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Abstract

Letp>1,e>0,r>(14¢)p and X be a (—1/r)-concave random vector in R" with
Euclidean norm | X|. We prove that

(BIX|")" < ¢(C()BIX| + 0p(X))

where
op(X) = sup (E|(z, X)[")"/",
[z]<1
C(e) depends only on ¢ and c is a universal constant. Moreover, if in addition X is
centered then

(BIX|)7" > ofe) (BIX| — Cop(X)) .-
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Moment estimates for convex measures

1 Introduction

Let X be a random vector with values in a finite dimensional Euclidean space F
with Euclidean norm |- | and scalar product (-, -). For any p > 0, we define the weak p-th
moment of X by

73(X) = sup (E|(z X)P")/7.
lz]<1

Clearly (E|X|?)!/? > ¢,(X) and by Hélder’s inequality, (E|X|P)'/? > E|X|. In this
paper we are interested in reversed inequalities of the form

(E|X[P)/? < € E|X| + Caop(X) (1.1)

for p > 1 and constants C; and Cs.

This is known for some classes of distributions and the question has been studied in
a more general setting (see [20] and references therein) and our objective in this paper
is to describe new classes for which the relationship (1.1) is satisfied.

Let us recall some known results when (1.1) holds. It clearly holds for Gaussian
vectors and it is not difficult to see that (1.1) is true for subgaussian vectors (see below
for definitions) for every p > 1, with C'; and C5; depending only on the subgaussian
parameter.

Another example of such a class is the class of so-called log-concave vectors. A
probability measure p on R™ is called log-concave if for all 0 < # < 1 and for all
compact subsets A, B C R™ with positive measure one has

p(1 = 0)A+0B) > u(A)~u(B)". (1.2)

A random vector with a log-concave distribution is called log-concave. It is known that
for every log-concave random vector X in a finite dimensional Euclidean space and any
p>0,

(B|X )P < O(EIX| + 0,(X)),

where C' > 0 is a universal constant. See Corollary 5.3 and references below.

In this paper we will consider the class of convex measures introduced by Borell.
Let k < 0. A probability measure 1 on R is called k-concave if for all 0 < 6§ < 1 and for
all compact subsets A, B C R™ with positive measure one has

u((1=0)A+0B) > (1 — 0)u(A)" +0u(B)")"/" . (1.3)

A random vector with a k-concave distribution is called x-concave. Note that a log-
concave vector is also k-concave for any x < 0.

We show in Theorem 5.2 that for k > —1, a k-concave random vector satisfies (1.1)
forall 0 < (1 +¢)p < —1/k with Cy and C; depending only on «.

In fact, in Definition 4.1 we will introduce a general assumption on the distribution,
called H(p,\). The main result of the first part of the paper is Theorem 4.2 in which we
show that this assumption is sufficient in order to have (1.1). In Theorem 5.1 we prove
that convex measures satisfy this assumption.

One of the main applications of the relationship (1.1) consists in tail inequalities
for P (|X| > tE|X]). In Corollary 5.4 we show that for » > 2 and for a (—1/r)-concave

cmax{lf,r/\/ﬁ} r/2

isotropic random vector X € R™ the above probability is bounded by (
From this bound we deduce that the empirical covariance matrix of a sample of size
proportional to n is a good approximation of the covariance matrix of X, extending
results of [1, 2] from log-concave measures to convex measures. This provides thus a
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new class of random vectors satisfying such approximation. See Corollary 5.6 and the
remark following it.

The second part of the paper deals with negative moments. We are looking for
relationship of the form

(BIX|77) "V > €y BIX| — Caop(X) (1.4)

for p > 0 and constants C; and Cs.

We show in Theorem 6.2 that for k > —1, an n-dimensional x-concave random vector
satisfies (1.4) for all 0 < (1 + ¢)p < min{n/2,(—1/k)} with C; and C5 depending only
on €. As an application we show a small ball probability estimate for x-concave random
vectors. In the log-concave setting it was proved in [28].

2 Preliminaries

The space R™ is equipped with the scalar product (-, -), the Euclidean norm | - |, the
unit ball Bj* and the volume measure vol(-). The canonical basis is denoted by e, eo,
..., em. A gauge or Minkowski functional || - || on R™ is a non-negative function on R™
satisfying: ||[Az|| = A||z|| and ||z +y|| < ||z|| +||y| for every z,y € R™ and every real A > 0
and such that ||z||=0 if and only if z = 0. The dual gauge is defined for every z € R™
by ||lz||* = max{(z,t) : ||t|| < 1}. A body is a compact subset of R™ with a non-empty
interior. Any convex body K C R™ containing the origin in its interior defines the gauge
by ||z|| = inf{A > 0 : = € AK}. It is called the Minkowski functional of K. If K C R™
is a convex body containing the origin in its interior, the polar body K° is defined by
K° ={zxeR™: (z,t) <1forallt € K}. The diameter of K in the Euclidean metric is
denoted by diam(K).

For a linear subspace F' C R™ we denote the orthogonal projection on F' by Pr.
Note that PrK° := Pr(K°) = (K N F)°, when the polar is taken in F.

For a random vector X in R™ with a density h and a subspace F' C R, we denote
the density of PrX by hp.

A random vector X in R™ will be called non-degenerate if it is not supported in a
proper affine subspace of R™. It is called isotropic if it is centered and for all § € R™,
E|(X, 0)[2 = |6]2.

Given a non-negative bounded function f on R™ we introduce the following associ-
ated set. For any o > 1, let

Ko(f) ={t e R™: f(t) = a™™[|flloc}, 2.1

where || flloo = sup;egm | f()]-

By ¢i, gi,; we denote independent standard Gaussian random variables, i.e. cen-
tered and of variance one. A standard Gaussian vector in R" is denoted by G, i.e.
G = (91,92, ---,9m). The standard Gaussian matrix is the matrix whose entries are i.i.d.
standard Gaussian variables, i.e. I = {g; ;}. By 7, we denote the L, norm of g;. Note
that v,//p — 1/y/e as p — oo.

We denote by ., the Haar probability measure on the Grassmannian G, of k-
dimensional subspaces of R™.

Recall that for a real number s, [s] denotes the smallest integer which is not less
than s.

By C, Cy, C1, Cs, ..., ¢, cg c1, co we denote absolute positive constants, whose values
can change from line to line.

For two functions f and h we write f ~ h if there are absolute positive constants ¢
and C such that cf < h < Cf.
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3 Convex probability measures

In this section by a measure we always mean a probability measure.

Let k < 1/m. A Borel measure p on R™ is called k-concave if it satisfies (1.3). When
k = 0, this inequality should be read as (1.2) and it defines i as a log-concave measure.

In this paper we will be interested in the case x < 0, which we consider from now
on.

The class of k-concave measures was introduced and studied by Borell. We refer to
[10, 11] for a general study and to [9] for more recent development. A k-concave mea-
sure is supported on some convex subset of an affine subspace where it has a density.
When the support of k-concave measure p generates the whole space, a characteri-
zation of Borell ([10, 11]) states that p is absolutely continuous with respect to the
Lebesgue measure and has a density & which is log-concave when x = 0 and when

k < 0, is of the form
1

h=f"? with B=m-——,
where f : R™ — (0,00] is a convex function. The class of m-dimensional x-concave
measures is increasing as x is decreasing. In particular a log-concave measure is -
concave for any « < 0.

As we mentioned in the Introduction, a random vector with a sk-concave distribution
is called k-concave. Clearly, the linear image of a k-concave measure is also x-concave.
Recall that any semi-norm of an m-dimensional vector with a x-concave distribution has
moments up to the order p < —1/x (see [10] and Lemmas 7.3 and 7.4 below). Since we
are interested in comparison of moments with the moment of order 1, we will always
assume that —1 < x <0.

4 Strong and weak moments

In this section we consider a random vector X in a finite dimensional Euclidean
space F.

Definition 4.1. Let p > 0, m = [p], and A > 1. We say that a random vector X in
E satisfies the assumption H(p, \) if for every linear mapping A : E — R™ such that
Y = AX is non-degenerate in R"™ there exists a gauge || - || on R™ such that E||Y|| < oo
and

(E[Y7)? < AE|Y]. (4.1)

Remark. Let us give a first example of a random vector satisfying H(p, \). Let X be a
random vector in an n-dimensional Euclidean space E, satisfying, for some ¢ > 1,

VzeE Y1<p<n (E|(z,X)P)"? <o pE|(z,X)|. (4.2)

Then X satisfies H(p, Cv?) for every p > 1. For example, the standard Gaussian and
Rademacher vectors satisfy the above condition with ¢ being a numerical constant.
Note that one of equivalent definitions of a subgaussian vector says that X is subgaus-
sian if it satisfies (4.2) for every p > 1.

To prove that (4.2) implies H(p, C%?), let p > 0, m = [p] and let A : E — R™ be such
that Y = AX is non-degenerate. We may assume that m > 2. Clearly, because of the
linear invariance of the property (4.2), we may also assume that Y = AX is isotropic.
Thus (4.2) yields,

vz e R™ (El[(2,Y)[")"/? < pE|(z,Y)| < vv/mlz| < V202 |2[E[Y], (4.3)
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where the last inequality follows from isotropicity of Y by applying (4.2) with p = 2,
zi = ATe;, i < m, and the Cauchy-Schwarz inequality.

Now let us make the following general observation. Let p > 1 and m = [p]. Let Y
be a random vector in an m-dimensional normed space with norm || - ||. Since any m-
dimensional norm can be estimated, up to a multiplicative constant, by the supremum
over an exponential (in m) number of norm one linear forms, we deduce that

(E|Y|?)"? < ¢’ S (Elp(Y)P)'/7, (4.4)
pll*<1

where C’ is a universal constant (see [21] Proposition 3.20). Combining this with (4.3)
we conclude that

(B[Y[P)/? < ¢ sup (B|(z,Y)|))/? < CC' ¢ E|Y],

lz]<1
which shows that X satisfies H(p, CC"%).

The main result of this section states a relationship between weak and strong mo-
ments under the assumption H(p, \).

Theorem 4.2. Let p > 0 and A\ > 1. If a random vector X in a finite dimensional
Euclidean space satisfies H(p, \), then

(B[X[")VP < c(AE|X| + 0, (X)),
where c is a universal constant.

The first step of the proof of Theorem 4.2 consists of showing that there exists some
z such that (E((z,Y))% )1/ is small, with comparison to E|Y|. This is the purpose of the
following lemma.

Lemma 4.3. Let Y be a random vector in R™. Let || - ||, and || - ||2 be two gauges on
R™ and || - || and || - ||5 be their dual gauges. Then for all p > 0,

min (B((z,v))r < EXIDT

E||Y .
I2ll5=1 = E|Y|L 1Yl

Proof. Let r be the largest real number such that r||t|; < ||¢||2 for all ¢ € R™. By
duality r is the largest number such that r||w||3 < ||w||f for w € R™. Pick z € R™ such
that ||z||5 = 1 and ||2||} = r. Then (z,t) < ||z||{|lt]lx < r||¢|]x for all ¢ € R™. Therefore, for
any p > 0, (E((z,Y))5)? < r(E||Y|})!/?. Thus the lemma follows from the inequality

rE[Y]1 < E[[Y]2. m
The second step of the proof of Theorem 4.2 is contained in the next lemma.

Lemma 4.4. Let n,m > 1 be integers. Let p > 1. Let X be an n-dimensional random
vector and I' be an n X m standard Gaussian matrix. Then

(B> < 2/ (B [l + (O + V) 3,(1)).

where ||z|[, + = (E ((z, X))i)l/p and C is a universal constant.

Proof. For every z,y € R", |||z|lp+ — llyllp.+ | < |z — ylop,(X). The classical Gaussian
concentration inequality (see [13] or inequality (2.35) and Proposition 2.18 in [22]) gives
that

P (|Gl —ElGlp+ | > 5) < 2exp (—s?/207(X))
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and implies (cf. [23], Statement 3.1)
(BIGIE )P <E|Glp+ + Crpop(X), (4.5)

where C' is a universal constant. Since (G, X) has the same distribution as |X|g;, we
have

E(G, X)L = (1/2)E|(G, X)” and E[G,X)[" =) E[X". (4.6)
Therefore
_ 1 _
(BIX )P = 20 (BIGIE )7 < 279 (Bl Gyt + Oy (X)).
The Gordon minimax lower bound (see [16], Theorem 2.5) states that for any norm || - ||

|G| < E i U] + B|H| max 2]
t|= zl=

where H is a standard Gaussian vector in R™. It is easy to check the proof and to show
that this inequality remains true when || - || is a gauge. This gives us that

E|G

lp.+ < B min [[Ttllp, .+ BIH| max ]l + < Emin [Ty, 1 + \/ﬁlrglg 1llp.+

and it is enough to observe that max,;—; ||z[|,,+ < 0,(X). O

Proof of Theorem 4.2. We may assume that p > 1 since Theorem 4.2 is obviously true
when 0 < p < 1. Let m be the integer sothat 1 < p < m < p+ 1, thus m < 2p. We use
the notation of Lemma 4.4. We first condition on I". We have

2]l + = (Ex ((Tz, X))5)P = (Ex ((z, T X))5)"?.
LetY =1"X € R™. If Y is supported by a hyperplane then

min (Ex ((z,T*X))7)"? = 0.

|z]=1
Otherwise by our assumption H(p, \) there exists a gauge in R™ such that
(EY")Y? < AE[Y].
From Lemma 4.3 we get

‘Ir‘lin(EX«z,l"*X))ﬂ)l/p < AEx|T*X]|.
z|=1

We now take the expectation with respect to I' and get

I in [T+ < AEJCX| = XE|H|E|X] < AVmE|X],
t|=

where H is a standard m-dimensional Gaussian vector. The proof is concluded using
Lemma 4.4 and the fact that v, 1\/]3 is bounded. Indeed,

(BIX[)? < 2oy A E|X] 4+ 2Y7(C 4 7y /i)or, (X)
< ¢ (AE|X] + 0,(X)).
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5 Tail behavior of convex measures

Theorem 5.1. Let n > 1 and r > 1. Let X be a centered (—1/r)-concave random
vector in a finite dimensional Euclidean space. Then for every 0 < p < r, X satisfies the

3 4
assumption H(p, A(p,r)) with A(p,r) = ¢ (Tﬁl) (é) , where c is a universal constant.

Remark: Note that the parameter \(p,r) in Theorem 5.1 is bounded by a universal
constant if the parameters p and r are not close, for instance if > 2max{1, p}.

Theorem 5.2. Let r > 1 and let X be a (—1/r)-concave random vector in a finite
dimensional Euclidean space. Then, for every 0 <p <,

(E|X[P)/P < e(Colp, ) E|X | + 0,(X)), (5.1)

3 4
where Cs(p,1) = ¢ (Tfl) (Tfp) and c is a universal constant.

Proof. Without loss of generality we assume that p > 1. The proof may be reduced
to the case of a centered random vector. Indeed, let X be a (—1/r)-concave random
vector, then so is X — EX. Since

(BIX[")/? < (E|X — EX]")Y” + [EX]| < (B[X — EX[")"/7 + E|X],
E|X -EX| < 2E|X| and 0,(X —EX) < 20,(X), we may assume that X is centered. The
theorem now follows immediately by Theorems 4.2 and 5.1. O

Note that trivially a reverse inequality to (5.1) is valid, for p > 1:
2(E[X[")"? > E|X| + 0,(X).
Therefore Theorem 5.2 states an equivalence
(EIX[P)? ~cy o) BIX| + 0p(X).
Since a log-concave measure is «-concave for any x < 0, we obtain

Corollary 5.3. For any log-concave random vector X in a finite dimensional Euclidean
space and any p > 0,
(EIX|")VP < C(E|X| + 0,(X)),

where C' > 0 is a universal constant.

As formulated here, Corollary 5.3 first appeared as Theorem 2 in [4] (see also [3]). A
short proof of this result was given in [5]. It can be deduced directly from Paouris work
in [27] (see [5]).

As it was mentioned above, if X € E is (—1/r)-concave then so is (z, X) for any
z € E. From Lemma 7.3, we have that forany 1 <p <,

(E|(z, X)|P)"/? < C1(p,7) E[{z, X)], (5.2)

where C(p, r) is defined in Lemma 7.3. Assume that r > 2. Let n be the dimension of E.
If moreover X is centered and has the identity as the covariance matrix — such a vector
is called an isotropic random vector — then one has forany z € S" ' andany 1 < p < 7,

(El{z, X)[")'/? < Ci(p, 1) El(2, X)| < Ci(p, ) (El(z, X)[*)!/2 = Ci(p, 7). (5.3)

Since in that case, E|X| < (E|X|?)!/? = \/n, it follows from Theorem 5.2 that for any
1<p<r,
(EIX[P)Y? < e(Calp,r)v/n + Ca(p,7): (5.4)

Together with Markov’s inequality this gives the following Corollary.
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Corollary 5.4. Letr > 2 and let X € R" be a (—1/r)-concave isotropic random vector.
Then for everyt > 0,

r/2
1
]P(|X| > t\/ﬁ) < (W) i (5.5)
In particular, if r > 24/n, then for every 6¢ < t < 3cr/\/n,
IP(|X| > t\/ﬁ) < exp(—cotv/n), (5.6)

where c and ¢, are universal positive constants.

Remark. A log-concave measure is (—1/r)-concave for every r > 0, thus in such a case
inequality (5.6) is valid for every ¢ > ¢, which is a result from [27].

Proof of Corollary 5.4. The inequality (5.5) follows by Markov’s inequality from
inequality (5.4) with p = r/2, since Cy(r/2,7) < c and C;(r/2,r) < cr for a universal
positive c.

To prove the “In particular" part denote ' = ¢\/n/(3¢). Note that ' > 2,/n and that
r’ < r. Therefore X is (—1/r')-concave as well and we can apply (5.5) with /, obtaining
the bound for probability 3="'/2, which implies the result. O

We now apply our results to the problem of the approximation of the covariance
matrix by the empirical covariance matrix. Recall that for a random vector X the
covariance matrix of X is given by EXX . It is equal to the identity operator I if
X is isotropic. The empirical covariance matrix of a sample of size NV is defined by
= Zﬁvzl X;X,", where X, Xo,..., Xy are independent copies of X. The main question
is how small N can be taken in order that these two matrices are close to each other in
the operator norm (clearly, if X is non-degenerate then N > n due to the dimensional
restrictions and, by the law of large numbers, the empirical covariance matrix tends to
the covariance matrix as N grows to infinity). See [1, 2] for references on this question
and for corresponding results in the case of log-concave measures. In particular, it was
proved there that for N > n and log-concave n-dimensional vectors X, --- , Xy one has

Hi ﬁ:XXT —IH < C\/7
N 2 SYVN

with probability at least 1 —2 exp(—cy/n), where, as usual, I is the identity operator,
is the operator norm /3 — ¢5 and ¢, C are absolute positive constants.

In [30] (Theorem 1.1), the following condition was introduced: an isotropic random
vector X € R” is said to satisfy the strong regularity assumption if for some 7n,C' > 0
and every rank k£ < n orthogonal projection P, one has for every t > C

P (IPX| > tVE) < O3 20p1o,

We show that an isotropic (—1/7)-concave random vector satisfies this assumption.
For simplicity we will show this with 7 = 1 (one can change n by adjusting constants).

Lemma 5.5. Letn > 1, a > 0 and » = max{4,2alogn}. Let X € R™ be an isotropic
(—=1/r)-concave random vector. Then there exists an absolute constant C' such that for
every rank k orthogonal projection P and every t > C4(a), one has

P (\PX| > NE) < Cola) t4k2,

where C;(a) = Cexp (4/a) and Cz(a) = C max{(aloga)*, exp (32/a)}.
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Proof. Let P be a projection of rank k. Let ¢ be the constant from Corollary 5.4
(without loss of generality we assume ¢ > 1) and ¢t > c. If r < vk then Corollary 5.4
implies that

r/2 alogn
P12 o) = () () s

If r > /k then X is also (—1/v/k)-concave, hence, assuming k > max{4, 64a?log?®(4a)}
(so that vk > 2alog k) and applying Corollary 5.4 again we obtain

©(ix12 68) < (57 < (5)7 <o

Thus in both cases we have
P(IPX| > tv/k) < elostt/o),
One can check that for ¢t > ¢? exp (4/a) and k > exp (16/a) this implies
P (IPX| = tvVEk) <t7%2,

which proves the desired result for k > C, := max{64a?log®(4a),exp (16/a)} and t >
c?exp (4/a).

Assume now that £ < C,. Then we apply Borell’s Lemma - Lemma 7.3 (note that
EPX| < V'k). We have that for every ¢t > 3

P (\PX| > t\/%) < (1 + 91;)

It is not difficult to see (e.g., by considering cases t < 9r, 9r < ¢t < 18r and ¢ > 18r) that
for C(a) := 54*C?,t > 3 and r > 4, one has

P (|PX| > t\/E) < Cla)t™ k2

This completes the proof. O

Theorem 1.1 from [30] and the above lemma immediately imply the following corol-
lary on the approximation of the covariance matrix by the empirical covariance matrix.

Corollary 5.6. Letn > 1, a > 0 and r = max{4,2alogn}. Let X;,..., XN be indepen-
dent (—1/r)-concave isotropic random vectors in R™. Then for every ¢ € (0,1) and every
N > C(e,a)n, one has

N
1 T
By ZileiXi -1 <=

where C(e, a) depends only on a and «.

Remark. Let r = 2alog(2n) > 8. Applying Corollary 5.4 for independent (—1/r)-
concave isotropic random vectors X, X5, ...,Xn and using results of [25], it can be
checked that with large probability

Hi ZN:X»XT —IH < C(a)\/?
N2 = N

where C(a) depends only on a. As we mentioned above, this extends the results of [1, 2]
on the approximation of the covariance matrix from the log-concave setting to the class
of convex measures.

Now we prove Theorem 5.1. We need the following lemma. Recall that K, was

defined by (2.1).
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Lemma 5.7. Let m be an integer. Letr > 1 and 0 < p < r. LetY € R™ be a
centered random vector with density g = f~? with f = m+r and f convex positive. Let
F :R™ — R™ be such that for every t € R™, F(2t) < 2PF(t) and assume that EF(Y) is
finite. Then, there exists a universal constant ¢ > 1 such that 0 € K, (g) and

EF(Y) < c(p,r) E(F(Y)lg, (5 (Y)) (5.7)

(min? )5
where c(p,r) =1+ % and a = (Cm) :

Proof. Let o > 1 be specified later. Let v = % From Lemma 7.2 we have

7f(0) < min f = ||g||;o1/ﬁ and by definition, min f < o~™/*+™ f(t) when ¢t ¢ K,(g).
Using the convexity of f and the last two inequalities we get

1 1 —1_—m/(r+m) ~lrem)
Y E Kale) a(t/2) 2 9l0) (54 grta /e ) 6.8)

Let § = 6(a) := (1 + 7_104_’”/(7'*7”))T+m. The inequality (5.8) can be written

Vt & Ka(g) g(t) <277 ™dg(t/2).

Therefore

EF(Y)IKG(g)c (V) < 2—r—m/
K

F(t)g (t> St < 24/ F(2)g(1)6 dt
a(g)e 2
and from the assumption on F', we get
EF(Y)lk, (g (Y) <2P7"6EF(Y).
We conclude that if 277§ < 1 then
EF(Y) < (1-2078)7'E (F(Y)1x, () (Y))

Let

. _rtm
o= (@ 1)2) %

so that 0y := 6(ap) =277, then (1 —2P""6)) ' = (1 -2 )1 <1+ 5 and

where ¢ > 1 is a universal constant. This concludes the proof of (5.7).
Clearly vy~ ta—"/(rtm) < 7,1aam/(r+m) < 1 and recall that vf(0) < min f. We deduce
that f(0) < a7 = min f and thus 0 € K,(g). O

Remark. An interesting setting for the previous lemma is when r is away from 1, for
instance r > 2, r and m are comparable, and p is proportional to r. In this case 7 is
bounded by a constant, ¢(p,r) explodes only when p — r, and « depends only on the
ratio 7 /p.

Proof of Theorem 5.1. Letl < p < randm = [p]. Let A: E — R™ be a linear
mapping and Y = AX be a centered non-degenerate (—1/r)-concave random vector. By
Borell’s result [10, 11], there exists a positive convex function f such that the distribu-
tion of Y has a density of the form g = f~("+t™),
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We apply Lemma 5.7 and use the notation of that lemma. Because the class of
(—1/r)-concave measures increases as the parameter r decreases, we may assume that
r < 2p (note that A(p, 2p) ~ A(p,r) for r > 2p, so we do not loose control of the constant
assuming that » < 2p). Thus 1 < p < m and r < 2m. We deduce that the parameter a
from Lemma 5.7 satisfies 5

r r
“ S ¢ ( . ) ’
r—1 r—p

where c is a numerical constant.

Now note that because g—'/("t™) is convex, K = K, (g) is a convex body and from
Lemma 5.7, it contains 0. Let || - || be its Minkowski functional.

We have

L2 P(Y € K)= [ 92 a gllvol(K),
K

so that
POV < 1/(20) = [ 0% llglla(20) "vol(K) <27 < 172

/2a
and therefore )
ElY[ 2 5PVl > 1/(2a)) 2 1/(4a).

Let F(t) = ||t||? for t € R™. Thus F(2t) = 2PF(t) and, since p < r, EF(Y) is finite.
Hence F satisfies the assumption of Lemma 5.7. Therefore for ¢(p,r) =1+ ¢/(r — p)

E[Y|[” < clp,r) E([Y["1x(Y)) < c(p, 7). (5.9)

We conclude that

(IE|Y||P)1/P/1E||Y||§4o¢c(p,r)1/pgc<ri1>3< , )4

for some numerical constant c. O

Another application of Lemma 5.7, which will be used later, is the following lemma.

Lemma 5.8. Let1 < p < r and m = [p]. LetY € R™ be a centered (—1/r)-concave
random vector with density g. There exists a universal constant ¢, such that 0 € K,(g)
and
1/p
(EI(Y, 0)[")"" = (/ |<w7t>|”g(w)d$> < Cs(p,r) max |z, 1)], (5.10)
]Rm

rEK@(g)

3 1/p
where a = ¢ (%) , Cs(p,r) = (1 + Tfp) , and ¢ > 0 is a universal constant.

Proof. Repeating the argument leading to (5.9) with the function F(t) = |(z,t)|” we
obtain that 0 € K,(g) and

([ reoro@e) "< (1o 2)" ( [ |<x,t>|Pg<x>dx>

1/p

Clearly
1/p 1/p
x,t)|Pg(x)dx < max |{(z,t (/ gwdw) = max [(z,t)|,
(/m)“ )Wo(a) ) L (@) ([ o) max[(z.1)]
which implies the result. O
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6 Small ball probability estimates

The following result was proved in [28].

Theorem 6.1. Let X be a centered log-concave random vector in a finite dimensional
Euclidean space. For every ¢ € (0,c’) one has

P (‘X| < E(E\X|2)1/2) < étc(]E‘X‘z)l/2/<f2(X)7

where ¢, > 0 are universal positive constants.

In this section we generalize this result to the setting of convex distributions. We
first establish a lower bound for the negative moment of the Euclidean norm of a convex
random vector.

Theorem 6.2. Letr > 1 and let X be a centered n-dimensional (—1/r)-concave random
vector. Assume 1 < p < min{r,n/2}. Then

(BIX]7") "7 > Culp,r) (B|X| - Cop(X)),

and ¢, C are absolute positive constants. Moreover, if 0 < p < 1 then

where

r—1

(EIX]77) 7" > o (1-p) = EIX],

r

where ¢y is an absolute positive constant.

From Markov’s inequality we deduce a small ball probability estimates for convex
measures.

Theorem 6.3. Letn > 1 andr > 1. Let X be a centered n-dimensional (—1/r)-concave
random vector. Assume 1 < p < min{r,n/2}. Then, for every ¢ € (0, 1),

P (|X| < eE[X]) < (2 (p,r)e)”,

whenever E|X| > 2Co,(X), where ¢, C and C,(p, ) are the constants from Theorem 6.2.

Remark. Theorem 6.3 implies Theorem 6.1 proved in [28]. Indeed, let p > 1, r >
max{3,2p} and A := (E|X|?)'/2/02(X) (note that A < \/n). By Lemma 7.3,

op(X) < Ci(p,m)o1(X) < copoa(X) and (IE|X|2)1/2 < E|X].

Thus E|X|/o,(X) > c2A/p. If c2A/(2C) > 1, we chose p = ¢2A/(2C) and apply Theo-
rem 6.3. Since
E|X|/op(X) > c2A/p > 2C,

Theorem 6.1 follows. Now assume that A < 2C'/cy;. Then Theorem 6.1 follows from
Lemma 7.5 and Lemma 7.4 (with ¢ = 2), which for a log-concave random vector X

states that (IE|X|2)1/2 < c¢Med(|X|), where c is a numerical constant and Med (] X]) is a
median of | X|.

We need the following result from [19] (Theorem 1.3 there).
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Theorem 6.4. Let n > 1 be an integer, || - || be a norm in R™, K be its unit ball and
0 = maxp— [|t||. Assume that 0 < p < co (E||G||/o)* and m = [p]. Then

_1/
ollte] o le]]
— < <

NG </G (diam(KﬁF))mdu(F)> <A

where |1 = iy, and c is an absolute positive constant.

The proof of Theorem 6.2 is based on the following two lemmas.

Lemma 6.5. Letm < n, a > 0 and X be a random vector in R" with density g. Then,

—1/m
(BlXx|~m) =Y > %(EIGI_M)_U"L (/G (VOI(KQ(QF)))ld:u(F)> :

2T

n,m

Proof. Integrating in polar coordinates (see [28], Proposition 4.6), we obtain the
following key formula

—1/m
(E|X|~™) =™ = (2m)2(EG ) 7Y™ (/ QF(O)dM(F)> :
G

n,m

Note that
1=/wmmz/ gr(2)dz > o™ gr |acvol(Ka(gr)).
F Kq (gF)

This implies the result, since g (0) < ||gr]|co- O

Below we will use the following notation. For a random vector X in R", p > 0, and
t € R™ we denote
1
Itll, = (EICX, 6)) 7

(note that it is the dual gauge of the so-called centroid body, which is rather an L,-norm
than the /,-norm).

Lemma 6.6. Let1 < p < r and m = [p|. Let X be a centered (—1/r)-concave random
vector in R™ with density g. Let K denote the unit ball of || - ||,. Then for every m-
dimensional subspace F' C R" one has

(Vol(PpK°)M™ < 4C3(p, r)(vol(Ka(gr))'/™,

3 1/p
where a = ¢ (m) , Cs(p,1) = (1 + rfp) , and ¢ > 0 is a universal constant.

Proof. Applying Lemma 5.8 to Y = Pr X, we obtain that for every t € F

t||l, < Cs(p,r) max |(z,t
Itlly < Calpur) | max (a1

with o and C3(p, r) given in Lemma 5.8. Since for ¢ € F, ||t||, = max(z,t), where the
supremum is taken over z € (K N F)° = PpK?°, this is equivalent to

PrK° C Cg(p, T)COHV(Ka(gF) U —Ka(gp)).
Lemma 5.8 also claims that 0 € K, (gr), thus

conv(K,(gr)U—Ku(g9r)) C Ko(gr) — Ka(gr).
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By Rogers-Sheppard inequality [29] we observe

2m L/m
ol(Pei®) ™ < () Calpr)(woll a9

This implies the result. O

Proof of Theorem 6.2. Recall that ¢;, ¢, ... denote absolute positive constants.
Recall also that for a random vector X in R", p > 0, and t € R™

1
Il = (I, £)[7)77
and, givenanorm || - || on R™, 0 = o(|| - ||) = max};—; [|£]|. In particular,

a(ll - llp) = op(X).

Finally, let K denote the unit ball of || - ||,.
We assume that p > 1, X is non-degenerate in R" and let m = [p]. Without loss of
generality we assume that
E[X| > Coy(X),

where C'is a large enough absolute constant.
As in (4.5), since p < m < 2p, we have

E|X| < (BIX|P)Y? = 7, Y(E|G|2)? < v, (ElGlp + e17p05(X))

< (E[|Gllp/vm + 0p(X)).
Hence
E|Gll, > ey (BIX| = c205(X)) > \/Ble2) " (C = e2)0p(X). (6.1)

This implies that for sufficiently large C' we have m < 2p < ¢o(E||G||,/0,(X))?, where ¢
is the constant from Theorem 6.4.

Note that (E|G|~?)~'/? > (E|G|~™)~ Y™ > ¢3/n (the second inequality is well known
for m < n/2 and can be directly computed). Combining Lemmas 6.5 and 6.6, we obtain

—1/m
—m\—1/m 64\/5 o\\—1
(Blx| )Y Zac<p)< [, torpere) du(F)> ,

with a and C3(p,r) as in Lemma 6.6.
Now note that PrK° = (KNF)° D (diam(KNF))~!BZNF. Therefore 1/vol(PrK°) <
(cs/mdiam(K N F))™. Applying Theorem 6.4, we obtain

ElLX|—™ —1/m > Ce
e T AR
Applying the first inequality from (6.1), we obtain the desired result.

The “Moreover" part is an immediate corollary of Lemmas 7.4 (with ¢ = 1) and
7.5. O

E[[Glp.

Conjecture 6.7. We conjecture that for convex distributions a similar thin shell prop-
erty holds as for log-concave distribution: if X is an isotropic (—1/r)-concave random
vector in R™ with r > 2, then

vt e (0,1) P (||[X]-E[X]|| >tv/n) — 0.

as n tends to co. See [18] for recent work in the log-concave setting.
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7 Appendix

There is a vast literature on inequalities of integrals related to concave functions.
Some of the following lemmas may be known but we did not find any reference. Their
proofs use classical methods for demonstrating integral inequalities involving concave
functions (see [12] and [26]). The first lemma is a mirror image for negative moments
of a result from [24] valid for positive moments.

Lemma 7.1. Lets,m,3 € R such that 3 > m+1 >0 ands > 0. Let ¢ be a non-negative
concave function on [s, +occ). Then

fsoo o™ (x)x=" dz

GB) = sm=PHIB(m+1,8—m—1)

is an increasing function of 3 on (m + 1,00). Here B(u,v) = fol(l —t)v=1tv=1 dt denotes
the Beta function.

Proof. Let 8 > m + 1. Consider the function

t t
H(t)= / O™ (z)z =P dx — / a™(x — s)™x P da

for t > s, where a is chosen so that H(oco) = 0. Note that H’, the derivative of H, has
the same sign as (¢(z)/(x — s))™ — a™. Since ¢(x)/(x — s) is decreasing on (s, +00),
we deduce that H is first increasing and then decreasing. Since H(s) = H(o0) = 0 we
conclude that H is non-negative. This means that for every t > s,

t t
/ ©™(z)z P de > / a™(x — s)"x P du. (7.1)
S S

Now, note that for any 8’ > 3 and any non-negative function F, we have by Fubini’s

theorem, .
/ F(z)z™" do = / (B — B)t—F A1 (/ F(z)z™? dw) dt.

Using (7.1) and applying this relation to F' = ¢™ and then to F(z) = o™ (z — s)™, we get
that

/ " (x)z? do > am/ (z — s)™2 " dx.

From the definition of a, we conclude that

/SOO o™ (x)z™" dm//:o(x —s)"a P dx

is an increasing function of 5 on (m+1, c). The conclusion follows from the computation
of [F(z—s)maPdr=s""PTB(m+1,—m-1). O

Lemma 7.2. Letm > 1 be an integer. Let g be the density of a probability on R™ of the
form g = f~° with f positive convex on R™ and 8 > m + 1. If [ xg(x) dz = 0, then

w02 (257t

Proof. Since f is convex it follows from Jensen’s inequality that
f0)=f (/xg(x) dw) < /f*ﬂﬂ(x) dz :/ (B —1)h(t)t7 dt,
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where s = min f = ||g||o_ol/l3 and h(t) = vol{f < t} denotes the Lebesgue measure of
{f < t}. From the convexity of f and from the Brunn-Minkowski inequality, ¢ = h/m™ is
concave. Thus, using the notation of Lemma 7.1,

F(0) < (8= 1)s™ 1 B(m 41,6 — m — 1)G(B).

Now observe that [ f=# = [ Bp™(2)2=#~! dz = 1 and therefore, by Lemma 7.1,

G(B) < G(B+1) = (B "Bm+1,8—m)) .
The conclusion follows from combining the last two inequalities. O

Remark. When § — oo, which corresponds to a log-concave density, we recover the
inequality from [14] saying that ¢g(0) > ¢~ "||g]| co-

The next lemma is a well known result of Borell ([10]) stated in a way that fits our
needs and stresses the dependence on the parameter of concavity.

Lemma 7.3. Letr > 1 and X be a (—1/r)-concave random vector in R™. Then for any
semi-norm || - || and anyt > 1, one has

t -Tr
P 2 3ElxD < (144 )
As a consequence, forevery 1 <p <,
(B[ X[7)P < Ci(p,r) EIIX],

where Cy(p,7) = ¢p forr > p+ 1, Ci(p,r) = otherwise and c is a universal

constant.

Proof. Denote 0 := P (|| X| < 3E||X]||). Assume that § < 1 (otherwise we are done).
From Markov’s inequality,
0=1-P(IX| >3E|X]) > 2/3.

The subset B = {z € R™ : ||z|| < 3E||X]|} is symmetric and convex. From Lemma 3.1 in
[10], for every t > 1, one has

t+1 —1/r —1/r —1/r o
Pl 2 3mix]) < (S (a- o) o) poir)
Thus,
P (||| > 3tEIIX]) <0 (14 2 log —— + 1 1og -
= = o 819 "2 ®1-0) -
We deduce that for every ¢t > 1,

t

t 0 \ " -
> < — R < _ .
P (| X|| 3tE|X||)0<1+2r 10g1_0> < (”37«)

Integrating, we get

Ellelp/(3E\|Xll)p=/0 pt" P (|| X > 3tE[ X)) dt

e’} t -
<1 +/ ptP~! (1 + > dt
1 37’

<1+ (3r)’pB(p,r —p)
=1+ @Br)T(p+ 1)I'(r —p)/T(r).
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Now, if r > p + 1 then, by Stirling’s formula,

(Cp+ 10 = p)/DE) ~ £,

and if »r < p+ 1 then
) ) LY
(O + D0 = /P~ (1 =)~ ()
This completes the proof. O

The following stronger variant of Borell’s lemma allows us to compare the expecta-
tion of a random variable || X || and a median Med(]|X||). The first part was proved for
general functions in [7] (Theorem 1.1 and the discussion following Theorem 5.2, see
also Corollary 11 in [15]). It was also implicitly proved in [17] (see inequality (4) in
[15]). The second part of the lemma follows by integration (we provide its proof for the
sake of completeness).

Lemma 7.4. Letr > 1 and X be a (—1/r)-concave random vector in R™. Then for any
semi-norm || - || and any t > 1, one has

P (|| X[} > tMed(]|X]])) < (Cor)"t™",

where C) is an absolute positive constant. As a consequence, for every q € [1,7) one
has

1/q
EIX < 0 (1) Medlx]),
where C' is an absolute positive constant.

Proof. As we mentioned before the lemma, the first part is known. Using it and the
distribution formula (and denoting Med (|| X||) by M) we observe

(CorM)? 00
B X|| :/ P(|IX|? > s) ds+/ P(|IX|? > 5)ds
0

(Co’r‘]\f)q
S (C()’I'M)q + / qtq_l(C(]TM/t)r dt
CQTM
P
= (CorM)? + Q(OOTM)qT - (COTM)qT y

which implies
1/q
(]E||X||q)1/q < Cyr (riq) Med(||X|]).
Now, if ¢ > r/2 then this bound is equivalent to the desired one. If 1 < ¢ < 7/2 we

denote r’ := 2¢ < r. Then X is also (—1/r")-concave and we apply the bound with »/
instead of r, obtaining

/

1/q
,
) Mead(X]) < 4Coq Med(|X])

(XY < Cor' (

7,/
which completes the proof. O

Remarks. 1. In fact we have slightly better tail bound from inequality (17) in [15]
(or from Corollary 11 there, note that parameters dy and A; from this Corollary in our
setting are dy = 1 and Ay = 2). Namely, for all ¢ > 1 one has

tlog2\ "
P (1] > e (LX) < (14 222)
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This can be also used to obtain the upper bound without considering the cases ¢ < r/2
and ¢ > r/2.
2. Slightly changing the proof one can also obtain the bound (1/(r — ¢))*/", which is
equivalent to (r/(r — q))"/“.
3. One can show that estimate of the L,-norm of X is sharp by considering one-
dimensional functions

h(z) = eVt + 7‘€|Tx|1 Lizj>r+1 and f = Ah™"1,
where the constant A is chosen so that f is a density. Then a random variable X
with density f is (—1/r)-concave since h is convex, Med(|X|) is uniformly (over r > 1)
bounded away from 0 and infinity, while the L,-norm of X is of the order q(r/(r —q))*/1.

The last lemma follows from Corollary 7.3 in [8] or Corollary 9 in [15] (as before, the
second part follows by integration).

Lemma 7.5. Letr > 1 and X be a (—1/r)-concave random vector in R™. Then for any
semi-norm || - || and any ¢ € (0,1), one has

P (|X] <eMed(]|X]])) < Coe,
where Cj is an absolute positive constant. As a consequence, for every p € (0, 1),
-1/
(BIIX[77) """ > e(1 — p)Med(|| X)),

where c is an absolute positive constant.
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