(1), k4(2) ≥ 2. From (2.25), we then have

4 = 2 (k1(1) + k1(2) + k2(1, 2) + k2(2, 1) + k3(1) + k3(2))

= k4(1) + k4(2) + k3(1) + k3(1)

≥ 2 + 2 + k3(1) + k3(2)

≥ 4

and this implies that k4(1) = k4(2) = 2 and k3(1) = k3(2) = 0 = s2(1) = s2(2). Thus,
we conclude that ψs2(0) = 0 for all s2 ∈ {0, 1}2 except for s2 = (0, 0) and ψ(0,0)(0) is the
summation of the terms

E
〈
T`1,`′1T`2,`′2E0

[
U ′′(ξ1 + r)U ′′(ξ2 + r)

]〉
,

where the summation is over all (`1, `
′
1, `2, `

′
2) ∈ {1, 2}4 satisfying that each of the indices

1 and 2 appears exactly twice in the list (`1, `
′
1, `2, `

′
2). Consequently, a simple computa-

tion yields (2.26) and this completes the proof of our claim.
Finally, again we may use Lemma 2.7 to write

ψ′s2(t) =
1

2
ψ(s2(1),s2(1),0)(t) +

1

2
√
t
ψ(s2(1),s2(1),1)(t)

for s2 ∈ {0, 1}2, where {ψs3 : s3 ∈ {0, 1}3} are smooth functions. Then ψ and ψsn for
sn ∈ {0, 1}n and n = 1, 2, 3 satisfy the assumption of Lemma 2.7 and it follows that

ψ(t) =
t2

23
E
〈(

2T1,1T2,2 + 4T 2
1,2

)
E0

[
U ′′(ξ1 + r)U ′′(ξ2 + r)

]〉
+

1

23

∑
s3

∫ t

0

∫ t1

0

∫ t2

0

1

t
s3(1)/2
1 t

s3(2)/2
2 t

s3(3)/2
3

ψs3(t3)dt3dt2dt1.
(2.29)

Since each term in the summation of ψs3 is of the form (2.24) with

k1(1) + k1(2) + k2(1, 2) + k2(2, 1) + k3(1) + k3(2) = 3,

by using (2.2), Hölder’s inequality, and Lemma 2.3, it yields that sup0≤t≤1 |ψs3(t)| ≤
K/N3/2 for each s3 ∈ {0, 1}3 and from (2.29), we are done.

Proof of Theorem 1.2 for the general value of k. As in the case k = 1, we write

ψ(t) = E

〈
E0

∏
`≤2k

V (u`(t), r)

〉 .
EJP 18 (2013), paper 2.
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Now applying Lemma 2.4 to

E0

∏
`≤2k

V (u`(t), r)


and then taking expectation E 〈·〉 on (2.12), we obtain

ψ′(t) =
1

2
ψ(0)(t) +

1

2
√
t
ψ(1)(t),

where

ψ(0)(t) =
∑
`≤2k

E

〈
Ti,iE0

∂2V

∂x2
(u`(t), r)

∏
`′≤2k,`′ 6=`

V (u`′(t), r)

〉

+
∑

`,`′≤2k,` 6=`′
E

〈
T`,`′E0

∂V
∂x

(u`(t), r)
∂V

∂x
(u`′(t), r)

∏
`′′≤2k,`′′ 6=`,`′′

V (u`′′(t), r)

〉

and

ψ(1)(t) =
∑
`≤2k

E

〈
T`E0

 ∂2V

∂x∂y
(u`(t), r)

∏
`′≤2k,`′ 6=`

V (u`′(t), r)

〉

+
∑

`,`′≤2k,` 6=`′
E

〈
T`E0

∂V
∂x

(u`(t), r)
∂V

∂y
(u`′(t), r)

∏
`′′≤2k,`′′ 6=`,`′

V (u`′′(t), r)

〉 .
Next, to compute the derivative of ψ(0), let us apply Lemma 2.4 again to

E0

∂2V

∂x2
(u`(t), r)

∏
`′≤2k,`′ 6=`

V (u`′(t), r)

 , ` ≤ 2k,

and

E0

∂V
∂x

(u`(t), r)
∂V

∂x
(u`′(t), r)

∏
`′′≤2k,`′′ 6=`,`′

V (u`′′(t), r)

 , `, `′ ≤ 2k, ` 6= `′,

and then take expectation E 〈·〉. Then we obtain two smooth functions ψ(0,0) and ψ(0,1)

defined on [0, 1] such that

ψ′(0)(t) =
1

2
ψ(0,0)(t) +

1

2
√
t
ψ(0,1)(t).

Similarly, the derivative of ψ′(1) can also be computed in the same way, which leads to
two smooth functions ψ(1,0) and ψ(1,1) defined on [0, 1] such that

ψ′(1)(t) =
1

2
ψ(1,0)(t) +

1

2
√
t
ψ(1,1)(t).

Continuing this process, we get {ψsn : sn ∈ {0, 1}n , n ≤ 2k + 1} for which (2.19) and
(2.20) hold.

We claim that ψsn(0) = 0 for every sn = (sn(1), . . . , sn(n)) ∈ {0, 1}n with n < 2k. To
see this, let us observe that from Remarks 2.5 and 2.6, a typical term in those compli-
cated summations in the expression of ψsn is of the form

E

〈∏
`≤2k

T
k1(`)
`,`

∏
`,`′≤2k,` 6=`′

T
k2(`,`′)
`,`′

∏
`≤2k

T
k3(`)
` E0

∏
`≤2k

∂k4(`)+k5(`)V

∂xk4(`)∂yk5(`)
(u`(t), r)

〉 , (2.30)
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with ∑
`≤2k

k1(`) +
∑

`,`′≤2k,` 6=`′
k2(`, `′) +

∑
`≤2k

k3(`) = n,

2k1(`) +
∑

`′≤2k,`′ 6=`

(k2(`, `′) + k2(`′, `)) + k3(`) = k4(`), ` ≤ 2k,

∑
`≤2k

k3(`) =
∑
`≤n

sn(`) =
∑
`≤2k

k5(`),

where k1(`), k2(`, `′), k3(`), k4(`), and k5(`) are nonnegative integers for `, `′ ≤ 2k with
` 6= `′.

First of all, notice that if〈∏
`≤2k

T
k1(`)
`,`

∏
`,`′≤2k,` 6=`′

T
k2(`,`′)
`,`′

∏
`≤2k

T
k3(`)
`

〉
6= 0,

then for ` ≤ 2k, either k4(`) ≥ 2 or it is equal to zero. That is, if ` occurs in one of the
subscripts of T`,`, T`,`′ or T`, it must occur more than once and we suppose that this is
the case. Second, if

E0

∏
`≤2k

∂k4(`)+k5(`)V

∂xk4(`)∂yk5(`)
(u`(0), r)

 6= 0,

then k4(`) ≥ 1 for every ` ≤ 2k since Eξ`

[
∂aV
∂ya (u`(0), r)

]
= 0 for all a ≥ 0 and ` ≤ 2k.

Therefore, we conclude that k4(`) ≥ 2 for every ` ≤ 2k and it implies

2n = 2
∑
`≤2k

k1(`) + 2
∑

`,`′≤2k,` 6=`′
k2(`, `′) + 2

∑
`≤2k

k3(`)

=
∑
`≤2k

2k1(`) +
∑

`′≤2k,`′ 6=`

(k2(`, `′) + k2(`′, `)) + k3(`)

+
∑
`≤2k

k3(`)

=
∑
`≤2k

k4(`) +
∑
`≤2k

k3(`)

≥ 2k · 2 +
∑
`≤2k

k3(`)

≥ 2k · 2
= 4k.

Hence, if (2.30) is not equal to zero, then n ≥ 2k. So ψsn(0) = 0 for every sn ∈ {0, 1}n

with n < 2k, which completes the proof of our claim. In addition, we can conclude more
from above that if n = 2k and (2.30) does not vanish, since

∑
`≤2k k3(`) =

∑
`≤n sn(`)

and k4(`) ≥ 2 for every ` ≤ 2k, it implies that sn(`) = 0 and k4(`) = 2 for every ` ≤ 2k.

Consequently, this means that ψs2k(0) = 0 for every s2k ∈ {0, 1}2k unless s2k = 02k :=

(0, . . . , 0) and in this case,

ψ02k
(0) =

∑
`1,`′1,...,`2k,`

′
2k

E

〈
T`1,`′1 · · ·T`2k,`′2kE0

∏
`≤2k

U ′′(ξ` + r)

〉 ,
where (`1, `

′
1, . . . , `2k, `

′
2k) ∈ {1, . . . , 2k}4k satisfies that each number ` ≤ 2k occurs ex-

actly twice in this vector.
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Now, concluding from (2.21) in Lemma 2.7 and using∫ t

0

∫ t1

0

. . .

∫ t2k−1

0

dt2k . . . dt2dt1 =
t2k

(2k)!
,

we obtain

ψ(t) =
t2k

22k(2k)!

∑
`1,`′1,...,`2k,`

′
2k

E

〈
T`1,`′1 · · ·T`2k,`′2kE0

∏
`≤2k

U ′′(ξ` + r)

〉

+
1

22k+1

∑
s2k+1

∫ t

0

∫ t1

0

. . .

∫ t2k

0

1∏2k+1
`=1 t

s2k+1(`)/2
`

ψs2k+1
(t2k+1)dt2k+1 . . . dt2dt1.

Finally, since each term in those summations in the expression of ψs2k+1
is given by

formula (2.30) with n = 2k + 1, by applying Lemma 2.3, the known result (2.2), and
Hölder’s inequality, we obtain some K > 0 depending on β0, k, and U only such that
sup0≤t≤1 |ψs2k+1

(t)| ≤ K/Nk+1/2 for every β ≤ β0 and h. Similarly we also have∣∣∣∣∣∣E
〈
T`1,`′1 · · ·T`2k,`′2kE0

∏
`≤2k

U ′′(ξ` + r)

〉∣∣∣∣∣∣ ≤ K

Nk
.

Therefore, ψ(1) ≤ K/Nk and we are done.

2.2 Proof of Theorem 1.3

The following proposition is the key to proving Theorem 1.3.

Proposition 2.8. Let β0 < 1/2 and k ∈ N. Suppose that U is an infinitely differentiable
function defined on R and the derivatives of all orders of U are of moderate growth.
Recall ι and r as defined by (1.7) and (1.8). Then for any β ≤ β0 and h,

E

 〈U(ι) cosh(βι+ h)〉
〈cosh(βι+ h)〉

− Eξ [U(ξ + r) cosh(β(ξ + r) + h)]

exp
(
β2

2 (1− q)
)

cosh(βr + h)

2k

≤ K

Nk
,

where ξ is a centered Gaussian distribution with variance 1− q and K depends on β0, k

and U only.

Proof. Define for ε = ±1,

A(ε) = 〈U(ι) exp (εβι)〉 − Eξ [U(ξ + r) exp (εβ(ξ + r))]

and also
B(ε) = 〈exp (εβι)〉 − Eξ [exp (εβ(ξ + r))] .

Notice that both U(x) exp εβx and exp εβx are infinitely differentiable and their deriva-
tives of all orders are of moderate growth. Applying Theorem 1.2 to these two functions,
we obtain that EA(ε)4k ≤ K/N2k and EB(ε)8k ≤ K/N4k. Now using Jensen’s inequality,
Hölder’s inequality, and Lemma 2.3, implies that

E

[
1

〈exp (εβι)〉4k

]
≤ E [exp (−4kεβr)] ≤ K, (2.31)

E

[
1

exp (εβr)
8k

]
= E [exp (−8kεβr)] ≤ K, (2.32)
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and

E

[
U(ξ + r)4k exp(4kεβ(ξ + r))

〈exp(εβι)〉4k

]
≤ E

[
U(ξ + r)4k exp(4kεβξ)

]
≤ K. (2.33)

For convenience, we set

A = 〈U(ι) cosh(βι+ h)〉 ,
B = 〈cosh(βι+ h)〉 ,
A′ = Eξ [U(ξ + r) cosh(β(ξ + r) + h)] ,

B′ = exp

(
β2

2
(1− q)

)
cosh(βr + h).

Consequently, by using Hölder’s inequality, (2.31), (2.32), and (2.33), the following three
inequalities hold

E

[
A−A′

B

]2k

= E

[
A(1)eh +A(−1)e−h

〈exp (βι)〉 eh + 〈exp (−βι)〉 e−h

]2k

≤ 22k

(
E

[
A(1)

〈exp (βι)〉

]2k

+ E

[
A(−1)

〈exp (−βι)〉

]2k
)

≤ 22k

(EA(1)4k
)1/2(

E

[
1

〈exp (βι)〉4k

])1/2

+
(
EA(−1)4k

)1/2(
E

[
1

〈exp (−βι)〉4k

])1/2


≤ K

Nk
,

(2.34)

E

[
B′ −B
B′

]4k

≤ E
[

B(1)eh +B(−1)e−h

exp(βr)eh + exp(−βr)e−h

]4k

≤ 24k

(
E

[
B(1)

exp(βr)

]4k

+ E

[
B(−1)

exp(−βr)

]4k
)

≤ 24k

((
EB(1)8k

)1/2(
E

[
1

exp (8kβr)

])1/2

+
(
EB(−1)8k

)1/2(
E

[
1

exp (−8kβr)

])1/2
)

≤ K

N2k
,

(2.35)

and

E

[
A′

B

]4k

= E

[
Eξ
[
U(ξ + r)

(
exp(β(ξ + r))eh + exp(−β(ξ + r))e−h

)]
〈exp(βι)eh + exp(−βι)e−h〉

]4k

≤ 24k

(
E

[
U(ξ + r)

exp(β(ξ + r))

〈exp(βι)〉

]4k

+ E

[
U(ξ + r)

exp(−β(ξ + r))

〈exp(−βι)〉

]4k
)

≤ K.
(2.36)
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Finally, by applying (2.34), (2.35), and (2.36) to the following inequality∣∣∣∣AB − A′

B′

∣∣∣∣2k ≤ 22k

(∣∣∣∣A−A′B

∣∣∣∣2k +

∣∣∣∣A′B
∣∣∣∣2k ∣∣∣∣B′ −BB′

∣∣∣∣2k
)
,

and using Hölder’s inequality, the announced result follows.

Recall that q is defined by (1.2). We also define q− as the unique solution of q− =

E tanh2(β−z
√
q− + h), where β− =

√
(N − 1)/Nβ and z is a standard Gaussian distribu-

tion. Notice that the existence and uniqueness of q− are always guaranteed since we
only consider the high temperature region, that is, β− < 1/2. Also, recall the quantity
γi from (1.13).

Lemma 2.9. There is a constant L > 0 so that

|q − q−| ≤
L

N
(2.37)

for every β < 1/2, h, and N. Let β0 < 1/2 be fixed. Then for every 1 ≤ i ≤ N , β ≤ β0,

and h,

E

γi − 1√
N − 1

∑
j≤N,j 6=i

gij 〈σj〉−

2k

≤ K

Nk
(2.38)

where K is a constant depending only on β0 and k.

Proof. The inequality (2.37) is from Lemma 1.7.5. [5], while (2.38) follows from the
inequalities on page 86 of [5].

Proof of Theorem 1.3. By symmetry among the sites, it suffices to prove (1.14) is true
when i = N. Recall ιN and γN from (1.11) and (1.13). We set

ι−N =
1√
N − 1

∑
j≤N−1

gNjσj , r−N =
〈
ι−N
〉
− ,

where 〈·〉− is the Gibbs measure with Hamiltonian (1.4) and inverse temperature β− =√
(N − 1)/Nβ. Since ι−N is a cavity field in 〈·〉− , from Proposition 2.8, we know

E

〈U(ι−N ) cosh(β−ι
−
N + h)

〉
−〈

cosh(β−ι
−
N + h)

〉
−

−
Eξ
[
U(ξ + r−N ) cosh(β−(ξ + r−N ) + h)

]
exp

(
β2
−
2 (1− q−)

)
cosh(β−r

−
N + h)

2k

≤ K

Nk
, (2.39)

where K is a constant depending on β0, k, and U only. The goal of the proof is then to
prove that (1.14) can be related to (2.39). We perform our estimates in several steps.

Step 1. Similar to (1.6), from the Gibbs measure, the following identity holds

〈U(ιN )〉 =
〈U(ιN ) cosh(βιN + h)〉−
〈cosh(βιN + h)〉−

.

Note that β−ι
−
N = βιN . Therefore,〈

U(ι−N ) cosh(β−ι
−
N + h)

〉
−〈

cosh(β−ι
−
N + h)

〉
−

=

〈
U(ι−N ) cosh(βιN + h)

〉
−

〈cosh(βιN + h)〉−
,
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and this quantity is very close to 〈U(ιN )〉 in the sense that

E

[〈
U(ι−N ) cosh(β−ι

−
N + h)

〉
−〈

cosh(β−ι
−
N + h)

〉
−

− 〈U(ιN )〉

]2k

= E

[〈(
U(ι−N )− U(ιN )

)
cosh(βιN + h)

〉
−

〈cosh(βιN + h)〉−

]2k

≤ E
[
U(ι−N )− U(ιN )

]2k
≤ K

Nk
.

(2.40)

Indeed, the first inequality is true by the use of Jensen’s inequality. The second inequal-
ity holds by using the mean value theorem and

√
N/
√
N − 1 − 1 ≤ 2/

√
N together to

obtain

|U(ι−N )− U(ιN )| ≤ |ι−N − ιN | sup
0≤t≤1

|U ′(tι−N + (1− t)ιN )|

≤
√

2√
N
|ιN | sup

0≤t≤1
|U ′(tι−N + (1− t)ιN )|

and then applying Lemma 2.3.

Step 2. Since for any a, b, c ∈ R,

cosh(c(ξ + a) + h)

cosh(ca+ h)
=

ecξ

1 + e−2ca−2h
+

e−cξ

1 + e2ca+2h
(2.41)

and

d

da

(
1

1 + e±2(ca+h)

)
=

∓2c

(eca+h + e−ca−h)2
,

we have ∣∣∣∣cosh(c(ξ + a) + h)

cosh(ca+ h)
− cosh(c(ξ + b) + h)

cosh(cb+ h)

∣∣∣∣ ≤ |c||a− b| cosh(cξ).

Therefore, by Hölder’s inequality, Lemmas 2.3 and 2.9,

E

[
Eξ

[
U(ξ + r−N )

(
cosh(β−(ξ + r−N ) + h)

cosh
(
β−r

−
N + h

) − cosh(β−(ξ + γN ) + h)

cosh (β−γN + h)

)]]2k

≤ β2k
− E

[
|U(ξ + r−N )| cosh(β−ξ)|r−N − γN |

]2k
≤ β2k

−

(
E
[
|U(ξ + r−N )| cosh(β−ξ)

]4k)1/2 (
E
[
|r−N − γN |

]4k)1/2

≤ K

Nk
.

(2.42)

Step 3. Similar to the first step, by the mean value theorem, Lemmas 2.3 and 2.9,
we have

E

[
Eξ

[(
U(ξ + r−N )− U(ξ + γN )

) cosh(β−(ξ + γN ) + h)

cosh (β−γN + h)

]]2k

≤ K

Nk
. (2.43)
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Step 4. Let us apply the same trick as in the proof for Proposition 2.8 to obtain

E

[
U(ξ + γN )

cosh(β−(ξ + γN ) + h)

cosh(β−γN + h)

]2k

≤ E

[
U(ξ + γN )2k

(
exp(β−(ξ + γN ))eh + exp(−β−(ξ + γN ))e−h

exp(β−γN )eh + exp(−β−γN )e−h

)2k
]

≤ 22k
(
E
[
U(ξ + γN )2k (exp(2kβ−ξ) + exp(−2kβ−ξ))

])
≤ K.

On the other hand, a straightforward computation gives

∂2

∂(β2)∂q
exp

(
−β

2

2
(1− q)

)
=

1

2
exp

(
−β

2

2
(1− q)

)
− (1− q)β2

4
exp

(
−β

2

2
(1− q)

)
.

Thus, from Lemma 2.9,∣∣∣∣exp

(
−
β2
−
2

(1− q−)

)
− exp

(
−β

2

2
(1− q)

)∣∣∣∣
≤
(

1

2
+

1

4
β2

)
|β2 − β2

−||q − q−|

≤ K

N2

and so by Jensen’s inequality

E

[(
exp

(
−
β2
−
2

(1− q−)

)
− exp

(
−β

2

2
(1− q)

))
× Eξ

[
U(ξ + γN )

cosh(β−(ξ + γN ) + h)

cosh (β−γN + h)

]]2k

≤ K

Nk
.

(2.44)

Step 5. Notice that from (2.41), we obtain

d

dc

cosh(c(ξ + a) + h)

cosh(ca+ h)
=

ξecξ

1 + e−2(ca+h)
+

−ξe−cξ

1 + e2(ca+h)

+
−2aecξ−2(ca+h)

(1 + e−2(ca+h))2
+

2ae−cξ+2(ca+h)

(1 + e2(ca+h))2
.

Since ∣∣∣∣ 2ae±cξ∓2(ca+h)

(1 + e∓2(ca+h))2

∣∣∣∣ =

∣∣∣∣ e∓2(ca+h)

1 + e∓2(ca+h)

∣∣∣∣ ∣∣∣∣ 2ae±cξ

1 + e∓2(ca+h)

∣∣∣∣ ≤ 2|a|e±cξ,

it follows that ∣∣∣∣ ddc cosh(c(ξ + a) + h)

cosh(ca+ h)

∣∣∣∣ ≤ 2 (|ξ|+ 2|a|) cosh(cξ)

and for c′ < c,∣∣∣∣cosh(c(ξ + a) + h)

cosh(ca+ h)
− cosh(c′(ξ + a) + h)

cosh(c′a+ h)

∣∣∣∣ ≤ 2 (|ξ|+ 2|a|)
∫ c

c′
cosh(tξ)dt. (2.45)
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Since from Lemma 2.3, we know

E

[
|U(ξ + γN )|(|ξ|+ 2|γN |) sup

0≤t≤β0

cosh(tξ)

]2k

≤ K,

it follows, by (2.45) and Jensen’s inequality, that

E

[
Eξ

[
U(ξ + γN )

(
cosh(β−(ξ + γN ) + h)

cosh (β−γN + h)
− cosh(β(ξ + γN ) + h)

cosh (βγN + h)

)]]2k

≤ K

Nk
. (2.46)

Step 6. Combining (2.39), (2.40), (2.42), (2.43), (2.44), and (2.46), we finally obtain

E

〈U(ιN )〉 − Eξ [U(ξ + γN ) cosh(β(ξ + γN ) + h)]

exp
(
β2

2 (1− q)
)

cosh(βγN + h)

2k

≤ K

Nk
. (2.47)

Substitute the identity

(x− γN )2

2(1− q)
∓ (βx+ h) =

1

2(1− q)
(x− (γN ± β(1− q)))2 ∓ (βγN + h)− β2

2
(1− q)

in the right-hand side of

Eξ [U(ξ + γN ) cosh(β(ξ + γN ) + h)]

=

∫
U(x)√

2π(1− q)
eβx+h + e−βx−h

2
exp

(
− (x− γN )2

2(1− q)

)
,

then (1.14) holds by (2.47) and we are done.

Appendix

Proof of Lemma 2.1. It is easy to see that U0, U1, and U2 are of moderate growth. For
U3, since as |x| → ∞,

e−ax
2

U3(x) = exp
(
−a

2
(x+ r)2

)
U(x+ r) exp

(
−a

2
(x2 − 2rx− r2)

)
→ 0,

for all a > 0, it follows that U3 is also of moderate growth. The function U4 is of moderate
growth since

lim sup
x2+y2→∞

|U4(x, y)| exp
(
−a(x2 + y2)

)
≤ lim sup
x2+y2→∞

1{|x+y|≥M}|U(x+ y)| exp
(
−a(x2 + y2)

)
+ lim sup
x2+y2→∞

1{|x+y|<M}|U(x+ y)| exp
(
−a(x2 + y2)

)
= lim sup
x2+y2→∞

1{|x+y|≥M}|U(x+ y)| exp
(
−a(x2 + y2)

)
≤ lim sup
x2+y2→∞

1{|x+y|≥M}|U(x+ y)| exp
(
−a

2
(x+ y)2

)
,

for all M > 0 and also the fact that U is of moderate growth. Since U3 is of moderate
growth, U5 is well-defined. For 0 < b < 1, write

(x− y)2 − by2 =

(√
1− by − 1√

1− b
x

)2

− b

1− b
x2.
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Thus,

exp
(
−ax2

)
U5(x)

=
1√

2πσ2

∫ ∞
−∞

U(y) exp
(
−ax2

)
exp

(
− (x− y)2

2σ2

)
dy

=
1√

2πσ2

∫ ∞
−∞

U(y) exp

(
− by

2

2σ2

)
exp

(
− (x− y)2 − by2

2σ2
− ax2

)
dy

=
1√

2πσ2

∫ ∞
−∞

U(y) exp

(
− by

2

2σ2

)
exp

(
− 1

2σ2

(√
1− by − 1√

1− b
x

)2
)
dy

× exp

(
−
(
a− b

2σ2(1− b)

)
x2

)
.

(2.48)

Since U is of moderate growth, U(y) exp
(
− by2

2σ2

)
can be regarded as a bounded function

in y. On the other hand, since∫ ∞
−∞

exp

(
− 1

2σ2

(√
1− by − 1√

1− b
x

)2
)
dy

is finite and independent of x, by taking b to be small enough and letting |x| tend to
infinity, we conclude, from (2.48), that U5 is of moderate growth. This completes the
proof.

Proof of Lemma 2.2. For any x, x′, y ∈ R, by the mean value theorem, we can find some
z(x, x′, y) between x and x′ so that U(x+y)−U(x′+y) = U ′(z(x, x′, y) +y)(x−x′). Since
U ′ is of moderate growth, for any M1,M2 > 0,

K1 := sup
|y|≥M1,|z|≤M2

|U ′(z + y)| exp

(
− y2

4σ2

)
<∞.

By the continuity of U ′, K2 := sup|y|≤M1,|z|≤M2
|U ′(z+ y)| exp

(
−y2/2σ2

)
<∞. Therefore,

for |x|, |x′| ≤M2, ∣∣∣∣U(x+ y)− U(x′ + y)

x− x′

∣∣∣∣ exp

(
− y2

2σ2

)
≤ K1 exp

(
− y2

4σ2

)
1{|y|≥M1} +K21{|y|<M2}

and by the dominated convergence theorem, ψ′(x) = EξU
′(ξ + x).
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