
E l e c t r o n i
c

J
o

u
r n a l

o
f

P
r

o b a b i l i t y

Electron. J. Probab. 17 (2012), no. 106, 1–20.
ISSN: 1083-6489 DOI: 10.1214/EJP.v17-2138

On properties of a flow generated by an
SDE with discontinuous drift∗

Olga V. Aryasova† Andrey Yu. Pilipenko‡

Abstract

We consider a stochastic flow onR generated by an SDE with its drift being a function
of bounded variation. We show that the flow is differentiable with respect to the initial
conditions. Asymptotic properties of the flow are studied.
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Introduction

Consider an SDE of the form{
dϕt(x) = α(ϕt(x))dt+ σ(ϕt(x))dw(t),

ϕ0(x) = x,
(0.1)

where x ∈ R, (w(t))t≥0 is a one-dimensional Wiener process.
It is well known (cf. [12]) that if the coefficients of (0.1) are continuously differen-

tiable and the derivatives are bounded and Hölder continuous then there exists a flow
of diffeomorphisms for equation (0.1). Under the condition of Lipschitz continuity of the
coefficients it was shown the existence of a flow of homeomorphysms (ibid.). Moreover,
in the latter situation Bouleau and Hirsch [4] established the differentiability of the flow
in generalized sense. Recently, the essential improvement of the results was obtained
by Flandoli et al. [6]. They proved the existence of a flow of diffeomorphysms in the
case of a smooth non-degenerate noise and a possibly unbounded Hölder continuous
drift term.

An SDE with bounded variation drift and σ ≡ 1 was treated by Attanasio [1], who
stated the existence of stochastic flow of class C1,ε, ε < 1/2, under the assumption
about boundedness of the positive or the negative part of the distributional derivative
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On properties of a flow with discontinuous drift

of α. We consider equation (0.1) with σ ≡ 1 and α being a function of bounded variation.
We have not additional assumptions about boundedness of the derivative. Besides our
method is different from their one.

Note that sometimes the strong solution may exist even if α is a measure. However,
in this case the flow may be discontinuous in x. For example, if α(x) = βδ0(x), σ ≡ 1,

where β ∈ [−1, 1], δ0 is a Dirac delta function at zero, then the corresponding strong
solution of (0.1) exists and it is a skew Brownion motion [9] but the flow is discontinuous
and coalescent (see Barlow et al. [2] and Burdzy and Kaspi [5]).

1 The main results

Consider an SDE {
dϕt(x) = α(ϕt(x))dt+ dw(t),

ϕ0(x) = x,
(1.1)

where x ∈ R, α is a function on R, (w(t))t≥0 is a one-dimensional Wiener process.
Later on the function α will be assumed to satisfy some of the following conditions.

(A) α has bounded variation on each compact subset of R;

(B) for all x ∈ R
|α(x)|2 ≤ C(1 + |x|2);

(C) α is a function of bounded variation on R;

(D) there exist a < 0, b > 0 such that

α(x)→ a, x→ +∞,
α(x)→ b, x→ −∞.

Given p ≥ 1, denote by W 1
p,loc(R) the set of functions defined on R that belong to the

Sobolev space W 1
p ([c, d]) for all {c, d} ⊂ R, c < d. The results about differentiability and

non-coalescence of the flow generated by equation (1.1) is represented as the following
statement.

Theorem 1.1. Let α satisfy conditions (A), (B). Then

1) For each x ∈ R there exists a unique strong solution to equation (1.1).

2) For all t ≥ 0,

P{∀p ≥ 1 : ϕt(·) ∈W 1
p,loc(R)} = 1.

3) For t ≥ 0 the Sobolev derivative ∇ϕt(x) is of the form

P

{
∇ϕt(x) = exp

{∫ +∞

−∞
Lϕ(x)z (t)dα(z)

}
, x ∈ R

}
= 1. (1.2)

where Lϕ(x)z (t) is a local time of the process (ϕs(x))s∈[0,t] at the point z.

4) For all {x1, x2} ⊂ R, x1 6= x2,

P {ϕt(x1) 6= ϕt(x2), t ≥ 0} = 1.
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On properties of a flow with discontinuous drift

Remark 1.2. We define the local time of the process (ϕt(x))t≥0 at the point y ∈ R by
the formula

Lϕ(x)y (t) = lim
ε↓0

1

ε

∫ t

0

1[y,y+ε)(ϕs(x))ds, t ≥ 0.

We prove the Theorem 1.1 in two stage. At the first one we consider α having a
compact support on R. In Sections 2-4 we obtain auxiliary results for this stage of
proof. The Theorem is proved in Section 5.

In the next sections we analyze the asymptotic behavior of the flow as t→∞. To do
this in Section 6 we find the stationary distribution of the process solving (1.1) under
conditions (C), (D). The main result about asymptotic properties of the flow is repre-
sented in the following Theorem, proof of which can be found in Section 7. In Section 8
the example is represented.

Theorem 1.3. Let α satisfy conditions (C), (D). Then for all {x1, x2} ⊂ R, x1 < x2,

ln(ϕt(x2)− ϕt(x1))

t
→
∫ +∞

−∞

(
−
∫ +∞

z

α(y)dPstat(y)

)
dα(z), t→∞, almost surely,

where Pstat is a stationary distribution of the process (ϕt(x))t≥0.

Remark 1.4. Under the conditions of Theorem the stationary distribution of the pro-
cess (ϕt(x))t≥0 does not depend on the starting point x.

2 Approximation of the SDE by SDEs with smooth coefficients

Let α be a function of bounded variation on R such that it has a compact support.
Then for each x ∈ R there exists a unique strong solution to (1.1) (cf. [19]).

For n ≥ 1, let gn be a continuously differentiable function on R equal to zero out of(
− 1
n ,

1
n

)
and such that gn(x) ≥ 0, x ∈ R,

∫
R
gn(z)dz = 1. Put, for x ∈ R,

αn(x) =

∫
R

gn(x− y)α(y)dy.

Then αn(x)→ α(x) as n→∞ at all points of continuity of α.
For n ≥ 1, consider an SDE{

dϕnt (x) = αn(ϕnt (x))dt+ dw(t),

ϕn0 (x) = x.
(2.1)

Remark 2.1. There exists S > 0 such that for all n ≥ 1, z ∈ R, |z| ≥ S, αn(z) = 0.

Besides,

sup
x∈R
|αn(x)| ≤ sup

x∈R
|α(x)|, n ≥ 1.

Remark 2.2. For each n ≥ 1, αn is a function of bounded variation on R, and

Var
R
αn ≤ Var

R
α.

Lemma 2.3. For each p ≥ 1,

1) for all t ≥ 0,

sup
x∈R

(E(|ϕnt (x)|p + |ϕt(x)|p)) <∞;
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On properties of a flow with discontinuous drift

2) for all x ∈ R, t ≥ 0,

E|ϕnt (x)− ϕt(x)|p → 0 as n→∞.

Proof. The convergence almost surely can be shown by arguments similar to that of
McKean [14], Ch.3.10a. The boundedness of the coefficients of (2.1) guarantees the
uniform boundedness of the moments:

sup
n,x

E|ϕnt (x)− x|p <∞.

This and convergence almost surely imply the statement of Lemma.

3 Local times

For each x ∈ R, n ≥ 1, the processes (ϕt(x))t≥0 and (ϕnt (x))t≥0 solving equations
(1.1) and (2.1) are continuous semimartingales. Then, almost surely, there exist local
times of these processes defined by the formulas

Lϕ(x)y (t) = lim
ε↓0

1

ε

∫ t

0

1[y,y+ε)(ϕs(x))d〈ϕ(x), ϕ(x)〉s = lim
ε↓0

1

ε

∫ t

0

1[y,y+ε)(ϕs(x))ds,

Lϕ
n(x)
y (t) = lim

ε↓0

1

ε

∫ t

0

1[y,y+ε)(ϕ
n
s (x))d〈ϕn(x), ϕn(x)〉s = lim

ε↓0

1

ε

∫ t

0

1[y,y+ε)(ϕ
n
s (x))ds.

Remark 3.1. It follows from the definition that the local times is measurable with
respect to the triple (t, x, y), t > 0, x ∈ R, y ∈ R.

Remark 3.2. The family Lϕ(x), Lϕ
n(x) may be chosen such that the maps (t, y) →

L
ϕ(x)
y (t), (t, y) → L

ϕn(x)
y (t) are continuous in t and cádlág in y (cf. [18], Ch.VI). Fur-

ther we consider such modifications.

In this section we prove the convergence in square mean and tightness of the se-
quence of the local times {Lϕ

n(x)
y (t)− Lϕ(x)y (t) : n ≥ 1}.

Lemma 3.3. For all t ≥ 0, {x, y} ⊂ R,

E|Lϕ
n(x)
y (t)− Lϕ(x)y (t)|2 → 0 as n→∞.

Proof. By Tanaka’s formula (see [18], p. 223)

Lϕ
n(x)
y (t) = (ϕnt (x)− y)+ − (x− y)+ −

∫ t

0

1(y,∞)(ϕ
n
s (x))dw(s)

−
∫ t

0

1(y,∞)(ϕ
n
s (x))αn(ϕns (x))ds. (3.1)

Lϕ(x)y (t) = (ϕt(x)− y)+ − (x− y)+ −
∫ t

0

1(y,∞)(ϕs(x))dw(s)

−
∫ t

0

1(y,∞)(ϕs(x))α(ϕs(x))ds. (3.2)

Then

E
(
Lϕ

n(x)
y (t)− Lϕ(x)y (t)

)2
≤ K(I + II + III),
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where K is a constant,

I = E
(
(ϕnt (x)− y)+ − (ϕt(x)− y)+

)2
,

II = E

(∫ t

0

1(y,∞)(ϕ
n
s (x))dw(s)−

∫ t

0

1(y,∞)(ϕs(x))dw(s)

)2

,

III = E

(∫ t

0

1(y,∞)(ϕ
n
s (x))αn(ϕns (x))ds−

∫ t

0

1(y,∞)(ϕs(x))α(ϕs(x))ds

)2

.

For I the convergence follows from Lemma 2.3.
To prove the convergence of II and III to 0 we need the following statement.

Proposition 3.4. Let {ξn : n ≥ 0} be a sequence of random variables. Assume that for
any n ≥ 1 the distribution of ξn is absolutely continuous w.r.t. a probability measure ν.
Denote the corresponding density by qn. Let {fn : n ≥ 0} be a sequence of measurable
functions. Suppose that the following conditions hold:

1) ξn → ξ0, n→∞ in probability;

2) fn → f0, n→∞ in measure ν;

3) the sequence of densities {qn : n ≥ 1} is uniformly integrable w.r.t. measure ν.

Then fn(ξ)→ f0(ξ0), n→∞, in probability.

Proof. The proof is similar to [11], Lemma 2.

According to the Lebesgue dominated convergence theorem, to prove that III →
0, n→∞, it is enough to show that

1(y,∞)(ϕ
n
s (x))αn(ϕns (x))→ 1(y,∞)(ϕs(x))α(ϕs(x)), n→∞, in probability. (3.3)

Apply the Proposition 3.4 in which we put ξn = ϕns (x). Let gn(t, x, y), t ≥ 0, x ∈ R, y ∈ R,
be the transition probability density of the process (ϕnt (x))t≥0. The density satisfies the
inequality (cf. [17], Lemma 2.10)

gn(t, x, y) ≤ K 1√
t
e−µ

(y−x)2

t (3.4)

in every domain of the form t ∈ [0, T ], x ∈ R, y ∈ R. Here T > 0, µ ∈ (0, 1/2), K is a
constant that depends only on T, µ and supn,x |αn(x)|. Put

ρ(y) = C exp

{
−µ (y − x)2

t

}
,

and
ν(dy) = ρ(y)dy,

where C =
√
µ/(πt). Then the distribution of ξn is absolutely continuous w.r.t. ν, and

the corresponding Radon-Nikodim density is equal to

qn(t, x, y) =
gn(t, x, y)

ρ(y)
.

The sequence {qn(t, x, y) : n ≥ 1} is uniformly bounded for fixed t > 0, x ∈ R, and,
consequently, uniformly integrable w.r.t. measure ν. Thus by Proposition 3.4 relation
(3.3) is justified. The convergence of II can be shown analogously. The Lemma is
proved.
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On properties of a flow with discontinuous drift

Lemma 3.5. Let {c, d} ⊂ R, c < d. Then

1) For each pair (t, x) ∈ [0,∞)×R, the local times Lϕ(x)y (t), L
ϕn(x)
y (t), n ≥ 1, are contin-

uous in y on [c, d].

2) For each fixed pair (t, x), t ≥ 0, x ∈ R, the family of random elements {Lϕ
n(x)

� (t) −
L
ϕ(x)
� (t) : n ≥ 1} is tight in C([c, d]).

Proof. We prove the Lemma for c = −1, d = 1. The case of arbitrary c, d can be treated
similarly.

Put
Rx,ny (t) = Lϕ

n(x)
y (t)− Lϕ(x)y (t).

By virtue of [3], Theorem 12.3 to prove the tightness it is enough to show that

1) the sequence {Rx,n0 (t) : n ≥ 1} is tight;

2) there exist γ ≥ 0, α > 1, and K > 0, such that for all {y1, y2} ⊂ [−1, 1]

E|Rx,ny2 (t)−Rx,ny1 (t)|γ ≤ K|y2 − y1|α. (3.5)

Besides, according to [3], Th.12.4, inequality (3.5) provides the continuity of Rx,ny (t)

with respect to y on [−1, 1] for each pair (t, x) and each n ≥ 1.
The first item follows from Lemma 3.3 since the fact that E(Rx,n0 (t))2 → 0 as n→∞,

implies Lϕ
n(x)

0 (t)− Lϕ(x)0 (t) → 0 in probability as n → ∞. The convergence ensures the
tightness.

The proof of the second item is standard enough. We give necessary calculations
though. Assume that y1 < y2 and represent Lϕ

n(x)
y2 (t)− Lϕ

n(x)
y1 (t) in the form

Lϕ
n(x)
y2 (t)− Lϕ

n(x)
y1 (t) = I − II − III − IV, (3.6)

where

I = (ϕnt (x)− y2)+ − (ϕnt (x)− y1)+,

II = (x− y2)+ − (x− y1)+,

III =

∫ t

0

1(y1,y2](ϕ
n
s (x))dw(s),

IV =

∫ t

0

1(y1,y2](ϕ
n
s (x))αn(ϕns (x))ds.

It is easy to see that

EI2 ≤ (y2 − y1)2, EII2 ≤ (y2 − y1)2, (3.7)

Making use of Burkholder’s inequality (cf. [10], Ch.3, Th. 3.1) we obtain that for each
fixed T > 0,

E max
0≤t≤T

III4 ≤ CE

(∫ T

0

1(y1,y2](ϕ
n
s (x))ds

)2

≤ 2CE

(∫ T

0

1(y1,y2](ϕ
n
s (x))ds

∫ T

s

1(y1,y2](ϕ
n
u(x))du

)

= 2C

∫ T

0

ds

∫ T

s

E
(
1(y1,y2](ϕ

n
s (x))1(y1,y2](ϕ

n
u(x))

)
du

= 2C

∫ T

0

ds

∫ T

s

du

∫ y2

y1

dy

∫ y2

y1

gn(s, x, y)gn(u− s, y, z)dz,

EJP 17 (2012), paper 106.
Page 6/20

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v17-2138
http://ejp.ejpecp.org/


On properties of a flow with discontinuous drift

where gn(t, x, y), t ≥ 0, x ∈ R, y ∈ R, is the transition probability density of the process
(ϕnt (x))t≥0. So we have (see (3.4))

E max
0≤t≤T

III4 ≤ 2CK2

∫ T

0

ds

∫ T

s

du

∫ y2

y1

dy

∫ y2

y1

e−µ
(y−x)2

s

√
s

e−µ
(z−y)2

u−s

√
u− s

dz

≤ K̃(y2 − y1)2
∫ t

0

∫ t

s

s−1/2(u− s)−1/2du ≤ K̃(y2 − y1)2T. (3.8)

Here we denote by K̃ different constants.
Using Hölder inequality and Remark 2.2 we obtain

EIV 4 ≤ E

[(∫ t

0

1(y1,y2](ϕ
n
s (x))ds

)2(∫ t

0

α2
n(ϕns (x))ds

)2
]

≤ (||α||t)2E
(∫ t

0

1(y1,y2](ϕ
n
s (x))ds

)2

.

Then from estimate (3.8) we obtain

EIV 4 ≤ K̃t3(y2 − y1)2. (3.9)

So each summand in the right-hand side of (3.6) satisfies the second condition of The-
orem 12.3 of [3]. Then the left-hand side of (3.6) is continuous with respect to y and
tight in C([−1, 1]). Note that the estimates similar to (3.7)–(3.9) hold for the process

(ϕt(x))t≥0. This fact guarantees the continuity of Lϕ(x)� (t) with respect to y on [−1, 1].

So {Lϕ
n(x)

� (t) − Lϕ(x)� (t) : n ≥ 1} is a tight sequence of random elements in C([−1, 1]).
The Lemma is proved.

4 Differential properties of the flow ϕt(x)

Denote by ψnt (x) the derivative of the function ϕnt (x) with respect to x, i.e.

ψnt (x) = (ϕnt (x))
′
x .

Then ψnt (x) is a solution to the following differential equation

dψnt (x) = α′n(ϕnt (x))ψnt (x)dt.

Solving this equation we get

ψnt (x) = exp

{∫ t

0

α′n(ϕns (x))ds

}
. (4.1)

Lemma 4.1. For all t ≥ 0, x ∈ R,∫ t

0

α′n(ϕns (x))ds→
∫ +∞

−∞
Lϕ(x)z (t)dα(z), n→∞,

in probability.

Proof. For each pair (t, x), t ≥ 0, x ∈ R, according to the occupation times formula (see
[18], Ch.VI, Corollary 1.6) we have, almost surely,∫ t

0

α′n(ϕns (x))ds =

∫
R

α′n(z)Lϕ
n(x)
z (t)dz

=

∫
R

α′n(z)(Lϕ
n(x)
z (t)− Lϕ(x)z (t))dz +

∫
R

α′n(z)Lϕ(x)z (t)dz

=

∫
R

(Lϕ
n(x)
z (t)− Lϕ(x)z (t))dαn(z) +

∫
R

Lϕ(x)z (t)dαn(z) = I + II. (4.2)
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Remark 2.1 and the continuity of the processes (L
ϕ(x)
z (t))t≥0, (L

ϕn(x)
z (t))t≥0 in z entail

the existence of the integrals in the right-hand side of (4.2). Besides, this leads to the
relation

II →
∫ +∞

−∞
Lϕ(x)z (t)dα(z), n→∞, almost surely.

To prove the Lemma it remains to show that

I → 0, n→∞, in probability.

Lemma 3.5 together with Prokhorov’s theorem (cf. [3], Th.6.1) show that the fam-

ily
{
L
ϕn(x)
� (t)− Lϕ(x)� (t) : n ≥ 1

}
is relatively compact in C([−S, S]) (here S is a con-

stant defined in Remark 2.1). By Lemma 3.3, all the finite-dimensional distributions
of Lϕ

n(x)
� (t) − Lϕ(x)� (t) converge to that of the random element in C([−S, S]) identically

equal to 0. Therefore the sequence of random elements
{
L
ϕn(x)
� (t)− Lϕ(x)� (t) : n ≥ 1

}
converge in distribution to 0 in C([−S, S]) (see [3], Theorem 8.1). Then for all ε > 0,

P

{
sup

y∈[−S,S]

∣∣∣Lϕn(x)
y (t)− Lϕ(x)y (t)

∣∣∣ > ε

}
→ 0, n→∞.

We have (remind that for all n ≥ 1, suppαn ∈ [−S, S])

P

{∣∣∣∣∫
R

(
Lϕ

n(x)
z (t)− Lϕ(x)z (t)

)
dαn(z)

∣∣∣∣ > ε

}
≤ P

{
sup

y∈[−S,S]

∣∣∣Lϕn(x)
y (t)− Lϕ(x)y (t)

∣∣∣ ·Var
R
αn > ε

}

≤ P

{
sup

y∈[−S,S]

∣∣∣Lϕn(x)
y (t)− Lϕ(x)y (t)

∣∣∣ > ε

VarR α

}
→ 0, n→∞.

The assertion of the Lemma follows immediately.

5 Proof of Theorem 1.1

Proof. Stage 1. Let α be a function of bounded variation on R having a compact sup-
port.

Lemma 4.1 guarantees that for each t ≥ 0, x ∈ R,

ψnt (x) = exp

{∫ t

0

α′n(ϕns (x))ds

}
→ exp

{∫
R

Lϕ(s)z (t)dα(z)

}
=: ψt(x), n→∞, (5.1)

in probability. Let us estimate the pth moment of the process (ψnt (x))t≥0.
For all p ≥ 1, t ≥ 0, x ∈ R by occupation times formula, we have

E|ψnt (x)|p = E exp

{
p

∫ t

0

α′n(ϕns (x))ds

}
= E exp

{
p

∫ +∞

−∞
Lϕ

n(x)
z (t)dαn(z)

}
.

Let p1, . . . , p4 be such that pk > 1, k = 1, 4, and
∑4
k=1

1
pk

= 1. Using Hölder’s inequality
and Tanaka’s formula we get

E|ψnt (x)|p ≤
4∏
k=1

(
E exp

{
ppk

∫ +∞

−∞
fk(t, x, z)dαn(z)

})1/pk

,
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where
f1(t, x, z) = (ϕnt (x)− z)+,
f2(t, x, z) = −(x− z)+,

f3(t, x, z) = −
∫ t

0

1(z,+∞)(ϕ
n
s (x))dw(s),

f4(t, x, z) = −
∫ t

0

1(z,+∞)(ϕ
n
s (x))αn(ϕns (x))ds.

Then we have

E exp

{
pp1

∫ +∞

−∞
f1(t, x, z)dαn(z)

}
≤ E exp

{
pp1

∫ +∞

−∞

(
|x− z|+

∫ t

0

|αn(ϕs(x))|ds+ |w(t)|
)
dαn(z)

}
≤ exp

{
Cpp1 Var

R
α+ ||α||t

}
Ee|w(t)|, (5.2)

E exp

{
pp2

∫ +∞

−∞
f2(t, x, z)dαn(z)

}
≤ E exp

{
Cpp2 Var

R
α
}
, (5.3)

where C is some positive constant,

E exp

{
pp4

∫ +∞

−∞
f4(t, x, z)dαn(z)

}
≤ E exp

{
pp4 Var

R
α · ||α||

}
, (5.4)

Consider f3. Using Jensen’s inequality, we get

E exp

{
pp3

∫ +∞

−∞
f3(t, x, z)dαn(z)

}
≤ 1

VarR αn

∫ +∞

−∞
E exp

{
pp3 Var

R
αnf3(t, x, z)

}
dαn(z)

≤ 1

VarR αn

∫ +∞

−∞
sup
v∈R

E exp
{
pp3 Var

R
αnf3(t, x, v)

}
dαn(z)

= sup
v∈R

E exp
{
pp3 Var

R
αnf3(t, x, v)

}
. (5.5)

Let v be fixed. By [10], Th. II.7.2′, for each pair (x, v), the process
Mt(x, v) := −

∫ t
0
1(v,+∞)(ϕ

n
s (x))dw(s), t ≥ 0, is a local square integrable martingale

that can be represented as follows

Mt(x, v) = W x,v(τt(x, v)),

where (W x,v(t))t≥0 is a standard Wiener process, τt(x, v) =
∫ t
0
1(v,+∞)(ϕ

n
s (x))ds.

Note that for all {x, z} ⊂ R, τt(x, v) ≤ t. Then

E exp
{
pp3 Var

R
αnf3(t, x, v)

}
≤ E exp

{
pp3 Var

R
α sup
s∈[0,t]

|W x,v(s)|

}
= C,

where C is a constant independent of x and v. This and (5.5) imply the estimate

E exp

{
pp3

∫ +∞

−∞
f3(t, x, z)dαn(z)

}
≤ C, (5.6)
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On properties of a flow with discontinuous drift

where C ia some constant. Now the uniform boundedness of the pth moment follows
from inequalities (5.2)-(5.6). This and (5.1) imply that for all t ≥ 0, p ≥ 1,

E|ψnt (x)− ψt(x)|p → 0, n→∞.

Since
sup
n,x

E (|ψnt (x)|p + |ψt(x)|p) <∞,

by the dominated convergence theorem, we get the relation

E

∫ d

c

|ψnt (x)− ψt(x)|p dx→ 0, n→∞,

valid for all {c, d} ∈ R, c < d, p ≥ 1. So there exists a subsequence {nk : k ≥ 1} such
that ∫ d

c

|ψnk
t (x)− ψt(x)|p dx→ 0 a.s. as n→∞.

Without loss of generality we can suppose that∫ d

c

|ψnt (x)− ψt(x)|p dx→ 0 a.s. as n→∞, (5.7)

and (see Lemma 2.3) ∫ d

c

|ϕnt (x)− ϕt(x)|p dx→ 0 a.s. as n→∞. (5.8)

This imply that, almost surely, the function ϕt(x), t ≥ 0, x ∈ R, has a weak deriva-
tive in the Sobolev sense with respect to x in any interval [c, d] (cf. [16], §19.5), and

this derivative is equal to ψt(x) = exp
{∫ +∞
−∞ L

ϕ(x)
z (t)dα(z)

}
, x ∈ [c, d]. Besides, for all

{x1, x2} ⊂ R, x1 < x2, the equality

ϕt(x2)− ϕt(x1) =

∫ x2

x1

ψt(y)dy =

∫ x2

x1

exp

{∫ +∞

−∞
Lϕ(y)z (t)dα(z)

}
dy (5.9)

holds true almost surely. Note that generally the exceptional set depends on t.
Fix T > 0. Since Lϕ(y)z (t) is continuous in t and z (see Remark 3.2), monotonic in t,

and suppα ⊂ [−S, S], we have

∀y ∈ [x1, x2] P

{∫ +∞

−∞
Lϕ(y)z (t)dα(z) ≥ − sup

z∈[−S,S]
Lϕ(y)z (t) · ||α||

≥ − sup
z∈[−S,S]

Lϕ(y)z (T ) · ||α|| > −∞, t ∈ [0, T ]

}
= 1.

PutMT (y) = supz∈[−S,S] L
ϕ(y)
z (T )·||α||. Then by the continuity of Lϕ(y)z (t) in t and Fubini’s

theorem,

P

{
inf

t∈[0,T ]

∫ +∞

−∞
Lϕ(y)z (t)dα(z) ≥ −MT (y) > −∞ for almost all y ∈ [x1, x2]

}
= 1

This implies that for all T > 0, x1 < x2,

P

{
inf

t∈[0,T ]
(ϕt(x2)− ϕt(x1)) > 0

}
= P

{
inf

t∈[0,T ]

∫ x2

x1

exp

{∫ +∞

−∞
Lϕ(y)z (t)dα(z)

}
dy

}
≥

P

{
inf

t∈[0,T ]

∫ x2

x1

exp {−MT (y)} dy > 0

}
= 1.
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On properties of a flow with discontinuous drift

Passing to the limit as T tends to +∞, we arrive at the relation

P {ϕt(x2)− ϕt(x1) > 0, t ≥ 0} = 1.

Stage 2. Let α be an arbitrary function on R satisfying conditions (A), (B). For n ≥ 1,

let hn be a smooth function on R such that 0 ≤ hn(x) ≤ 1, x ∈ R; hn(x) = 1, x ∈ [−n, n];

hn(x) = 0, |x| > n+ 1. Put
αn(x) = α(x)hn(x), x ∈ R.

Suppose (ϕnt (x))t≥0 is a solution of equation (2.1). Put τn = sup
{
t : sup0≤s≤t |ϕnt (x)| ≤ n

}
.

As α(x) = αn(x) on [−n, n], we have ϕt(x) = ϕnt (x) on [0, τt] almost surely. To prove the
existence and uniqueness of a strong solution to equation (1.1) we need to show that
τn → +∞, n→∞, almost surely. By Chebyshev’s inequality and condition (B) for T > 0,

P{τn < T} = P{ sup
0≤t≤T

|ϕnt (x)| > n} ≤ 1

n2
E

(
sup

0≤t≤T
(ϕnt (x))2

)
≤ C

n2

(
(ϕnt (0)) + TE sup

0≤t≤T

∫ t

0

(1 + (ϕnt (x))2)ds+ T

)
≤ C

n2

(
K(1 + T + T 2) + T

∫ T

0

E sup
0≤s≤T

(ϕns (x))2ds

)
,

where C,K are some positive constants. The Gronwall-Bellman inequality implies

E sup
0≤t≤T

(ϕnt (x))2 ≤ C1,

where C1 is a constant depending only on T and x. This fact and monotonicity of the
sequence {τn : n ≥ 1} give τn → +∞ as n → ∞ almost surely. Hence there exists a
unique strong solution to equation (1.1).

To prove the differentiability of the flow let us consider an arbitrary interval [x1, x2].
By comparison theorem (cf. [15], Th. 2.1) ϕt(x1) ≤ ϕt(x) ≤ ϕt(x2). Denote

Mt = max
s∈[0,t]

(|ϕs(x1)| ∨ |ϕs(x2)|) .

There exists N > 0 such that Mt < N. Then ϕs(x) = ϕns (x) for all x ∈ [x1, x2], s ∈
[0, t], and n > N, almost surely. Consequently, for all n > N , the local times and the
derivatives of the processes ϕs(x), ϕns (x) coincide on x ∈ [x1, x2], s ∈ [0, t]. This entails
assertions 2)-4) of the Theorem.

6 Stationary distribution

Assume that a function α satisfies conditions (C), (D). In this section we prove the
existence of a stationary distribution for the process (ϕt(x))t≥0 provided that conditions
(C), (D) are justified. Apply Theorem 3 of [8], §18 to equation (1.1). Put

s(x) =

∫ x

0

exp

{
−2

∫ z

0

α(y)dy

}
dz, x ∈ R.

By (D),
s(x)→ +∞, x→ +∞,
s(x)→ −∞, x→ −∞.

Besides, s has a continuous positive derivative

s′(x) = exp{−2

∫ x

0

α(z)dz}, x ∈ R.
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On properties of a flow with discontinuous drift

Let q(·) = s−1(·) be a continuously differentiable function on R inverse to s(·). The
function ηt(x) = s(ϕt(x)) is a solution of the SDE{

dηt(x) = σ(ηt(x))dw(t),

η0(x) = s(x),

where σ(y) = s′(q(y)) = exp{−2
∫ q(y)
0

α(z)dz}, y ∈ R. Using (D) it is easy to see that∫ +∞

−∞

1

σ2(y)
<∞. (6.1)

The continuity of q and boundedness of α provide that the function σ is locally Lips-
chitz continuous. Let us see that σ is globally Lipschitz continuous function on R. As a
locally Lipschitz continuous function it has a derivative at almost all points x ∈ R, and
the derivative is as follows

σ′(y) = −2α(q(y))q′(y) exp

{
−
∫ q(y)

0

α(z)dz

}
.

Taking into account that

q′(y) =
1

s′(q(y))
= exp

{
2

∫ q(y)

0

α(z)dz

}
,

we arrive at the formula
σ′(y) = −2α(q(y))

valid for almost all y ∈ R. Then according to the Newton-Leibniz formula for locally
absolutely continuous functions, for all {x1, x2} ⊂ R,

|σ(x2)− σ(x1)| =
∣∣∣∣∫ x2

x1

2α(q(y))dy

∣∣∣∣ ≤ 2||α|| · |x2 − x1|.

So σ is Lipschitz continuous, and the conditions of [8], §18, Theorem 3 are fulfilled. Let
Φt,x(y) < y ∈ R, be the distribution function of the random variable ϕt(x), i.e.

Φt,x(y) = P{ϕt(x) < y}.

The Theorem implies the existence of a stationary distribution Pstat(y), y ∈ R, and for
all {x, y} ⊂ R,

Pstat(y) = lim
t→∞

Φt,x(y).

7 Proof of Theorem 1.3

Heuristically the asymptotic behavior of the difference ϕt(x2)−ϕt(x1) can be guessed
as follows. If we represent the local time from (5.9) by Tanaka’s formula (3.2), then
by the ergodic theorem, the last integral in the right-hand side of (3.2) is equivalent
to t

∫ +∞
y

α(z)dPstat(z) as t tends to ∞. The first member is bounded in probability
because ϕt(x) converges weakly to the stationary distribution. The stochastic inte-
gral in the right-hand side of (3.2) is a continuous martingale with its characteris-
tics being less than or equal to t. Therefore it is naturally to expect that Lϕ(x)y (t) ∼
t
∫ +∞
y

α(z)dPstat(z), t→∞, and, respectively,

ln (ϕt(x2)− ϕt(x1)) ∼ t
∫ +∞

−∞

(
−
∫ +∞

z

α(y)dPstat(y)

)
dα(z), t→∞.

Below we give the rigorous proof of this fact.
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On properties of a flow with discontinuous drift

Proof. In this proof we will use the representation of the function α in the form

α(x) = α1(x)− α2(x), x ∈ R,

where α1, α2 are nondecreasing functions on R. Using Jensen’s inequality we get the
lower bound for ln(ϕt(x2)−ϕt(x1))

t as follows

ln(ϕt(x2)− ϕt(x1))

t
=

ln
(∫ x2

x1
exp

{∫ +∞
−∞ L

ϕ(x)
z (t)dα(z)

}
dx
)

t

≥

∫ x2

x1
ln
(

(x2 − x1) exp
{∫ +∞
−∞ L

ϕ(x)
z (t)dα(z)

})
dx

t(x2 − x1)

=
1

t
ln(x2 − x1) +

1

t

∫ x2

x1

∫ +∞
−∞ L

ϕ(x)
z (t)dα(z)

x2 − x1
dx. (7.1)

On the other hand, let p1, p2, p3 be grater than 1 and such that
∑
k

1
pk

= 1. Then by
Hölder’s inequality we obtain

ln(ϕt(x2)− ϕt(x1))

t
=

ln
(∫ x2

x1
exp

{∫ +∞
−∞ L

ϕ(x)
z (t)dα(z)

}
dx
)

t

=
ln
(∫ x2

x1
exp

{∑3
k=1

∫ +∞
−∞ fk(t, x, z)dα(z)

}
dx
)

t

≤
ln

(∏3
k=1

(∫ x2

x1
exp

{
pk
∫ +∞
−∞ fk(t, x, z)dα(z)

}
dx
)1/pk)

t

=

∑3
k=1

1
pk

ln
(∫ x2

x1
exp

{
pk
∫ +∞
−∞ fk(t, x, z)dα(z)

}
dx
)

t
, (7.2)

where
f1(t, x, z) = (ϕt(x)− z)+ − (x− z)+,

f2(t, x, z) = −
∫ t

0

1(z,∞)(ϕs(x))dw(s),

f3(t, x, z) = −
∫ t

0

1(z,∞)(ϕs(x))α(ϕs(x))ds.

Let us show that the right-hand side of (7.2) converges to∫ +∞
−∞

(
−
∫ +∞
z

α(y)dPstat(y)
)
dα(z) almost surely. The same relation for the right-hand

side of (7.1) can be proved similarly.
Consider the summand with f1(t, x, z). It is easy to see that for all {x, z} ⊂ R, t ≥ 0,

|(ϕt(x)− z)+ − (x− z)+| ≤ |ϕt(x)− x|.

By the comparison theorem (cf. [15], Th. 2.1) for all x ∈ [x1, x2],

|ϕt(x)− x| ≤ |ϕt(x2)− x1|.

Then

ln
(∫ x2

x1
exp p1

∫ +∞
−∞ f1(t, x, z)dα(z)dx

)
t

≤
ln
(∫ x2

x1
exp {p1|ϕt(x2)− x1| ·Varα} dx

)
t

≤ ln ((x2 − x1) Varα)

t
+
p1|ϕt(x2)|

t
+
p1|x1|
t

. (7.3)
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On properties of a flow with discontinuous drift

The first and the third summands obviously tend to 0 as t→∞. Let us show that the
same assertion is true for the second summand.

Put c1 = a/2, c2 = b/2. Fix ε ∈ (0, 1/2 min(−a, b)). There exist N1 > 0 and N2 < 0

such that
α(x) < a+ ε < c1, x ≥ N1,

α(x) > b− ε > c2, x ≤ N2.
(7.4)

Consider the following stochastic differential equations

χ1
t (x) = x+ c1t+ w(t) + L

χ1(x)
N1+1(t), (7.5)

χ2
t (x) = x+ c2t+ w(t)− Lχ

1(x)
N2−1(t), (7.6)

where
(
L
χ1(x)
N1+1(t)

)
t≥0

,
(
L
χ2(x)
N2−1(t)

)
t≥0

are local times of the processes
(
χ1
t (x)

)
t≥0,

(
χ2
t (x)

)
t≥0

at the points N1 + 1, N2 − 1 respectively.
There exist solutions of these equations (see ([13])). Starting from x > N1 + 1, the

solution to the former equation is a diffusion process taking values on [N1 + 1,+∞)

with instantaneous reflection at the point N1 + 1. For x < N2 − 1, the solution of the
latter equation is a diffusion process taking values on (−∞, N2 − 1] with instantaneous
reflection at the point N2 − 1.

Given x > N1 + 1, then

P{ϕt(x) ≤ χ1
t (x), t ≥ 0} = 1.

Indeed, let tN1+1 = inf{t : χ1
t (x) = N1 + 1}. Then for all t ∈ (0, tN1+1), by (7.4)

χ1
t (t)− ϕt(x) =

∫ t

0

(c1 − α(ϕs(x)))ds > 0.

Consequently, if there exists a point r0 ≥ tN1+1 such that χ1
r0(x) < ϕr0(x), then there

exists a point r1 ∈ [tN1+1, r0) at which χ1
r1(x) = ϕr1(x). Moreover ϕr1(x) ≥ N1 + 1.

Choose δ > 0 such that for all s ∈ [r1, r1 + δ], ϕs(x) ≥ N1. Then

χ1
s(x)− ϕs(x) =

∫ s

r1

(c1 − α(ϕs(x)))ds+ L
χ1(x)
N1+1(s)− Lχ

1(x)
N1+1(r1), s ∈ [r1, r1 + δ]. (7.7)

But the right-hand side of (7.7) is non-negative. This implies that for each x > N1 + 1,

and all t ≥ 0, χ1
t (x) ≥ ϕt(x). By the comparison theorem (see [15], Th. 3.1) χ1

t (x) ≤
B1
t (x), t ≥ 0, where (B1

t (x))t≥0 is a one-dimensional Brownian motion with reflection at
the point N1 + 1, which is a solution to the following SDE

B1
t (x) = x+ w(t) + L

B(x)
N1+1.

Thus for all x > N1 + 1,

ϕt(x) ≤ B1
t (x), t ≥ 0. (7.8)

Involving (χ2
t (x))t≥0 and arguing in the same way we get the inequality

ϕt(x) ≥ B2
t (x), t ≥ 0, (7.9)

valid for all x < N2 − 1, where (B2
t (x))t≥0 is a Brownian motion with reflection at the

point N2 − 1 solving the following SDE

B2
t (x) = x+ w(t)− LB(x)

N2−1.
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On properties of a flow with discontinuous drift

It is known that for all x ∈ R,
B1
t (x)

t
→ 0, t→∞

B2
t (x)

t
→ 0, t→∞.

(7.10)

The fact that ϕt(x)
t → 0, t → ∞, follows now from relations (7.10), inequalities (7.8),

(7.9) and assertion that for all {d1, x, d2} ⊂ R, d1 < x < d2,

τx[d1, d2] <∞ a.s., (7.11)

where
τx[d1, d2] = inf{t ≥ 0 : ϕt(x) = d1 or ϕt(x) = d2}.

Inequality (7.11) is a consequence of (6.1) (cf. [8], §18).
Thus we have proved that the second term in the right-hand side of (7.3) tends to

zero as t tends to∞.
Examine the third item in the right-hand side of (7.2). We have∫ +∞

−∞

(
−
∫ t

0

1ϕs(x)>zα(ϕs(x))ds

)
dα(z) =

2∑
i,j=1

Iij ,

where

Iij = (−1)i+j
∫ +∞

−∞

(
−
∫ t

0

1ϕs(x)>zαi(ϕs(x))ds

)
dαj(z).

Consider I11. By the comparison theorem for all t ≥ 0, x ∈ [x1, x2],∫ +∞

−∞

(
−
∫ t

0

1ϕs(x2)>zα1(ϕs(x2))ds

)
dα1(z) ≤ I11

≤
∫ +∞

−∞

(
−
∫ t

0

1ϕs(x1)>zα1(ϕs(x1))ds

)
dα1(z). (7.12)

Using the similar estimates for I12, I21, I22 we get

1

p3t
ln

(∫ x2

x1

exp

{
p3

∫ +∞

−∞
f3(t, x, z)dα(z)

}
dx

)
≥ 1

t

[
ln(x2 − x1)

p3

+

∫ +∞

−∞

(
−
∫ t

0

1ϕs(x2)>zα1(ϕs(x2))ds

)
dα1(z)

+

∫ +∞

−∞

(
−
∫ t

0

1ϕs(x1)>zα2(ϕs(x1))ds

)
dα1(z)

+

∫ +∞

−∞

(
−
∫ t

0

1ϕs(x1)>zα1(ϕs(x1))ds

)
dα2(z)

+

∫ +∞

−∞

(
−
∫ t

0

1ϕs(x2)>zα2(ϕs(x2))ds

)
dα2(z) ] . (7.13)

Obviously, the first summand in the right-hand side of (7.13) tends to 0 as t tends to∞.
By the ergodic theorem (see Theorem 3, §18 of [8]) for all x ∈ R, i = 1, 2, we get

1

t

∫ t

0

1ϕs(x)>zαi(ϕs(x))ds→
∫ +∞

z

αi(y)dPstat(y).

Making use of the dominated convergence theorem and collecting the members, we see
that the expression in the right-hand side of (7.13) tends to∫ +∞

−∞

(
−
∫ +∞

z

α(y)dPstat(y)

)
dα(z)
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almost surely as t tends to∞. Using the upper estimates for Iij , {i, j} ⊂ {1, 2}, similarly
we get that

1

p3t
ln

(∫ x2

x1

exp

{
p3

∫ +∞

−∞
f3(t, x, z)dα(z)

}
dx

)
→∫ +∞

−∞

(
−
∫ +∞

z

α(y)dPstat(y)

)
dα(z), t→∞, almost surely.

It is left to prove that the second member in the right-hand side of (7.2) converges to 0

as t tends to∞ almost surely. It can be represented in the form

ln
(∫ x2

x1
exp

{
p2
∫ +∞
−∞

(
−
∫ t
0
1ϕs(x)>zdw(s)

)
dα(z)

}
dx
)

t

=
ln(x2 − x1)

t
+
p2
∫ +∞
−∞

(
−
∫ t
0
1ϕs(x1)>zdw(s)

)
dα(z)

t

+
ln
(∫ x2

x1
exp

{
p2
∫ +∞
−∞

(
−
∫ t
0

(
1ϕs(x)>z − 1ϕs(x1)>z

)
dw(s)

)
dα(z)

}
dx
)

t
= I + II + III.

Consider II. By a martingale inequality (cf. [10]), ineq. (6.16) of Ch. 1),

E sup
r∈[0,t]

(∫ +∞

−∞

(
−
∫ r

0

1ϕs(x1)>zdw(s)

)
dα(z)

)2

≤

= E sup
r∈[0,t]

(∫ τ

0

(∫ +∞

−∞
1ϕs(x1)>zdα(z)

)
dw(s)

)2

≤

4E

∫ t

0

(∫ +∞

−∞
1ϕs(x1)>zdα(z)

)2

ds ≤ 4(Var
R
α)2t.

Then by monotone convergence theorem

E

∞∑
n=1

sup
r∈[2n,2n+1]

(∫ +∞
−∞

(
−
∫ r
0
1ϕs(x1)>zdw(s)

)
dα(z)

r

)2

≤
∞∑
n=1

E supr∈[0,2n+1]

(∫ +∞
−∞

(
−
∫ r
0
1ϕs(x1)>zdw(s)

)
dα(z)

)2
22n

≤
(

Var
R
α
)2 ∞∑

n=1

4 · 2n+1

22n
=
(

Var
R
α
)2 ∞∑

n=1

8

2n
<∞.

This implies that

sup
τ∈[2n,2n+1]

(∫ +∞
−∞

(
−
∫ τ
0
1ϕs(x1)>zdw(s)

)
dα(z)

r

)2

→ 0, n→∞, almost surely.

Consequently,

lim
t→∞

∫ +∞
−∞

(
−
∫ t
0
1ϕs(x1)>zdw(s)

)
dα(z)

t
= 0 almost surely. (7.14)

Note that

III ≤ (x2 − x1)

t
−
p2 supx∈[x1,x2] supr∈[0,t]

∣∣∣∫ r0 (∫ +∞
−∞

(
1ϕs(x)>z − 1ϕs(x1)>z

)
dα(z)

)
dw(s)

∣∣∣
t

.

(7.15)
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To prove that III → 0 as t→∞ it is sufficient to show that

supx∈[x1,x2] supr∈[0,t]

∣∣∣∫ r0 (∫ +∞
−∞

(
1ϕs(x)>z − 1ϕs(x1)>z

)
dα(z)

)
dw(s)

∣∣∣
t

→ 0, t→∞, almost surely.

(7.16)

Put ξt(x) =
∫ t
0

(∫ +∞
−∞ 1ϕs(x)>zdα(z)

)
dw(s). According to the Garsia-Rodemich-Rumsey

inequality [7] for all t ≥ 0, x ∈ [x1, x2], q > 1, α ∈ ( 1
q , 1], there exists c(α, q) > 0 such

that

|ξt(x)− ξt(x1)|q ≤ c(α, q)|x− x1|qα−1
∫∫

[x1,x2]2

|ξt(u)− ξt(v)|q

|u− v|qα+1
dudv. (7.17)

Then for q = 4,

E sup
x∈[x1,x2]

sup
t∈[0,T ]

|ξt(x)− ξt(x1)|4

≤ c(α, 4)|x2 − x1|4α−1
∫∫

[x1,x2]2

E supt∈[0,T ] |ξt(u)− ξt(v)|4

|u− v|4α+1
dudv

(7.18)

Let us estimate the expectation E supt∈[0,T ] |ξt(u) − ξt(v)|4. According to Burkholder’s
inequality (cf. [10], Ch.3, Th. 3.1) we get

E sup
t∈[0,T ]

|ξt(u)− ξt(v)|4

≤ CE

(∫ T

0

(∫ +∞

−∞

(
1ϕs(u)>z − 1ϕs(v)>z

)
dα(z)

)2

ds

)2

.

Consider the case of u < v. Making use of Hölder’s inequality and applying the compar-
ison theorem we arrive at the inequality

(∫ +∞

−∞

(
1ϕs(u)>z − 1ϕs(v)>z

)
dα(z)

)2

≤ 2 Varα1

∫ +∞

−∞

(
1ϕs(u)>z − 1ϕs(v)>z

)2
dα1(z)

+ 2 Varα2

∫ +∞

−∞

(
1ϕs(u)>z − 1ϕs(v)>z

)2
dα2(z)

≤ C
∫ +∞

−∞

(
1ϕs(u)>z − 1ϕs(v)>z

)
dᾱ(z),

where for z ∈ R, ᾱ(z) = α1(z) + α2(z), C is a constant.
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Then

E sup
t∈[0,T ]

|ξt(u)− ξt(v)|4 ≤ CE

(∫ T

0

(∫ +∞

−∞

(
1ϕs(u)>z − 1ϕs(v)>z

)
dᾱ(z)

)
ds

)2

= C

∫
R

dᾱ(z)

∫
R

dᾱ(y)E

[∫ T

0

((
1ϕs(u)>z − 1ϕs(v)>z

) ∫ T

s

(
1ϕr(u)>y − 1ϕr(v)>y

)
dr

)
ds

]

≤ C
∫
R

dᾱ(z)

∫
R

dᾱ(y)

× E

[∫ T

0

((
1ϕs(u)>z − 1ϕs(v)>z

)
E

(∫ T

s

(
1ϕr(u)>y − 1ϕr(v)>y

)
dr/Fs

))
ds

]

≤ C
∫
R

dᾱ(z)

∫
R

dᾱ(y)

× E

[∫ T

0

((
1ϕs(u)>z − 1ϕs(v)>z

)
E

(∫ T−s

0

(
1ϕr(u)>y − 1ϕr(v)>y

)
dr

))
ds

]
.

valid for all T > 0, u ∈ R, v ∈ R, u < v, with some constant C.
By arguments similar to that in [8], §18, Remark 1 we have

E

∫ T

0

(1ϕs(u)>z − 1ϕs(v)>z)ds ≤ H(u− v), z ∈ R,

where H is some positive constant. This implies

E sup
x∈[x1,x2]

sup
t∈[0,T ]

|ξt(x)− ξt(x1)|4 ≤ (Var ᾱ)2H2(u− v)2.

The case of u ≥ v can be treated analogously. Thus the inequality

E sup
x∈[x1,x2]

sup
t∈[0,T ]

|ξt(x)− ξt(x1)|4

≤ c(α, 4)|x2 − x1|4α−1
∫∫

[x1,x2]2

C(u− v)2

|u− v|4α+1
dudv (7.19)

holds true for all T > 0, {x1, x2} ⊂ R, x1 < x2. To provide the finiteness of the integral in
the right-hand side of (7.19) we choose α such that 1− 4α > −1, i.e. α ∈ ( 1

4 ,
1
2 ). Finally,

calculating the integral we get

E sup
x∈[x1,x2]

sup
t∈[0,T ]

|ξt(x)− ξt(x1)|4 ≤ C(x2 − x1)2,

where C is a constant.
This inequality implies that the convergence in (7.16) holds in probability. The al-

most surely convergence can be justified by arguments similar to that used in the proof
of formula (7.14). So we checked that III → 0 as t → ∞. This completes the proof of
the fact that

lim
t→∞

ln(ϕt(x2)− ϕt(x1))

t
≤
∫ +∞

−∞

(
−
∫ +∞

z

α(y)dPstat(y)

)
dα(z) (see (7.2)).

Treating (7.1) analogously we get∫ +∞

−∞

(
−
∫ +∞

z

α(y)dPstat(y)

)
dα(z) ≤ lim

t→∞

ln(ϕt(x2)− ϕt(x1))

t

The Theorem 2 is proved.
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8 Example

Let α(x) = a1x≥0 + b1x<0, where a < 0, b > 0. Given {x1, x2} ⊂ R, the processes
(ϕt(x1))t≥0, (ϕt(x2))t≥0 move parallel to each other while being on the same semiaxis.
Theorem 1.1 holds true for the solution (ϕt(x))t≥0 of corresponding SDE. The Sobolev
derivative has the form (see (1.2))

∇ϕt(x) = exp
{

(a− b)Lϕ(x)0 (t)
}
,

where Lϕ(x)0 (t) is a local time of the process (ϕt(x))t≥0 at the point zero.
Let us find stationary distribution for the process (ϕt(x))t≥0 (see Section 6). We have

s(x) =

{
− 1

2a

(
e−2ax − 1

)
, x ≥ 0,

− 1
2b

(
e−2bx − 1

)
, x < 0,

s′(x) =

{
e−2ax, x ≥ 0,

e−2bx, x < 0,

and

σ(y) = s′(q(y)) =

{
−1− 2ay, y ≥ 0,

−1− 2by, y < 0,

where

q(y) =

{
− 1

2a ln(1− 2ay), y ≥ 0,

− 1
2b ln(1− 2by), y < 0,

is a continuously differentiable inverse function to s(·).
Put ηt(x) = s(ϕt(x)). Then (see Section 6) it is a solution of the SDE{

dηt(x) = σ(ηt(x))dw(t),

η0(x) = s(x).

Let Ft,x(y) = P{ηt(x) < y} be the distribution function of the random variable ηt(x).
Then by Theorem 3 of [8], §18, for all x ∈ R,

lim
t→∞

Ft,x(y) =

∫ y
−∞

dz
σ2(z)∫ +∞

−∞
dz

σ2(z)

=

{
1 + b

a−b
1

1−2ay , y ≥ 0,
a
a−b

1
1−2by , y < 0.

(8.1)

Let Φt,x(y), y ∈ R, be the distribution function of the random variable ϕt(x). From
(8.1) for all x ∈ R, we have

Pstat(y) = lim
t→∞

Φt,x(y) = lim
t→∞

P{ϕt(x) < y} = lim
t→∞

P{ηt(x) < s(y)}

= lim
t→∞

Ft,x(s(y)) =

{
1 + b

a−be
2ay, y ≥ 0,

a
a−be

2by, y < 0.

The stationary distribution function Pstat(y) has a density of the form

pstat(y) =

{
2ab
a−be

2ay, y ≥ 0,
2ab
a−be

2by, y < 0.
(8.2)

Theorem 2 now is as follows. For all {x1, x2} ⊂ R, x1 < x2,

lim
t→+∞

ln(ϕt(x2)− ϕt(x1))

t
= (b− a)

∫ +∞

0

2a2b

a− b
e2ay1y≥0dy = ab almost surely.
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