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Abstract

This paper studies systems of particles following independent random walks and sub-
ject to annihilation, binary branching, coalescence, and deaths. In the case with-
out annihilation, such systems have been studied in our 2005 paper “Branching-
coalescing particle systems”. The case with annihilation is considerably more dif-
ficult, mainly as a consequence of the non-monotonicity of such systems and a more
complicated duality. Nevertheless, we show that adding annihilation does not sig-
nificantly change the long-time behavior of the process and in fact, systems with
annihilation can be obtained by thinning systems without annihilation.
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1 Results

1.1 Introduction

In [1], we studied systems of particles that perform independent random walks,
branch binarily, coalesce, and die. Our motivation came from two directions. On the
one hand, we were driven by the wish to study a population dynamic model that is more
realistic than the usual branching particle systems, since the population at a given
site cannot grow unboundedly but is instead controlled by an extra death term that is
quadratic in the number of particles, which can be interpreted as extra deaths due to
competition. On the other hand, such systems of branching and coalescing particles are
known to be dual to certain systems of interacting diffusions, modelling gene frequen-
cies in spatially structured populations subject to resampling, mutation, and selection
[25]. In this context, the branching-coalecing particles can be interpreted as ‘potential
ancestors’ [17].
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Systems of branching, annihilating, and coalescing particles

Apart from this duality, which was known, we showed in [1] that our particle systems
are also related to resampling-selection processes by a Poissonization relation. More-
over, we proved that systems started with infinitely many particles on each site come
down from infinity (a fact that had been proved before, with a less explicit bound, in
[8]) and that systems on quite general spatially homogeneous lattices have at most one
nontrivial homogeneous invariant law, which, if it exists, is the long-time limit law of
the process started in any nontrivial homogeneous initial law.

In the present paper, we generalize all these results to systems where moreover,
with some positive rate, pairs of particles on the same site annihilate each other, result-
ing in the disappearance of both particles. This my not seem like it should make a big
difference with coalescence, where only one particle disappears -and indeed our results
confirm this- but from the technical point of view annihilation has the huge disadvan-
tage of making the system non-monotone, which means that many simple comparison
arguments are not available. Some pioneering work on non-monotone systems can be
found in, e.g., [5, 26, 10]. Despite progress in recent years, non-monotone particle
systems are still generally less studied and worse understood than monotone ones.

As in the case without annihilation, our main tool is duality. In fact, it turns out
that systems with annihilation are dual to the same Markov process (a system of in-
teracting Wright-Fisher diffusions) as those without it, but with a different (and more
complicated) duality function. As a result, we obtain Poissonization and thinning rela-
tions which show, among others, that systems with annihilation can be obtained from
systems without it by independent thinning. We reported these duality and thinning
relations before (without proof) in [29].

The paper is organized a follows. In Section 1.2 we define our model and the dual
system of interacting diffusions. In Section 1.3 we state our duality result and show
how this implies Poissonization and thinning relations. Section 1.4 presents our main
results, showing that the system started with infinitely many particles comes down from
infinity and that systems started in a spatially homogeneous, nontrivial invariant law
converge to a unique homogeneous invariant law. Section 1.5 contains more discussion
and an overview of our proofs, which are given in Section 2.

1.2 Definition of the models

Let Λ be a finite or countably infinite set and let q(i, j) ≥ 0 (i, j ∈ Λ, i 6= j) be
the transition rates of a continuous time Markov process on Λ, the underlying motion,
which jumps from site i to site j with rate q(i, j). For notational convenience, we set
q(i, i) := 0 (i ∈ Λ). We assume that the rates q(i, j) are uniformly summable and (in a
weak sense) irreducible, and that the counting measure on Λ is an invariant law for the
underlying motion, i.e.:

(i) sup
i

∑
j

q(i, j) <∞,

(ii) ∀∆ ⊂ Λ, ∆ 6= ∅,Λ ∃i ∈ ∆, j ∈ Λ\∆ such that q(i, j) > 0 or q(j, i) > 0,

(iii)
∑
j

q†(i, j) =
∑
j

q(i, j) ∀i ∈ Λ, where q†(i, j) := q(j, i).

(1.1)

Here and elsewhere sums and suprema over i, j always run over Λ, unless stated other-
wise.

Branching-annihilating particle systems. We let (Λ, q) be as above, fix rates a, b, c, d ≥ 0,
and consider systems of particles subject to the following dynamics.

1◦ Each particle jumps, independently of the others, from site i to site j with rate
q(i, j).
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2◦ Each pair of particles, present on the same site, annihilates with rate 2a, resulting
in the disappearance of both particles.

3◦ Each particle splits with rate b into two new particles, created on the position of
the old one.

4◦ Each pair of particles, present on the same site, coalesces with rate 2c, resulting
in the creation of one new particle on the position of the two old ones.

5◦ Each particle dies (disappears) with rate d.

Let Xt(i) denote the number of particles present at site i ∈ Λ and time t ≥ 0. Then
X = (Xt)t≥0, with Xt = (Xt(i))i∈Λ, is a Markov process with formal generator

Gf(x) :=
∑
ij

q(i, j)x(i){f(x+ δj − δi)− f(x)}+ a
∑
i

x(i)(x(i)− 1){f(x− 2δi)− f(x)}

+b
∑
i

x(i){f(x+ δi)− f(x)}+ c
∑
i

x(i)(x(i)− 1){f(x− δi)− f(x)}

+d
∑
i

x(i){f(x− δi)− f(x)},

(1.2)
where δi(j) := 1 if i = j and δi(j) := 0 otherwise. We call X the (q, a, b, c, d)-branco-
process.

The process X can be defined for finite initial states and also for some infinite initial
states in an appropriate Liggett-Spitzer space. Following [19], we define

Eγ(Λ) := {x ∈ NΛ : ‖x‖γ <∞}, with ‖x‖γ :=
∑
i

γi|x(i)|, (1.3)

where γ = (γi)i∈Λ are strictly positive constants satisfying∑
i

γi <∞ and
∑
j

(q(i, j) + q†(i, j))γj ≤ Kγi (i ∈ Λ) (1.4)

for some K <∞. (Our assumptions on q imply the existence of a γ satisfying (1.4).)

Resampling selection processes. Let (Λ, q) be as before, let r, s,m be nonnegative con-
stants, and let X = (Xt)t≥0 be the [0, 1]Λ-valued Markov process given by the unique
pathwise solutions to the infinite dimensional stochastic differential equation (SDE)
(see [25, 1]):

dXt(i) =
∑
j

q(j, i)(Xt(j)−Xt(i)) dt+ sXt(i)(1−Xt(i)) dt−mXt(i) dt

+
√

2rXt(i)(1−Xt(i)) dBt(i) (t ≥ 0, i ∈ Λ),

(1.5)

where (B(i))i∈Λ is a collection of independent Brownian motions. The process X is a
system of linearly interacting Wright-Fisher diffusions, also known as stepping stone
model, which can be used to model the spatial distribution of gene frequencies in
the presence of resampling, selection, and mutation. Following [1], we call X the
resampling-selection process with underlying motion (Λ, q), resampling rate r, selec-
tion rate s, and mutation rate m, or shortly the (q, r, s,m)-resem-process.

1.3 Duality, Poissonization, and thinning

We start with some notation. For φ, ψ ∈ [−∞,∞]Λ, we write

〈φ, ψ〉 :=
∑
i

φ(i)ψ(i) and |φ| :=
∑
i

|φ(i)|, (1.6)
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whenever the infinite sums are defined. For any φ : Λ→ [−1, 1] and x : Λ→ N we write

φx :=
∏
i

φ(i)x(i) with 00 := 1 (1.7)

whenever the infinite product converges and the limit does not depend on the order of
the coordinates. The following proposition generalizes [1, Theorem 1 (a)].

Proposition 1.1. (Duality) Assume that a+ c > 0 and let

α = a/(a+ c), r = a+ c, s = (1 + α)b, and m = αb+ d, (1.8)

or equivalently

a = αr, b = s/(1 + α), c = (1− α)r, and d = m− αs/(1 + α). (1.9)

Let X be a (q, a, b, c, d)-branco-process with X0 ∈ Eγ(Λ) a.s. and let X † be a (q†, r, s,m)-
resem-process, independent of X. Suppose that one or more of the following conditions
are satisfied:

(i) α < 1, (ii) |X0| <∞ a.s., (iii) |X †0 | <∞ a.s. (1.10)

Then

E
[
(1− (1 + α)X †0 )Xt

]
= E

[
(1− (1 + α)X †t )X0

]
(t ≥ 0), (1.11)

where the infinite products inside the expectation are a.s. well-defined.

Proposition 1.1, together with a self-duality for (q, r, s,m)-resem-processes described
in [1, Theorem 1 (b)], implies that (q, a, b, c, d)-branco-processes can be obtained as
Poissonizations of resampling-selection processes, and as thinnings of each other, as
we explain now. (These thinning relations will prove useful several times in what will
follow. On the other hand, we have no application of the Poissonization relations, but
since they are very similar and closely related, we treat them here as well.)

If φ is a [0,∞)
Λ-valued random variable, then by definition a Poisson measure with

random intensity φ is an NΛ-valued random variable Pois(φ) whose law is uniquely de-
termined by

E
[
(1− ψ)Pois(φ)] = E

[
e−〈φ, ψ〉

]
(ψ ∈ [0, 1]Λ), (1.12)

where we allow for the case that e−〈φ, ψ〉 = e−∞ := 0. In particular, if φ is nonran-
dom, then the components (Pois(φ)(i))i∈Λ are independent Poisson distributed random
variables with intensity φ(i).

If x and φ are random variables taking values in NΛ and [0, 1]Λ, respectively, then
by definition a φ-thinning of x is an NΛ-valued random variable Thinφ(x) whose law is
uniquely determined by

E
[
(1− ψ)Thinφ(x)] = E

[
(1− φψ)x

]
(ψ ∈ [0, 1]Λ). (1.13)

In particular, when x and φ are nonrandom and x =
∑
n δin , then a φ-thinning of x can

be constructed as Thinφ(x) :=
∑
n χnδin where the χn are independent {0, 1}-valued

random variables with P[χn = 1] = φ(in). More generally, if x and φ are random, then
we may construct Thinφ(x) in such a way that its conditional law given x and φ is as in
the deterministic case. It is not hard to check that (1.13) holds more generally for any

ψ ∈ [0, 2]Λ provided (1− ψ)Thinφ(x) is a.s. well-defined.
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Proposition 1.2. (Poissonization and thinning) Fix s,m ≥ 0, r > 0, and 0 ≤ β ≤ α ≤
1 such that m − β

1+β s ≥ 0. Let X and X be the (q, αr, 1
1+αs, (1 − α)r,m − α

1+αs)-branco-

process and (q, βr, 1
1+β s, (1 − β)r,m − β

1+β s)-branco-process, respectively, and let X be
the (q, r, s,m)-resem-process. Then

P
[
X0 ∈ ·

]
= P

[
Pois( s

(1+α)rX0) ∈ ·
]

implies P
[
Xt ∈ ·

]
= P

[
Pois( s

(1+α)rXt) ∈ ·
]

(1.14)
(t ≥ 0), and

P
[
X0 ∈ ·

]
= P

[
Thin 1+β

1+α
(X0) ∈ ·

]
implies P

[
Xt ∈ ·

]
= P

[
Thin 1+β

1+α
(Xt) ∈ ·

]
(t ≥ 0).

(1.15)

Proof. Formula (1.14) has been proved in case α = 0 in [1]. The general case can be
derived along the same lines. Alternatively, this can be derived from the case α = 0

using the fact that P[Thin 1
1+α

(Pois( srXt)) ∈ · ] = P[Pois( s
(1+α)rXt) ∈ · ], and formula

(1.15), which we prove now.
If the initial laws of X and X are related as in (1.15) and X † is a (q†, r, s,m)-resem-

process started in X0 = φ with |φ| <∞, then by (1.11),

E
[
(1− (1 + α)φ)

Thin 1+β
1+α

(Xt)]
= E

[
(1− (1 + β)φ)Xt

]
= E

[
(1− (1 + β)X †t )X0

]
= E

[
(1− (1 + α)X †t )

Thin 1+β
1+α

(X0)]
= E

[
(1− (1 + α)X †t )X0

]
= E

[
(1− (1 + α)φ)Xt

]
(1.16)

(t ≥ 0), where we have used that by [1, Lemma 20] one has |X †t | <∞ a.s. for each t ≥ 0,
which guarantees that the infinite products are a.s. well-defined. Since (1.16) holds for
all φ ∈ [0, 1]Λ with |φ| <∞, (1.15) follows.

As an immediate corollary of formula (1.15), we have:

Corollary 1.3. (Thinnings of processes without annihilation) Let a, b, c, d ≥ 0 and
a+ c > 0. Let X be the (q, a, b, c, d)-branco-process, α := a

a+c , and let X be the (q, 0, (1 +

α)b, a+ c, αb+ d)-branco-process. Then

P[X0 ∈ · ] = P[Thin 1
1+α

(X0) ∈ · ] implies P[Xt ∈ · ] = P[Thin 1
1+α

(Xt) ∈ · ] (t ≥ 0).

(1.17)

In particular, each branco-process with a positive annihilation rate can be obtained
as a thinning of a process with zero annihilation rate.

1.4 Main results

Let N = N ∪ {∞} denote the one-point compactification of N, and equip N
Λ

with

the product topology. We say that probability measures νn on N
Λ

converge weakly to a

limit ν, denoted as νn ⇒ ν, when
∫
νn(dx)f(x) →

∫
ν(dx)f(x) for every f ∈ C(NΛ

), the

space of continuous real functions on N
Λ

.
Our first main result shows that it is possible to start a (q, a, b, c, d)-branco-process

with infinitely many particles at each site. We call this the (q, a, b, c, d)-branco process
started at infinity. This result generalizes [1, Theorem 2]. For branching-coalescing
particle systems on Zd with more general branching and coalescing mechanisms, but
without annihilation, a similar result has been proved in [8].

Theorem 1.4. (The maximal process) Assume that a + c > 0. Then there exists an
Eγ(Λ)-valued process X(∞) = (X

(∞)
t )t>0 with the following properties:

(a) For each ε > 0, (X
(∞)
t )t≥ε is the (q, a, b, c, d)-branco-process starting in X(∞)

ε .
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(b) Set r := a+ b+ c− d. Then

E[X
(∞)
t (i)] ≤


r

(2a+ c)(1− e−rt)
if r 6= 0,

1

(2a+ c)t
if r = 0

(i ∈ Λ). (1.18)

(c) If X(n) are (q, a, b, c, d)-branco-processes starting in initial states x(n) ∈ Eγ(Λ) such
that

x(n)(i) ↑ ∞ as n ↑ ∞ (i ∈ Λ), (1.19)

then
L(X

(n)
t ) =⇒

n→∞
L(X

(∞)
t ) (t > 0). (1.20)

(d) There exists an invariant measure ν of the (q, a, b, c, d)-branco-process such that

L(X
(∞)
t ) =⇒

t→∞
ν. (1.21)

(e) The measure ν is uniquely characterised by∫
ν(dx)(1− (1 + α)φ)x = Pφ[∃t ≥ 0 such that X †t = 0] (φ ∈ [0, 1]Λ, |φ| <∞), (1.22)

where α := a/(a+c) and X † denotes the (q†, a+c, (1+α)b, αb+d))-resem-process started
in φ.

(f) If r, s,m, α, β are as in Proposition 1.2 and X(∞) and X
(∞)

are the corresponding
branco-processes started at infinity, then

P[X
(∞)
t ∈ · ] = P[Thin 1+α

1+β
(X

(∞)

t ) ∈ · ] (t ≥ 0). (1.23)

A similar thinning relation holds between their long-time limit laws.

If a = 0, then it has been shown in [1, Theorem 2 (e)] that ν dominates any other
invariant measure in the stochastic order, hence ν can righteously be called the upper
invariant measure of the process. In the general case, when we have annihilation, we
do not know how to compare ν with other invariant measures in the stochastic order,
and we only work with the characterization of ν in (1.22).

To formulate our final result, we need some definitions. Let (Λ, q) be our lattice with
jump kernel of the underlying motion, as before. By definition, an automorphism of
(Λ, q) is a bijection g : Λ → Λ such that q(gi, gj) = q(i, j) for all i, j ∈ Λ. We denote the
group of all automorphisms of (Λ, q) by Aut(Λ, q). We say that a subgroup G ⊂ Aut(Λ, q)

is transitive if for each i, j ∈ Λ there exists a g ∈ G such that gi = j. We say that (Λ, q)

is homogeneous if Aut(Λ, q) is transitive. We define shift operators Tg : NΛ → NΛ by

Tgx(j) := x(g−1j) (i ∈ Λ, x ∈ NΛ, g ∈ Aut(Λ, q)). (1.24)

If G is a subgroup of Aut(Λ, q), then we say that a probability measure ν on NΛ is G-
homogeneous if ν ◦ T−1

g = ν for all g ∈ G. For example, if Λ = Zd and q(i, j) = 1{|i−j|=1}
(nearest-neighbor random walk), then the group G of translations i 7→ i+ j (j ∈ Λ) is a
transitive subgroup of Aut(Λ, q) and the G-homogeneous probability measures are the
translation invariant probability measures.

The next theorem, which generalizes [1, Theorem 4 (a)], is our main result.

Theorem 1.5. (Convergence to the upper invariant measure) Assume that (Λ, q)

is infinite and homogeneous, G is a transitive subgroup of Aut(Λ, q), and a+ c > 0. Let
X be the (q, a, b, c, d)-branco process started in a G-homogeneous nontrivial initial law
L(X0). Then L(Xt)⇒ ν as t→∞, where ν is the measure in (1.22).
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1.5 Discussion and outline

The dualities in Proposition 1.1 and [1, Theorem 1 (b)], as well as the Poissoniza-
tion and thinning relations in Proposition 1.2 play a central role in the present paper.
These relations, whose discovery was the starting point of the present work, are similar
to duality and thinning relations between general nearest-neighbor interacting particle
systems discovered by Lloyd and Sudbury in [23, 24, 27]. In fact, as has been demon-
strated in [29, Prop. 6 and Lemma 7] (see also the more detailed preprint of the same
paper, [30, Prop 4.2 and Lemma 4.3]), our relations can (at least formally) be obtained
as ‘local mean field’ limits of (a special case of) the relations of Lloyd and Sudbury. In
[24], Lloyd and Sudbury observed that quite generally, if two interacting particle sys-
tems have the same dual (whith a special sort of duality relation as described in that
article), then one is a thinning of the other. This general principle is also responsible
for the Poissonization and thinning relations of our Proposition 1.2.

The thinning relation in Corollary 1.3 is especially noteworthy, since it allows us
to compare non-monotone systems (which are generally hard to study) with monotone
systems. Also, the thinning relation (1.23) allows us to prove that the unique nontrivial
homogeneous invariant measures of (q, αr, 1

1+αs, (1 − α)r,m − α
1+αs)-branco-processes

are monotone in α (w.r.t. to the stochastic order). Such sort of comparison results
between non-monotone systems are rarely available. In fact, these thinning relations
suggest that the ergodic behavior of (q, αr, 1

1+αs, (1 − α)r,m − α
1+αs)-branco-processes

(with r, s,m fixed but arbitrary α) and the (r, s,m)-resem process should all be ‘basically
the same’.

It does not seem straightforward to make this claim rigorous, however. The rea-
son is that Poissonization or thinning can only produce certain initial laws. Thus, an
ergodic result for resampling-selection processes, as has been proved in [25], only im-
plies an ergodic result for branching-annihilating particle systems started in initial laws
that are Poisson with random intensity, and likewise, the ergodic result for branching-
annihilating particle systems in [1] implies our Theorem 1.5 only for special initial laws,
that are thinnings of other laws.

Our main tool for proving the statement for general initial laws is, like in our previ-
ous paper, duality. In this respect, our methods differ from those in [8], which are based
on entropy calculations, but are similar to those used in, for example, [25, 9, 1, 22]. The
papers [25, 1] are particularly close in spirit. The sort of cancellative systems type du-
ality that we have to use in the present paper is somewhat harder to work with than the
additive systems type duality in [25, 1]. Earlier applications of this sort of ‘cancellative’
duality can be found in [9, 22].

The remainder of this paper is devoted to proofs. Proposition 1.1 and Theorems 1.4
and 1.5 are proved in Sections 2.5, 2.6 and 2.8, respectively.

2 Proofs

2.1 Construction and approximation

2.2 Finite systems

We denote the set of finite particle configurations by N (Λ) := {x ∈ NΛ : |x| < ∞}
and let

S(N (Λ)) := {f : N (Λ)→ R : |f(x)| ≤ K|x|k +M for some K,M, k ≥ 0} (2.1)

denote the space of real functions on N (Λ) satisfying a polynomial growth condition.
Recall the definition of the operator G from (1.2). Generalizing [1, Prop. 8], we have the
following result. Below and in what follows, we let Px denote the law of the (q, a, b, c, d)-
branco-process started in x and we let Ex denote expectation with respect to Px.
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Proposition 2.1. (Finite branco-processes) Let X be the (q, a, b, c, d)-branco-process
started in a finite state x. Then X does not explode. Moreover, with
z〈k〉 := z(z + 1) · · · (z + k − 1), one has

Ex
[
|Xt|〈k〉

]
≤ |x|〈k〉ekbt (k = 1, 2, . . . , t ≥ 0). (2.2)

For each f ∈ S(N (Λ)), one has Gf ∈ S(N (Λ)) and X solves the martingale problem for
the operator G with domain S(N (Λ)).

Proof. The proof of [1, Prop. 8] carries over without a change.

We equip NΛ with the componentwise order, i.e., for two states x, x̃ ∈ NΛ, we write
x ≤ x̃ if x(i) ≤ x̃(i) for all i ∈ Λ. In [1], we made extensive use of monotonicity of
branching-coalescing particle systems. For systems with annihilation, most of these
arguments do no longer work. In fact, we can only prove the following fact.

Lemma 2.2. (Comparison of branco-processes) Let X and X̃ be the (q, a, b, c, d)-
branco-process and the (q, 0, b̃, c̃, d̃)-branco-process started in finite initial states x and
x̃, respectively. Assume that

x ≤ x̃, b ≤ b̃, a+ c ≥ c̃, d ≥ d̃. (2.3)

Then X and X̃ can be coupled in such a way that

Xt ≤ X̃t (t ≥ 0). (2.4)

Proof. This can be proved in the same way as [1, Lemma 9], by constructing a bivariate
process (B,W ), say of black and white particles, such thatX = B are the black particles
and X̃ = B +W are the black and white particles together, with dynamics as described
there, except that each pair of black particles, present at the same site, is replaced
with rate 2(1− θ)c by one black and one white particle, with rate 2(1− θ)a by two white
particles, with rate 2θc by one black particle, and with rate 2θa by one white particle,
where θ := c̃/(a+ c).

We will often need to compare two (q, a, b, c, d)-branco-processes with the same param-
eters but different initial states. A convenient way to do this is to use coupling. Let
(Y 01, Y 11, Y 10) be a trivariate process, in which particles jump, die and give birth to par-
ticles of their own type, and pairs of particles of the same type annihilate and coalesce
in the usual way of a (q, a, b, c, d)-branco-processes, and in addition, pairs of particles
of different types coalesce to one new particle with a type that depends on its parents,
according to the following rates:

01 + 10 7→ 11 at rate r,

01 + 11 7→
{

10 at rate 2a,

11 at rate 2c,

(2.5)

and similarly 10 + 11 7→ 01 or 11 at rate 2a resp. 2c. Then it is easy to see that, for any
choice of the parameter r ≥ 0, both X := Y 01 +Y 11 and X ′ := Y 10 +Y 11 are (q, a, b, c, d)-
branco-processes. We will call this the standard coupling with parameter r. Note that
if a = 0, then X0 ≤ X ′0 implies Xt ≤ X ′t for all t ≥ 0 but the same conclusion cannot be
drawn if a > 0 because of the transition 01 + 11 7→ 10.

Let X be the (q, a, b, c, d)-branco-process. It follows from Proposition 2.1 that the
semigroup (St)t≥0 defined by

Stf(x) := Ex[f(Xt)] (t ≥ 0, x ∈ N (Λ), f ∈ S(N (Λ))) (2.6)
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maps S(N (Λ)) into itself. The semigroup gives first moments of functions of our pro-
cess. We will also need a covariance formula for functions of our process, the general
form of which is well-known. Below, for any measure µ and function f , we write µf :=∫
fdµ whenever the integral is well-defined, and we let Covµ(f, g) := µ(fg) − (µf)(µg)

denote the covariance of functions f, g under µ. Note that if µ is a probability measure
on N (Λ), then µStf =

∫
µ(dx)Ex(f(Xt)], i.e., µSt is the law at time t of the (q, a, b, c, d)-

branco-processes started in the initial law µ.

Lemma 2.3. (Covariance formula) Let (St)t≥0 be the semigroup defined in (2.6) and
let µ be a probability measure on N (Λ) such that

∫
µ(dx)|x|k < ∞ for all k ≥ 1. Then,

for each t ≥ 0 and f, g ∈ S(N (Λ)), one has

CovµSt(f, g) = Covµ(Stf, Stg) + 2

∫ t

0

µSt−sΓ(Ssf, Ssg)ds, (2.7)

where Γ(f, g) := 1
2

(
G(fg)− (Gf)g − f(Gg)

)
is given by

2Γ(f, g)(x) =
∑
ij

q(i, j)x(i)
(
f(x+ δj − δi)− f(x)

)(
g(x+ δj − δi)− g(x)

)
+a
∑
i

x(i)(x(i)− 1)
(
f(x− 2δi)− f(x)

)(
g(x− 2δi)− g(x)

)
+b
∑
i

x(i)
(
f(x+ δi)− f(x)

)(
g(x+ δi)− g(x)

)
+c
∑
i

x(i)(x(i)− 1)
(
f(x− δi)− f(x)

)(
g(x− δi)− g(x)

)
+d
∑
i

x(i)
(
f(x− δi)− f(x)

)(
g(x− δi)− g(x)

)
.

(2.8)

Proof. Formula (2.7) is standard, but the details of the proof vary depending on the
Markov process under consideration. In the present case, we can copy the proof of
[31, Prop. 2.2] almost without a change. We start by noting that fg ∈ S(N (Λ)) for all
f, g ∈ S(N (Λ)), hence Γ(f, g) := 1

2

(
G(fg) − (Gf)g − f(Gg)

)
is well-defined for all f, g ∈

S(N (Λ)). It is a straightforward excercise to check that Γ(f, g) is given by (2.8). Now
(2.7) will follow from a standard argument (such as given in [31, Prop. 2.2]) provided
we show that

∂
∂sSs

(
(Stf)(Sug)

)
=SsG

(
(Stf)(Sug)

)
,

∂
∂tSs

(
(Stf)(Sug)

)
=Ss

(
(GStf)(Sug)

)
,

∂
∂uSs

(
(Stf)(Sug)

)
=Ss

(
(Stf)(GSug)

) (2.9)

for all 0 ≤ s, t, u and f, g ∈ S(N (Λ)). Let us say that a sequence of functions fn ∈
S(N (Λ)) converges ‘nicely’ to a limit f ∈ S(N (Λ)) if fn → f pointwise and there exist
constants K,M, k ≥ 0 such that supn |fn(x)| ≤ K|x|k + M . Then (2.2) and dominated
convergence show that fn → f ‘nicely’ implies Stfn → Stf ‘nicely’. Note also that if
fn, f, g ∈ S(N (Λ)) and fn → f ‘nicely’, then fng → fg ‘nicely’. It is easy to check that
Gf ∈ S(N (Λ)) for all f ∈ S(N (Λ)). Since the (q, a, b, c, d)-branco-process Xx started in a
deterministic initial state Xx

0 = x ∈ N (Λ) solves the martingale problem for G, we have

t−1
(
Stf(x)− f(x)

)
= t−1

∫ t

0

E
[
Gf(Xx

s )
]
ds −→

t↓0
Gf(x)

(
x ∈ N (Λ)

)
, (2.10)

which by (2.2) and the fact that Gf ∈ S(N (Λ)) implies that t−1(Stf − f) → Gf ‘nicely’
as t ↓ 0. Combining three facts, we see that

∂
∂sSs

(
(Stf)(Sug)

)
= lim

ε↓0
Ss(Pε − 1)

(
(Stf)(Sug)

)
= SsG

(
(Stf)(Sug)

)
,

∂
∂tSs

(
(Stf)(Sug)

)
= lim

ε↓0
Ss
(
((Pε − 1)Stf)(Sug)

)
= Ss

(
(GStf)(Sug)

)
,

(2.11)
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and similarly for the derivative w.r.t. u, where we are using that if the right-hand deriva-
tive of a continuous real function exists in each point and depends continuously on t,
then the function is continuously differentiable (see, e.g., [16, Excersise 17.24]).

2.3 Infinite systems

Recall the definition of the Liggett-Spitzer space Eγ(Λ) from (1.3). We let CLip(Eγ(Λ))

denote the class of Lipschitz functions on Eγ(Λ), i.e., f : Eγ(Λ) → R such that |f(x) −
f(y)| ≤ L‖x− y‖γ for some L <∞.

The main result of this section is the following generalization of [1, Prop. 11].

Proposition 2.4. (Construction of branco-processes) Let (St)t≥0 be the semigroup
defined in (2.6). For each f ∈ CLip(Eγ(Λ)) and t ≥ 0, the function Stf defined in (2.6) can
be extended to a unique Lipschitz function on Eγ(Λ), also denoted by Stf . There exists
a unique (in distribution) time-homogeneous Markov process with cadlag sample paths
in the space Eγ(Λ) equipped with the norm ‖ · ‖γ , such that

Ex[f(Xt)] = Stf(x) (f ∈ CLip(Eγ(Λ)), x ∈ Eγ(Λ), t ≥ 0). (2.12)

To prepare for the proof of Proposition 2.4, we start with the following lemma, which
generalizes [1, Lemma 12].

Lemma 2.5. (Action of the semigroup on Lipschitz functions) Let (St)t≥0 be the
semigroup of the (q, a, b, c, d)-branco-process, defined in (2.6). If f : N (Λ) → R is Lips-
chitz continuous in the norm ‖ · ‖γ from (1.4), with Lipschitz constant L, then

|Stf(x)− Stf(x′)| ≤ Le(K+b−d)t‖x− x′‖γ (x, x′ ∈ N (Λ), t ≥ 0), (2.13)

where K is the constant from (1.4).

Proof. Let X = Y 01 + Y 11 and X ′ = Y 10 + Y 11 be (q, a, b, c, d)-branco-processes started
in X0 = x and X ′0 = x′, coupled using the standard coupling from (2.5), in such a way
that (Y 01

0 , Y 11
0 , Y 10

0 ) = ((x− x′)+, x ∧ x′, (x′ − x)+). Then

|Stf(x)− Stf(x′)| =
∣∣E[f(Xt)]− E[f(X ′t)]

∣∣ ≤ E[|f(Xt)− f(X ′t)|
]

≤ LE
[
‖Xt −X ′t‖γ

]
= LE

[
‖Y 01

t + Y 10
t ‖γ

]
.

(2.14)

Let us choose the parameter r in the standard coupling as r := 2(a + c). Then it is
easy to see that (Y 01, Y 10) can be coupled to a (q, 0, b, a+ c, d)-branco-process Z started
in Z0 = |x − x′| in such a way that Y 01

t + Y 10
t ≤ Zt for all t ≥ 0. Therefore, by [1,

formula (3.13)], we can further estimate the quantity in (2.14) as

|Stf(x)− Stf(x′)| ≤ LE
[
‖Zt‖γ

]
≤ Le(K+b−d)t‖x− x′‖γ . (2.15)

Proof of Proposition 2.4. Since N (Λ) is a dense subset of Eγ(Λ), Lemma 2.5 implies
that for each f ∈ CLip(Eγ(Λ)) and t ≥ 0, the function Stf defined in (2.6) can be extended
to a unique Lipschitz function on Eγ(Λ). The proof of Lemma 2.5 moreover shows that
two (q, a, b, c, d)-branco-processesX,X ′ started in finite initial states x, x′ can be coupled
such that

E
[
‖Xt −X ′t‖γ

]
≤ e(K+b−d)t‖x− x′‖γ (t ≥ 0). (2.16)

It is not hard to see that for each x ∈ Eγ(Λ) we can choose xn ∈ N (Λ) such that
‖xn − x‖ → 0 and

∞∑
n=1

‖xn − xn−1‖γ <∞. (2.17)
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(For example, any xn ↑ x has these properties.) Let Xn be the process started in
Xn

0 = xn. By (2.16), we can inductively couple the processes X0, X1, X2, . . . in such a
way that

E
[
‖Xn

t −Xn−1
t ‖γ

]
≤ e(K+b−d)t‖xn − xn−1‖γ (n ≥ 1, t ≥ 0). (2.18)

It follows that for each (deterministic) t ≥ 0, the sequence (Xn
t )n≥0 is a.s. a Cauchy

sequence in the complete metric space Eγ(Λ), hence for each t ≥ 0 there a.s. exists an
Eγ(Λ)-valued random variable Xt such that ‖Xn

t −Xt‖γ → 0. By Fatou,

E
[
‖Xn

t −Xt‖γ ] ≤ lim inf
m→∞

E
[
‖Xn

t −Xm
t ‖γ ] ≤ e(K+b−d)t

∞∑
m=n

‖xm+1 − xm‖γ −→
n→∞

0. (2.19)

Just as in [1, Lemma 13], it is now straightforward to check that (Xt)t≥0 is a Markov
process with semigroup (St)t≥0. Note, however, that in the arguments so far we have
only constructed X = (Xt)t≥0 at deterministic times. To show that X has a version with
cadlag sample paths (where the limits from the left and right are defined w.r.t. the norm
‖ · ‖γ), we adapt arguments from the proof of [1, Prop. 11]. It suffices to prove X has
cadlag sample paths on the time interval [0, 1].

Let V be the process with generator

GV f(x) :=
∑
ij

q(i, j)x(i){f(x+ δj)− f(x)}+ b
∑
i

x(i){f(x+ δi)− f(x)}, (2.20)

which describes a branching process in which particles don’t move or die, and each
particle at i gives with rate q(i, j) birth to a particle at j and with rate b to a particle at
i. We claim that a (q, a, b, c, d)-branco-process X, started in a finite initial state X0 = x,
can be coupled to the process V started in V0 = x in such a way that Xt ≤ Vt for all
t ≥ 0. To see this, let (B,W ) be a bivariate process, say of black and white particles,
started in (B0,W0) = (x, 0), such that the black particles evolve as a (q, a, b, c, d)-branco-
process, the white particles evolve according to the generator in (2.20), and each time
a black particle disappears from a site i due to jumps, annihilation or coalescence, a
white particle is created at i. Then it is easy to see that X = B and V = B +W . By [1,
formula (3.25)],

E
[
‖Vt‖γ

]
≤ e(K+b)t‖x‖γ , (2.21)

where K is the constant from (1.4). Since V is nondecreasing in t, since Vt(i) increases
by one each time Xt(i) does, and since X cannot become negative, it follows that∣∣{t ∈ [0, 1] : Xt−(i) 6= Xt(i)

}∣∣ ≤ x(i) + 2V1(i). (2.22)

Applying this to the process Xn, multiplying with γi and summing over i, we see that∑
i

γiE
[∣∣{t ∈ [0, 1] : Xn

t−(i) 6= Xn
t (i)}

∣∣] ≤ (1 + 2eK+b)‖xn‖γ , (2.23)

which by the convergence of ‖xn‖γ gives us a uniform bound on the number of jumps
made by Xn.

We wish to show that for large n, the processes Xn and Xn+1 make mostly the same
jumps. To this aim, let Xn = Y 01 + Y 11 and Xn+1 = Y 10 + Y 11 be two (q, a, b, c, d)-
branco-processes, coupled using the standard coupling from (2.5), with r = 2(a+ c) and
(Y 01

0 , Y 11
0 , Y 10

0 ) = ((xn − xn+1)+, xn ∧ xn+1, (xn+1 − x)+). Then, just as in the proof of
Lemma 2.5, the process (Y 01, Y 10) can be coupled to a (q, 0, b, a + c, d)-branco-process
Z started in Z0 = |xn − xn+1| in such a way that Y 01

t + Y 10
t ≤ Zt for all t ≥ 0. Likewise,

it is not hard to see that we can couple (Y 01, Y 10) to a process V with dynamics as in
(2.20) started in V0 = |xn − xn+1|, in such a way that Y 01

t + Y 10
t ≤ Zt for all t ≥ 0 and
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moreover, whenever Y 01(i) or Y 01(i) increases, the process V (i) increases by the same
amount. Let

Jn(i) :=
{
t ∈ [0, 1] : Xn

t−(i) 6= Xn
t (i)

}
(2.24)

be the set of jump times up to time one of the process Xn(i) and let

I(i) :=
{
t ∈ [0, 1] : Y 01

t− (i) 6= Y 01
t (i)

}
∪
{
t ∈ [0, 1] : Y 10

t− (i) 6= Y 10
t (i)

}
. (2.25)

Then the symmetric difference Jn(i) M Jn+1(i) = (Jn(i)\Jn+1(i)) ∪ (Jn+1(i)\Jn(i)) of
Jn(i) and Jn+1(i) is contained in I(i) and, by the arguments leading up to (2.22), |I(i)| ≤
|xn(i)− xn+1(i)|+ 2V1(i). Thus, in analogy with (2.23), we find that∑

i

γiE
[
|Jn(i)MJn+1(i)|

]
≤ (1 + 2eK+b)‖xn − xn+1‖γ . (2.26)

By (2.17), it follows that the sets Jn(i) converge as n→∞, i.e., for each i ∈ Λ there is a
(random) n such that Jn(i) = Jn+1(i) = Jn+2(i) = · · · . Taking into account also (2.22), it
follows that the limit process (X(i))t≥0 has cadlag sample paths for each i ∈ Λ and the
set of jump times of Xn(i) converges to the set of jump times of X(i). The fact that the
sample path of (X)t≥0 are also cadlag in the norm ‖ · ‖γ can be proved in the same way
as [1, formula (3.31)].

The proof of Proposition 2.4 yields a useful side result.

Corollary 2.6. (Approximation with finite systems) Let x ∈ Eγ(Λ) and xn ∈ N (Λ)

satisfy ‖xn − x‖γ → 0 and
∑
n≥1 ‖xn − xn−1‖γ < ∞. Then the (q, a, b, c, d)-branco-

processes Xn, X started in Xn
0 = xn and X0 = x can be coupled in such a way that

‖Xn
t −Xt‖γ → 0 a.s. for each t ≥ 0.

2.4 Covariance estimates

In this section, we give an upper estimate on the covariance of two functions of a
(q, a, b, c, d)-branco-process, which shows in particular that events that are sufficiently
far apart are almost independent.

For any continuous f : Eγ(Λ)→ R, we define δf : Λ→ [0,∞] by

δf(i) := sup
x∈Eγ(Λ)

∣∣f(x+ δi)− f(x)
∣∣ (i ∈ Λ). (2.27)

It is easy to see that for each continuous f : Eγ(Λ)→ R,∣∣f(x)− f(y)
∣∣ ≤∑

i

δf(i)|x(i)− y(i)|
(
x, y ∈ Eγ(Λ)

)
. (2.28)

Lemma 2.7. (Lipschitz functions) A continuous function f : Eγ(Λ) → R is Lipschitz
with respect to the norm ‖ · ‖γ if and only if there exists a constant L < ∞ such that
δf(i) ≤ Lγi (i ∈ Λ).

Proof. If f ∈ CLip(Eγ(Λ)), we have |f(x+ δi)− f(x)| ≤ L‖(x+ δi)− x‖γ = Lγi, where L is
the Lipschitz constant of f , hence δf(i) ≤ Lγi (i ∈ Λ). Conversely, if the latter condition
holds, then by (2.28)∣∣f(x)− f(y)

∣∣ ≤ L∑
i

γi|x(i)− y(i)| = L‖x− y‖γ
(
x, y ∈ Eγ(Λ)

)
. (2.29)
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We let Bγ(Λ) denote the space of all functions φ : Λ→ R such that

sup
i
γ−1
i |φ(i)| <∞. (2.30)

Note that by Lemma 2.7, δf ∈ Bγ(Λ) for each f ∈ CLip(Eγ(Λ)).
Let Pt(i, j) denote the probability that the random walk on Λ that jumps from k to l

with rate q(k, l), started in i, is a time t located at the position j. For any φ ∈ Bγ(Λ), we
write

Ptφ(i) :=
∑
j

Pt(i, j)φ(j) (t ≥ 0, i ∈ Λ). (2.31)

It is not hard to check that Pt is well-defined on Bγ(Λ) and maps this space into itself.
Recall that (St)t≥0 denotes the semigroup of the (q, a, b, c, d)-branco-process, defined

in (2.6).

Lemma 2.8. (Variation estimate) For any (q, a, b, c, d)-branco-process, one has

δStf ≤ e(b−d)tPtδf
(
t ≥ 0, f ∈ CLip(Eγ(Λ))

)
. (2.32)

Proof. Fix i ∈ Λ and let X = Y 01 + Y 11 and X ′ = Y 10 + Y 11 be (q, a, b, c, d)-branco-
processes started in X0 = x and X ′0 = x+ δi, coupled using the standard coupling from
(2.5), in such a way that (Y 01

0 , Y 11
0 , Y 10

0 ) = (0, x, δi). Then

|Stf(x)− Stf(x+ δi)| =
∣∣E[f(Xt)]− E[f(X ′t)]

∣∣
≤ E

[
|f(Xt)− f(X ′t)|

]
≤ E

[∑
j

δf(j)|Xt(j)−X ′t(j)|
]

=
∑
j

δf(j)E
[
Y 01
t (j) + Y 10

t (j)
]
≤
∑
j

δf(j)e(b−d)tPt(i, j),

(2.33)

where in the last step we have used that Y 01 + Y 10 can be estimated from above by a
(q, 0, b, 0, d)-branco-process.

Proposition 2.9. (Covariance estimate) Let X = (Xt)t≥0 be a (q, a, b, c, d)-branco-
processes started in X0 = x ∈ Eγ(Λ). Then, for each t ≥ 0, there exist functions
Kt : Λ× Λ2 → [0,∞) and Lt : Λ2 × Λ2 → [0,∞) satisfying

Kt(gi; gk, gl) = Kt(i; k, l)

Lt(gi, gj; gk, gl) = Lt(i, j; k, l)

} (
i, j, k, l ∈ Λ, g ∈ Aut(Λ, q)

)
, (2.34)

and sup
t∈[0,T ]

∑
i,k

Kt(i; k, 0) <∞, and sup
t∈[0,T ]

∑
i,j,k

Lt(i, j; k, 0) <∞ (T <∞), (2.35)

such that ∣∣Covx
(
f(Xt), g(Xt)

)∣∣≤∑
i,k,l

x(i)Kt(i; k, l)δf(k)δg(l)

+
∑
i,j,k.l

x(i)x(j)Lt(i, j; k, l)δf(k)δg(l).
(2.36)

for all bounded functions f, g ∈ CLip(Eγ(Λ))
)
.

Proof. It suffices to prove the claim for finite initial states x ∈ N (Λ). For once the
proposition is proved for finite systems, for arbitrary x ∈ Eγ(Λ) we can find N (Λ) 3 xn ↑
x. Then by Corollary 2.6, the processes Xn, X started in xn, x can be coupled such that
‖Xn

t −Xt‖γ → 0 for each t ≥ 0, hence by bounded pointwise convergence, the left-hand
side of (2.36) for Xn converges to the same formula for X, while the right-hand side is
obviously continuous under monotone limits.
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We will show that for finite systems, the estimate (2.36) holds even without the
boundednes assumption on f, g. We apply Lemma 2.3. A little calculation based on (2.8)
shows that

2|Γ(f, g)(x)| ≤
∑
ij

q(i, j)x(i)
(
δf(i) + δf(j)

)(
δg(i) + δg(j)

)
+(2a+ c)

∑
i

x(i)(x(i)− 1)δf(i)δg(i)

+(b+ d)
∑
i

x(i)δf(i)δg(i).

(2.37)

In view of Lemma 2.8, we define P̃t := e(b−d)tPt. Then (2.7), (2.37) and Lemma 2.8 show
that for processes started in a deterministic initial state,∣∣Covx

(
f(Xt), g(Xt)

)∣∣
≤
∫ t

0

∑
ij

q(i, j)
(
P̃sδf(i) + P̃sδf(j)

)(
P̃sδg(i) + P̃sδg(j)

)
Ex[Xt−s(i)]ds

+ (2a+ c)

∫ t

0

∑
i

P̃sδf(i)P̃sδg(i)Ex
[
Xt−s(i)(Xt−s(i)− 1)

]
ds

+ (b+ d)

∫ t

0

∑
i

P̃sδf(i)P̃sδg(i)Ex[Xt−s(i)]ds,

(2.38)

Let Y = (Yt)t≥0 be the (q, 0, b, 0, d)-branco-process started in Y0 = x. By Lemma 2.2, we
can couple X and Y such that Xt ≤ Yt for all t ≥ 0. We estimate

(i) Ex[Xt(i)]≤Ex[Yt(i)] =
∑
j

x(j)P̃t(j, i),

(ii) Ex[Xt(i)(Xt(i)− 1)]≤Ex[Yt(i)
2] = Ex[Yt(i)]

2 + Varx(Yt(i)).
(2.39)

To estimate Varx(Yt(i)), we apply (2.38) to the process Y and f = g := fi where fi(x) :=

x(i). Since the annihilation and coalescence rates of Y are zero, this yields

Varx(Yt(i))

≤
∫ t

0

∑
jk

q(j, k)
(
P̃sδfi(j) + P̃sδfi(k)

)(
P̃sδfi(j) + P̃sδfi(k)

)
Ex[Yt−s(j)]ds

+ (b+ d)

∫ t

0

∑
j

P̃sδfi(j)P̃sδfi(j)E
x[Yt−s(j)]ds.

(2.40)

Define
At(i; k, l) :=

∑
j

q(i, j)
(
P̃t(i, k) + P̃t(j, k)

)(
P̃t(i, l) + P̃t(j, l)

)
,

Bt(i; k, l) := P̃t(i, k)P̃t(i, l).

(2.41)

Then (2.38) can be rewritten as∣∣Covx
(
f(Xt), g(Xt)

)∣∣ ≤ ∫ t

0

∑
ikl

Ex[Xt−s(i)]
(
As(i; k, l) + (b+ d)Bs(i; k, l)

)
δf(k)δg(l)ds

+(2a+ c)

∫ t

0

∑
ikl

Ex
[
Xt−s(i)(Xt−s(i)− 1)

]
Bs(i; k, l)δf(k)δg(l)ds,

(2.42)
while (2.40) can be rewritten as

Varx(Yt(i)) ≤
∫ t

0

∑
j

Ex[Yt−s(j)]
(
As(j; i, i) + (b+ d)Bs(j; i, i)

)
ds, (2.43)
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where we have used that δfi(j) = 1{i=j}. Setting

Ct(i; k, l) := As(i; k, l) + (b+ d)Bs(i; k, l), (2.44)

and inserting (2.39) and (2.43) into (2.42), we obtain∣∣Covx
(
f(Xt), g(Xt)

)∣∣
≤
∫ t

0

∑
ijkl

x(i)P̃t−s(i, j)Cs(j; k, l)δf(k)δg(l)ds

+ (2a+ c)

∫ t

0

∑
ijklm

x(i)x(j)P̃t−s(i,m)P̃t−s(j,m)Bs(m; k, l)δf(k)δg(l)ds

+ (2a+ c)

∫ t

0

ds
∑
ijklm

∫ t−s

0

dux(i)P̃u(i, j)Cu(j;m,m)Bs(m; k, l)δf(k)δg(l).

(2.45)

Recalling the definition of Bt(i; j, k), this shows that (2.36) is satisfied with

Kt(i; k, l) :=

∫ t

0

ds
∑
j

P̃t−s(i, j)Cs(j; k, l)

+(2a+ c)

∫ t

0

ds
∑
jm

∫ t−s

0

du P̃u(i, j)Cu(j;m,m)P̃s(m, k)P̃s(m, l),

Lt(i, j; k, l) := (2a+ c)

∫ t

0

ds
∑
m

P̃t−s(i,m)P̃t−s(j,m)P̃s(m, k)P̃s(m, l).

(2.46)

The invariance of Kt and Lt under automorphisms of (Λ, q) is obvious from the analogue
property of P̃t, but the summability condition (2.35) needs proof. Since Pt(i, · ) is a
probability distribution and since the counting measure on Λ is an invariant law for Pt
by assumption (1.1) (iii),∑

j

Pt(i, j) = 1 =
∑
j

Pt(j, i) (t ≥ 0, i ∈ Λ). (2.47)

Setting |q| :=
∑
j q(i, j) =

∑
j q(j, i), we see that∑

ik

At(i; k, l) =
∑
ijk

q(i, j)
(
P̃t(i, k) + P̃t(j, k)

)(
P̃t(i, l) + P̃t(j, l)

)
=
∑
ij

q(i, j)2e(b−d)t
(
P̃t(i, l) + P̃t(j, l)

)
= 4|q|e2(b−d)t (l ∈ Λ),

(2.48)

and therefore, by a similar calculation for Bt(i; k, l),∑
j

Ct(j;m,m) ≤
∑
jk

Ct(j; k, l) =
(
4|q|+ b+ d

)
e2(b−d)t (l,m ∈ Λ), (2.49)

which by (2.46) implies that∑
ik

Kt(i; k, l)≤
(
4|q|+ b+ d

) ∫ t

0

ds e(b−d)(t−s)e2(b−d)s

+(2a+ c)
(
4|q|+ b+ d

) ∫ t

0

ds

∫ t−s

0

du e(b−d)ue2(b−d)ue2(b−d)s <∞,∑
ijk

Lt(i, j; k, l)≤ (2a+ c)

∫ t

0

ds e2(b−d)(t−s)e2(b−d)s <∞ (t ≥ 0, l ∈ Λ).

(2.50)
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Corollary 2.10. (Exponential functions) Let X = (Xt)t≥0 be a (q, a, b, c, d)-branco-
processes started in X0 = x ∈ Eγ(Λ), and let µ : Λ→ [0,∞) satisfy

∑
i µ(i) <∞. Then∣∣∣Ex[e−∑i µ(i)Xt(i)

]
−
∏
i

Ex
[
e−µ(i)Xt(i)

]∣∣∣
≤ 1

2

∑
i,k,l
k 6=l

x(i)Kt(i; k, l)µ(k)µ(l) + 1
2

∑
i,j,k,l
k 6=l

x(i)x(j)Lt(i, j; k, l)µ(k)µ(l), (2.51)

where Kt, Lt are as in Proposition 2.9.

Proof. We first prove the statement if µ is finitely supported. Assume that support(µ) =

{k1, . . . , km} and set

fα(x) := e−µ(kα)x(kα) and gβ(x) :=

β∏
α=1

fα(x). (2.52)

Then

Ex
[
gm(Xt)

]
=Ex

[
gm−1(Xt)

]
Ex
[
fm(Xt)

]
+ Covx

(
gm−1(Xt), fm(Xt)

)
=Ex

[
gm−2(Xt)

]
Ex
[
fm−1(Xt)

]
+ Covx

(
gm−2(Xt), fm−1(Xt)

)
+ Covx

(
gm−1(Xt), fm(Xt)

)
= . . .

=

m∏
α=1

E[fα(Xt)] +

m∑
α=2

Covx
(
gα−1(Xt), fα(Xt)

)
.

(2.53)

Therefore, since

δgα(k) =

{
µ(k) if k ∈ {k1, . . . , kα},
0 otherwise,

δfα(k) =

{
µ(k) if k = kα,

0 otherwise,
(2.54)

Proposition 2.9 tells us that

∣∣Ex[gm(Xt)
]
−

m∏
α=1

E[fα(Xt)]
∣∣

≤
m∑
α=2

α−1∑
β=1

(∑
i

x(i)Kt(i; kβ , kα)µ(kβ)µ(kα) +
∑
i,j

x(i)x(j)Lt(i, j; kβ , kα)µ(kβ)µ(kα)
)
.

(2.55)
To generalize the statement to the case that

∑
i µ(i) <∞ but µ is not finitely supported,

it suffices to choose finitely supported µn ↑ µ and to observe that all terms in (2.51) are
continuous in µ w.r.t. increasing limits.

2.5 Duality and subduality

Recall the definition of φx from (1.7).

Lemma 2.11. (Infinite products) Let 0 ≤ α ≤ 1, φ ∈ [0, 1]Λ, x ∈ NΛ.

(a) Assume that one or more of the following conditions are satisfied:

(i) α < 1, (ii) |x| <∞, (iii) |φ| <∞. (2.56)

Then
(
1− (1 + α)φ

)x
is well-defined.
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(b) Assume that φ is supported on a finite set and xn ∈ NΛ converge pointwise to x.
Then

(
1− (1 + α)φ

)xn → (
1− (1 + α)φ

)x
as n→∞.

(c) Assume that |φ| < ∞ and NΛ 3 xn ↑ x. Then
(
1 − (1 + α)φ

)xn → (
1 − (1 + α)φ

)x
as

n→∞.

(d) Assume that either α < 1 or |φ| <∞, and let [0, 1]Λ 3 φn ↑ φ. Then(
1− (1 + α)φn

)x → (
1− (1 + α)φ

)x
as n→∞.

Proof. Since
(
1− (1+α)φ

)x
:=
∏
i

(
1− (1+α)φ(i)

)x(i)
, where −1 ≤

(
1− (1+α)φ(i)

)x(i) ≤
1, the only way in which the infinite product can be ill-defined is that

∏
i

∣∣1 − (1 +

α)φ(i)
∣∣x(i)

> 0 while
(
1 − (1 + α)φ(i)

)x(i)
< 0 for infinitely many i. If α < 1, then

−1 < −α ≤ 1 − (1 + α)φ(i), so if
(
1 − (1 + α)φ(i)

)x(i)
< 0 for infinitely many i, then∏

i

∣∣1 − (1 + α)φ(i)
∣∣x(i)

= 0 and the infinite product is always well-defined. If |x| < ∞,

then
(
1 − (1 + α)φ(i)

)x(i)
= 1 for all but finitely many i, hence the infinite product

is certainly well-defined. If |φ| < ∞, finally, then φ(i) > 1
2 for finitely many i, hence(

1− (1 +α)φ(i)
)x(i)

< 0 for finitely many i and the infinite product is again well-defined.
This completes the proof of part (a).

Part (b) is trivial since all but finitely many factors in the infinite product defining(
1− (1 + α)φ

)x
are one if φ is finitely supported.

To prove part (c), we split the product
∏
i

(
1− (1 +α)φ(i)

)x(i)
in finitely many factors

where φ(i) > 1
2 and the remaining factors where φ(i) ≤ 1

2 and hence
(
1− (1 + α)φ(i)

)
≥

0. Then the finite part of the product converges as in part (b) while the infinite part
converges in a monotone way.

For the proof of part (d) set I := {i ∈ Λ : x(i) 6= 0} and let I−, I0, I+ be the subsets
of I where 1− (1 + α)φ(i) < 0, = 0 and > 0, respectively. If I0 6= ∅ then it is easy to see
that

(
1− (1 +α)φn

)x → 0 =
(
1− (1 +α)φ

)x
, so from now on we may assume that I0 = ∅.

Note that 1− (1 +α)φn(i) ≥ 1− (1 +α)φ(i) > 0 for all i ∈ I+. Therefore, if I− is finite, as

must be the case when |φ| < ∞, then
∏
i∈I−

(
1− (1 + α)φn(i)

)x(i)
converges since I− is

finite while
∏
i∈I+

(
1− (1 + α)φn(i)

)x(i) ↓
∏
i∈I+

(
1− (1 + α)φ(i)

)x(i)
. If I− is infinite and

α < 1, then the fact that
∣∣1− (1 + α)φn(i)

∣∣x(i) →
(
(1 + α)φ(i)− 1

)x(i) ≤ α for each i ∈ I−
implies that

(
1− (1 + α)φn

)x → 0 =
(
1− (1 + α)φ

)x
.

We equip the space [0, 1]Λ with the product topology and let C([0, 1]Λ) denote the space of
continuous real functions on [0, 1]Λ, equipped with the supremum norm. By C2

fin([0, 1]Λ)

we denote the space of C2 functions on [0, 1]Λ depending on finitely many coordinates.
By definition, C2

sum([0, 1]Λ) is the space of continuous functions f on [0, 1]Λ such that the

partial derivatives ∂
∂φ(i)f(φ) and ∂2

∂φ(i)∂φ(j)f(φ) exist for each x ∈ (0, 1)Λ and such that
the functions

φ 7→
(

∂
∂φ(i)f(φ)

)
i∈Λ

and φ 7→
(

∂2

∂φ(i)∂φ(j)f(φ)
)
i,j∈Λ

(2.57)

can be extended to continuous functions from [0, 1]Λ into the spaces `1(Λ) and `1(Λ2) of
absolutely summable sequences on Λ and Λ2, respectively, equipped with the `1-norm.
Define an operator G : C2

sum([0, 1]Λ)→ C([0, 1]Λ) by

Gf(φ) :=
∑
ij

q(j, i)(φ(j)− φ(i)) ∂
∂φ(i)f(φ) + s

∑
i

φ(i)(1− φ(i)) ∂
∂φ(i)f(φ)

+r
∑
i

φ(i)(1− φ(i)) ∂2

∂φ(i)2
f(φ)−m

∑
i

φ(i) ∂
∂φ(i)f(φ) (φ ∈ [0, 1]Λ).

(2.58)

One can check that for f ∈ C2
sum([0, 1]Λ), the infinite sums in (2.58) converge in the

supremumnorm and the result does not depend on the summation order [28, Lemma
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3.4.4]. It has been shown in [1, Section 3.4] that solutions to the SDE (1.5) solve the
martingale problem for the operator G. In view of this, we loosely refer to G as the
generator of the (q, r, s,m)-resem-process.

Proof of Proposition 1.1. Since by Proposition 2.1 (resp [1, Lemma 20]), |X0| < ∞
(resp. |X0| < ∞) implies |Xt| < ∞ (resp. |Xt| < ∞) for all t ≥ 0, by Lemma 2.11,
each of the conditions (1.10) (i)–(iii) guarantees that both sides of equation (1.11) are
well-defined.

It suffices to prove (1.11) for deterministic initial states, i.e., we want to prove that
either α < 1, |x| <∞, or |φ| <∞ imply that

Ex
[
(1− (1 + α)φ)Xt

]
= Eφ

[
(1− (1 + α)X †t )x

]
(t ≥ 0), (2.59)

where Ex and Eφ denote expectation w.r.t. the law of the process X started in X0 = x

and the process X started in X0 = φ, respectively. We start by proving (2.59) if |x| <∞.
We wish to apply [1, Thm 7]. Unfortunately, the original formulation of this theorem
contains an error, so we have to use the corrected version in [3, Corollary 2] (see also
[2, Corollary 2]). We apply this to the duality function

Ψ(x, φ) :=
(
1− (1 + α)φ

)x (
x ∈ N (Λ), φ ∈ [0, 1]Λ

)
. (2.60)

Since |Ψ(x, φ)| ≤ 1, we obviously have Ψ( · , φ) ∈ S(N (Λ)) for each φ ∈ [0, 1]Λ. Since
for each x ∈ N (Λ), the function Ψ(x, · ) depends only on finitely many coordinates, we
moreover have Ψ(x, · ) ∈ C2

sum([0, 1]Λ) for each such x. Let G be the generator of the
(q, a, b, c, d)-branco-process and let G† denote the generator of the (q†, r, s,m)-resem-
process. In order to apply [3, Corollary 2], we need to check that

Φ(x, φ) := GΨ( · , φ)(x) = G†Ψ(x, · )(φ)
(
x ∈ N (Λ), φ ∈ [0, 1]Λ

)
(2.61)

and ∫ T

0

ds

∫ T

0

dtE
[∣∣Φ(Xs,Xt)

∣∣] <∞ (T ≥ 0). (2.62)

To check (2.61), we calculate:

GΨ( · , φ)(x)

=
∑
ij

q(i, j)x(i)(1− (1 + α)φ)x−δi((1− (1 + α)φ)δj − (1− (1 + α)φ)δi)

+a
∑
i

x(i)(x(i)− 1)(1− (1 + α)φ)x−2δi(1− (1− (1 + α)φ)2δi)

+b
∑
i

x(i)(1− (1 + α)φ)x−δi
(
(1− (1 + α)φ)2δi − (1− (1 + α)φ)δi

)
+c
∑
i

x(i)(x(i)− 1)(1− (1 + α)φ)x−2δi
(
(1− (1 + α)φ)δi − (1− (1 + α)φ)2δi

)
+d
∑
i

x(i)(1− (1 + α)φ)x−δi(1− (1− (1 + α)φ)δi).

(2.63)

Since
∂

∂φ(i) (1− (1 + α)φ)x =−(1 + α)x(i)(1− (1 + α)φ)x−δi ,

∂2

∂φ(i)2
(1− (1 + α)φ)x = (1 + α)2x(i)(x(i)− 1)(1− (1 + α)φ)x−2δi

(2.64)

and

(1− (1 + α)φ)δi = 1− (1 + α)φ(i),

(1− (1 + α)φ)2δi =
(
1− (1 + α)φ(i)

)2
,

(1− (1 + α)φ)δi − (1− (1 + α)φ)2δi = (1 + α)φ(i)
(
1− (1 + α)φ(i)

)
,

(2.65)
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we can rewrite the expression in (2.63) as

GΨ( · , φ)(x) =
∑
ij

q(i, j)(φ(j)− φ(i)) ∂
∂φ(i) (1− (1 + α)φ)x

+
a

(1 + α)2

(
2(1 + α)φ(i)− (1 + α)2φ(i)2

)
∂2

∂φ(i)2
(1− (1 + α)φ)x

+
b

1 + α
(1 + α)φ(i)

(
1− (1 + α)φ(i)

)
∂

∂φ(i) (1− (1 + α)φ)x

+
c

(1 + α)2
(1 + α)φ(i)

(
1− (1 + α)φ(i)

)
∂2

∂φ(i)2
(1− (1 + α)φ)x

− d

1 + α
(1 + α)φ(i) ∂

∂φ(i) (1− (1 + α)φ)x.

(2.66)

Reordering terms gives

GΨ( · , φ)(x) =
∑
ij

q(i, j)(φ(j)− φ(i)) ∂
∂φ(i) (1− (1 + α)φ)x

+
(2a+ c

1 + α
φ(i)− (a+ c)φ(i)2

)
∂2

∂φ(i)2
(1− (1 + α)φ)x

+
(

(b− d)φ(i)− b(1 + α)φ(i)2
)

∂
∂φ(i) (1− (1 + α)φ)x

=
∑
ij

q†(j, i)(φ(j)− φ(i)) ∂
∂φ(i) (1− (1 + α)φ)x

+(a+ c)φ(i)(1− φ(i)) ∂2

∂φ(i)2
(1− (1 + α)φ)x

+(1 + α)bφ(i)(1− φ(i)) ∂
∂φ(i) (1− (1 + α)φ)x

−(αb+ d)φ(i) ∂
∂φ(i) (1− (1 + α)φ)x = G†Ψ(x, · )(φ),

(2.67)

where we have used (1.8), which implies in particular that

2a+ c

1 + α
=

2a+ c

1 + a/(a+ c)
=

(2a+ c)(a+ c)

(a+ c) + a
= a+ c. (2.68)

It is easy to see from (2.63) that there exists a constant K such that

|Φ(x, φ)| ≤ K
(
1 + |x|2

) (
φ ∈ [0, 1]Λ, x ∈ N (Λ)

)
, (2.69)

hence (2.62) follows from Proposition 2.1. This completes the proof of (2.59) in case
|x| <∞.

We next claim that (2.59) holds if x ∈ Eγ(Λ) and φ is supported on a finite set. Choose
N (Λ) 3 xn ↑ x and let Xn denote the (q, a, b, c, d)-branco-process started in Xn

0 = xn.
Then Corollary 2.6 implies that the Xn can be coupled such that Xn

t (i)→ Xt(i) a.s. for
each i ∈ Λ. Therefore, taking the limit in (2.59), using the fact that the integrands on
the left- and right-hand sides converge in a bounded pointwise way by Lemma 2.11 (b)
and (c), respectively, our claim follows.

To see that (2.59) holds more generally if α < 1 or |φ| < ∞, we choose finitely
supported φn ↑ φ and let Xn denote the (q, r, s,m)-resem-process started in Xn0 = φn.
Then [1, Lemma 22] implies that the Xn can be coupled such that Xnt (i) ↑ Xt(i) a.s. for
each i ∈ Λ. The statement then follows by letting n→∞ and applying Lemma 2.11 (d).

Fix constants β ∈ R, γ ≥ 0. Let M(Λ) := {φ ∈ [0,∞)
Λ

: |φ| < ∞} be the space of
finite measures on Λ, equipped with the topology of weak convergence, and let Y be
the Markov process inM(Λ) given by the unique pathwise solutions to the SDE

dYt(i) =
∑
j

a(j, i)(Yt(j)− Yt(i)) dt+ βYt(i) dt+
√

2γYt(i) dBt(i) (2.70)
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(t ≥ 0, i ∈ Λ). Then Y is the well-known super random walk with underlying motion a,
growth parameter β and activity γ. One has [7, Section 4.2]

Eφ
[
e−〈Yt, ψ〉] = e−〈φ,Utψ〉 (2.71)

for any φ ∈ M(Λ) and bounded nonnegative ψ : Λ → R, where ut = Utψ solves the
semilinear Cauchy problem

∂
∂tut(i) =

∑
j

a(j, i)(ut(j)− ut(i)) + βut(i)− γut(i)2 (i ∈ Λ, t ≥ 0) (2.72)

with initial condition u0 = ψ. The semigroup (Ut)t≥0 acting on bounded nonnegative
functions ψ on Λ is called the log-Laplace semigroup of Y.

It has been shown in [1, Prop. 23] that the (q, a, b, c, d)-branco-process and the super
random walk with underlying motion q†, growth parameter b − d + c and activity c are
related by a ‘subduality’, i.e., a duality formula with a nonnegative error term. The next
proposition generalizes this to branco-processes with positive annihilation rate.

Proposition 2.12. (Subduality with a branching process) Let X be the (q, a, b, c, d)-
branco-process and let Y be the super random walk with underlying motion q†, growth
parameter 2a+ b− d+ c and activity 2a+ c. Then

Ex
[
e−〈φ,Xt〉] ≥ Eφ

[
e−〈Yt, x〉] (x ∈ Eγ(Λ), φ ∈ [0,∞)

Λ
, |φ| <∞). (2.73)

Proof. We first prove the statement if |x| < ∞ and |φ| < ∞. This goes exactly in the
same way as in the proof of [1, Prop. 23]. Let H denote the generator of Y, defined
in [1, formula (4.14)], let G be the generator in (1.2), and let Ψ be the duality function
Ψ(x, φ) := e−〈φ,x〉. Then one has

GΨ(·, φ)(x)−HΨ(x, ·)(φ) =
{∑

ij

q(i, j)x(i)
(
eφ(i)−φ(j) − 1− (φ(i)− φ(j))

)
+a
∑
i

x(i)(x(i)− 1)
(
e2φ(i) − 1− 2φ(i)

)
+ b

∑
i

x(i)
(
e−φ(i) − 1 + φ(i)

)
+c
∑
i

x(i)(x(i)− 1)
(
eφ(i) − 1− φ(i)

)
+ d

∑
i

x(i)
(
eφ(i) − 1− φ(i)

)}
e−〈φ, x〉 ≥ 0.

(2.74)
This is just [1, formula (4.19)], where the extra terms with the prefactor a obtain their
e2φ(i) − 1 part from the generator G and the remaining −2φ(i) from H. Using Proposi-
tion 2.1 to guarantee integrability we may apply [3, Corollary 2] to deduce (2.73).

To generalize (2.73) to x ∈ Eγ(Λ) and φ ∈ [0,∞)
Λ supported on a finite set, we choose

N (Λ) 3 xn ↑ x and let Xn denote the (q, a, b, c, d)-branco-process started in Xn
0 = xn.

Then Corollary 2.6 implies that the Xn can be coupled such that Xn
t (i) → Xt(i) a.s.

for each i ∈ Λ. It follows that e−〈φ,X
n
t 〉 → e−〈φ,Xt〉 a.s. and e−〈Yt,xn〉 ↓ e−〈Yt,xn〉 a.s., so

taking the limit in (2.73) we obtain the statement for x ∈ Eγ(Λ) and φ finitely supported.
To generalize this to |φ| < ∞ we choose φn ↑ φ and let Yn denote the super random
walk started in Yn0 = φn. Then it is well-known (and can be proved in the same way as
[1, Lemma 22]) that the Yn can be coupled in such a way that Ynt ↑ Yt for each t ≥ 0.
Therefore, taking the monotone limit in (2.73) our claim follows.

2.6 The process started at infinity

In view of what follows, we recall the following projective limit theorem. Let E and
(Ei)i∈N be Polish spaces. Assume that πi : E → Ei are continuous surjective maps that
separate points, i.e., for all x, y ∈ E with x 6= y, there exists an i ∈ N with πi(x) 6= πi(y).
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For each i ≤ j, let πij : Ej → Ei be continuous maps satisfying πij ◦ πj = πi. Assume
moreover that for each sequence (xi)i∈N with xi ∈ Ei (i ∈ N) that is consistent in the
sense that πij(xj) = xi (i ≤ j), there exists an y ∈ E such that πi(y) = xi (i ∈ N). Let
(µi)i∈N be probability measures on the Ei’s, respectively (equipped with their Borel-σ-
fields), that are consistent in the sense that µi = µj ◦ π−1

ij for all i ≤ j. Then there exists

a unique probability measure µ on E such that µ ◦ π−1
i = µi for all i ∈ N.

This may be proved by invoking Kolmogorov’s extension theorem to construct a
probability measure µ′ on the product space

∏
iEi whose marginals are the µi and

that is moreover concentrated on the set E′ ⊂
∏
iEi consisting of all (xi)i∈N satisfying

πij(xj) = xi for all i ≤ j. Now ~π(y) := (πi(y))i∈N defines a bijection ~π : E → E′, so
there exists a unique measure µ on the σ-algebra generated by the (πi(x))i∈N whose
image under ~π equals µ′. By [21, Lemma II.18], this σ-algebra coincides with the Borel-
σ-algebra on E.

Proof of Theorem 1.4. In the case without annihilation, parts (a)–(e) were proved in
[1, Thm 2]. The proof there made essential use of monotonicity, which is not available
in case a > 0. Instead of trying to adapt these arguments, replacing monotone con-
vergence by some other form of convergence wherever necessary, we will make use of
Corollary 1.3, which will simplify our life considerably.

In view of this, set α := a/(a + c) and let X
(∞)

be the (q, 0, (1 + α)b, a + c, αb + d)-
branco-process started at infinity, as defined in [1, Thm 2]. Fix ε > 0 and let (Xε

t )t≥ε

be a (q, a, b, c, d)-branco-process started at time ε in Xε
ε = Thin 1

1+α
(X

(∞)

ε ). It has been

proved in [1, Thm 2] that X
(∞)

t ∈ Eγ(Λ) for all t ≥ 0 a.s., hence Thin 1
1+α

(X
(∞)

ε ) ∈ Eγ(Λ)

and (Xε
t )t≥ε is well-defined by Proposition 2.4. By Corollary 1.3,

P[Xε
t ∈ · ] = P

[
Thin 1

1+α
(X

(∞)

t ) ∈ ·
]

(t ≥ ε). (2.75)

In particular, this implies that if we construct two processes Xε, Xε′ for two values
0 < ε < ε′, then these are consistent in the sense that (Xε

t )t≥ε′ is equally distributed with
(Xε′

t )t≥ε′ . By applying the projective limit theorem sketched above, using the spaces
of componentwise cadlag functions from (ε,∞) to NΛ, we may construct a process

(X
(∞)
t )t>0 such that X(∞)

ε is equally distributed with Thin 1
1+α

(X
(∞)

ε ) for all ε > 0 and

(X
(∞)
t )t>0 evolves as a (q, a, b, c, d)-branco-process. Let X † denote the (q, r, s,m)-resem

process with r, s,m as in (1.8). Then X † is dual to both the (q, a, b, c, d)-branco-process
(with parameter α = a/(a+c) in the duality function) and to the (q, 0, (1+α)b, a+c, αb+d)-
branco-process (with duality function Ψ(x, φ) = (1− φ)x). We have

E
[
(1− (1 + α)φ)X

(∞)
t

]
= E

[
(1− (1 + α)φ)

Thin 1
1+α

(X
(∞)

t )]
= E

[
(1− φ)X

(∞)

t
]

= Pφ
[
X †t = 0] (t ≥ 0, φ ∈ [0, 1]Λ, |φ| <∞),

(2.76)

where the last equality follows from [1, formula (5.5)] and we assume |φ| < ∞ to make
sure the infinite products are well-defined. It has been shown in [1, Thm 2 (d)] that the

law of X
(∞)

t converges as t → ∞ to an invariant law of the (q, 0, (1 + α)b, a + c, αb + d)-

branco-process. By thinning, it follows that the law of X(∞)
t converges as t → ∞ to an

invariant law ν of the (q, a, b, c, d)-branco-process. Taking the limit t → ∞ in (2.76) we
arrive at (1.22). Setting

r := (1 + α)b+ (a+ c)− (αb+ d) = a+ b+ c− d, (2.77)
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we obtain from [1, Thm 2 (b)] and the fact that X(∞) is a 1/(1 + α)-thinning of X
(∞)

,
that

E[X
(∞)
t (i)] ≤

{
1

1+α
r

(a+c)(1−e−rt) if r 6= 0,

1
1+α

1
(a+c)t if r = 0

(i ∈ Λ), (2.78)

which by the fact that 1/(1+α) = (a+c)/(2a+c) yields (1.18). Formula (1.23) is a simple

consequence of the way we have defined X(∞) as a thinning of X
(∞)

. This completes
the proof of parts (a), (b), and (d)–(f) of the theorem.

To prove also part (c), by formula (2.76) and duality, it suffices to show that for each
t > 0

E
[(

1−(1+α)φ
)X(n)

t
]

= Eφ
[(

1−(1+α)X †t
)x(n)]

−→
n→∞

P
[
X †t = 0] (φ ∈ [0, 1]Λ, |φ| <∞).

(2.79)
By Lemma 2.16 (i) below, X †t (i) < 1 a.s. for all i ∈ Λ, hence a.s. on the event X †t 6= 0

there exists some i ∈ Λ such that 0 < X †t (i) < 1. It follows that |1 − (1 + α)X †t |x
(n) → 0

as n → ∞ a.s. on the event that X †t 6= 0, hence (2.79) follows from bounded pointwise
convergence.

Remark Let X(n) be as in Theorem 1.4 (c). Then, using Proposition 2.12, copying the
proof of [1, Thm 2 (b)], we obtain the uniform estimate

E[X
(∞)
t (i)] ≤


r′

(2a+ c)(1− e−r′t)
if r′ 6= 0,

1

(2a+ c)t
if r′ = 0

(i ∈ Λ), (2.80)

where r′ := 2a + b + c − d. It is easy to see that this estimate is always worse than the
estimate (1.18) that we obtained with the help of thinning (Corollary 1.3).

2.7 Particles everywhere

The aim of this section is to prove Lemma 2.15 below, which, roughly speaking,
says that if we start a (q, a, b, c, d)-branco-process in a nontrivial spatially homogeneous
initial law, then for each t > 0, if we look at sufficiently many sites, then we are sure
to find a particle somewhere. For zero annihilation rate, this has been proved in [1,
Lemma 6]. Results of this type are well-known, see e.g. the proof of [18, Thm III.5.18].
It seems the main idea of the proof, and in particular the use of Hölder’s inequality in
(2.88) below or in [18, (III.5.30)] goes back to Harris [15]. Another essential ingredient
of the proof is some form of almost independence for events that are sufficiently far
apart. For systems where the number of particle per site is bounded from above, such
asymptotic independence follows from [18, Thm I.4.6], but for branco-processes, the
uniform estimate given there is not available. In [1], we solved this problem by using
monotonicity, which is also not available in the presence of annihilation. Instead, we
will base our proof on the covariance estimate from Proposition 2.9 above.

Lemma 2.13. (Particles at the origin) Let G be a transitive subgroup of Aut(Λ) and
let µ be a G-homogeneous probability measure on Eγ(Λ). Assume that b > 0. Then, for
a.e. x w.r.t. µ, the (q, a, b, c, d)-branco-process started in X0 = x satisfies

Px[Xt(0) > 0] > 0 (t > 0). (2.81)

Proof. Although the statement is intuitively obvious, some work is needed to make this
rigorous. If a = 0, then by monotonicity (see Lemma 2.2, which extends to infinite

EJP 17 (2012), paper 80.
Page 22/32

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v17-2003
http://ejp.ejpecp.org/


Systems of branching, annihilating, and coalescing particles

initial states by Corollary 2.6), it suffices to prove that for a.e. x w.r.t. µ, there exists
some i ∈ Λ with x(i) > 0 such that there is a positive probability that a random walk with
jump rates q, started in i, is at time t in the origin. Since we are only assuming a weak
form of irreducibility (see (1.1) (ii)), this is not entirely obvious, but it is nevertheless
true as has been proved in [1, Lemma 31].

If a > 0, then, to avoid problems stemming from the non-monotonicity of X, we use
duality. Let α, r, s,m be as in (1.8) and observe that m > 0 by our assumptions that
a, b > 0. Define δ0 ∈ [0, 1]Λ by δ0(i) := 1{i=0}. Then, by duality (Proposition 1.1), letting
X denote the (q†, r, s,m)-resem-process started in X0 = δ0, we have

Ex
[
(1− (1 + α))Xt(0)] = Eδ0

[
(1− (1 + α)X †t )x

]
, (2.82)

and our claim will follow once we show that for all t > 0, this quantity is strictly less
than one for a.e. x w.r.t. µ. Thus, it suffices to show that Pδ0 [0 < Xt(i) < 1] > 0 for some
i ∈ Λ such that x(i) > 0. By the fact that m > 0 and Lemma 2.16 (i) below, this can be
relaxed to showing that Pδ0 [Xt(i) > 0] > 0 for some i ∈ Λ such that x(i) > 0. Letting
X̃ denote the (q, 0, s, r,m)-branco-process, using duality again (this time with α = 0), it
suffices to show that

1 > Eδ0
[
(1−X †t )x

]
= Ex

[
0 X̃t(0)] = Px

[
X̃t(0) = 0

]
. (2.83)

Thus, the statement for systems with annihilation rate a > 0 follows from the statement
for systems with a = 0.

Lemma 2.14. (Finiteness of moments) LetX be a (q, a, b, c, d)-branco-process started
in an arbitrary initial law on Eγ(Λ). Assume that (Λ, q) is homogeneous and that a+c > 0.
Then

E[Xt(i)
m] <∞ (m ≥ 1, i ∈ Λ, t > 0). (2.84)

Proof. By Lemma 2.2 and Corollary 2.6, for each t > 0 we can couple a (q, a, b, c, d)-
branco-process X started in an arbitrary initial law on Eγ(Λ) to the (q, 0, b, a + c, d)-
branco-process X ′ started in the same initial law, in such a way that Xt ≤ X ′t a.s. In
view of this, it suffices to prove the statement for the system X ′ with zero annihilation
rate and annihilation rate c′ := a+c. LetX

′(n) be the (q, 0, b, c′, d)-branco-process started
in X

′(n)(i) = X ′0(i) ∨ n (i ∈ Λ). Then, by [1, Theorem 2 (c)], for each t > 0 the process

X
′(n)
t can be coupled to the process started at infinity, denoted by X(∞), in such a way

that X
′(n)
t ↑ X(∞)

t a.s. In view of this, it suffices to prove that for the process without
annihiation started at infinity

E[X
(∞)
t (i)m] <∞ (m ≥ 1, i ∈ Λ, t > 0). (2.85)

Let X(n) denote the (q, 0, b, c′, d)-branco-process started in the constant initial state

X
(n)
0 (i) = n (i ∈ Λ). Again by [1, Theorem 2 (c)], it suffices to find upper bounds

on E[X
(n)
t (i)m] that are uniform in n. Such upper bounds have been derived in [8,

Lemma (2.13)] for branching-coalescing particle systems on Zd with more general
branching mechanisms than considered in the present paper. In particular, their re-
sult includes (q, 0, b, c′, d)-branco-processes on Zd with c′ > 0. Their arguments are not
restricted to Zd and apply more generally to underlying lattices Λ and jump kernels q
as considered in the present paper, as long as (Λ, q) is homogeneous.
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Remark It seems likely that the assumption in Lemma 2.14 that (Λ, q) is homogeneous
is not needed. The proof of [8, Lemma (2.13)], which we apply here, uses translation
invariance in an essential way, however. Since we do not need Lemma 2.14 in the inho-
mogeneous case, we will be satisfied with the present statement. It does not seem easy
to adapt the proof of formula (1.18) (which holds without a homogeneity assumption) to
obtain estimates for higher moments.

Lemma 2.15. (Systems with particles everywhere) Assume that (Λ, q) is infinite and
homogeneous, G is a transitive subgroup of Aut(Λ, q), and a + c > 0, b > 0. Let X be a
(q, a, b, c, d)-branco-process started in a G-homogeneous nontrivial initial law on Eγ(Λ).
Then, for any t > 0,

lim
n→∞

P[Thinφn(Xt) = 0] = 0 (2.86)

for all φn ∈ [0, 1]Λ satisfying |φn| → ∞.

Proof. By Lemma 2.14, restarting the process at some small positive time if necessary,
we can without loss of generality assume that E[X0(0)2] < ∞. Set πn := φn/|φn| and
let Px denote the law of the process started in a deterministic initial state x. Then, for
each r < ∞ and t > 0, we can choose n sufficiently large such that r ≤ |φn|. Then a
rπn-thinning is stochastically less than a φn-thinning and therefore

Px[Thinφn(Xt) = 0] ≤ Px[Thinrπn(Xt) = 0]

= Ex
[∏

i

(1− rπn(i))Xt(i)
]
≤ Ex

[∏
i

e−r
∑
i πn(i)Xt(i)

]
=:

∏
i∈An

Ex
[
e−rπn(i)Xt(i)

]
+Rn(x) ≤

∏
i∈An

Ex
[
e−Xt(i)

]rπn(i)
+Rn(x),

(2.87)

where in the last step we have applied Jensen’s inequality to the concave function z 7→
zrπn(i). For the process started in a nontrivial homogeneous initial law, we obtain, using
Hölder’s inequality, for all n sufficiently large such that r ≤ |φn|,

P[Thinφn(Xt) = 0] =

∫
P[X0 ∈ dx]Px[Thinφn(Xt) = 0]

≤
∫
P[X0 ∈ dx]

[ ∏
i∈An

Ex
[
e−Xt(i)

]rπn(i)
+Rn(x)

]
≤
∏
i∈An

(∫
P[X0 ∈ dx]Ex

[
e−Xt(i)

]r)πn(i)

+ E[Rn(X0)]

=
∏
i∈An

(∫
P[X0 ∈ dx]Ex

[
e−Xt(0)]r)πn(i)

+ E[Rn(X0)]

=

∫
P[X0 ∈ dx]Ex

[
e−Xt(0)]r + E[Rn(X0)],

(2.88)

where we have used spatial homogeneity in the last step but one.

By Corollary 2.10, the quantity Rn(x) defined in (2.87) can be estimated as

|Rn(x)| ≤ 1
2r

2
∑
k,l
k 6=l

(∑
i

x(i)Kt(i; k, l) +
∑
i,j

x(i)x(j)Lt(i, j; k, l)
)
πn(k)πn(l). (2.89)
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It follows that

E
[∣∣Rn(X0(0))

∣∣]
≤ 1

2r
2
∑
k,l
k 6=l

(∑
i

E[X0(i)]Kt(i; k, l) +
∑
i,j

E[X0(i)X0(j)]Lt(i, j; k, l)
)
πn(k)πn(l)

≤ 1
2r

2
∑
k,l
k 6=l

(
E[X0(0)]

∑
i

Kt(i; k, l) + E[X0(0)2]
∑
i,j

Lt(i, j; k, l)
)
πn(k)πn(l)

=: r2
∑
k,l

C(k, l)πn(k)πn(l),

(2.90)
where by definition C(k, k) := 0 and we have used that by Cauchy-Schwartz and trans-
lation invariance:∣∣E[X0(i)X0(j)]

∣∣ ≤ E[X0(i)2]1/2E[X0(j)2]1/2 = E[X0(0)2]. (2.91)

We claim that ∑
k,l

C(k, l)πn(k)πn(l) −→
n→∞

0. (2.92)

To see this, we observe that by (2.34), (2.35) and our assumption that E[X0(0)2] <∞,

C(gk, gl) = C(k, l) (g ∈ G) and
∑
k

C(k, 0) <∞. (2.93)

Since G is transitive, for each l ∈ Λ we can choose some gl ∈ G such that gll = 0. In
view of this, (2.93) shows in particular that for each ε > 0, the quantity∣∣{k ∈ Λ : C(k, l) ≥ ε}

∣∣ =
∣∣{glk ∈ Λ : C(glk, 0) ≥ ε}

∣∣ =
∣∣{j ∈ Λ : C(j, 0) ≥ ε}

∣∣ =: Kε

(2.94)
does not depend on l ∈ Λ and is finite. It follows that∑

l

πn(l)
∑
k

C(k, l)πn(k) ≤
∑
l

πn(l)
( ∑
k:C(k,l)≥ε

πn(k) +
∑

k:C(k,l)<ε

πn(k)
)
≤ Kε/|φn|+ ε.

(2.95)
Since |φn| → ∞ and ε > 0 is arbitrary, this proves (2.92). By (2.88) and (2.90), we
conclude that for each r <∞,

lim sup
n→∞

P[Thinφn(Xt) = 0] ≤
∫
P[X0 ∈ dx]Ex

[
e−Xt(0)]r. (2.96)

Letting r →∞, using b > 0 and Lemma 2.13, we arrive at (2.86).

2.8 Long-time limit law

In this section, we prove Theorem 1.5. We first need some preparatory results.

Lemma 2.16. (Not exactly one) Let X be a (q, r, s,m)-resem process started in a finite
initial state φ ∈ [0, 1]Λ, |φ| <∞. Assume that (Λ, q) is infinite and homogeneous and that
m > 0. Then

(i) Pφ[Xt(i) = 1] = 0 for each t > 0, i ∈ Λ.

(ii) Pφ[0 < |Xt ∧ (1−Xt)| < K]→ 0 as t→∞ for all K <∞.
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Proof. Let X+ and X− satisfy X+
0 = X−0 = X0 = φ and be given, for times t > 0, by the

solutions to the stochastic differential equations

dX+
t (i) =

(
|q|+ s

)
(1−X+

t (i))dt−mX+
t (i)dt+

√
2rX+

t (i)(1−X+
t (i))dBt(i)

dX−t (i) =−
(
|q|+m

)
X−t (i)dt+

√
2rX−t (i)(1−X−t (i))dBt(i) (t ≥ 0, i ∈ Λ),

(2.97)

where |q| :=
∑
j q(i, j), which does not depend on j ∈ Λ by the transitivity of Aut(Λ, q),

and (B(i))i∈Λ is the same collection of independent Brownian motions as those driving
X . By the arguments used in the proof of [1, Lemma 18], solutions of (2.97) are pathwise
unique and satisfy

X−t ≤ Xt ≤ X+
t (t ≥ 0) a.s. (2.98)

Moreover, since formula (2.97) contains no interaction terms, the [0, 1]2-valued pro-
cesses (X−t (i),X+

t (i))t≥0 are independent for different values of i ∈ Λ. Since X+(i)

is a one-dimensional diffusion with (by grace of the fact that m > 0) the drift on the
boundary point 1 pointing inwards, it can be proved by standard methods that

P[X+
t (i) = 1] = 0 (t > 0, i ∈ Λ). (2.99)

We defer a precise proof of this fact to Lemma A.1 in the appendix. Together with (2.98),
formula (2.99) proves part (i) of the lemma.

To prove also part (ii), we observe that

E[X−t (i)] = e−(|q|+m)tφ(i) (t > 0, i ∈ Λ). (2.100)

With a bit of work, it is possible to show that there exists a t0 > 0 and function (0, t0] 3
t 7→ ct > 0 such that

E
[
X−t (i) ∧ (1−X+

t (i))
]
≥ ctφ(i) (0 < t ≤ t0). (2.101)

A precise proof of this fact can be found in Lemma A.4 of the appendix. We note that for
any [0, 1]-valued random variable Z, one has Var(Z) = E[(Z − E[Z])2] ≤ E[|Z − E[Z]|] ≤
E[Z + E[Z]] = 2E[Z]. Applying this to Z = X−t (i) ∧ (1 − X+

t (i)), using (2.100), we see
that

Var
(
X−t (i) ∧ (1−X+

t (i))
)
≤ 2e−(|q|+m)tφ(i) (t > 0, i ∈ Λ). (2.102)

Now (2.101) implies E[|X−t ∧ (1− X+
t )|] ≥ ct|φ|, while by (2.102) and the independence

of coordinates i ∈ Λ,

Var
(
|X−t ∧ (1−X+

t )|
)
≤ 2e−(|q|+m)t|φ| (0 < t ≤ t0). (2.103)

Since Xt(i) ∧ (1−Xt(i)) ≥ X−t (i) ∧ (1−X+
t (i)), by Chebyshev, it follows that

Pφ
[
|Xt ∧ (1−Xt)| ≤ 1

2ct|φ|
]
≤ 2e−(|q|+m)t|φ|

1
4c

2
t |φ|2

(0 < t ≤ t0), (2.104)

which tends to zero for |φ| → ∞. By [1, Lemma 5],

Pφ
[
0 < |Xt| < K

]
−→
t→∞

0 (K <∞). (2.105)

It follows that we can choose Lt →∞ slow enough such that

Pφ
[
0 < |Xt| < Lt

]
−→
t→∞

0. (2.106)
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By (2.104), we conclude that

lim sup
t→∞

Pφ
[
0 < |Xt ∧ (1−Xt)| < K

]
≤ lim sup

t→∞
Pφ
[
0 < |Xt ∧ (1−Xt)| < K

∣∣ 0 < |Xt−t0 | < Lt−t0
]
Pφ
[
0 < |Xt−t0 | < Lt−t0

]
+ lim sup

t→∞
Pφ
[
0 < |Xt ∧ (1−Xt)| < K

∣∣ |Xt−t0 | ≥ Lt−t0]Pφ[|Xt−t0 | ≥ Lt−t0]
≤ lim sup

t→∞
Pφ
[
|Xt ∧ (1−Xt)| ≤ 1

2ct0Lt−t0
∣∣ |Xt−t0 | ≥ Lt−t0]

≤ lim sup
t→∞

2e−(|q|+m)tLt−t0
1
4c

2
t0L

2
t−t0

= 0.

(2.107)

Remark It seems likely that the condition m > 0 in Lemma 2.16 is not necessary,
at least for part (i). Indeed, it seems likely that (q, r, s,m)-resem-processes have the
‘noncompact support property’

P
[
Xt(i) > 0, Xt(j) = 0

]
= 0

(
t > 0, i, j ∈ Λ, q(i, j) > 0

)
, (2.108)

similar to what is known for super random walks [12]. Since proving (2.108) is quite
involved and we don’t know a reference, we will be satisfied with proving Lemma 2.16
only for m > 0, which is sufficient for our purposes.

Lemma 2.17. (Systems with particles everywhere) Assume that (Λ, q) is infinite and
homogeneous and that G is a transitive subgroup of Aut(Λ, q) and a + c > 0, b > 0. Let
X be the (q, a, b, c, d)-branco process started in a G-homogeneous nontrivial initial law
L(X0). Then, for any t > 0 and 0 ≤ α ≤ 1 and for any ε > 0, there exists a K < ∞ such
that

|φ| <∞ and |φ ∧ (1− φ)| ≥ K implies E
[
|1− (1 + α)φ|Xt

]
≤ ε. (2.109)

Proof. We start by proving that if φn ∈ [0, 1]Λ satisfy |φn| <∞ and |φn ∧ (1− φn)| → ∞,
then

lim
n→∞

E
[
|1− (1 + α)φn|Xt

]
= 0. (2.110)

Set ψn := φn ∧ (1 − φn). Then, for each i ∈ Λ, we have and ψn(i) ≤ 1 − φn(i) ≤
2− (1 + α)φn(i) and ψn(i) ≤ φn(i) ≤ (1 + α)φn(i), from which we see that

ψn(i)− 1 ≤ 1− (1 + α)φn(i) ≤ 1− ψn(i), (2.111)

or, in other words, |1− (1 + α)φn(i)| ≤ 1− ψn. It follows that∣∣E[1−(1+α)φXtn
]∣∣ ≤ E[|1−(1+α)φn|Xt

]
≤ E

[
(1−ψn)Xt

]
= P

[
Thinψn(Xt) = 0

]
, (2.112)

which tends to zero by Lemma 2.15 and our assumption that |ψn| → ∞.
Now imagine that the lemma does not hold. Then there exists some ε > 0 such

that for all n ≥ 1 we can choose φn with |φn| < ∞ and |φn ∧ (1 − φn)| ≥ n such that
E
[
|1 − (1 + α)φn|Xt

]
> ε. Since this contradicts (2.110), we conclude that the lemma

must hold.

Proof of Theorem 1.5. For a = 0 the statement has been proved in [1, Thm 4 (a)], so
without loss of generality we may assume that a > 0. By Theorem 1.4 (e), it suffices to
show that

E
[(

1− (1 +α)φ
)Xt

]
−→
t→∞

Pφ
[
∃t ≥ 0 such that X †t = 0

]
(φ ∈ [0, 1]Λ, |φ| <∞), (2.113)
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where α := a/(a+c) and X † denotes the (q†, a+c, (1+α)b, αb+d))-resem-process started
in φ. By duality (Proposition 1.1), for each t ≥ 1,

E
[(

1− (1 + α)φ
)Xt

]
= E

[(
1− (1 + α)X †t−1

)X1
]
, (2.114)

where X † is independent of X and started in X †0 = φ. For each K <∞, we may write

E
[(

1− (1 + α)X †t−1

)X1
]

= P[X †t−1 = 0]

+E
[(

1− (1 + α)X †t−1

)X1
∣∣ 0 < |X †t−1 ∧ (1−X †t−1)| < K

]
P
[
0 < |X †t−1 ∧ (1−X †t−1)| < K

]
+E
[(

1− (1 + α)X †t−1

)X1
∣∣K ≤ |X †t−1 ∧ (1−X †t−1)|

]
P
[
K ≤ |X †t−1 ∧ (1−X †t−1)|

]
.

(2.115)
Here the first term converges, as t → ∞, to Pφ

[
∃t ≥ 0 such that X †t = 0

]
. Note that

α > 0 by our assumption that a > 0. Assume for the moment that also b > 0. Then
Lemma 2.16 (ii) tells us that the second term on the right-hand side of (2.115) tends
to zero. By Lemma 2.17, for each ε > 0 we can choose K large enough such that the
third term is bounded in absolute value by ε. Putting these things together, we arrive
at (2.113).

If b = 0, then Lemma 2.16 (ii) is not available, but in this case |X †t | is a supermartin-
gale, hence [1, Lemma 5] tells us that Pφ

[
∃t ≥ 0 such that X †t = 0

]
= 1, and the proof

proceeds as above.

A Some facts about coupled Wright-Fisher diffusions

The aim of this appendix is to prove two simple facts about (coupled) Wright-Fisher
diffusions. In particular, applying Lemmas A.1 and A.4 to X = X+(i), Y = X−(i),
a = |q|+ s, b = m and c = |q|+m yields formulas (2.99) and (2.101), respectively.

For a, b ≥ 0 and r > 0, let X denote the pathwise unique (by [32]) [0, 1]-valued
solution to the stochastic differential equation

dXt = a(1−Xt)dt− bXtdt+
√

2rX(1−X)dBt, (A.1)

where B is standard Brownian motion.

Lemma A.1. (No mass on boundary) If b > 0, then

P[Xt = 1] = 0 (t > 0), (A.2)

regardless of the initial law.

Proof. If a, b > 0, then it is well known that X has a transition density (see Propositions
3 and 4 in [20] along with the discussion on page 1183 or [14, 13]). Consequently
P[Xt = 1] = 0 and hence the result follows. If a = 0 but b > 0, then by standard
comparision results (see [4, Thm. 6.2] or [1, Lemma 18]), if Z0 = X0 and Z solves the
SDE (A.1) with a = b/2 and b replaced by b/2, relative to the same Brownian motion,
then Xt ≤ Zt and hence P[Xt = 1] ≤ P[Zt = 1] = 0 for all t > 0.

Lemma A.2. (Moment dual) Let K = (Kt)t≥0 be a Markov process with state space
N ∪ {∞}, where∞ is a trap, and K jumps from states k ∈ N as

k 7→ k − 1 with rate ak + rk(k − 1),

k 7→ ∞ with rate bk.
(A.3)

Then
Ex[Xk

t ] = Ek[xKt ] (t ≥ 0, x ∈ [0, 1], k ∈ N), (A.4)

where x0 := 1 and x∞ := 0 for all x ∈ [0, 1].
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Proof. Let

Gf(x) :=
[
a(1− x) ∂

∂x − bx
∂
∂x + rx(1− x) ∂2

∂x2

]
f(x),

Gf(k) :=
[
ak + rk(k − 1)

]{
f(k − 1)− f(k)}+ bk

{
f(∞)− f(k)

} (A.5)

be the generators of the processes X and K, respectively, and let ψ(x, k) := xk be the
duality function. Then

Gψ( · , k)(x) = ak(xk−1 − xk)− bkxk + rk(k − 1)(xk−1 − xk) = Gψ(x, , · )(k), (A.6)

where the term with k(k−1) is zero for k = 1 and both sides of the equation are zero for
k = 0. The claim now follows from [1, Thm 7] and [3] and the fact that the expression
in (A.6) is bounded uniformly in x and k, which guarantees the required integrability.

Although this is not needed for the proof, this duality may be understood as follows.
We can view Xt as the frequency of type-one organisms in a large population where
pairs of organisms are resampled with rate 2r and organisms mutate to type 1 and 0,
respectively, with rates a and b. Then E[Xk

t ] is the probability that k organisms, sampled
from the population at time t, are all of type one. We can view Kt as the ancestors of
these organism at time zero, where we neglect organisms that due to mutation are sure
to be of type one while on the other hand the state Kt = ∞ signifies that due to a
mutatation event, at least one of these ancestors is of type zero.

Now letX be as in (A.1), let c ≥ 0, and let Y be given by the pathwise unique solution
to the stochastic differential equation

dYt = −cYtdt+
√

2rY (1− Y )dBt, (A.7)

driven by the same Brownian motion as X.

Lemma A.3. (Feller property) Let (X,Y ) be given by the pathwise unique solutions
of (A.1) and (A.7), and let Kt((x, y), · ) := P(x,y)[(Xt, Yt) ∈ · ] denote the transition proba-
bilities of (X,Y ). Then the map (t, x, y) 7→ Kt((x, y), · ) from [0,∞)× [0, 1] into the proba-
bility measures on [0, 1]2 is continuous w.r.t. weak convergence of probability measures.

Proof. It follows from well-known results [11, Corollary 5.3.4 and Theorem 5.3.6] that
pathwise uniqueness for a stochastic differential equation implies uniqueness of solu-
tions to the martingale problem for the associated differential operator, which is in our
case given by

A := a(1− x) ∂
∂x − bx

∂
∂x + rx(1− x) ∂2

∂x2 − cy ∂
∂y + ry(1− y) ∂

2

∂y2
+ 2r

√
x(1− x)y(1− y) ∂2

∂x∂y ,

(A.8)
with domain C2[0, 1]2. Now if (Xn, Y n) are solutions to this martingale problem with de-
terministic initial states (Xn

0 , Y
n
0 ) = (xn, yn) converging to some limit (x, y) ∈ [0, 1]2, and

(X,Y ) denotes the process started in (x, y), then [11, Lemma 4.5.1 and Remark 4.5.2]
imply that

P[(Xn
t , Y

n
t )t≥0 ∈ · ] =⇒

n→∞
P[(Xt, Yt)t≥0 ∈ · ], (A.9)

where⇒ denotes weak convergence of probability laws on the space C[0,1]2 [0,∞) of con-
tinuous functions from [0,∞) into [0, 1]2, equipped with the topology of locally uniform
convergence. In particular, this implies the stated continuity of the transition probabil-
ities.

Lemma A.4. (Linear estimate) Assume that b > 0. Then there exists a t0 > 0 and
function (0, t0] 3 t 7→ λt > 0 such that the process started in (X0, Y0) = (z, z) satisfies

E(z,z)
[
Yt ∧ (1−Xt)

]
≥ λtz (0 < t ≤ t0, 0 ≤ z ≤ 1). (A.10)
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Proof. We estimate

E(z,z)
[
Yt ∧ (1−Xt)

]
≥ E(z,z)

[
Yt(1−Xt)

]
≥ 1

2E
(z,z)

[
Yt1{Xt≤ 1

2}
]

= 1
2

(
Ez[Yt]− Ez[1{Xt> 1

2}
]
)
≥ 1

2E
z[Yt]− 2Ez[X2

t ],
(A.11)

where the last step we have used that 1{x> 1
2}
≤ 4x2. By Lemma A.2,

Ez[Yt] = e−ctz (t ≥ 0, z ∈ [0, 1]), (A.12)

while by the same lemma

Ez[X2
t ] = E2[zKt ] ≤ P2[Kt ≤ 1]z + P2[Kt = 2]z2

= (1− e−2(a+r)t)z + e−2(a+b+r)tz2 ≤ 2(a+ r)tz + z2.
(A.13)

Combining this with (A.11) yields

E(z,z)
[
Yt ∧ (1−Xt)

]
≥
(

1
2e
−ct − 4(a+ r)t− 2z

)
z. (A.14)

Choosing t0 > 0 and z0 > 0 small enough, we find that

E(z,z)
[
Yt ∧ (1−Xt)

]
≥ 1

4z (0 ≤ t ≤ t0, 0 ≤ z ≤ z0). (A.15)

To extend this to all z ∈ [0, 1], at the cost of assuming that t > 0 and replacing the
constant 1/4 by a possibly worse, time-dependent constant λt, we observe that by
Lemma A.3, the function [0, 1] 3 z 7→ E(z,z)

[
Yt ∧ (1 − Xt)

]
is continuous. Since by

Lemma A.1 and (A.12),

E(z,z)
[
Yt ∧ (1−Xt)

]
> 0 (t > 0, z ∈ (0, 1]), (A.16)

using continuity, we may estimate E(z,z)
[
Yt ∧ (1 −Xt)

]
uniformly from below on [z0, 1],

which together with (A.15) yields (A.10).
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