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Abstract

We consider population models in which the individuals reproduce, die and also mi-
grate in space. The population size scales according to some parameter N , which can
have different interpretations depending on the context. Each individual is assigned
a mass of 1/N and the total mass in the system is called population density. The
dynamics has an intrinsic density regulation mechanism that drives the population
density towards an equilibrium. We show that under a timescale separation between
the slow migration mechanism and the fast density regulation mechanism, the popu-
lation dynamics converges to a Fleming-Viot process as the scaling parameter N ap-
proaches ∞. We first prove this result for a basic model in which the birth and death
rates can only depend on the population density. In this case we obtain a neutral
Fleming-Viot process. We then extend this model by including position-dependence
in the birth and death rates, as well as, offspring dispersal and immigration mech-
anisms. We show how these extensions add mutation and selection to the limiting
Fleming-Viot process. All the results are proved in a multi-type setting, where there
are q types of individuals interacting with each other. We illustrate the usefulness
of our convergence result by discussing applications in population genetics and cell
biology.
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1 Introduction

Density-dependent models are well-known in population biology. In these models,
the birth and death rates of individuals may depend on the density of the population,
where the term density refers to the population size under a suitably chosen normaliza-
tion. Many models in ecology, epidemiology and immunology can be suitably described
by such models (see Thieme [35]). Considering the molecules of chemical species as
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The Fleming-Viot limit of an interacting spatial population

the individuals in a population, we can also view a chemical reaction network as a
density-dependent population model.

Density-dependent models are appealing because one can easily account for interac-
tions among individuals by appropriately specifying the birth and death rates as func-
tions of the population density. For competitive interactions, as in the Lotka-Volterra
model (see [28, 38, 30]), the death rate increases with the population density while
for cooperative interactions, as in the Allee model (see [1]), the birth rate increases
with the population density. Density dependent models are good candidates for mod-
eling natural populations that cannot grow indefinitely due to the limited availability
of certain vital resources or due to severe competition at large population sizes. By
having the death rate dominate the birth rate at large densities, one can ensure that
the population density does not go beyond a certain threshold.

For a population having q types of individuals, the population density is a q dimen-
sional vector whose i-th component gives the density of the population of the i-th type.
For such a multi-type population, a density-dependent model can be written in the de-
terministic setting as a system of q ordinary differential equations. If all the trajectories
of this system stay within a compact set at all times, then we say that the population
dynamics has a density regulation mechanism. Such a mechanism is called equilibrat-
ing if all the trajectories reach a fixed point for this system as time goes to infinity. In
such a situation, this fixed point is called the equilibrium population density.

In this paper, we will consider population models in which the individuals live in a
geographical region E, that is a compact metric space. Even though we have a spatial
structure, for us the population density will always denote the population size divided
by a normalization parameter N . In other words, our notion of population density is
global in the sense that it carries no information about the distribution of individuals
in E. This is unlike other models of spatial populations where the population density
is a spatially varying function specifying the local concentration of individuals at each
location. The normalization parameter N will be a large positive integer which can have
various interpretations depending on the context. In ecological models, N can be taken
to be the carrying capacity of a habitat, which is the maximum number of individuals
that the habitat can support with its resources. In epidemic models, N is usually the
total population size, while in chemical reaction networks, N measures the volume of
the system. In each of these cases, the population size at any time is of order N .

For the moment assume that all the individuals have the same type and that they
reproduce, die and also migrate in E. At the time of birth, the offspring gets the same
location as its parent. The population consists of approximately N individuals of a mass
of 1/N each. The population density at any time is just the total mass of the individ-
uals that are alive. Suppose that the birth and death rates of the individuals depend
on the population density in such a way that they induce a density regulation mecha-
nism which is equilibrating. We also assume that the migration mechanism operates
at a timescale that is N times slower than the density regulation mechanism. In such
a setting, we can view the dynamics of the empirical measure of the population as a
measure-valued Markov process parameterized by N . Our goal is to understand how
this family of Markov processes behaves as N → ∞. The population dynamics has two
timescales separated by N . If we observe the process at the fast timescale, then the ef-
fect of migration vanishes in the limit and it is uninteresting to consider the population
with a spatial structure in this case. Therefore we will observe the dynamics at the slow
timescale and examine its behaviour in the infinite population limit. Since the density
regulation mechanism is fast, it will have enough time to re-equilibrate the population
density between any two events at the slow timescale. Hence in the limit N → ∞, we
would expect the population density to remain equilibrated at all times. We will show
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that it is indeed the case. However our main task is to understand the dynamics of the
spatial distribution of the population in the infinite population limit. We will prove that
in the limit, the spatial distribution of the population evolves according to a Fleming-Viot
process which takes values in the space of probability measures over E. This process
was introduced in the context of population genetics by Fleming and Viot [17] in 1979
and it has been very well-studied since then. An excellent survey of Fleming-Viot pro-
cesses is given by Ethier and Kurtz [13]. The model we just described will be called
the basic model. In this model, the birth and death rates of an individual were density
dependent, but independent of the location of the individual. It shall be seen later that
the limiting Fleming-Viot process in this case is neutral, in the parlance of population
genetics. If we add small position-dependent terms to the birth and death rates, then
in the limit we obtain a Fleming-Viot process with genetic selection. Perhaps unsur-
prisingly, altering the birth rate this way leads to fecundity selection, while altering
the death rate leads to viability selection, in the limiting Fleming-Viot process. We also
consider extensions of the basic model by allowing for offspring dispersal (offspring is
born away from the parent) or immigration. Such extensions add extra mutations to
the limiting Fleming-Viot process.

The results mentioned in the previous paragraph are proved in a multi-type setting.
The population has q types of individuals and each type of individual can give birth to
an individual of each type. All the individuals are migrating in E according to a type-
dependent mechanism. Now we can view the joint dynamics of the empirical measures
of the q sub-populations as a Markov process parameterized by N . We make similar as-
sumptions on the dynamics as before. Again in the limit N →∞, the population density
(which is now a q-dimensional vector) stays at an equilibrium at all times. Assuming
the irreducibility of an underlying interaction matrix, we show that in the limit all the
q sub-populations become spatially inseparable. This means that on any patch of E,
either there is no mass present or there is mass of each type present in a proportion
determined by the equilibrium density. Moreover the spatial distribution of each of the
q sub-populations evolves according to a single Fleming-Viot process. This Fleming-Viot
process can be seen as describing the limiting dynamics of a mixed population, formed
by taking a suitable density-dependent convex combination of the q sub-populations.

In ecological models, the individuals need resources to survive and reproduce. Nor-
mally in spatial population models, resources are assumed to have a fixed distribution
in space. As individuals move, they find the unexploited resources and compete for
them locally with other individuals present in their neighbourhood. Such a model is
different from the models we consider in two ways. Firstly, due to the local nature of
the interactions, the density is locally regulated rather than globally regulated as in our
models. Secondly, since the discovery of resources is tied to the movement of individu-
als, it is reasonable to assume that both migration and birth-death mechanisms operate
at the same timescale. For such spatial models, Oelschläger [31] has shown in a multi-
type setting that the dynamics converges in the infinite population limit to a system of
reaction-diffusion partial differential equations. Such equations are in widespread use
in biology (see Fife [16]). We now discuss the conditions under which our models can
be useful. Consider a situation where the resource is not fixed but rapidly mixing in
the whole space. This resource is shared by all the individuals in the population. An
individual may deplete the resource locally but its effect is felt globally due to the rapid
mixing. This gives rise to global density dependence in a spatial population. If the
individuals move very slowly in comparison to their resource consumption mechanism
(which is linked to their birth and death mechanisms), then we have a situation in which
our models can be used.

This paper is motivated by our earlier work [19] in which we study the phenomenon
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of cell polarity using a model considered here. Cell polarity refers to the clustering of
molecules on the cell membrane. This clustering is essential to trigger various other
cellular processes, such as bud formation [4] or immune response [39]. Therefore un-
derstanding how cells establish and maintain polarity is of vital importance. In [2],
Altschuler et. al. devised a mathematical model for this phenomenon, by abstracting
the mechanisms that are commonly found in cells exhibiting polarity. Their model has
a fixed number of molecules that can either reside on the membrane or in the cytosol.
These molecules move slowly on the membrane but diffuse rapidly in the cytosol. The
dynamics has a positive feedback mechanism which allows a membrane molecule to
pull a cytosol molecule to its location on the membrane. This mechanism is like a birth
process in which a membrane molecule gives birth by exploiting the common resource
(cytosol molecules) shared by all the membrane molecules. Since the migration of mem-
brane molecules is slow and the mixing of the resource is fast, this model can be viewed
as a model described in this paper (see Section 3.2 for details). Therefore the results in
this paper are applicable and we obtain a Fleming-Viot process in the infinite population
limit. In [19] we prove this convergence1 and use the limiting process to answer some
interesting questions about the onset and structure of cell polarity. The model studied
in [19] is rather simplistic as all the molecules are assumed to be identical. Most cells
that exhibit polarity have molecules of many different types participating in the feed-
back mechanism and migrating on the membrane in different ways (see [10, 4, 34]). It
is natural to ask if the Fleming-Viot convergence is valid in this general framework. The
results in this paper show that it is indeed the case as long as certain basic elements
of the dynamics are preserved. This ensures that the analysis in [19] can be extended
to more complicated (and realistic !) models for cell polarity. We discuss this example
further in Section 3.2.

Note that the geographical space E can be considered as the space of genetic traits.
This casts our models into the setting of population genetics. The spatial migration can
be seen as mutation that may happen at any time during the life of an individual, while
the offspring dispersal mechanism is like mutation that can only happen at the time of
birth of an offspring. We assume that the reproduction is clonal in the absence of muta-
tion. The position-dependent birth and death mechanism is analogous to the selection
mechanism in population genetics. Hence it is not surprising that spatial migration,
offspring dispersal and position-dependent birth and death mechanisms correspond to
mutation and selection in the limiting Fleming-Viot process. What is more interesting is
that the sampling mechanism arises naturally from our models in the infinite population
limit. This sampling mechanism is a key feature of the standard models in population
genetics, such as the Wright-Fisher model, the Moran model and their variants (see
[40, 29, 14]). This mechanism makes the models tractable by keeping the population
size constant. It is done by matching the birth of an individual with the death of another
individual chosen uniformly from the population. It is obvious that such a mechanism
is quite unrealistic, at least for finite populations which are naturally fluctuating. How-
ever our Fleming-Viot convergence result shows that one can recover this sampling
mechanism in the infinite population limit if the dynamics has an equilibrating density
regulation mechanism that acts at a faster timescale than other events. It is well-known
that a Fleming-Viot process arises in the infinite population limit of an appropriately
scaled version of the Wright-Fisher or the Moran model (see [17] and [13]). Therefore
if all the individuals have the same type (that is, q = 1) and heq is the equilibrium popu-
lation density, then for a large (but finite) value of the scaling parameter N , our models

1This convergence was proved in [19] using the technique of particle representation described in [9]. This
technique cannot be easily extended to the multi-type setting of this paper. Therefore the convergence proof
in this paper is vastly different.

EJP 17 (2012), paper 104.
Page 4/55

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v17-1964
http://ejp.ejpecp.org/


The Fleming-Viot limit of an interacting spatial population

will have roughly the same dynamical behaviour as a suitably chosen Wright-Fisher or
Moran model with the constant population size Nheq. This insight provides a justifi-
cation for the assumption of a constant population size in population genetics models.
Most of the mathematical literature on population genetics is concerned with two types
of questions. In the absence of mutation, one wants to know the probability and the
time of fixation of a particular genetic trait. The term fixation describes the event in
which the whole population has the same genetic trait. In the presence of mutation,
one attempts to investigate the properties of the stationary distribution, if such a distri-
bution is present. These questions are difficult to answer for finite populations and one
typically answers them by studying the limiting Fleming-Viot process. Our discussion
shows that for large N , the fixation times and probabilities or the stationary distribution
will be approximately the same for our model and the corresponding Wright-Fisher or
Moran model. We illustrate this point through an example in Section 3.1.

This paper is organized as follows. In Section 2 we describe the mathematical mod-
els that we consider and state our main results. In Section 3 we discuss the aforemen-
tioned applications of our results in greater detail. Finally in Section 4 we prove the
main results.

Notation

We now introduce some notation that we will use throughout this paper. Let R,
R+, R∗, N and N0 denote the sets of all reals, nonnegative reals, positive reals, positive
integers and nonnegative integers respectively. For any a, b ∈ R, their minimum is given
by a ∧ b.

Let ‖·‖ and 〈·, ·〉 denote the standard Euclidean norm and inner product in Rn for any
n ∈ N. Moreover for any v = (v1, . . . , vn) ∈ Rn, the norms ‖v‖1 and ‖v‖∞ are defined as
‖v‖1 =

∑n
i=1 |vi| and ‖v‖∞ = max1≤i≤n |vi|. The vectors of all zeros and all ones in Rn

are denoted by 0̄n and 1̄n respectively. Let M(n, n) be the space of all n × n matrices
with real entries. For any M ∈M(n, n), the entry at the i-th row and the j-th column is
indicated by Mij . Its infinity norm is defined as ‖M‖∞ = max1≤i≤n

∑n
j=1 |Mij | and its

transpose and inverse are indicated by MT and M−1 respectively. The symbol In refers
to the identity matrix in M(n, n). For any v = (v1, . . . , vn) ∈ Rn, Diag(v) refers to the
matrix in M(n, n) whose non-diagonal entries are all 0 and whose diagonal entries are
v1, . . . , vn. A matrix inM(n, n) is called stable if all its eigenvalues have strictly negative
real parts. While multiplying a matrix with a vector we always regard the vector as a
column vector.

Let U ⊂ Rn and V ⊂ Rm. Then for any k ∈ N0, the class Ck(U, V ) refers to the set of
all those functions f that are defined on some open set O ⊂ Rn containing U such that
f(x) ∈ V for all x ∈ U and f is k-times continuously differentiable at any x ∈ O.

Let (S, d) be a metric space. Then by B(S) (C(S)) we refer to the set of all bounded
(continuous) real-valued Borel measurable functions. If S is compact, then C(S) ⊂ B(S)

and both B(S) and C(S) are Banach spaces under the sup norm ‖f‖∞ = supx∈S |f(x)|.
Recall that a class of functions in B(S) is called an algebra if it is closed under finite
sums and products. Let B(S) be the Borel sigma field on S. By MF (S) and P(S)

we denote the space of all finite positive Borel measures and the space of all Borel
probability measures respectively. These measure spaces are equipped with the weak
topology. For any f ∈ B(S) and µ ∈MF (S) let

〈f, µ〉 =

∫
E

f(x)µ(dx).

The space of cadlag functions (that is, right continuous functions with left limits)
from [0,∞) to S is denoted by DS [0,∞) and it is endowed with the Skorohod topology
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(for details see Chapter 3, Ethier and Kurtz [12]). The space of continuous functions
from [0,∞) to S is denoted by CS [0,∞) and it is endowed with the topology of uniform
convergence over compact sets. An operator A on B(S) is a linear mapping that maps
any function in its domain D(A) ⊂ B(S) to a function in B(S). The notion of the mar-
tingale problem associated to an operator A is introduced and developed in Chapter
4, Ethier and Kurtz [12]. In this paper, by a solution of the martingale problem for A
we mean a measurable stochastic process X with paths in DS [0,∞) such that for any
f ∈ D(A),

f(X(t))−
∫ t

0

Af(X(s))ds

is a martingale with respect to the filtration generated by X. For a given initial dis-
tribution π ∈ P(S), a solution X of the martingale problem for A is a solution of the
martingale problem for (A, π) if π = PX(0)−1. If such a solution X exists uniquely for
all π ∈ P(S), then we say that the martingale problem for A is well-posed. Additionally,
we say that A is the generator of the process X.

Throughout the paper⇒ denotes convergence in distribution.

2 Model descriptions and the main result

Our first task is to describe the models that we consider in the paper. As mentioned
in Section 1, we model a population which resides in some compact metric space E

and in which the individuals have one of q possible types. We denote these types by
elements in the set Q = {1, 2, . . . , q}. We identify each individual located at x ∈ E with
the Dirac measure δx, concentrated at x. Moreover each individual is assigned a mass
of 1/N where N ∈ N is our scaling parameter. For any i ∈ Q, the population of type i
individuals can be represented by an atomic measure of the form

µi =
1

N

ni∑
j=1

δxij ,

where ni is the total number of type i individuals and xi1, . . . , x
i
ni ∈ E are their locations.

Define the space of atomic measures scaled by N as

MN,a(E) =

 1

N

n∑
j=1

δxj : n ∈ N0 and x1, . . . , xn ∈ E

 . (2.1)

Note that MN,a(E) ⊂ MF (E), where MF (E) is the space of finite positive measures.
Let Mq

N,a(E) and Mq
F (E) be the spaces formed by taking products of q copies of

MN,a(E) and MF (E) respectively. Since for each i ∈ Q, the type i population can
be represented by a measure µi ∈ MN,a(E) , the entire population can be represented
by a q-tuple of measures µ = (µ1, . . . , µq) ∈Mq

N,a(E).
Let 1E denote the constant function in C(E) which maps each point in E to 1. Define

the density map H :Mq
F (E)→ R

q
+ as the continuous function given by

H(µ1, . . . , µq) = (〈1E , µ1〉, . . . , 〈1E , µq〉) for any µ = (µ1, . . . , µq) ∈Mq
F (E). (2.2)

We will refer to h = H(µ) as the density vector corresponding to µ ∈Mq
F (E). Note that

if the population is represented by a µ ∈ Mq
N,a(E) and if h = (h1, . . . , hq) is the corre-

sponding density vector, then hi is just the total number of type i individuals divided by
N . The density vector h contains no information about the distribution of individuals on
E.
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2.1 The type-dependent migration mechanism

In our models, each individual of type i ∈ Q will migrate according to an indepen-
dent E-valued Markov process with generator Bi. We will assume that each operator
Bi generates a Feller semigroup on C(E) (see Chapter 4 in Ethier and Kurtz [12]). Fur-
thermore we assume that there is an algebra of functions D0 ⊂ C(E) which is dense in
C(E), contains 1E and satisfies

D0 ⊂ D(Bi) for all i ∈ Q. (2.3)

The martingale problem corresponding to each Bi is well-posed and any solution is a
strong Markov process with sample paths in DE [0,∞) (see Theorem 4.2.7 and Corollary
4.2.8 in [12]).

We now formally describe how this type-dependent migration of individuals trans-
lates into the evolution of our population in the spaceMq

N,a(E). For each n ∈ N, define
a space of atomic probability measures as

Pn,a =

 1

n

n∑
j=1

δxj : x1, . . . , xn ∈ E


and a class of continuous real-valued functions over P(E) by

C0 =

{
F (ν) =

m∏
l=1

〈fl, ν〉 : f1, . . . , fm ∈ D0 and m ∈ N

}
. (2.4)

Suppose that ν = (1/n)
∑n
j=1 δxj ∈ Pn,a and F (ν) =

∏m
l=1〈fl, ν〉 ∈ C0. For positive

integers k ≤ m, let Pmk be the set of onto functions from {1, . . . ,m} to {1, . . . , k} and for
any p ∈ Pmk and l = 1, . . . , k let

f
(p)
l (x) =

∏
j∈p−1(l)

fj(x). (2.5)

Then we can write

F (ν) = n−m
m∏
l=1

 n∑
j=1

fl(xj)

 = n−m
n∑

i1,...,im=1

m∏
l=1

fl(xil)

= n−m
m∑
k=1

∑
p∈Pmk

n∑
j1,...,jk=1

k∏
l=1

f
(p)
l (xjl), (2.6)

where the last term has summation over distinct choices of j1, . . . , jk ∈ {1, . . . , n}. For
each i ∈ Q,n ∈ N we now define an operator Bn

i : D(Bn
i ) = C0 → B (Pn,a) by

Bn
i F (ν) = n−m

m∑
k=1

∑
p∈Pmk

n∑
j1,...,jk=1

k∑
l=1

Bif
(p)
l (xjl)

k∏
r=1,r 6=l

f (p)
r (xjr ), (2.7)

where F ∈ C0 is given by (2.6). Observe that any F ∈ C0 is bounded and

sup
n∈N

sup
ν∈Pn,a

|Bn
i F (ν)| <∞. (2.8)

One can easily verify that the martingale problem for each Bn
i is well-posed. If ν0 =

(1/n)
∑n
j=1 δxj ∈ Pn,a then the solution of the martingale problem for (Bn

i , δν0) is just
the empirical measure process of a system of n individuals moving in E according to
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independent Markov processes with generators Bi and initial positions x1, . . . , xn. For
more details see Section 2.2 in Dawson[7].

For any f1, . . . , fm ∈ D0 consider a function F̂ :Mq
F (E)→ R of the form

F̂ (µ) =

m∏
j=1

(
q∑
i=1

ci(h)〈fj , µi〉

)
, (2.9)

where h = H(µ) and c : Rq+ → R
q
+ is a function that satisfies

sup
h∈Rq+

〈c(h), h〉 <∞. (2.10)

Such a function F̂ is bounded because

sup
µ∈Mq

F (E)

|F̂ (µ)| ≤
(

max
l=1,...,m

‖fl‖∞
)m(

sup
h∈Rq+

〈c(h), h〉

)m
.

Define a class of functions by

Cq0 =
{
F̂ ∈ B (Mq

F (E)) : F̂ is given by (2.9) and c satisfies (2.10)
}
. (2.11)

If µ = (µ1, . . . , µq) ∈Mq
N,a(E), then for each i ∈ Q, µi has the form µi = (1/N)

∑ni
j=1 δxij .

Let νi = (1/ni)
∑ni
j=1 δxij if ni > 0 and νi = δx0 if ni = 0, where x0 ∈ E is arbitrary. Let

Pmk be as before. Pick a F̂ ∈ Cq0 of the form (2.9). For any p ∈ Pmk and l = 1, . . . , k define

F
(p)
l ∈ C0 by F (p)

l (ν) = 〈f (p)
l , ν〉, where f (p)

l is given by (2.5). We can write the function
F̂ as

F̂ (µ) =

q∑
i1,...,im=1

m∏
j=1

cij (h)〈fj , µij 〉 =

q∑
i1,...,im=1

m∏
j=1

(cij (h)hij )〈fj , νij 〉

=

m∑
k=1

∑
p∈Pmk

q∑
l1,...,lk=1

(cl1(h)hl1)|p
−1(1)| . . . (clk(h)hlk)|p

−1(k)|
k∏
r=1

F (p)
r (νlr ),

where the last term has summation over distinct choices of l1, . . . , lk ∈ {1, . . . , q}. Let

BN : D(BN ) = Cq0 → B
(
Mq

N,a(E)
)

be the operator whose action on any F̂ ∈ Cq0 written

in this form is given by

BN F̂ (µ) =

m∑
k=1

∑
p∈Pmk

q∑
l1,...,lk=1

(cl1(h)hl1)|p
−1(1)| . . . (clk(h)hlk)|p

−1(k)|

×
k∑
r=1

B
nlr
lr
F (p)
r (νlr )

k∏
j=1,j 6=r

F
(p)
j (νlj ), (2.12)

where for any n ∈ N, i ∈ Q, the operator Bn
i is given by (2.7). For convenience B0

i is
defined to be the identity map on C0. The function BN F̂ is bounded due to (2.8) and
(2.10).

The martingale problem for BN is well-posed because the martingale problem for
Bn
i is well-posed for each i ∈ Q,n ∈ N. To see this suppose that µ0 = (µ0,1, . . . , µ0,q) ∈
Mq

N,a(E) and for each i ∈ Q, µ0,i ∈ MN,a(E) has the form µ0,i = (1/N)
∑ni
j=1 δxij . If

ni > 0 let ν0,i = (1/ni)
∑ni
j=1 δxij and if ni = 0 let ν0,i = δx0 for some arbitrary x0 ∈ E.

For each i ∈ Q, let {νi(t) : t ≥ 0} be the unique solution of the martingale problem for
(Bni

i , δν0,i). Then the process {µ(t) : t ≥ 0} given by

µ(t) =
(n1

N
ν1(t), . . . ,

nq
N
νq(t)

)
,

is the unique solution to the martingale problem for (BN , δµ0
).
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2.2 The density regulation mechanism

We mentioned in Section 1 that in our models, the birth and death rates of individuals
depend on the population density in such a way that they induce an equilibrating density
regulation mechanism. We now describe this mechanism in our multi-type setting.

For each i, j ∈ Q, let βij be a bounded function in C2(Rq+,R+) and for each i ∈ Q let
ρi be any function in C2(Rq+,R+). For any h ∈ Rq+, let the matrix A(h) ∈M(q, q) and the
vector θ(h) ∈ Rq be given by

Aij(h) =

{
βji(h) if i 6= j

βii(h)− ρi(h) otherwise

}
, (2.13)

and

θ(h) = A(h)h. (2.14)

Consider θ to be a vector field over Rq+. Observe that if h ∈ Rq+ is such that hi = 0

then θi(h) ≥ 0. This shows that any solution to the initial value problem

dh

dt
= θ(h), h(0) = h0 ∈ Rq+ (2.15)

stays inside Rq+ for all positive times for which it is defined. Standard existence and
uniqueness theorems imply that for any h0 ∈ R

q
+, there is a solution h(t) of (2.15)

defined on some maximal time interval [0, a). Moreover if a < ∞ then ‖h(t)‖1 → ∞ as
t→ a−. Since βij is bounded for each i, j ∈ Q, there is a positive constant Cθ such that

q∑
i=1

θi(h) ≤
q∑

i,j=1

βji(h)hj ≤ Cθ‖h‖1 for all h ∈ Rq+ (2.16)

and hence

d ‖h(t)‖1
dt

=

q∑
i=1

dhi(t)

dt
=

q∑
i=1

θi(h(t)) ≤ Cθ‖h(t)‖1. (2.17)

Therefore using Gronwall’s inequality and (2.17) we obtain that ‖h(t)‖1 ≤ ‖h(0)‖1 eCθt
for all t ∈ [0, a) and so ‖h(t)‖1 cannot go to ∞ as t → a−. Thus a = ∞ and this shows
that for any h0 ∈ Rq+, the initial value problem (2.15) has a unique solution which is
defined for all t ≥ 0.

Let ψθ : Rq+ ×R+ → R
q
+ be the flow associated to the vector field θ. This means that

ψθ satisfies

ψθ(x, t) = x+

∫ t

0

θ(ψθ(x, s))ds for all (x, t) ∈ Rq+ ×R+. (2.18)

This flow is well-defined because of the arguments given in the preceding paragraph. In
fact since θ is in C2(Rq+,R

q), the map ψθ is in C2(Rq+ ×R+,R
q
+). This map also satisfies

the semigroup property

ψθ(x, t+ s) = ψθ(ψθ(x, t), s) for all x ∈ Rq+ and s, t ∈ R+. (2.19)

We will say that a set U ⊂ Rq+ is ψθ-invariant if for all t ≥ 0, ψθ(U, t) ⊂ U where ψθ(U, t) =

{ψθ(x, t) : x ∈ U}. Before we proceed, we need to make some more assumptions.

Assumption 2.1. (A) There exists a vector heq ∈ Rq+, heq 6= 0̄q such that θ(heq) =

A(heq)heq = 0̄q.
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(B) The Jacobian matrix [Jθ(heq)] is stable.

(C) The matrix A(heq) is irreducible, that is, there does not exist a permutation matrix
P ∈M(q, q) such that the matrix PA(heq)P−1 is block upper-triangular.

(D) For each i, j ∈ Q, the functions ρi and βij are analytic at heq, that is, they agree
with their Taylor series expansion in a neighbourhood of heq.

Part (A) says that there is a nonzero vector heq ∈ Rq+ which is a fixed point for the
flow ψθ. Part (B) implies that this fixed point heq is asymptotically stable for this flow.
The significance of part (C) will become clear later in this section. Part (D) is a technical
condition that we require to prove our main result.

We define the region of attraction of the fixed point heq for the flow ψθ by

Ueq =
{
h ∈ Rq+ : lim

t→∞
ψθ(h, t) = heq

}
. (2.20)

Part (B) of Assumption 2.1 and Lemma 3.2 in Khalil [24], ensure that Ueq is a ψθ-invariant
open set in Rq+. Note that Ueq may not be an open set in Rq.

We are now ready to describe the density regulation mechanism. Suppose that when
the population density vector is h ∈ Rq+, then for each i, j ∈ Q, an individual of type i
gives birth to an individual of type j at rate βij(h) and an individual of type i dies at rate
ρi(h). At the time of birth, the offspring is placed at the same location in E as its parent.
Note that the birth and death rates do not depend on the location of the individuals. If
the scaling parameter is N ∈ N and the mass of each individual is 1/N , then we can
view this density-dependent population dynamics as a Markov process over the state
spaceMq

N,a(E) with generator RN : D(RN ) = B(Mq
N,a(E)) → B(Mq

N,a(E)) defined as
follows. For any F ∈ B(Mq

N,a(E)) and any µ ∈Mq
N,a(E) with h = H(µ)

RNF (µ) =
∑
i,j∈Q

N

∫
E

βij(h)

(
F

(
µ+

1

N
δjx

)
− F (µ)

)
µi(dx) (2.21)

+
∑
i∈Q

N

∫
E

ρi(h)

(
F

(
µ− 1

N
δix

)
− F (µ)

)
µi(dx),

where for any µ = (µ1, . . . , µq) ∈Mq
N,a(E), j ∈ Q and x ∈ E

µ± 1

N
δjx =

(
µ1, . . . , µj−1, µj ±

1

N
δx, µj+1, . . . , µq

)
.

Concrete results on the well-posedness of the martingale problem for RN will come
later. First let us understand how this operator RN drives the population density to
an equilibrium value. Let {µN (t) : t ≥ 0} be a Mq

N,a(E)-valued Markov process with

generator RN and let {hN (t) : t ≥ 0} be the corresponding density process defined by
hN (t) = H(µN (t)). Assume that hN (0) → h0 a.s. as N → ∞ and h0 is some vector in
Ueq. From Theorem 11.2.1 in [12], one can conclude that as N → ∞, {hN (t) : t ≥ 0}
converges in the Skorohod topology in DRq [0,∞) to the process {ψθ(h0, t) : t ≥ 0}.
Since h0 ∈ Ueq, ψθ(h0, t) → heq as t → ∞ which indicates that for a large N , the
density process hN (·) gets closer and closer to heq with time. This shows, at least
informally, that the operator RN drives the population density towards heq. Henceforth
we shall refer to the vector heq as the equilibrium population density. Of course, this
discussion totally ignores how RN affects the spatial configuration of the population.
Our main goal in this paper is to discover how the spatial distribution of the population
evolves when the density is equilibrated at a faster timescale in comparison to the other
mechanisms.
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For any h ∈ Rq+, the matrix A(h) given by (2.13) signifies how the various types of
individuals interact when the population density is h. Part (C) of Assumption 2.1 means
that at the equilibrium population density, all the types of individuals are communicat-
ing with each other by influencing each other’s birth and death rates.

2.3 Mathematical Models

We now describe the models that we consider in this paper. We start with a basic
model which only has spatial migration along with density regulation. We then extend
this model by adding other features such as position dependence in the birth and death
rates, offspring dispersal and immigration. All the models will be parameterized by the
scaling parameter N , with 1/N being the mass of each individual in the population. We
will describe each model by specifying the generator of the associated Markov process.
The well-posedness of the martingale problems corresponding to these generators is
given by Proposition 2.4. Our main results are presented in Section 2.4.

2.3.1 Basic Model

In this model, the individuals migrate according to the type-dependent migration mech-
anism specified in Section 2.1 and their birth and death rates regulate the population
density as described in Section 2.2. If the scaling parameter is N , then at any time we
represent the population as a measure inMq

N,a(E). The population evolves due to the
following events.

• Each individual of type i ∈ Q migrates in E according to an independent Markov
process with generator Bi.

• When the population density vector is h ∈ Rq+, each individual of type i ∈ Q gives
birth to an individual of type j ∈ Q at rate Nβij(h). At the time of birth, the
offspring is placed at the same location as its parent.

• When the population density vector is h ∈ Rq+, each individual of type i ∈ Q dies
at rate Nρi(h).

This population dynamics can be viewed as a Mq
N,a(E)-valued Markov process whose

generator AN
0 : D(AN

0 ) = Cq0 → B(Mq
N,a(E)) is given by

AN
0 F̂ (µ) = BN F̂ (µ) +N2

∑
i,j∈Q

∫
E

βij(h)

(
F̂

(
µ+

1

N
δjx

)
− F̂ (µ)

)
µi(dx) (2.22)

+N2
∑
i∈Q

∫
E

ρi(h)

(
F̂

(
µ− 1

N
δix

)
− F̂ (µ)

)
µi(dx),

for any F̂ ∈ Cq0 . Here h = H(µ) is the density vector corresponding to µ.

2.3.2 Model with position dependence in the birth and death rates

In the above model, the birth and death rates of individuals do not depend on their
location. One may want to consider models in ecology where some spatial locations are
more advantageous for reproduction or some locations are more hazardous for survival.
If we think of E as the space of genetic traits, then one may consider models in which
the trait of an individual influences its chances of reproduction or survival. To capture
such situations we now introduce a model in which the birth and death rates of an indi-
vidual can vary with its position. However we will assume that this position dependent
variation is small, in the sense that even though an individual’s birth and death rate is
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of order N (as in Section 2.3.1), the spatial variation in these rates is of order 1. We
now make the model precise.

For each i, j ∈ Q, let bsij , d
s
i be bounded continuous functions from E × Rq+ to R+.

These functions determine the spatial variation in the birth and death rates. The mi-
gration of individuals is like in the basic model. However now the birth and death
mechanism changes as follows.

• When the population density vector is h ∈ Rq+, an individual of type i ∈ Q located
at x ∈ E, gives birth to an individual of type j ∈ Q at rate bsij(x, h) + Nβij(h). At
the time of birth, the offspring is placed at the same location as its parent.

• When the population density vector is h ∈ Rq+, an individual of type i ∈ Q located
at x ∈ E, dies at rate dsi (x, h) +Nρi(h).

The evolution of our population under this dynamics can be viewed as aMq
N,a(E)-valued

Markov process with generator AN
1 : D(AN

1 ) = Cq0 → B(Mq
N,a(E)) defined for any

F̂ ∈ Cq0 by

AN
1 F̂ (µ) = BN F̂ (µ) +

∑
i,j∈Q

N

∫
E

(
bsij(x, h) +Nβij(h)

)(
F̂

(
µ+

1

N
δjx

)
− F̂ (µ)

)
µi(dx)

(2.23)

+
∑
i∈Q

N

∫
E

(dsi (x, h) +Nρi(h))

(
F̂

(
µ− 1

N
δix

)
− F̂ (µ)

)
µi(dx),

where h = H(µ) is the density vector corresponding to µ.

2.3.3 Model with offspring dispersal at birth

In the basic model we described in Section 2.3.1, the offspring is placed at the same
location as its parent at the time of birth. However we may want to construct models
where this restriction needs to be relaxed. For example, while modeling plant popula-
tions, one may wish to account for the spreading of seeds due to wind and other factors.
Also in models for population genetics, where E is the space of genetic traits, offsprings
may be born with a different trait than their parents due to mutations. To consider such
situations we now present a model in which an offspring may be born away from its
parent. We allow this offspring dispersal to either be rare (happens with probability
proportional to 1/N ) or small (the offspring is placed at a distance proportional to 1/N

from the parent). We handle both these cases in a unified way.
For each i, j ∈ Q and N ∈ N, let ϑNij be a function from E to P(E) and let pNij be a

function from E to [0, 1]. The individuals migrate and die in the same way as described
in the basic model (Section 2.3.1). The birth rates are also the same as in the basic
model. However when an individual of any type i ∈ Q located at x ∈ E, gives birth to
an individual of type j, the location of the offspring is x with probability (1− pNij (x)) and
distributed according to ϑNij (x, ·) with probability pNij (x).

To pass to the limit N → ∞, we need an assumption on pNij and ϑNij which is stated
below.

Assumption 2.2. For each i, j ∈ Q we assume that there is an operator Cij : D(Cij)→
C(E), whose domain is taken to be the same as D0 (see (2.3)) for convenience, such
that for every f ∈ D0.

lim
N→∞

sup
x∈E

∣∣∣∣NpNij (x)

∫
E

(f(y)− f(x))ϑNij (x, dy)− Cijf(x)

∣∣∣∣ = 0.
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The evolution of our population under the dynamics described above can be viewed
as aMq

N,a(E)-valued Markov process with generator AN
2 : D(AN

2 ) = Cq0 → B(Mq
N,a(E))

defined by its action on any F̂ ∈ Cq0 by

AN
2 F̂ (µ) = BN F̂ (µ) +N2

∑
i∈Q

∫
E

ρi(h)

(
F̂

(
µ− 1

N
δix

)
− F̂ (µ)

)
µi(dx) (2.24)

+N2
∑
i,j∈Q

∫
E

βij(h)
(
1− pNij (x)

)(
F̂

(
µ+

1

N
δjx

)
− F̂ (µ)

)
µi(dx)

+N2
∑
i,j∈Q

∫
E

βij(h)pNij (x)

[∫
E

(
F̂

(
µ+

1

N
δjy

)
− F̂ (µ)

)
ϑNij (x, dy)

]
µi(dx),

where h = H(µ) is the density vector corresponding to µ.

2.3.4 Model with immigration

Consider a population whose dynamics is as described in the basic model (Section
2.3.1). In addition, suppose that the individuals of each type are immigrating to E

at a certain density dependent rate and settling down according to some distribution
on E. In this section we model this situation. Such a model can help us understand the
effects of immigration on the population demography.

For each i ∈ Q, let κi : Rq+ → R+ be a continuous function satisfying

κi(h) ≤ C(1 + ‖h‖1) for all h ∈ Rq+, (2.25)

for some C > 0. The individuals migrate, reproduce and die as in the basic model.
Moreover, when the population density vector is h ∈ Rq+, the individuals of each type
i ∈ Q arrive in the population at rate Nκi(h) and their initial location is given by the
distribution Θi ∈ P(E).

The evolution of our population under this dynamics can be viewed as a Mq
N,a(E)-

valued Markov process with generator AN
3 : D(AN

3 ) = Cq0 → B(Mq
N,a(E)) defined by its

action on any F̂ ∈ Cq0 as

AN
3 F̂ (µ) = BN F̂ (µ) +N

∑
i∈Q

κi(h)

∫
E

(
F̂

(
µ+

1

N
δix

)
− F̂ (µ)

)
Θi(dx) (2.26)

+N2
∑
i,j∈Q

∫
E

βij(h)

(
F̂

(
µ+

1

N
δjx

)
− F̂ (µ)

)
µi(dx)

+N2
∑
i∈Q

∫
E

ρi(h)

(
F̂

(
µ− 1

N
δix

)
− F̂ (µ)

)
µi(dx),

where h = H(µ) is the density vector corresponding to µ.

Remark 2.3. For each l ∈ {0, 1, 2, 3} define the operators GN
l : D(GN

l ) = B(Mq
F (E))→

B(Mq
F (E)) as follows. For any F ∈ B (Mq

F (E)) let

GN
0 F (µ) =0, (2.27)

GN
1 F (µ) =N

∑
i,j∈Q

∫
E

bsij(x, h)

(
F

(
µ+

1

N
δjx

)
− F (µ)

)
µi(dx) (2.28)

+
∑
i∈Q

∫
E

dsi (x, h)

(
F

(
µ− 1

N
δix

)
− F (µ)

)
µi(dx)

 ,
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GN
2 F (µ) =N2

∑
i,j∈Q

βij(h)

∫
E

[∫
E

(
F

(
µ+

1

N
δjy

)
− F

(
µ+

1

N
δjx

))
ϑNij (x, dy)

]
× pNij (x)µi(dx) (2.29)

and GN
3 F (µ) =N

∑
i∈Q

κi(h)

∫
E

(
F

(
µ+

1

N
δix

)
− F (µ)

)
Θi(dx), (2.30)

where h = H(µ). Then for each l ∈ {0, 1, 2, 3} and F̂ ∈ Cq0 we can write

AN
l F̂ = BN F̂ +NRN F̂ + GN

l F̂ . (2.31)

This form makes the timescale separation clear between the fast density regulation
mechanism (NRN ) and the slow migration (BN ), position-dependent birth and death
(GN

1 ), offspring dispersal (GN
2 ) and immigration (GN

3 ) mechanisms. �

2.4 The main results

The main results of this paper are concerned with the limiting behaviour of the
dynamics under the models described in Section 2.3. Before we present these results
we must first verify that all the models in Section 2.3 can be represented by a suitable
Markov process. This is established by the following proposition which will be proved
in Section 4.1.

Proposition 2.4. For each l ∈ {0, 1, 2, 3} and N ∈ N, the DMq
N,a(E)[0,∞) martingale

problem for AN
l is well-posed.

We now begin analyzing how a sequence of Markov processes with generators AN
l

behave as N → ∞. The next proposition exhibits some important properties about
the limiting dynamics. The proof of this proposition is given in Section 4.2. Recall the
definition of Ueq from (2.20).

Proposition 2.5. Fix a l ∈ {0, 1, 2, 3}. For each N ∈ N, let {µN (t) : t ≥ 0} be a
solution of the martingale problem for AN

l and let {hN (t) = H(µN (t)) : t ≥ 0} be the
corresponding density process. Assume that there is a compact set K0 ⊂ Ueq such that
hN (0) ∈ K0 a.s. for all N ∈ N. Let tN be a sequence of positive numbers satisfying
tN → 0 and NtN →∞ as N →∞. Then we have:

(A) For all T > 0

sup
t∈[0,T ]

∥∥hN (t+ tN )− heq

∥∥
1
⇒ 0 as N →∞.

(B) For all T > 0, f ∈ C(E) and i, j ∈ Q

sup
t∈[0,T ]

∣∣hNj (t+ tN )〈f, µNi (t+ tN )〉 − hNi (t+ tN )〈f, µNj (t+ tN )〉
∣∣⇒ 0 as N →∞.

Let the processes {µN (t) : t ≥ 0} and {hN (t) : t ≥ 0} be as in the above proposition.
Part (A) of this proposition implies that the process hN (· + tN ) ⇒ heq as N → ∞ in
DRq [0,∞). In other words, for large N , the density process is constantly near the equi-
librium population density heq (after a small time shift tN ). This emphasizes the point
that we made in Section 1. The density regulation mechanism operating at a faster
timescale than our timescale of observation, keeps the population density equilibrated
at all times. Note that the process {µN (t) = (µN1 (t), . . . , µNq (t)) : t ≥ 0} isMq

F (E)-valued
and it keeps track of how the populations corresponding to all the q-types are evolv-
ing in the space E. Part (B) of the above proposition shows that in the limit, all the q
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sub-populations are spatially fused (in proportions determined by the density vector).
Hence their spatial evolution can be studied together by using a single P(E)-valued
process. This kind of model reduction result is quite common in stochastic reaction
networks with multiple timescales (see [3] and [22]), where one can often equilibrate
the concentrations of the fast chemical species and derive a reduced model for the dy-
namics of the slow species. In our case, the dynamics at the fast timescale equilibrates
the population density as well as the relative abundances of all the q sub-populations
at each location on E. These relative abundances equilibrate because the birth-death
interaction matrix A(h) (see (2.13)) is irreducible at the equilibrium density heq (see
part (C) of Assumption 2.1).

The proof of Proposition 2.5 will exploit the form (2.31) of the operator AN
l . A

brief outline of the proof is as follows. We will define a Rq+ × Rq−1 valued process
{XN (t) : t ≥ 0} by

XN (t) = (hN1 (t), . . . , hNq (t), Y N1 (t), . . . , Y Nq−1(t)), (2.32)

where each Y Ni (t) is a density-dependent linear combination of terms like (hNj (t)〈f, µNi (t)〉
−hNi (t)〈f, µNj (t)〉) for some choice of f ∈ C(E). Next we will show that XN is a semi-
martingale which satisfies an equation of the form

XN (t) = XN (0) +N

∫ t

0

F (XN (s))ds+ ZN (t), (2.33)

where {ZN : N ∈ N} is a sequence of R2q−1-semimartingales which is tight in the space
DR2q−1 [0,∞). This clearly indicates that for large values of N , the drift term of the form
NF (XN (·)) completely overwhelms the effect of the semimartingale ZN . Equations
like (2.33) were studied by Katzenberger in [23] in a much more general setting. He
showed that under certain conditions, the sequence of semimartingales {XN : N ∈ N}
converges in distribution to a semimartingale X as N → ∞. Moreover X only takes
values in a set Γ which is an invariant manifold for the deterministic flow induced by F .
In our case, this set Γ only consists of one point xeq = (heq, 0̄q−1) and this enables us to
prove Proposition 2.5. The details are given in Section 4.2.

We mentioned before that in the limit N → ∞, the spatial evolution of all the q

sub-populations is governed by a single P(E)-valued process. Our next result, Theorem
2.6, shows that this P(E)-valued process is in fact a Fleming-Viot process that can be
characterized by its generator. Before we state Theorem 2.6 we first need to introduce
several objects. The existence and properties of some of these objects will be studied
in the appendix.

Recall the equilibrium population density vector heq = (heq,1, . . . , heq,q) from Section
2.2. It can be verified that this vector has strictly positive components (see part (A)
of Lemma A.1). Moreover part (C) of Lemma A.1 shows that there is a unique vector
veq = (veq,1, . . . , veq,q) ∈ Rq∗ such that

veqA(heq) = 0̄q and 〈veq, heq〉 =

q∑
i=1

veq,iheq,i = 1. (2.34)

Observe that D0 ⊂ C(E) satisfies (2.3). Define an operator Bavg : D(Bavg) = D0 → C(E)

by

Bavgf =
∑
i∈Q

veq,iheq,iBif for f ∈ D0. (2.35)
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The Fleming-Viot limit of an interacting spatial population

From (2.34) we can see that the operator Bavg is a convex combination of the operators
{Bi : i ∈ Q}. Let γsmpl be the positive constant given by

γsmpl =
∑
i∈Q

v2
eq,iheq,iρi(heq). (2.36)

For each i, j ∈ Q, let the functions bsij , d
s
i be as in Section 2.3.2. Define bsavg, d

s
avg ∈ C(E)

as

bsavg(x) =
∑
i,j∈Q

bsij(x, heq)veq,jheq,i and dsavg(x) =
∑
i∈Q

dsi (x, heq)veq,iheq,i for x ∈ E.

For each i, j ∈ Q, let the operator Cij be as in Assumption 2.2. Define the operator
Cavg : D(Cavg) = D0 → C(E) by

Cavgf =
∑
i,j∈Q

βij(heq)veq,jheq,iCijf for f ∈ D0. (2.37)

For each i ∈ Q, let κi,Θi be as in Section 2.3.4. Define the operator Iavg : D(Iavg) =

B(P(E))→ B(P(E)) by

Iavgf(x) =
∑
i∈Q

κi(heq)veq,i

∫
E

(f(y)− f(x))Θi(dy) for f ∈ B(P(E)). (2.38)

We now define the operators A0,A1,A2 and A3 with domain C0 (see (2.4)) as below.
For any F (ν) =

∏m
l=1〈fl, ν〉 ∈ C0 let

A0F (ν) =

m∑
l=1

〈Bavgfl, ν〉
∏
j 6=l

〈fj , ν〉 (2.39)

+ γsmpl

∑
1≤l 6=k≤m

(〈flfk, ν〉 − 〈fl, ν〉 〈fk, ν〉)
∏
j 6=l,k

〈fj , ν〉,

A1F (ν) = A0F (ν) +

m∑
l=1

(〈
bsavgfl, ν

〉
−
〈
bsavg, ν

〉
〈fl, ν〉

)∏
j 6=l

〈fj , ν〉 (2.40)

+

m∑
l=1

(〈
dsavg, ν

〉
〈fl, ν〉 −

〈
dsavgfl, ν

〉)∏
j 6=l

〈fj , ν〉,

A2F (ν) = A0F (ν) +

m∑
l=1

〈Cavgfl, ν〉
∏
j 6=l

〈fj , ν〉 (2.41)

and A3F (ν) = A0F (ν) +

m∑
l=1

〈Iavgfl, ν〉
∏
j 6=l

〈fj , ν〉. (2.42)

We will assume that the operators Bavg, (Bavg + Cavg) and (Bavg + Iavg) generate Feller
semigroups on C(E). The well-posedness of the martingale problems corresponding
to A0,A1,A2 and A3 follows from Theorem 3.2 in [13]. In fact, any solution will have
sample paths in CP(E)[0,∞). The operator A0 is the generator of a neutral Fleming-Viot
process on E with mutation operator Bavg and sampling rate 2γsmpl. The operators A2

and A3 generate a similar Fleming-Viot process with the mutation operator changed to
(Bavg + Cavg) and (Bavg + Iavg) respectively. The operator A1 also generates a similar
Fleming-Viot process, but with selection. The last two terms in its definition correspond
to fecundity selection (with intensity function bsavg) and viability selection (with intensity
function dsavg). See Donnelly and Kurtz [8] for more details. We now formally state the
main result of our paper. The proof is given in Section 4.4.
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Theorem 2.6. Fix a l ∈ {0, 1, 2, 3} and let {µN (t) : t ≥ 0} be a solution to the martingale
problem for AN

l . Suppose that µN (0) ⇒ µ(0) as N → ∞ and H(µ(0)) ∈ Ueq a.s. where
Ueq is given by (2.20). Let tN be a sequence as in Proposition 2.5. Define another
process {µ̂N (t) : t ≥ 0} by

µ̂N (t) = µN (t+ tN ) for t ≥ 0. (2.43)

Then there exists a distribution π ∈ P (P(E)) such that µ̂N ⇒ heqν in DMq
F (E)[0,∞) as

N → ∞ and {ν(t) : t ≥ 0} is a Fleming-Viot process with type space E, generator Al

and initial distribution π.

Remark 2.7. The initial distribution π of the process {ν(t) : t ≥ 0} is related to the
distribution of µ(0). This relation is stated in Remark 4.10.

Remark 2.8. In Section 2.3 we first defined a basic model and then constructed auxil-
iary models by adding other mechanisms, one at a time. These other mechanisms are
position dependent birth and death, offspring dispersal and immigration. One can con-
sider models in which more than one of these mechanisms are simultaneously added to
the basic model. The proof will demonstrate that the generator of the limiting Fleming-
Viot process is then obtained by adding the correct term corresponding to each of these
additional mechanisms to the operator A0. This correct term can be seen from the
definitions of A1, A2 and A3. For example, one can have the basic model along with po-
sition dependent birth and death (Section 2.3.2) and offspring dispersal (Section 2.3.3).
Then the limiting Fleming-Viot process has the generator given by

AF (ν) = A0F (ν) +

m∑
l=1

(〈
bsavgfl, ν

〉
−
〈
bsavg, ν

〉
〈fl, ν〉

)∏
j 6=l

〈fj , ν〉

+

m∑
l=1

(〈
dsavg, ν

〉
〈fl, ν〉 −

〈
dsavgfl, ν

〉)∏
j 6=l

〈fj , ν〉+

m∑
l=1

〈Cavgfl, ν〉
∏
j 6=l

〈fj , ν〉,

for any F (ν) =
∏m
l=1〈fl, ν〉 ∈ C0.

We now give a heuristic explanation of why the dynamics under the models described
in Section 2.3 converges to a Fleming-Viot process. Note that part (A) of Proposition 2.5
says that the population density is pinned to a constant value heq in the limit. Therefore
any addition of new mass in the population must be concurrently offset by an equal
reduction of existing mass and vice versa. Furthermore, when the mass is reduced or
added to keep the balance, this reduction or addition happens at locations that are cho-
sen more or less uniformly from the current empirical measure of the population. This
is because the birth and deaths rates of individuals are dominated by a term which is
density dependent but location independent. This argument offers some intuition as to
why the fast birth-death terms (that form part of the operator NRN ) give rise to the
sampling term in the limit (the second term in A0). It also shows why the position de-
pendent birth and death terms in AN

1 become selection terms in A1 and the offspring
dispersal (immigration) term in AN

2 (AN
3 ) becomes a mutation term in A2 (A3). Since

the position of an individual in E can also be seen as its genetic trait, one can interpret
the migration on E as genetic mutation. Hence it is not surprising that the migration
operators appear as part of the mutation operator in the limiting process. Part (B) of
Proposition 2.5 says that in the limit, all the q sub-populations become spatially insepa-
rable. This causes all the mechanisms in the limiting process to appear in an averaged
form.

Let {µN (t) = (µN1 (t), . . . , µNq (t)) : t ≥ 0} be a Markov process with generator AN
l ,

for some l ∈ {0, 1, 2, 3}. It is difficult to prove the convergence of this process directly
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because the density regulation mechanism acts on it at the fast timescale. This can be
seen by splitting the operator AN

l according to (2.31) and noting that NRN becomes
unbounded asN →∞. To pass to the limit we consider another measure-valued process
{νN (t) : t ≥ 0} that is constructed by suitably combining the various components of
{µN (t) : t ≥ 0}. In particular

νN (t) =

q∑
i=1

Λi(h
N (t))µNi (t) for t ≥ 0, (2.44)

where hN (t) = H(µN (t)) and Λ = (Λ1, . . . ,Λq) is a function from R
q
+ to Rq+ which sat-

isfies certain conditions. These conditions are chosen to ensure that {νN (t) : t ≥ 0} is
a P(E)-valued process whose dynamics is such that the density regulation mechanism
acts at the slow timescale. Such a function Λ can be shown to exist by proving that
a certain system of coupled partial differential equations has a solution with some de-
sired properties. This is done in Section 4.3. We will then show that as N →∞ we have
νN ⇒ ν where {ν(t) : t ≥ 0} is the Fleming-Viot process specified by Theorem 2.6. This
convergence along with Proposition 2.5 allow us to prove Theorem 2.6. The details of
the proof are given in Section 4.4.

The discussion in the preceding paragraph also shows that intuitively we can think
of the limiting Fleming-Viot process as describing the spatial evolution of a mixed pop-
ulation formed by taking a suitable density-dependent linear combination of all the q

sub-populations. This is reminiscent of the notion of virtual species (formed by linearly
combining several chemical species), that are needed in the specification of the reduced
models in chemical reaction networks with multiple timescales (see [5]).

3 Applications

In this section we discuss the applications mentioned in Section 1 in greater detail.
Note that a Fleming-Viot process usually has continuous paths (see [13]). Hence Theo-
rem 2.6 can be seen as a diffusion approximation result which shows that a stochastic
process with jumps can be approximated by a process with continuous paths. Such
results provide a justification for drawing inferences about the original process (with
jumps) by analyzing a more tractable process with continuous paths.

To demonstrate the usefulness of Theorem 2.6 we present two examples. In the first
example we consider a population genetics model having logistic interactions along
with rare mutation and weak selection. The words rare and weak indicate that the
mutation and selection events occur at a slower timescale than other events. The dif-
ference between this model and a standard population genetics model (Wright-Fisher or
Moran) is that the population size is not fixed but fluctuating due to the logistic interac-
tions. Theorem 2.6 guarantees that by taking the infinite population limit in a suitable
way, we obtain a Fleming-Viot process. In many cases this limiting process is well-
studied and using its properties one can estimate fixation probabilities, fixation times
and the stationary distribution for the finite population model. Our second example
sheds light on the phenomenon of cell polarity which refers to the spatial crowding of
molecules on the cell membrane. We draw upon our work in [19] to show that Fleming-
Viot convergence can help us understand how cells establish and maintain polarity. In
[19] we only consider a very simple model, but the results in this paper ensure that the
same analysis holds for a general class of models.

3.1 Logistic model for population genetics

The logistic growth model is very popular in ecology. It was proposed by Verhulst
[37] in 1838 to describe the growth of a population in the presence of competition for
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resources. In this model each individual reproduces at rate β and dies at a rate ρP/N ,
where P is the current population size and N is the carrying capacity of the habitat.
In the deterministic setting, the population size (P ) evolves as a function of time (t)

according to the ordinary differential equation

dP

dt
= βP − ρP

2

N
.

Let h(t) = P (t)/N be the population density at time t. Then the above differential
equation becomes

dh

dt
= βh− ρh2. (3.1)

It is immediate that if h(0) > 0 then h(t)→ heq := β/ρ as t→∞.
We now construct a population genetics model that has logistic interactions along

with rare mutation and weak selection. Suppose the compact metric space E is the set
of all the genetic traits that an individual can have. Each individual is given a mass
of 1/N , with N being the carrying capacity as before. The population at time t can be
represented by the measure

µ̄N (t) =
1

N

nN (t)∑
i=1

δxi , (3.2)

where nN (t) is the number of individuals at time t and x1, x2, · · · ∈ E are their genetic
traits. Let bs be a continuous function from E to R+. When the population density (total
mass) is h, an individual with trait x ∈ E gives birth at rate (β + bs(x)/N) and dies
at rate ρh. Its offspring has the same trait x with probability (1 − p(x)/N). However
with probability p(x)/N , the offspring is a mutant and its trait is chosen according
to the distribution ϑ(x, ·) ∈ P(E). The process {µ̄N (t) : t ≥ 0} can be viewed as a
Markov process with state spaceMN,a(E) (see (2.1)). The timescale at which we have
described the dynamics is such that the mutation and selection events will vanish in
the limit N → ∞. Therefore to study their effects, we must observe the process at the
timescale which is N times slower. Let

µN (t) = µ̄N (Nt) for t ≥ 0.

The dynamics of {µN (t) : t ≥ 0} has fast density regulation along with position-dependent
birth (see Section 2.3.2) and offspring dispersal mechanism (see Section 2.3.3). Assum-
ing that µN (0) ⇒ µ(0) as N → ∞ and 〈1E , µ(0)〉 > 0 a.s. Theorem 2.6 gives us the
following. If tN is a sequence satisfying tN → 0 and NtN → ∞, then the process
µN (· + tN ) ⇒ heqν as N → ∞, where heq = β/ρ and {ν(t) : t ≥ 0} is a Fleming-Viot
process with generator given by

AF (ν) = β

m∑
l=1

[∫
E

p(x)

(∫
E

(fl(y)− fl(x))ϑ(x, dy)

)
ν(dx)

]∏
j 6=l

〈fj , ν〉 (3.3)

+

m∑
l=1

(〈bsfl, ν〉 − 〈bs, ν〉〈fl, ν〉)
∏
j 6=l

〈fj , ν〉

+ ρ
∑

1≤l 6=k≤m

(〈flfk, ν〉 − 〈fl, ν〉 〈fk, ν〉)
∏
j 6=l,k

〈fj , ν〉

for any F (ν) =
∏m
l=1〈fl, ν〉 where f1, . . . , fm ∈ B(E). This is of course the generator of a

Fleming-Viot process with mutation and fecundity selection. We now present a couple
of cases where this process is well-studied.
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Suppose that E = {1, . . . ,K} for some K ∈ N. Then for any t ≥ 0 we can express
ν(t) ∈ P(E) as the K-tuple (ν1(t), . . . , νK(t)), where νi(t) is the proportion of individuals
having genetic trait i ∈ E. This representation allows us to view {ν(t) : t ≥ 0} as a
process over the K-simplex

∆K =

{
(x1, . . . , xK) : xi ≥ 0 and

K∑
i=1

xi = 1

}
.

For all i, j ∈ E set θij = βp(i)ϑ(i, {j}) and αi = bs(i). Then {ν(t) : t ≥ 0} is a diffusion
process over ∆K with generator given by

Af(ν) = ρ
∑
i,j∈E

νi(δij − νj)
∂2f(ν)

∂νi∂νj
+
∑
j∈E

(∑
i∈E

(θijνi + νjαi(δij − νi))

)
∂f(ν)

∂νj

where f ∈ C2(RK+ ,R), ν = (ν1, . . . , νK) and δij is the Kronecker delta function. This is
the generator of the Wright-Fisher diffusion process [25]. Many explicit results about
the fixation probabilities, fixation times and the stationary distribution can be found in
[14].

Let us return to the situation where E is a general compact metric space and the
dynamics evolves according to (3.3). Assume that for all x ∈ E we have bs(x) = 0,
p(x) = 1 and ϑ(x, ·) = ϑ0(·), for some non-atomic probability measure ϑ0 ∈ P(E). The
resulting Fleming-Viot process {ν(t) : t ≥ 0} arises as a reformulation of the infinitely-
many-neutral-alleles model due to Kimura and Crow [26] (see [12] and Section 9.2 in
[13] for more details). In this case, ν(t) can be written as a countable sum

∑∞
i=1 aiδxi

for any t > 0 (see Theorem 7.2 in [13]). This means that at time t, ai fraction of the
population is located at xi. Arranging these ai-s in descending order we can extract a
process over the ordered infinite simplex

∆̂∞ =

{
(x1, x2, . . . ) : x1 ≥ x2 · · · ≥ 0 and

∞∑
i=1

xi = 1

}
.

This extracted process is a diffusion process over ∆̂∞ whose various properties are
presented in [11]. Furthermore in [13] it is shown that the Fleming-Viot process {ν(t) :

t ≥ 0} is ergodic and its unique stationary distribution Π ∈ P(P(E)) is given by

Π(S) = P

( ∞∑
i=1

φiδξi ∈ S

)
for all S ∈ B(P(E)), (3.4)

where the infinite vector (φ1, φ2, . . . ) has the Poisson-Dirichlet distribution with param-
eter β/2ρ and ξ1, ξ2, . . . are i.i.d. with distribution ϑ0, independent of (φ1, φ2, . . . ). The
Poisson-Dirichlet distribution was introduced and studied by Kingman [27] in 1975.

The results mentioned in the last two paragraphs indicate the behaviour of the evo-
lutionary dynamics under our original model for large values of N .

3.2 Cell polarity

Cell polarity is an important phenomenon and understanding the mechanisms re-
sponsible for it is a matter of fundamental concern for biologists. It is widely accepted
that polarity is established in 3 stages (see [10, 2, 33]), which can be described as
follows:

1. An unpolarized cell receives a spatial cue that may be intrinsic (coming from in-
side the cell) or extrinsic (coming from the extracellular environment).
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2. This cue is interpreted by the membrane-bound receptor molecules.

3. The feedback network inside the cell is activated, which amplifies the weak initial
signal into a robust signal that can direct the molecules towards the clustering
site.

The feedback network has two components : positive feedback which enables the mem-
brane molecules to pull the cytosol molecules to their location on the membrane, and
negative feedback that pushes the membrane molecules into the cytosol. Positive
feedback is responsible for the localized recruitment of molecules on the membrane
while negative feedback helps in regulating the population size on the membrane. The
molecules diffuse slowly on the membrane but rapidly in the cytosol.

Even though the feedback mechanism may bring the molecules together on the
membrane, any clusters that form may not persist due to spatial diffusion. This caused
some biologists to propose that other additional mechanisms are needed to generate
spatial asymmetry (see [18, 20]), but these mechanisms are not always found in cells
that exhibit polarity. Hence it is important to investigate if the feedback mechanism can
alone counter spatial diffusion to establish cell polarity. For this purpose, Altschuler et.
al. [2] formulated a simple model based on the mechanisms mentioned above. We now
describe their model. Consider the cell to be a sphere of radius R in R3. The whole
cell has N molecules which may be present on the membrane or in the cytosol. The
following four mechanisms change the configuration of molecules in the cell.

1. Association mechanism: Each molecule in the cytosol can move to a uniformly
chosen location on the membrane at rate kon.

2. Positive feedback: Each molecule on the membrane pulls another molecule from
the cytosol to its location at rate kfb × (fraction of molecules in the cytosol).

3. Negative feedback: Each molecule on the membrane is pushed into the cytosol at
rate koff.

4. Spatial migration: Each membrane molecule is constantly diffusing on the mem-
brane according to an independent Brownian motion with diffusion rate D.

The association mechanism provides the initial spatial cue to trigger cluster formation.
In [2], this spatial cue is intrinsic because the authors are concerned with spontaneous
cell polarity, which means that polarity is established without any extracellular influ-
ence. Hence the association mechanism acts uniformly on the membrane. When one
wants to consider polarity that is established in response to a chemical gradient (see
[39]) then a molecule associating itself to the membrane must choose its location ac-
cording to some distribution that encodes the gradient information. We mentioned
in Section 1, that the positive feedback mechanism is like a birth process, where the
pulled cytosol molecule is the offspring of the recruiting membrane molecule. This
introduces genealogical relationships between the membrane molecules. A set of mem-
brane molecules are said to belong to a clan if they have a common ancestor. Note that
when the diffusion rate (D) is small, we would expect the clan members to be huddled
together.

The analysis of the above model in [2] gives some interesting results. When the
dynamics is described deterministically, using a reaction-diffusion partial differential
equation, then the model fails to capture cell polarity. However in the stochastic setting,
the model does predict the formation of clusters in certain parameter regimes, when
the number of molecules (N ) is small. This result is proved by showing that the number
of clans on the membrane drops to 1 at certain times. For small D, one would observe
a cluster at these times. However the frequency of these events is proportional to N−1,
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which indicates that polarity cannot occur in the large population limit N →∞, unless
other mechanisms are present.

In [19] we rigorously study this model under a different scaling of parameters. We
multiply kfb and koff by N , leaving kon and D unchanged. We keep track of the locations
of the membrane molecules as well as their clan identities. A clan identity is a number
in [0, 1] which is passed unaltered from the parent molecule to the offspring. A molecule
that associates itself on the membrane is assigned a uniformly chosen clan identity in
[0, 1]. At any time, the molecules on the membrane that have the same clan identity
should have a common ancestor and hence they must belong to the same clan. Note
that here the number of types (q) is equal to 1 and the population density is the same
as the fraction of cell molecules that are on the membrane. Let E = Ê × [0, 1], where
Ê is the membrane (sphere of radius R in R3). When the number of molecules is N ,
the population dynamics is described by a MN,a(E)-valued process {µN (t) : t ≥ 0} as
before. For any h ∈ R+ let β(h) = kfb(1 − h), ρ(h) = koff and κ(h) = kon(1 − h). Let
Θ ∈ P(E) be the uniform distribution on E and let the spatial migration operator B (see
Section 2.1) be (D/2)∆, where ∆ denotes the Laplace-Beltrami operator on the sphere
Ê. For any f : Ê × [0, 1] → R, ∆ acts on f only as the function of the first coordinate.
The operator (D/2)∆ is just the generator of the Brownian motion on Ê with diffusion
rate D. With this notation one can verify that this model is a special case of the model
in Section 2.3.4. The association mechanism is analogous to immigration while the
feedback mechanism gives rise to the density regulation mechanism. Theorem 2.6 (see
also Theorem 2.3 in [19]) shows that as N →∞ we have µN ⇒ heqν where

heq = 1− koff

kfb

and {ν(t) : t ≥ 0} is a P(E)-valued Fleming-Viot process with generator

AF (ν) =
D

2

m∑
l=1

〈∆fl, ν〉
∏
j 6=l

〈fj , ν〉+
koff

heq

∑
1≤l 6=k≤m

(〈flfk, ν〉 − 〈fl, ν〉 〈fk, ν〉)
∏
j 6=l,k

〈fj , ν〉

+ kon
(1− heq)

heq

m∑
l=1

(∫
E

∫
E

(fl(y)− fl(x))Θ(dy)ν(dx)

)∏
j 6=l

〈fj , ν〉

for any F (ν) =
∏m
l=1〈fl, ν〉 ∈ C0. It can be shown that this Fleming-Viot process is

ergodic and has a unique stationary distribution in P(P(E)) (see Section 5 in [13] and
Proposition 2.5 in [19]). To study the evolution of the clan sizes we define a P([0, 1])-
valued process {νc(t) : t ≥ 0} by

νc(t, S) = ν(t, Ê × S), S ∈ B([0, 1]).

This is a Fleming-Viot process that describes the infinitely-many-neutral-alleles model
(recall the discussion in Section 3.1). Therefore for any t > 0, we can write νc(t) =∑∞
i=1 aiδxi , which means that ai fraction of the population has clan identity xi. At sta-

tionarity, the clan sizes (arranged in descending order) are distributed according to the
Poisson-Dirichlet distribution with parameter α = kon/kfb. Properties of the Poisson-
Dirichlet distribution (see [15]) tell us that for any small ε > 0, there is a positive prob-
ability of the largest clan having size greater than (1 − ε). Furthermore one can show
that at stationarity the molecules in each clan are concentrated on a circular patch on
the membrane. The square of the radius of this patch can be approximately computed
as (see Theorem 2.7 in [19])

2D(
(kon+kfb)koff

(kfb−koff)
+ D

R2

) .
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The last two assertions imply that if D is small in comparison to R2, then at stationarity
there is a positive probability that most of the membrane molecules are in one clan and
that clan is spread over a small area on the membrane. Due to ergodicity this event
will occur infinitely often in any trajectory of the process {ν(t) : t ≥ 0}. Whenever this
event happens we can expect the cell to be polarized. Therefore the limiting process
exhibits recurring cell polarity. In [19] we discuss how the frequency of observing
polarity depends on various model parameters.

The above analysis shows that if the feedback mechanism is strong enough, it can
counter spatial diffusion to generate cell polarity. However this conclusion is based on
a highly simplified model. As mentioned in Section 1, most cells that exhibit polarity
have complicated feedback circuits, with molecules of several types pulling each other
on and off the membrane at various type-dependent rates. These different types of
molecules may also have their own migration and association mechanisms. It would be
interesting to know if the above analysis can be extended to general multi-type models
for cell polarity. The results in this paper show that this can indeed be done as long as
the feedback mechanism satisfies the assumptions in Section 2.2, and acts at a faster
timescale than the association and migration mechanisms. In this case, Theorem 2.6
guarantees convergence to a Fleming-Viot process and this limiting process can then be
analyzed in the same way as in [19]. This enables us to draw similar conclusions about
the onset of cell polarity in this multi-type setting.

4 Proofs

4.1 Well-posedness of the martingale problems for AN
l

Recall the definitions of the operators AN
0 ,A

N
1 ,A

N
2 and AN

3 from (2.22), (2.23),
(2.24) and (2.26). In this section we prove Proposition 2.4 which says that the mar-
tingale problem for these operators is well-posed in the space DMq

N,a(E)[0,∞). Pick a

l ∈ {0, 1, 2, 3}. If we do not allow the dynamics under AN
l to leave a compact set of

Mq
N,a(E), then AN

l can be viewed as a bounded perturbation of the migration operator

BN (given by (2.12)). The well-posedness of the corresponding martingale problem is
immediate from the well-posedness of the martingale problem for BN (see Chapter 4
in Ethier and Kurtz [12]). In our case, the dynamics under AN

l may exit any compact
set of Mq

N,a(E). However we can still argue the well-posedness of the corresponding
martingale problem by showing that this exit time tends to infinity as the compact set
gets bigger and bigger in size. We now make these ideas precise.

Lemma 4.1. Fix a l ∈ {0, 1, 2, 3} , N ∈ N and π ∈ P
(
Mq

N,a(E)
)

. For each k ∈ N
let {µk(t) : t ≥ 0} be a Mq

N,a(E)-valued process with initial distribution π. Define a
stopping time

τk = inf {t ≥ 0 : ‖H(µk(t−))‖1 ≥ k or ‖H(µk(t))‖1 ≥ k} , (4.1)

where H is the density map (2.2). Suppose that for each k ∈ N and F̂ ∈ Cq0

F̂ (µk(t ∧ τk))− F̂ (µk(0))−
∫ t∧τk

0

AN
l F̂ (µk(s))ds

is a martingale. Then for any t ≥ 0

lim
k→∞

P (τk ≤ t) = 0.
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Proof. Let {hk(t) = H(µk(t)) : t ≥ 0} be the density process corresponding to µk and let
ck : Rq+ → R

q
+ be the function defined by

ck(h) = (ck,1(h), . . . , ck,q(h)) =

{
1̄q if ‖h‖1 < 2k

0̄q otherwise .
(4.2)

Pick any ε ∈ (0, 1). Since for each k ∈ N the distribution of µk(0) is π there must
exist a kε > 0 such that

P (‖hk(0)‖1 > kε) < ε for all k ∈ N.

If k satisfies kε ≤ kε then

E (〈ck(hk(0)), hk(0)〉) ≤ kεP (‖hk(0)‖1 ≤ kε) + 2kP (‖hk(0)‖1 > kε) ≤ 3εk. (4.3)

For each i ∈ Q and k ∈ N, define a function F̂ ki ∈ C
q
0 by F̂ ki (µ) = ck,i(h)hi where

h = H(µ). From (2.31) we know that for any µ ∈Mq
N,a(E)

AN
l F̂

k
i (µ) = BN F̂ ki (µ) +NRN F̂ ki (µ) + GN

l F̂
k
i (µ).

One can easily verify that BN F̂ ki (µ) = 0, RN F̂ ki (µ) = ck,i(h)θi(h), GN
0 F̂

k
i (µ) = 0,

GN
2 F̂

k
i (µ) = 0, GN

3 F̂
k
i (µ) = ck,i(h)κi(h) and finally

GN
1 F̂

k
i (µ) = ck,i(h)

∑
j∈Q

∫
E

bsji(x, h)µj(dx)−
∫
E

dsi (x, h)µi(dx)

 .

Note that for each i, j ∈ Q, the functions bsji, d
s
i are bounded, while the functions θi

and κi satisfy (2.16) and (2.25). This implies that there exists a positive constant C
(depending on N and l) such that

AN
l F̂

k
i (µ) ≤ C (1 + 〈ck(h), h〉) for all µ ∈Mq

N,a(E). (4.4)

By the assumption stated in the statement of this lemma we can say that

F̂ ki (µk(t ∧ τk))− F̂ ki (µk(0))−
∫ t∧τk

0

AN
l F̂

k
i (µk(s))ds

is a martingale starting at 0. Taking expectations we get

E
(
F̂ ki (µk(t ∧ τk))

)
= E

(
F̂ ki (µk(0))

)
+ E

(∫ t∧τk

0

AN
l F̂

k
i (µk(s))ds

)
. (4.5)

Let F̂ k :Mq
F (E)→ R be given by F̂ k(µ) =

∑
i∈Q F̂

k
i (µ) = 〈ck(h), h〉. Then summing over

i ∈ Q in (4.5) and using (4.4) we arrive at

E
(
F̂ k(µk(t ∧ τk))

)
≤ E

(
F̂ k(µk(0))

)
+ Cq

∫ t

0

[
1 + E

(
F̂ k(µk(s ∧ τk))

)]
ds.

From (4.3) and Gronwall’s inequality, for k ≥ kε/ε we obtain

E
(
F̂ k(µk(t ∧ τk))

)
≤ (3kε+ Cqt) eCqt.

Then by Markov’s inequality

lim
k→∞

P
(
F̂ k(µk(t ∧ τk)) ≥ k

)
≤ lim
k→∞

E
(
F̂ k(µk(t ∧ τk))

)
k

≤ lim
k→∞

(3kε+ Cqt) eCqt

k

≤ 3εeCqt. (4.6)
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Observe that

P (τk ≤ t) = P (‖hk(t ∧ τk)‖1 ≥ k)

= P
(
F̂ k(µk(t ∧ τk)) ≥ k

)
+ P (‖hk(t ∧ τk)‖1 ≥ 2k) .

For large k, the second probability on the right is 0 because of the following reason.
The process hk has jumps of size 1/N and hence the definition of τk (see (4.1)) implies
that ‖hk(t ∧ τk)‖1 ≤ k + (1/N) < 2k. Therefore using (4.6) we get

lim
k→∞

P (τk ≤ t) = lim
k→∞

P
(
F̂ k(µk(t ∧ τk)) ≥ k

)
≤ 3εeCqt.

Letting ε→ 0 proves the lemma.

Proof of Proposition 2.4. Fix a N ∈ N and a l ∈ {0, 1, 2, 3}. The spaceMq
N,a(E) is com-

plete and separable and for each k ∈ N the set

Uk =
{
µ ∈Mq

N,a(E) : ‖H(µ)‖1 < k
}

(4.7)

is open with a compact closure in Mq
F (E). Define an operator Lk : D(Lk) = Cq0 →

B
(
Mq

N,a(E)
)

by

LkF̂ (µ) = BN F̂ (µ) + 1Uk(µ)
(
NRN F̂ (µ) + GN

l F̂ (µ)
)
,

for any F̂ ∈ Cq0 . The operator Lk can be seen as a bounded perturbation of the operator
BN . We argued in Section 2.1 that the martingale problem for BN is well-posed. From
Theorem 4.10.3 in Ethier and Kurtz [12], the martingale problem for Lk is well-posed

for each k ∈ N. Pick a π ∈ P
(
Mq

N,a(E)
)

and let {µk(t) : t ≥ 0} be the unique solution

to the martingale problem for (Lk, π). Define a stopping time by

τk = inf{t ≥ 0 : µk(t) /∈ Uk or µk(t−) /∈ Uk}.

Then for any F̂ ∈ Cq0

F̂ (µk(t))− F̂ (µk(0))−
∫ t

0

LkF̂ (µk(s))ds

is a martingale. From (2.31) one can see that if µ ∈ Uk then AN
l F̂ (µ) = LkF̂ (µ). Using

the optional sampling theorem we get that

F̂ (µk(t ∧ τk))− F̂ (µk(0))−
∫ t∧τk

0

LkF̂ (µk(s))ds

= F̂ (µk(t ∧ τk))− F̂ (µk(0))−
∫ t∧τk

0

AN
l F̂ (µk(s))ds

is a martingale. Lemma 4.1 ensures that for any t ≥ 0,

lim
k→∞

P(τk ≤ t) = 0.

From Theorem 4.6.3 in Ethier and Kurtz [12] we can conclude that there exists a unique
solution to the martingale problem for (AN

l , π).
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4.2 Properties of the limiting process

The goal of this section is to prove Proposition 2.5 which gives important insights
into the limiting behaviour of the dynamics under the models described in Section 2.3.
As mentioned in Section 2.4 our proof of Proposition 2.5 will rely on the work of Katzen-
berger [23] which studies how semimartingales behave when they are driven by a fast
drift that forces them to stay on a stable manifold. Before we can use the framework
in [23] we need to prove some preliminary results. We start by recalling a tightness
condition for semimartingales.

Condition 4.2. Let {ZN : N ∈ N} be a sequence of {FNt }-semimartingales with paths
in DRd [0,∞). Assume that for all T > 0

sup
0≤t≤T

∥∥ZN (t)− ZN (t−)
∥∥⇒ 0 as N →∞. (4.8)

Moreover assume that each semimartingale ZN can be written as

ZN (t) = MN (t) +

∫ t

0

AN (s)ds

where MN is a square integrable {FNt }-martingale and AN is a {FNt } adapted process
satisfying

sup
N∈N

E

(
[MN ]t +

∫ t

0

∥∥AN (s)
∥∥ ds) <∞

for each t ≥ 0, where [MN ]t is the quadratic variation of the martingale MN .

Remark 4.3. If a sequence of semimartingales {ZN : N ∈ N} satisfies Condition 4.2
then this sequence is tight in DRd [0,∞) in the Skorohod topology (see Corollary 2.3.3
in Joffe and Metivier [21]) and any limit point Z is a semimartingale with continuous
sample paths.

Lemma 4.4. Pick a l ∈ {0, 1, 2, 3}, i ∈ Q and f ∈ D0. For each N ∈ N, let {µN (t) : t ≥ 0}
be a solution of the martingale problem for AN

l . Define a real-valued process {ZN (t) :

t ≥ 0} by

ZN (t) =〈f, µNi (t)〉 − 〈f, µNi (0)〉

−N
∫ t

0

∑
j∈Q

βji(h
N (s))〈f, µNj (s)〉 − ρi(hN (s))〈f, µNi (s)〉

 ds,
where hN (t) = H(µN (t)). Then ZN is a semimartingale with respect to the filtration
generated by {µN (t) : t ≥ 0}. For any compact K ⊂ Rq+ define

λN (K) = inf
{
t ≥ 0 : hN (t−) /∈

o

K or hN (t) /∈
o

K
}
, (4.9)

where
o

K denotes the interior of the setK. If ZNK is the semimartingale given by ZNK (t) =

ZN (t ∧ λN (K)) for t ≥ 0, then the sequence of semimartingales {ZNK : N ∈ N} satisfies
Condition 4.2.

Proof. Let i ∈ Q and f ∈ D0 be fixed. For each N ∈ N and l ∈ {0, 1, 2, 3} define a
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function aNl :Mq
F (E)→ R by

aN0 (µ) = 〈Bif, µi〉,

aN1 (µ) = 〈Bif, µi〉+
∑
j∈Q

∫
E

bsji(x, h)f(x)µj(dx)−
∫
E

dsi (x, h)f(x)µi(dx),

aN2 (µ) = 〈Bif, µi〉+N
∑
j∈Q

∫
E

βji(h)pNji(x)

[∫
E

(f(y)− f(x))ϑNji(x, dy)

]
µj(dx)

and aN3 (µ) = 〈Bif, µi〉+ κi(h)

∫
E

f(x)Θi(dx),

where h = H(µ). Let UNk ⊂M
q
N,a(E) be given by

UNk =
{
µ ∈Mq

N,a(E) : ‖H(µ)‖1 < 2k
}
. (4.10)

Then for each k ∈ N and l ∈ {0, 1, 2, 3} we have

sup
N∈N

sup
µ∈UNk

aNl (µ) <∞. (4.11)

To see this note that for any N ∈ N, UNk ⊂ Uk := {µ ∈ Mq
F (E) : ‖H(µ)‖1 ≤ 2k} and Uk

is a compact subset ofMq
F (E). For l ∈ {0, 1, 3}, aNl is a continuous function which does

not depend on N and hence we get (4.11) simply by observing that

sup
N∈N

sup
µ∈UNk

aNl (µ) ≤ sup
µ∈Uk

aNl (µ) <∞. (4.12)

Similarly if we define a continuous function â2 :Mq
F (E)→ R by

â2(µ) = 〈Bif, µi〉+
∑
j∈Q

βji(h)〈Cjif, µj〉

then we also have

sup
N∈N

sup
µ∈UNk

â2(µ) ≤ sup
µ∈Uk

â2(µ) <∞. (4.13)

Here Cji’s are the operators satisfying Assumption 2.2. This assumption also implies
that

sup
N∈N

sup
µ∈UNk

∣∣aN2 (µ)− â2(µ)
∣∣

≤ sup
N∈N

sup
µ∈UNk

∑
j∈Q

βji(h)

∫
E

(
NpNji(x)

∫
E

(f(y)− f(x))ϑNji(x, dy)− Cjif(x)

)
µj(dx)

≤ sup
N∈N

sup
µ∈UNk

∑
j∈Q

βji(h)hj sup
x∈E

(
NpNji(x)

∫
E

(f(y)− f(x))ϑNji(x, dy)− Cjif(x)

)
<∞.

This bound along with (4.13) and the triangle inequality shows (4.11) for l = 2.

Let ck : Rq+ → R
q
+ be given by (4.2). Define F̂k :Mq

F (E)→ R by

F̂k(µ) = ck,i(h)〈f, µi〉,
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where h = H(µ). One can verify that for any µ ∈ UNk(
BN + GN

l

)
F̂k(µ) = aNl (µ) (4.14)

and RN F̂k(µ) =
∑
j∈Q

βji(h)〈f, µj〉 − ρi(h)〈f, µi〉. (4.15)

Suppose {µN (t) : t ≥ 0} solves the martingale problem for AN
l and {hN (t) = H(µN (t)) :

t ≥ 0} is the corresponding density process. Define another process {mN (t) : t ≥ 0} by

mN (t) = ZN (t)−
∫ t

0

aNl (µN (s))ds. (4.16)

For any k ∈ N let

τNk = inf{t ≥ 0 : ‖hN (t−)‖1 ≥ k or ‖hN (t)‖1 ≥ k}. (4.17)

From Lemma 4.1 we can conclude that for any fixed N , the stopping times τNk converge
to∞ a.s. as k →∞. Observe that F̂k belongs to the class Cq0 = D(AN

l ). Hence

F̂k(µN (t))− F̂k(µN (0))−
∫ t

0

AN
l F̂k(µN (s))ds

is a martingale. From (2.31) and the optional sampling theorem we get that

mN
k (t) = F̂k(µN (t ∧ τNk ))− F̂k(µN (0))−

∫ t∧τNk

0

AN
l F̂k(µN (s))ds (4.18)

= F̂k(µN (t ∧ τNk ))− F̂k(µN (0))−N
∫ t∧τNk

0

RN F̂k(µN (s))ds

−
∫ t∧τNk

0

(
BN + GN

l

)
F̂k(µN (s))ds

is also a martingale. If the set (0, t ∧ τNk ] is non-empty then for any s ∈ (0, t ∧ τNk ], we
have ck(hN (s)) = 1̄q and therefore F̂k(µN (s)) = 〈f, µNi (s)〉. If the set (0, t ∧ τNk ] is empty
then t ∧ τNk = 0 and in this case mN

k (t) = 0. From (4.14) and (4.15) we see that for all
t ≥ 0, mN

k (t) = mN (t ∧ τNk ), where mN is defined by (4.16). But mN
k is a martingale

and for a fixed N , τNk → ∞ a.s. as k → ∞. Therefore we can conclude that mN is local
martingale and hence ZN is a semimartingale.

Let F̂ 2
k :Mq

F (E)→ R be given by F̂ 2
k (µ) = (F̂k(µ))2. Note that for any µ ∈MF (E)〈

f, µ± 1

N
δx

〉2

− 〈f, µ〉2 = ±2〈f, µ〉f(x)

N
+
f2(x)

N2
.

Using this one can verify that if µ ∈ UNk and h = H(µ) then we have

N
(
RN F̂ 2

k (µ)− 2F̂k(µ)RN F̂k(µ)
)

=
∑
j∈Q

βji(h)〈f2, µj〉+ ρi(h)〈f2, µi〉,

GN
1 F̂

2
k (µ)− 2F̂k(µ)GN

1 F̂k(µ)

=
1

N

∑
j∈Q

∫
E

bsji(x, h)f2(x)µj(dx) +

∫
E

dsi (x, h)f2(x)µi(dx),

GN
2 F̂

2
k (µ)− 2F̂k(µ)GN

2 F̂k(µ)

=
∑
j∈Q

∫
E

βji(h)pNji(x)

(∫
E

(f2(y)− f2(x))ϑNji(x, dy)

)
µj(dx)

and GN
3 F̂

2
k (µ)− 2F̂k(µ)GN

3 F̂k(µ) =
1

N
κi(h)

∫
E

f2(x)Θi(dx).

EJP 17 (2012), paper 104.
Page 28/55

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v17-1964
http://ejp.ejpecp.org/


The Fleming-Viot limit of an interacting spatial population

Also for any µ ∈ UNk

BN F̂ 2
k (µ)− 2F̂k(µ)BN F̂k(µ) =

1

N
〈Bif2 − 2fBif, µi〉.

Using (2.31) and the above expressions we can show in a manner similar to (4.11) that
for any k ∈ N we have

sup
N∈N

sup
µ∈UNk

|AN
l F̂

2
k (µ)− 2F̂k(µ)AN

l F̂k(µ)| <∞. (4.19)

The function F̂ 2
k is also in Cq0 = D(AN

l ). Therefore if mN
k is the martingale given by

(4.18) then

(
mN
k (t)

)2 − ∫ t∧τk

0

(
AN
l F̂

2
k (µN (s))− 2F̂k(µN (s))AN

l F̂k(µN (s))
)
ds

is also a martingale. Therefore the expected quadratic variation ofmN
k can be computed

as

E
(
[mN

k ]t
)

= E
(
(mN

k (t))2
)

= E

(∫ t∧τNk

0

(
AN
l F̂

2
k (µN (s))− 2F̂k(µN (s))AN

l F̂k(µN (s))
)
ds

)
.

(4.20)

For any fixed k ∈ N, the sequence of semimartingales {ZN (·∧ τNk ) : N ∈ N} satisfy (4.8)
because the discontinuities of µN are of size proportional to 1/N . From (4.16) we can
see that the semimartingale ZN (· ∧ τNk ) can be decomposed as

ZN (t ∧ τNk ) = mN (t ∧ τNk ) +

∫ t∧τNk

0

aNl (µN (s))ds = mN
k (t) +

∫ t

0

1{s≤τNk }
aNl (µN (s))ds.

For any 0 < s ≤ τNk , µN (s) ∈ UNk . Using (4.20), (4.19) and (4.11) we can see that

sup
N∈N

E

(
[mN

k ]t +

∫ t

0

1{s≤τNk }
aNl (µN (s))ds

)
<∞. (4.21)

Therefore for any k ∈ N, the sequence of semimartingales {ZN (· ∧ τNk )} satisfies Con-
dition 4.2. For any compact set K ⊂ R

q
+, there exists a k such that K ⊂ {h ∈ Rq+ :

‖h‖1 < k}. If the stopping time λNK is defined by (4.9) then λNK ≤ τNk a.s. where τNk
is given by (4.17). Hence it is immediate that if ZNK is the semimartingale defined by
ZNK (·) = ZN (· ∧ λN (K)) then the sequence of semimartingales {ZNK : N ∈ N} will also
satisfy Condition 4.2.

Proof of Proposition 2.5. Let {FNt } be the filtration generated by the process {µN (t) :

t ≥ 0}. For any compact set K ⊂ Ueq let λN (K) be given by (4.9). In this proof
a sequence of {FNt }-semimartingales {ZN : N ∈ N} with paths in DRd [0,∞) will be
called well-behaved if for each compact K ⊂ Ueq, the sequence of semimartingales
{ZN (· ∧ λN (K))} satisfies Condition 4.2.

Using Lemma 4.4 with f = 1E , (where 1E is as in (2.2)) for each i ∈ Q we obtain a
well-behaved R-valued semimartingale ZN,1i such that

〈1E , µNi (t)〉 = 〈1E , µNi (0)〉+N

∫ t

0

∑
j∈Q

βji(h
N (s))〈1E , µNj (s)〉 − ρi(hN (s))〈1E , µNi (s)〉

 ds
+ ZN,1i (t).
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Recall the definition of the matrix A(h) from (2.13). The above expression is the same
as

hNi (t) = hNi (0)〉+N

∫ t

0

∑
j∈Q

βji(h
N (s))hNj (s)− ρi(hN (s))hNi (s)

 ds+ ZN,1i (t)

= hNi (0) +N

∫ t

0

∑
j∈Q

Aij(h
N (s))hNj (s)

 ds+ ZN,1i (t).

If we let ZN,1 to be the Rq-valued semimartingale given by

ZN,1(t) = (ZN,11 (t), . . . , ZN,1q (t)) for t ≥ 0,

then ZN,1 is also a well-behaved semimartingale. The semimartingale hN satisfies

hN (t) = hN (0) +N

∫ t

0

A(hN (s))hN (s)ds+ ZN,1(t)

= hN (0) +N

∫ t

0

θ(hN (s))ds+ ZN,1(t), (4.22)

where the last equality holds due to definition (2.14). Now fix a f ∈ D0. From Lemma
4.4, for each i ∈ Q there is a well-behaved semimartingale ZN,fi such that

〈f, µNi (t)〉 = 〈f, µNi (0)〉+N

∫ t

0

∑
j∈Q

βji(h
N (s))〈f, µNj (s)〉ds−

∫ t

0

ρi(h
N (s))〈f, µNi (s)〉ds


+ ZN,fi (t)

= 〈f, µNi (0)〉+N

∫ t

0

∑
j∈Q

Aij(h
N (s))〈f, µNj (s)〉

 ds+ ZN,fi (t).

Using the integration by parts formula for semimartingales, for each i, j ∈ Q we can
write

hNi (t)〈f, µNj (t)〉 = hNi (0)〈f, µNj (0)〉+N

∫ t

0

hNi (s)

∑
k∈Q

Ajk(hN (s))〈f, µNk (s)〉

 ds
+

∫ t

0

〈f, µNj (s)〉

∑
k∈Q

Aik(hN (s))hNk (s)

 ds
+ ZNij (t), (4.23)

where ZNij is another well-behaved semimartingale given by

ZNij (t) =

∫ t

0

hNi (s)ZN,fj (s)ds+

∫ t

0

〈f, µNj (s)〉ZN,1i (s)ds+ [ZN,1i , ZN,fj ]t.

The last term in the above equation is the cross-variation term between ZN,1i and ZN,fj .
Now for each i ∈ Q define the semimartingale Y Ni by

Y Ni (t) = 〈f, µNi (t)〉

∑
j∈Q

hNj (t)

− hNi (t)

∑
j∈Q
〈f, µNj (t)〉

 . (4.24)
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The Fleming-Viot limit of an interacting spatial population

The semimartingale Y Ni is just a linear combination of the semimartingales of the form
hNj (t)〈f, µNi (t)〉. Using (4.23) we can write

Y Ni (t) = Y Ni (0) +N

∫ t

0

LNi (s)ds+ ZN,2i (t), (4.25)

where ZN,2i is a well-behaved semimartingale and for any t ≥ 0

LNi (t) =
∑
j,k∈Q

[
Aik(hN (t))hNj (t)〈f, µNk (t)〉+Ajk(hN (t))hNk (t)〈f, µNi (t)〉

−Ajk(hN (t))hNi (t)〈f, µNk (t)〉 −Aik(hN (t))hNk (t)〈f, µNj (t)〉
]

=
∑
k∈Q

Aik(hN (t))Y Nk (t) + 〈f, µNi (t)〉

 ∑
j,k∈Q

Ajk(hN (t))hNk (t)


− hNi (t)

 ∑
j,k∈Q

Ajk(hN (t))〈f, µNk (t)〉

 .
Define a matrix G(h) for each h ∈ Rq+ as follows

G(h) =

{
A(0̄q) if h = 0̄q

A(h) +
(
〈1̄q,θ(h)〉
〈1̄q,h〉 Iq −

h
〈1̄q,h〉 1̄

T
q A(h)

)
otherwise.

Note that if hN (t) 6= 0̄q then

〈f, µNi (t)〉 =
Y Ni (t) + hNi (t)

(∑
j∈Q〈f, µNj (t)〉

)
〈1̄q, hN (t)〉

and∑
j,k∈Q

Ajk(hN (t))〈f, µNk (t)〉

=

∑
j,k∈QAjk(hN (t))Y Nk (t) +

(∑
j∈Q〈f, µNj (t)〉

)(∑
j,k∈QAjk(hN (t))hNk (t)

)
〈1̄q, hN (t)〉

.

This allows us to write

LNi (t) =
∑
j∈Q

Gij(h
N (t))Y Nj (t)

and hence from (4.25)

Y Ni (t) = Y Ni (0) +N

∫ t

0

∑
j∈Q

Gij(h
N (s))Y Nj (s)

 ds+ ZN,2i (t). (4.26)

Let Y N and ZN,2 be the Rq−1-valued semimartingales given by

Y N (t) = (Y N1 (t), . . . , Y Nq−1(t)) and ZN,2(t) = (ZN,21 (t), . . . , ZN,2q−1(t)) for t ≥ 0.

For each h ∈ Rq+ let Ḡ(h) ∈M(q − 1, q − 1) be the matrix defined by

Ḡij(h) = Gij(h)−Giq(h) for all i, j ∈ {1, . . . , q − 1}.

Observe that
∑
i∈Q Y

N
i (t) = 0 and hence Y Nq (t) = −

∑q−1
i=1 Y

N
i (t). From (4.26) we get

Y N (t) = Y N (0) +N

∫ t

0

Ḡ(hN (s))Y N (s)ds+ ZN,2(t). (4.27)
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From part (E) of Lemma A.1 the matrix Ḡ(heq) is stable, that is, all its eigenvalues have
strictly negative real parts.

We now define a Rq+ ×Rq−1-valued semimartingale XN by

XN (t) = (hN (t), Y N (t)) = (hN1 (t), . . . , hNq (t), Y N1 (t), . . . , Y Nq−1(t)) for t ≥ 0. (4.28)

From (4.22) and (4.27) we can see that XN satisfies

XN (t) = XN (0) +N

∫ t

0

F (XN (s))ds+ ZN (t) (4.29)

where ZN (t) = (ZN,1(t), ZN,2(t)) is a well-behaved semimartingale and F : Rq+×Rq−1 →
R2q−1 is the function given by

F (x) = (θ(h), Ḡ(h)y) for x = (h, y) ∈ Rq+ ×Rq−1. (4.30)

Let xeq = (heq, 0̄q−1). Then F (xeq) = 0̄2q−1 and the Jacobian matrix [JF (xeq)] ∈ M(2q −
1, 2q − 1) has the block lower-triangular form

[JF (xeq)] =

[
[Jθ(heq)] Oq,q−1

C Ḡ(heq)

]
,

where C is some (q − 1)× q matrix in M(q − 1, q) and Oq,q−1 is the q × (q − 1) matrix of
zeroes. We mentioned above that the matrix Ḡ(heq) is stable and part (B) of Assumption
2.1 says that the matrix [Jθ(heq)] is also stable. Due to the block triangular form, the
matrix [JF (xeq)] is stable as well.

Pick any h0 ∈ Ueq and y0 ∈ Rq−1. Let h(t) = ψθ(h0, t) for all t ≥ 0, where ψθ is the
flow defined in Section 2.2. The set Ueq ⊂ Rq+ in ψθ-invariant and hence h(t) ∈ Ueq for
all t ≥ 0. Let y(t) be the unique solution of the initial value problem

dy

dt
= Ḡ(h(t))y, y(0) = y0. (4.31)

Since the above differential equation is linear in the y variable, the solution y(t) is
defined for all t ≥ 0. Moreover h(t) → heq and Ḡ(h(t)) → Ḡ(heq) as t → ∞. The matrix
Ḡ(heq) is stable and therefore y(t)→ 0̄q−1 as t→∞. Let U(xeq) = Ueq ×Rq−1. For each
x0 = (h0, y0) ∈ U(xeq) and t ≥ 0, let ψF (x0, t) = (h(t), y(t)) with h(t) = ψθ(h0, t) and y(t)

being the solution of (4.31).
The mapping ψF : U(xeq) ×R+ → U(xeq) is the flow of the vector field F on U(xeq).

For all x ∈ U(xeq) and t ≥ 0, ψF satisfies

ψF (x, t) = x+

∫ t

0

F (ψF (x, s))ds. (4.32)

From the discussion in the preceding paragraph we can conclude that

lim
t→∞

ψF (x, t) = xeq for all x ∈ U(xeq). (4.33)

We have assumed in this proposition that there is a compact set K0 ⊂ Ueq such that
hN (0) ∈ K0 a.s. for each N ∈ N. Note that any function f ∈ D0 is bounded. The
definition of the semimartingale Y N guarantees that there is a compact set K1 ⊂ Rq−1

such that XN (0) = (hN (0), Y N (0)) ∈ K0 ×K1 ⊂ U(xeq) a.s. for each N ∈ N.
Now consider the equation (4.29). For large values of N , the semimartingale XN

is driven by a large drift term of the form NF (XN (·)). The vector xeq is a stable fixed
point for this drift term and U(xeq) is its region of attraction. If we start in this region
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of attraction, then this drift is very forceful. It completely overwhelms the effect of the
well-behaved semimartingale ZN and drives XN to the stable fixed point xeq. Moreover
as N gets large, the trajectories of XN start looking more and more like the trajectories
of the deterministic flow ψF with time compressed by a factor of N . These ideas are
made precise in a much more general setting by Katzenberger [23]. We use Theorem
6.3 in [23] to deduce that for any T > 0

sup
t∈[0,T ]

∥∥XN (t)− ψF (XN (0), Nt)
∥∥⇒ 0 as N →∞, (4.34)

where ‖ · ‖ is the standard Euclidean norm. From the definition of XN and ψF it is also
clear that for any T > 0

sup
t∈[0,T ]

∥∥hN (t)− ψθ(hN (0), Nt)
∥∥⇒ 0 as N →∞. (4.35)

From now on, for any x ∈ Rn and ε > 0, let Bnε (x) denote the open ball in Rn

centered at x with radius ε. We have already argued that the Jacobian matrix of F
at xeq is stable. From a simple linearization argument (see for example the proof of
Theorem 3.7 in Khalil [24]) we can see that there exists a δ0 > 0 such that the open ball
B2q−1
δ0

(xeq) ⊂ U(xeq) and for every δ ∈ (0, δ0) there exists a ψF -invariant open set Wδ

whose closure W̄δ is contained in B2q−1
δ (xeq). From (4.33) we obtain

K0 ×K1 ⊂
⋃
t≥0

{x ∈ U(xeq) : ψF (x, t) ⊂Wδ} .

As Wδ is ψF -invariant, the open sets on the right are getting bigger and bigger as t
increases. Compactness of K0×K1 implies that there exists a tδ > 0 such that ψF (x, t) ∈
Wδ for all x ∈ K0 ×K1 and t ≥ tδ. This immediately gives us

sup
t≥tδ

sup
x∈K0×K1

‖ψF (x, t)− xeq‖ ≤ δ

and letting δ → 0 we obtain

lim sup
t→∞

sup
x∈K0×K1

‖ψF (x, t)− xeq‖ = 0. (4.36)

Now let tN be any sequence satisfying the conditions of this proposition. Then for any
T > 0

sup
t∈[0,T ]

∥∥XN (t+ tN )− xeq

∥∥
≤ sup
t∈[0,T ]

∥∥XN (t+ tN )− ψF (XN (0), N(t+ tN ))
∥∥+ sup

t∈[0,T ]

∥∥ψF (XN (0), Nt+NtN )− xeq

∥∥
≤ sup
t∈[0,T ]

∥∥XN (t+ tN )− ψF (XN (0), N(t+ tN ))
∥∥+ sup

t≥NtN
sup

x∈K0×K1

‖ψF (x, t)− xeq‖ ,

where the second inequality is true because XN (0) ∈ K0 × K1 a.s. for each N ∈ N.
From (4.34) and (4.36) we can see that as N →∞

sup
t∈[0,T ]

∥∥XN (t+ tN )− xeq

∥∥⇒ 0

which of course implies that

sup
t∈[0,T ]

∥∥hN (t+ tN )− heq

∥∥⇒ 0 and sup
t∈[0,T ]

∥∥Y N (t+ tN )
∥∥⇒ 0. (4.37)
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This proves part (A) of the proposition since the norms ‖ · ‖ and ‖ · ‖1 are equivalent in
Rq. From the definition of Y Ni we can check that for each i, j ∈ Q and t ≥ 0

hNj (t)Y Ni (t)− hNi (t)Y Nj (t) =

∑
l∈Q

hNl (t)

(hNj (t)〈f, µNi (t)〉 − hNi (t)〈f, µNj (t)〉
)
.

The limits (4.37) immediately give us part (B) of the proposition for any f ∈ D0. As D0

is dense in C(E), part (B) holds for any f ∈ C(E).

The following lemma will be useful in proving Theorem 2.6.

Lemma 4.5. Let the notation and assumptions be the same as in Proposition 2.5. Then
there is a compact set K ⊂ Ueq such that for all T > 0

lim
N→∞

P
(
hN (t) /∈ K for any t ∈ [0, T ]

)
= 0.

Proof. Since the Jacobian matrix [Jθ(heq)] is stable (part (B) of Assumption 2.1), by a
linearization argument similar to the one referred in the proof above, we can find an
ε > 0 such that the open ball Bqε (heq) ⊂ Ueq and there exists a ψθ-invariant open set Uε
such that its closure Ūε ⊂ Bqε (heq). One can argue as before that since K0 is a compact
set, there exists a tε such that for all t ≥ tε and x ∈ K0, ψθ(x, t) ∈ Uε. If we define K̂0 as

K̂0 =
{
h ∈ Ueq : ψθ(h, tε) ⊂ Ūε

}
, (4.38)

then it is a ψθ-invariant compact set containing K0. Because we have assumed that
hN (0) ∈ K0 a.s. for all N ∈ N, we must have that for all t ≥ 0, ψθ(hN (0), t) ∈ K̂0 a.s..
But Ueq is open in Rq+ (see Section 2.2) and so there is a γ > 0 such that

K =

{
x ∈ Ueq : inf

y∈K̂0

‖y − x‖ ≤ γ
}

is a compact subset of Ueq. Observe that if for some t ≥ 0, hN (t) /∈ K then we must have
that ‖hN (t)− ψθ(hN (0), Nt)‖ > γ. Therefore

lim
N→∞

P
(
hN (t) /∈ K for any t ∈ [0, T ]

)
≤ lim
N→∞

P

(
sup
t∈[0,T ]

∥∥hN (t)− ψθ(hN (0), Nt)
∥∥ > γ

)
.

The limit on the right is 0 due to (4.35) and this proves the lemma.

4.3 Solution to a system of partial differential equations

Recall the discussion at the end of Section 2.4. To prove Theorem 2.6 we require
a function Λ that allows us to construct a P(E) valued process {νN (t) : t ≥ 0} (see
(2.44)) whose dynamics is well-behaved as N approaches∞. The goal of this section is
to guarantee that such a function Λ exists.

Specifically, we need to show that for some open set Ûeq ⊂ Rq containing Ueq (given
by (2.20)), we have a function Λ ∈ C2(Ûeq,R

q
∗) which satisfies the following:

AT (h)Λ(h) + [JΛ(h)] θ(h) = 0̄q for all h ∈ Ûeq, (4.39)

〈Λ(h), h〉 = 1 for all h ∈ Ûeq (4.40)

and Λ(heq) = veq. (4.41)

Here veq is defined in (2.34) and [JΛ(h)] in equation (4.39) refers to the Jacobian matrix
of Λ at h. The significance of the above relations will become clear in Section 4.4.
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The major difficulty in solving (4.39) arises in the neighbourhood of heq. This is be-
cause θ(heq) = 0̄q (part (A) of Assumption 2.1), which causes degeneracy in the system.
However the next proposition shows that by employing power series expansions we can
get around this problem and find an analytic solution to (4.39) in a neighbourhood of
heq. We later construct an open set Ûeq containing Ueq and extend the solution over the
whole Ûeq. We also show that this solution has all the properties we desire.

Proposition 4.6. There exists an open set V containing heq such that the equation
(4.39) has an analytic solution Λ on V satisfying (4.41).

Proof. We first transform the equation (4.39) into another equation that is easier to
work with. Let λ1, . . . , λq be the eigenvalues of the matrix [Jθ(heq)]. We will prove this
proposition under the assumption that all these eigenvalues are real. We later remark
how the proof changes when they take complex values.

We know from part (B) of Assumption 2.1 that λi < 0 for each i ∈ Q. Pick an
ε0 ∈ (0, 1) such that

λi < −4ε0 for all i ∈ Q. (4.42)

Let M1 ∈ M(q, q) be the matrix representing the Jordan canonical form of [Jθ(heq)].
Its diagonal is occupied by λ1, . . . , λq, while its super-diagonal entries are either 0 or
1. All the other entries are 0. Let P1 ∈ M(q, q) be the invertible matrix such that
P1[Jθ(heq)]P−1

1 = M1. Let P2 = Diag(1, ε0, ε
2
0, . . . , ε

q−1
0 ), P = P−1

2 P1 and M = P−1
2 M1P2.

Then

P [Jθ(heq)]P−1 = M, (4.43)

and M is just the matrix M1 with each 1 on the super-diagonal replaced by ε0.
In this proof, 0̄ will always denote the vector of zeroes in Rq. Since heq ∈ Rq∗ (see

part (A) of Lemma A.1) and the map x 7→ heq + P−1x is continuous, we can find a r0 > 0

such that for any x ∈ Bqr0(0̄) we have heq + P−1x ∈ Rq∗, where Bqr0(0̄) is the open ball in

Rq with radius r0 centered at 0̄. For all x ∈ Bqr0(0̄), let Â(x) ∈ M(q, q) and θ̂(x) ∈ Rq be
given by

Â(x) = AT (heq + P−1x) and θ̂(x) = Pθ(heq + P−1x).

Suppose β : U → Rq is a function which is analytic in an open set U ⊂ Bqr0(0̄) and for all
x ∈ U

Â(x)β(x) + [Jβ(x)]θ̂(x) = 0̄ (4.44)

along with

β(0̄) = veq, (4.45)

where veq is given by (2.34). If V ⊂ R
q
+ is the image of U under the map x 7→ heq +

P−1x, then V is an open set containing heq and the function Λ : V → Rq defined
by Λ(h) = β(P (h − heq)) is an analytic solution to (4.39) satisfying (4.41). Hence to
prove the proposition it suffices to show that equation (4.44) has a solution β in some
neighbourhood of 0̄ which satisfies (4.45).

We will be using the multi-index notation to write the power series in q variables. For
any multi-index α = (α1, α2, . . . , αq) ∈ Nq0 let |α| = α1+α2+· · ·+αq and α! = α1!α2! . . . αq!.
For two multi-indices ν = (ν1, . . . , νq) ∈ Nq0 and α = (α1, . . . , αq) ∈ Nq0, we say that ν ≤ α
if νi ≤ αi for all i = 1, . . . , q and we say that ν < α if ν ≤ α and ν 6= α. If ν ≤ α then(

α

ν

)
=

α!

ν!(α− ν)!
.
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For any vector x ∈ Rq and multi-index α = (α1, α2, . . . , αq) ∈ Nq0 define

xα = xα1
1 xα2

2 . . . xαqq

and the differential operator Dα as

Dα =
∂α1

∂xα1
1

. . .
∂αq

∂x
αq
q
.

The operator Dα acts component-wise on matrix and vector valued functions.
Consider the function β given by the power series

β(x) = veq +

∞∑
|α|=1

γαx
α, (4.46)

where γα ∈ Rq is given by

γα =
Dαβ(0)

α!
. (4.47)

This function β satisfies (4.45). To prove the proposition it suffices to show that the
vectors γα can be suitably chosen such that β satisfies (4.44) and there exists a positive
constant C such that

‖γα‖∞ ≤ C |α| for all α ∈ Nq0. (4.48)

The last condition ensures the absolute convergence of the power series (4.46) in a
neighbourhood of 0̄.

Since θ̂(0̄) = θ(heq) = 0̄, if we plug x = 0̄ in (4.44) we obtain

Â(0̄)β(0̄) = AT (heq)veq = 0.

This is satisfied because of the choice of veq (see (2.34)).
Applying the operator Dα to equation (4.44) and using the product rule for multi-

derivatives we get

0̄ = Dα

(
Â(x)β(x)

)
+Dα

(
[Jβ(x)]θ̂(x)

)
=
∑
ν≤α

(
α

ν

)(
D(α−ν)Â(x)

)
(Dνβ(x)) +

∑
ν≤α

(
α

ν

)
(Dν [Jβ(x)])

(
D(α−ν)θ̂(x)

)
= Â(x)Dαβ(x) + (Dα[Jβ(x)]) θ̂(x) +

∑
{ν<α,|α−ν|=1}

(
α

ν

)
(Dν [Jβ(x)])

(
D(α−ν)θ̂(x)

)
+
∑
ν<α

(
α

ν

)(
D(α−ν)Â(x)

)
(Dνβ(x)) +

∑
{ν<α,|α−ν|>1}

(
α

ν

)
(Dν [Jβ(x)])

(
D(α−ν)θ̂(x)

)
.

On rearranging we obtain

Â(x)Dαβ(x) + (Dα[Jβ(x)]) θ̂(x) +
∑

{ν<α,|α−ν|=1}

(
α

ν

)
(Dν [Jβ(x)])

(
D(α−ν)θ̂(x)

)
= −

∑
ν<α

(
α

ν

)(
D(α−ν)Â(x)

)
(Dνβ(x))−

∑
{ν<α,|α−ν|>1}

(
α

ν

)
(Dν [Jβ(x)])

(
D(α−ν)θ̂(x)

)
.

(4.49)
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For any j ∈ Q, let ej ∈ Nq0 be the multi-index (0, . . . , 0, 1, 0, . . . , 0), with the 1 at the j-th
position. Observe that if |α− ν| = 1 then ν = α− ej for some j ∈ Q. Therefore

∑
{ν<α,|α−ν|=1}

(
α

ν

)
(Dν [Jβ(x)])

(
D(α−ν)θ̂(x)

)
=
∑
j∈Q

αj
(
D(α−ej)[Jβ(x)]

) (
∂j θ̂(x)

)
=
∑
j,k∈Q

αj

(
∂j θ̂k(x)

) (
D(α−ej+ek)β(x)

)
=
∑
j,k∈Q

αj [Jθ̂(x)]kj
(
D(α−ej+ek)β(x)

)
.

Note that [Jθ̂(0̄)] = M (see (4.43)). This matrix has the eigenvalues λ1, . . . , λq on the
diagonal and either 0 or ε0 on the super-diagonal. For each j = 2, . . . , q let εj = ε0 if
M(j−1)j = ε0 and εj = 0 otherwise. Then for x = 0̄ we obtain

∑
{ν<α,|α−ν|=1}

(
α

ν

)
(Dν [Jβ(0̄)])

(
D(α−ν)θ̂(0̄)

)

=
∑
j∈Q

αjλjDαβ(0̄) +

q∑
j=2

αjεjD(α−ej+ej−1)β(0̄).

Note that θ̂(0̄) = Pθ(heq) = 0̄ and for each α ∈ Nq0, γα is given by (4.47). We plug x = 0̄

in (4.49) and divide by α! to get

Â(0̄)γα +
∑
j∈Q

αjλjγα +

q∑
j=2,αj>0

(αj−1 + 1)εjγ(α−ej+ej−1) = Yα (4.50)

where Yα = −
∑
ν<α

(
D(α−ν)Â(0̄)

)
(α− ν)!

γν −
∑

{ν<α,|α−ν|>1}

(Dν [Jβ(0̄)])

ν!

(
D(α−ν)θ̂(0̄)

)
(α− ν)!

.

The second term can be simplified as

∑
{ν<α,|α−ν|>1}

(Dν [Jβ(0̄)])

ν!

(
D(α−ν)θ̂(0̄)

)
(α− ν)!

=
∑

{ν<α,|α−ν|>1}

∑
j∈Q

(
D(α−ν)θ̂j(0̄)

)
(α− ν)!

(
D(ν+ej)β(0̄)

)
ν!

=
∑

{ν<α,|α−ν|>1}

∑
j∈Q

(νj + 1)

(
D(α−ν)θ̂j(0̄)

)
(α− ν)!

γ(ν+ej).

Therefore we can write Yα as

Yα = −
∑
ν<α

(
D(α−ν)Â(0̄)

)
(α− ν)!

γν −
∑

{ν<α,|α−ν|>1}

∑
j∈Q

(νj + 1)

(
D(α−ν)θ̂j(0̄)

)
(α− ν)!

γ(ν+ej). (4.51)

For each k ∈ N, let Sk be the set of multi-indices given by Sk = {α ∈ Nq0 : |α| = k}.
The number of elements in Sk is

sk =

(
k + q − 1

q − 1

)
.

We order the multi-indices in Sk as follows. We say that ν � α if and only if
∑
i∈Q iνi ≤∑

i∈Q iαi. Let αk(1), . . . , αk(sk) be all the elements of Sk listed in the order given by �.
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Let the matrix Ξ(k) ∈ M(qsk, qsk) be a block matrix composed of s2
k blocks of size

q × q. For each i, j ∈ {1, 2, . . . , sk} the block starting at row q(i − 1) + 1 and column
q(j − 1) + 1 of matrix Ξ(k) is occupied by the matrix Lij ∈ M(q, q) defined as follows. If

i = j then Lii = Â(0̄)+
(∑

l∈Q α
k
l (i)λl

)
Iq. If i and j are such that αk(j) = αk(i)−el+el−1

for some l ∈ {2, . . . , q} then Lij = εl(α
k
l−1(i) + 1)Iq. For every other i and j, Lij is just a

matrix of zeroes. The matrix Ξ(k) is lower block-triangular and its determinant is given
by

Det
(

Ξ(k)
)

=

sk∏
i=1

Det

Â(0̄) +

∑
l∈Q

αkl (i)λl

 Iq

 .

The eigenvalues λ1, . . . , λq satisfy (4.42). Since all the eigenvalues of the matrix Â(0̄) =

AT (heq) have non-positive real parts (see part (B) of Lemma A.1), the above determinant
is non-zero. Hence the matrix Ξ(k) is invertible.

Let X(k) and Y (k) be the vectors in Rqsk given by

X(k) =
(
γαk(1), γαk(2), . . . , γαk(sk)

)
and Y (k) =

(
Yαk(1), Yαk(2), . . . , Yαk(sk)

)
.

Using (4.50) we obtain the following linear system

Ξ(k)X(k) = Y (k)

and since the matrix Ξ(k) is invertible

X(k) = [Ξ(k)]−1Y (k). (4.52)

Note that Y (k) only depends on {γα : α ∈ Sl for l ∈ {0, 1, . . . , k − 1}}. Hence for each
k ∈ N we can solve for the whole set {γα : α ∈ Sk} using (4.52). Doing this iteratively
for each k we can solve for γα for all α ∈ Nq0. The function β given by (4.46) with this
choice of γα’s will solve (4.44) in a neighbourhood of 0̄ if we can show that (4.48) holds
for some C > 0. Showing this will be our next task.

Any entry on the diagonal of Ξ(k) has the form Âii(0̄) +
∑
j∈Q λjαj for some α ∈ Sk

and i ∈ Q. Observe that Â(0̄) = AT (heq) and this matrix only has non-positive entries on
its diagonal (see (2.13)). From (4.42), for α ∈ Sk we obtain the estimate∣∣∣∣∣∣Âii(0̄) +

∑
j∈Q

λjαj

∣∣∣∣∣∣ ≥ 4ε0k. (4.53)

For each row of Ξ(k), the sum of the absolute values of the non-diagonal entries is
bounded above by

max
i∈Q

∣∣∣∣∣∣
∑

j∈Q,j 6=i

Âij(0̄) +

q∑
l=2

εl(αl−1 + 1)

∣∣∣∣∣∣ ≤ max
i∈Q

 ∑
j∈Q,j 6=i

|Âij(0̄)|

+ ε0(k + q). (4.54)

Hence from (4.53) and (4.54) we can conclude that there exists a K0 ∈ N such that for
all k ≥ K0 the matrix Ξ(k) is strictly diagonally dominant and we have

min
1≤l≤qsk

∣∣∣∣∣∣
∣∣∣[Ξ(k)]ll

∣∣∣− qsk∑
r=1,r 6=l

∣∣∣[Ξ(k)]lr

∣∣∣
∣∣∣∣∣∣ ≥ kε0.
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Theorem 1 in Varah [36] shows that for all k ≥ K0∥∥∥[Ξ(k)]−1
∥∥∥
∞
≤ 1

kε0
. (4.55)

Part (D) of Assumption 2.1 says that for each i, j ∈ Q, the functions ρi and βij are
analytic in a neighbourhood of heq. This implies that there is a neighbourhood U of
0̄ such that the M(q, q)-valued function Â and the Rq-valued function θ̂ are analytic
component-wise on U . Therefore there is a constant C0 such that

‖DαÂ(0̄)‖∞ ≤ C |α|0 α! and ‖Dαθ̂(0̄)‖∞ ≤ C |α|0 α! for all α ∈ Nq0. (4.56)

We can assume that C0 > 1. Choose a δ > 0 satisfying

δ <

(
ε0

C0q(q + 1)2q+3

)
(4.57)

and define C = C0/δ. We will prove (4.48) by induction. Let k > K0 and suppose that C
is large enough to satisfy

‖γν‖∞ ≤ C
|ν| (4.58)

for all l ∈ {1, 2, . . . , k − 1} and ν ∈ Sl. To prove (4.48) we need to show that ‖γα‖∞ ≤ Ck
for all α ∈ Sk. This is equivalent to showing that

∥∥X(k)
∥∥
∞ ≤ C

k. From (4.52) and (4.55)
we have ∥∥∥X(k)

∥∥∥
∞
≤
∥∥∥[Ξ(k)]−1

∥∥∥
∞

∥∥∥Y (k)
∥∥∥
∞
≤ 1

kε0

∥∥∥Y (k)
∥∥∥
∞
.

Hence to prove (4.48) it suffices to show that∥∥∥Y (k)
∥∥∥
∞

= max
α∈Sk

‖Yα‖∞ ≤ kε0C
k. (4.59)

From (4.51), (4.56) and (4.58), for any α ∈ Sk we get

‖Yα‖∞ ≤
∑
ν<α

C
|α−ν|
0 C |ν| +

∑
{ν<α,|α−ν|>1}

∑
j∈Q

(νj + 1)C
|α−ν|
0 C |ν|+1

=
∑
ν<α

C
|α−ν|
0 C |ν| +

∑
{ν<α,|α−ν|>1}

(|ν|+ q)C
|α−ν|
0 C |ν|+1.

But C = C0/δ and |α| = k. Hence

‖Yα‖∞ ≤ C
k

∑
ν<α

δ|α−ν| + C
∑

{ν<α,|α−ν|>1}

(|ν|+ q)δ|α−ν|


≤ Ck

∑
ν<α

δ|α−ν| + 2kC
∑

{ν<α,|α−ν|>1}

δ|α−ν|

 . (4.60)

Note that

1 +
∑
ν<α

δ|α−ν| =
∑
ν≤α

δ|α−ν| =

α1∑
ν1=0

α2∑
ν2=0

· · ·
αq∑
νq=0

q∏
i=1

δ(αi−νi)

=

q∏
i=1

(
1− δαi+1

1− δ

)

=

q∏
i=1,αi>0

(
1− δαi+1

1− δ

)
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and this shows that ∑
ν<α

δ|α−ν| ≤ (1− δ)−n(α) − 1, (4.61)

where n(α) be the number of non-zero coordinates of α. Similarly∑
{ν<α,|α−ν|>1}

δ|α−ν| =
∑
ν≤α

δ|α−ν| − 1− n(α)δ ≤ (1− δ)−n(α) − 1− n(α)δ. (4.62)

Since δ ∈ (0, 1/2) and n(α) ≤ q, by Taylor’s theorem we see that

(1− δ)−n(α) − 1 ≤ q2q+1δ and
∑
ν≤α

δ|α−ν| − 1− n(α)δ ≤ q(q + 1)2q+1δ2.

Using these estimates, (4.61), (4.62) and (4.60) we get

‖Yα‖∞ ≤ C
k
(
q2q+1δ + 2kCq(q + 1)2q+1δ2

)
= Ckδk

(
C0q(q + 1)2q+3

)
.

But δ satisfies (4.57) which shows (4.59) and completes the proof of the proposition.
At the beginning of the proof, we had assumed that the eigenvalues λ1, . . . , λq of the

matrix [Jθ(heq)] are all real-valued. If that is not true then the invertible matrix P that
appears in (4.43) has complex entries. Let C be the field of complex numbers. Define
a map φ : Rq → Cq by φ(h) = P (h − heq). The image of this map, denoted by φ(Rq),
sits as a q-dimensional real vector space in Cq. The map φ is an infinitely differentiable
isomorphism between Rq and φ(Rq) and using this we can define derivatives of real-
valued functions over φ(Rq). As above, we can obtain an analytic solution β of (4.44)
satisfying (4.45), defined on some open set U in φ(Rq) containing 0̄. On V = φ−1(U),
the function Λ defined by Λ(h) = β(φ(h)) will then be an analytic solution to (4.39)
satisfying (4.41).

The above proposition provides us with an analytic solution to (4.39) in a neighbour-
hood of heq. Our next task is to extend it to a solution in C2(Ûeq,R

q
∗) where Ûeq is an

open set in Rq containing Ueq.
Recall from Section 2.2 that for all i, j ∈ Q, βij , ρi are functions in C2(Rq+,R+). Let

O ⊂ Rq be the open set containing Rq+ defined by

O = {h ∈ Rq : hi > −1 for all i = 1, . . . , q} .

Then we can extend the functions βij , ρi to functions β̂ij , ρ̂i ∈ C2(Rq,R+) such that
β̂ij(h) = 0 and ρ̂i(h) = 0 for all h /∈ O. Moreover since each βij is bounded, we can make
sure that its extension β̂ij is also bounded. For each h ∈ Rq let Â(h) ∈ M(q, q) be the
matrix defined by (2.13) with βij , ρi replaced by β̂ij , ρ̂i. Also let θ̂ ∈ C2(Rq,Rq) be the
function given by

θ̂(h) = Â(h)h for h ∈ Rq. (4.63)

Corresponding to θ̂ we can define the flow map ψ̂ ∈ C2(Rq × R+, O) as the unique
solution to the equation analogous to (2.18), with θ replaced by θ̂. Define the region of
attraction of the fixed point heq as

Ûeq =
{
h ∈ O : lim

t→∞
ψ̂(h, t) = heq

}
.

Then Ûeq is an open set in Rq (see Lemma 3.2 in [24]) containing Ueq.
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Proposition 4.7. There exists a solution Λ ∈ C2(Ûeq,R
q
+) of (4.39) satisfying (4.40)

and (4.41).

Proof. Suppose that U ⊂ Ûeq is any ψ̂-invariant open set and the function Λ ∈ C2(U,Rq)

satisfies (4.39) and (4.41). We first show that this function automatically satisfies (4.40)
on U . Using (4.39) and the ψ̂-invariance of U we get

d

dt
Λ(ψ̂(h, t)) = [JΛ(ψ̂(h, t))]θ̂(ψ̂(h, t)) = −ÂT (ψ̂(h, t))Λ(ψ̂(h, t)). (4.64)

Observe that

d

dt
〈ψ̂(h, t),Λ(ψ̂(h, t))〉 =

〈
d

dt
ψ̂(h, t),Λ(ψ̂(h, t))

〉
+

〈
ψ̂(h, t),

d

dt
Λ(ψ̂(h, t))

〉
=
〈
θ̂
(
ψ̂(h, t)

)
,Λ(ψ̂(h, t))

〉
−
〈
ψ̂(h, t), ÂT (ψ̂(h, t))Λ(ψ̂(h, t))

〉
=
〈
θ̂
(
ψ̂(h, t)

)
,Λ(ψ̂(h, t))

〉
−
〈
Â(ψ̂(h, t))ψ̂(h, t),Λ(ψ̂(h, t))

〉
= 0,

where the last equality holds due to (4.63). This shows that for any fixed h ∈ U the
function 〈ψ̂(h, t),Λ(ψ̂(h, t))〉 is a constant function of time. Therefore (4.41) implies that
for any h ∈ U

〈h,Λ(h)〉 = lim
t→∞
〈ψ̂(h, t),Λ(ψ̂(h, t))〉 = 〈heq,Λ(heq)〉 = 1.

This proves that Λ satisfies (4.40) on U . For any h ∈ U and 0 ≤ t ≤ t0, let Φ(h, t, t0) be
the matrix defined in Lemma A.2. Since Λ satisfies (4.64) we must have

Λ(ψ̂(h, t)) = Φ(h, t, t0)Λ(ψ̂(h, t0)). (4.65)

From Proposition 4.6 we know that on some open set V ⊂ Rq containing heq we
can find a solution Λ̄ ∈ C2(V,Rq) that satisfies (4.39) along with (4.41). Since veq ∈ Rq∗
(that is, it is positive component-wise) and Λ̄ is a continuous function, by shrinking V if
necessary, we can ensure that the image of V under Λ̄ lies in Rq∗. Since V is open, there
exists a r ∈ (0, 1) such that Bqr (heq) ⊂ V , where Bqr (heq) is the open ball in Rq centered
at heq with radius r. As in the proof of Lemma 4.5, we can find a ψ̂-invariant open set
W ⊂ Bqr (heq) which contains heq.

For each n ∈ N define an open set

On = {h ∈ Ûeq : ψ̂(h, n) ⊂W}.

Each On is ψ̂-invariant. Furthermore W ⊂ O1 ⊂ O2 . . . and
⋃∞
n=1On = Ûeq. Define

λn(h, t) for each h ∈ On and t ∈ [0, n) by

λn(h, t) = Φ(h, t, n)Λ̄(ψ̂(h, n)). (4.66)

Observe that ψ̂(h, n) ∈ W ⊂ V and so Λ̄(ψ̂(h, n)) is well-defined and also Λ̄(ψ̂(h, n)) ∈
R
q
∗. Part (C) of Lemma A.2 shows that λn(h, t) ∈ Rq∗. Since Λ̄ ∈ C2(V,Rq∗), Φ(·, ·, n) ∈

C2(Ûeq × [0, n],MR(q, q)) (see Lemma A.2) and ψ̂ ∈ C2(Rq ×R+,R
q) we must have that

λn ∈ C2(On × [0, n),Rq∗). Note that Λ̄ satisfies (4.65) for all h ∈W and so for 0 ≤ t ≤ t0

Λ̄(ψ̂(h, t)) = Φ(h, t, t0)Λ̄(ψ̂(h, t0)). (4.67)

Therefore if h ∈W , then for any n ∈ N and t ≥ 0 we have

λn(h, t) = Λ̄(ψ̂(h, t)). (4.68)
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Using parts (A) and (B) of Lemma A.2, (4.67) and the semigroup property of ψ̂ (similar
to (2.19)) we can also see that for any h ∈ On

λn(ψ̂(h, t), 0) = Φ(ψ̂(h, t), 0, n)Λ̄
(
ψ̂(ψ̂(h, t), n)

)
= Φ(h, t, n+ t)Λ̄

(
ψ̂(h, n+ t)

)
= Φ(h, t, n)Φ(h, n, n+ t)Λ̄(ψ̂(h, n+ t))

= Φ(h, t, n)Λ̄(ψ̂(h, n))

= λn(h, t).

Let h ∈ On and m ≥ n. Then ψ̂(h, n) ∈ W . From part (A) of Lemma A.2 and (4.67) we
can deduce that for any t ∈ [0, n)

λm(h, t) = Φ(h, t,m)Λ̄(ψ̂(h,m)) = Φ(h, t, n)Φ(h, n,m)Λ̄(ψ̂(h,m))

= Φ(h, t, n)Λ̄(ψ̂(h, n))

= λn(h, t).

Hence if we define the map λ : Ûeq ×R+ → R
q
∗ by

λ(h, t) = λn(h, t) if (h, t) ∈ On × [0, n),

then λ is a well-defined function in C2(Ûeq ×R+,R
q
∗) which satisfies

λ(h, t) = λ(ψ̂(h, t), 0) for all (h, t) ∈ Ûeq ×R+. (4.69)

From (4.66) and the definition of the matrix Φ we can see that

dλ(h, t)

dt
= −ÂT (ψ̂(h, t))λ(h, t). (4.70)

Define Λ : Ûeq → R
q
∗ by

Λ(h) = λ(h, 0).

Then this map is in C2(Ûeq,R
q
∗) and (4.69) implies that for any (h, t) ∈ Ûeq ×R+

dλ(h, t)

dt
=
dλ(ψ̂(h, t), 0)

dt
=

d

dt
Λ(ψ̂(h, t)) = [JΛ(ψ̂(h, t))]

dψ̂(h, t)

dt
= [JΛ(ψ̂(h, t))]θ̂(ψ̂(h, t)).

Using (4.70) we obtain

[JΛ(ψ̂(h, t))]θ̂(ψ̂(h, t)) = −ÂT (ψ̂(h, t))λ(h, t) = −ÂT (ψ̂(h, t))Λ(ψ̂(h, t)).

If we set t = 0 then we see that Λ is a solution to (4.39). Since Λ̄ satisfies (4.41),
equation (4.68) implies that Λ will also satisfy it. We have already shown that such a
solution of (4.39) will automatically satisfy (4.40) for all h ∈ Ûeq. This completes the
proof of the proposition.

4.4 Fleming-Viot convergence

In this section we will finally prove the main result of our paper, which is Theorem
2.6. Let {µN (t) : t ≥ 0} be a Mq

N,a(E)-valued process with generator AN
l for some

l ∈ {0, 1, 2, 3}. As outlined at the end of Section 2.4, we first extract a P(E)-valued
process {νN (t) : t ≥ 0} from the process {µN (t) : t ≥ 0}. This step requires a solution
Λ of (4.39) whose existence was shown in Section 4.3. We then show that as N → ∞,
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we have νN ⇒ ν where {ν(t) : t ≥ 0} is an appropriately defined Fleming-Viot process.
This convergence and Proposition 2.5 prove Theorem 2.6. Before we proceed we need
some preliminary results.

For any set A ⊂ Rq+ define

Mq
F (E : A) = {µ ∈Mq

F (E) : H(µ) ∈ A} .

Note that if A is a compact set then the setMq
F (E : A) is also compact.

Recall the definition of the set Ueq from (2.20). Let {FN : N ∈ N} be a sequence of
real-valued functions on Mq

F (E : Ueq). We will say that this sequence belongs to class
o(N−m) for some m ∈ N0, if and only if for each compact K ⊂ Ueq we have

lim sup
N→∞

sup
µ∈Mq

F (E:K)

Nm |FN (µ)| = 0.

For two such sequences {FN : N ∈ N} and {GN : N ∈ N}, we say that FN (µ) =

GN (µ) + o(N−m) for all µ ∈ Mq
F (E : Ueq) if and only if the sequence of functions

{(FN −GN ) : N ∈ N} is in the class o(N−m).
From now on let Λ ∈ C2(Ûeq,R

q
∗) be a function that satisfies (4.39), (4.40) and (4.41)

on some open set Ûeq ⊂ Rq containing Ueq. Such a function exists by Proposition 4.7.
Define a continuous map Γ :Mq

F (E : Ueq)→ P(E) by

Γ(µ) = ν, (4.71)

where the measure ν is given by

ν(S) =
∑
i∈Q

Λi(h)µi(S) for any S ∈ B(E), (4.72)

with h = H(µ) being the density vector corresponding to µ. Note that for each h ∈ Ueq,
Λ(h) is a vector which is positive in each component and hence ν(S) ≥ 0 for all S ∈ B(E).
Since the function Λ satisfies (4.40) we have

ν(E) =
∑
i∈Q

Λi(h)µi(E) =
∑
i∈Q

Λi(h)hi = 1.

This shows that ν is a probability measure on E.
Let Υ′ be the class of functions in C (Mq

F (E : Ueq)) given by

Υ′ = {F (µ) = (hj〈f, µi〉 − hi〈f, µj〉)L(µ) : (h1, . . . , hq) = H(µ), (4.73)

f ∈ C(E) , L ∈ C (Mq
F (E : Ueq)) and i, j ∈ Q} .

Let Υ be the smallest algebra of functions in C (Mq
F (E : Ueq)) containing Υ′. Observe

that if G ∈ C (Mq
F (E : Ueq)) and L ∈ Υ, then the product GL is in Υ. Given two functions

G1, G2 ∈ C (Mq
F (E : Ueq)) we say that G2(µ) = G1(µ) + Υ for all µ ∈ Mq

F (E : Ueq) if and
only if the function (G2 −G1) is in the class Υ.

Let F ∈ C(P(E)) be a function in the class C0 defined by (2.4). Then F has the form

F (ν) =

m∏
j=1

〈fj , ν〉, (4.74)

where f1, . . . , fm ∈ D0. Corresponding to F , define the functions Fl, Flk ∈ C0 for all
distinct l, k ∈ Q by

Fl(ν) =

m∏
j=1,j 6=l

〈fj , ν〉 and Flk(ν) =

m∏
j=1,j 6=l,k

〈fj , ν〉. (4.75)
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Using any F ∈ C0 we construct a function F̂ ∈ Cq0 as follows. We first extend the
definition of Λ to the whole of Rq by letting Λ(h) = 0̄q for all h /∈ Ûeq. If F has the form
(4.74) then consider the function F̂ :Mq

F (E)→ R given by

F̂ (µ) =

m∏
j=1

∑
i∈Q

Λi(h)〈fj , µi〉

 , (4.76)

where h = H(µ). Due to (4.40), the function F̂ is in the class Cq0 defined by (2.11). The
next result demonstrates how the action of various operators on functions of the form
(4.76) can be approximated.

Proposition 4.8. Let F ∈ C0 have the form (4.74). Corresponding to F let F̂ ∈ Cq0
have the form (4.76) and for distinct l, k ∈ Q let Fl, Flk be given by (4.75). Then for all
µ ∈Mq

F (E : Ueq) with h = H(µ) and ν = Γ(µ) we have the following.

(A) Let RN be the operator given by (2.21). Then

NRN F̂ (µ) =
∑

1≤l 6=k≤m

γ(h) (〈flfk, ν〉 − 〈fl, ν〉〈fk, ν〉〉)Flk(ν) + Υ + o(1), (4.77)

where

γ(h) =
1

2

∑
i,j∈Q

βij(h)hi(Λj(h))2 +
∑
i∈Q

ρi(h)hi(Λi(h))2

 . (4.78)

(B) Let BN be the operator given by (2.12). Then

BN F̂ (µ) =

m∑
l=1

∑
i∈Q

Λi(h)hi〈Bifl, ν〉

Fl(ν) + Υ + o(1). (4.79)

(C) Let GN
1 be the operator given by (2.28). Then

GN
1 F̂ (µ) =

m∑
l=1

[(〈bs(·, h)fl(·), ν〉 − 〈bs(·, h), ν〉〈fl, ν〉) (4.80)

+ (〈ds(·, h), ν〉〈fl, ν〉 − 〈ds(·, h)fl(·), ν〉)]Fl(ν) + Υ + o(1),

where for any x ∈ E and h ∈ Rq+

bs(x, h) =
∑
i,j∈Q

bsij(x, h)Λj(h)hi and ds(x, h) =
∑
i∈Q

dsi (x, h)Λi(h)hi. (4.81)

(D) Let GN
2 be the operator given by (2.29). Then

GN
2 F̂ (µ) =

m∑
l=1

∑
i,j∈Q

βij(h)Λj(h)hi〈Cijfl, ν〉

Fl(ν) + Υ + o(1), (4.82)

where the operators Cij are as in Assumption 2.2.

(E) Let GN
3 be the operator given by (2.30). Then

GN
3 F̂ (µ) =

m∑
l=1

∑
i∈Q

κi(h)Λi(h)

∫
E

(fl(x)− 〈fl, ν〉) Θi(dx)

Fl(ν) + Υ + o(1).

(4.83)
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Proof. For any j ∈ Q, let ej be the vector in Rq of the form ej = (0, . . . , 0, 1, 0, . . . , 0) with
the 1 at the j-th position. Since Λ ∈ C2(Ûeq,R

q
+) and Ûeq is an open set containing Ueq,

if h ∈ Ueq, then using Taylor’s theorem we can write

Λi

(
h± 1

N
ej

)
= Λi(h)± 1

N

∂Λi(h)

∂hj
+

1

2N2

∂2Λi(h)

∂h2
j

+ o(N−2)

for any i, j ∈ Q. But then for any µ ∈MF (E : Ueq) and x ∈ E

F̂

(
µ± 1

N
δjx

)
=

m∏
l=1

∑
i∈Q

Λi

(
h± 1

N
ej

)
〈fl, µi〉 ± Λj

(
h± 1

N
ej

)
fl(x)

N


=

m∏
l=1

∑
i∈Q

Λi(h)〈fl, µi〉 ±
1

N

∑
i∈Q

∂Λi(h)

∂hj
〈fl, µi〉+ Λj(h)fl(x)


+

1

N2

1

2

∑
i∈Q

∂Λ2
i (h)

∂h2
j

〈fl, µi〉+
∂Λj(h)

∂hj
fl(x)

+ o(N−2)


= F̂ (µ)± 1

N

m∑
l=1

χjl (µ, x)Fl(ν) +
1

N2

m∑
l=1

φjl (µ, x)Fl(ν)

+
1

2N2

∑
1≤l 6=k≤m

χjl (µ, x)χjk(µ, x)Flk(ν) + o(N−2),

where Fl, Flk are as in (4.75) and χjl (µ, x), φjl (µ, x) are given by

χjl (µ, x) =
∑
i∈Q

∂Λi(h)

∂hj
〈fl, µi〉+ Λj(h)fl(x)

and φjl (µ, x) =
1

2

∑
i∈Q

∂Λ2
i (h)

∂h2
j

〈fl, µi〉+
∂Λj(h)

∂hj
fl(x). (4.84)

On rearranging we obtain

F̂

(
µ± 1

N
δjx

)
− F̂ (µ) =± 1

N

m∑
l=1

χjl (µ, x)Fl(ν) +
1

N2

m∑
l=1

φjl (µ, x)Fl(ν) (4.85)

+
1

2N2

∑
1≤l 6=k≤m

χjl (µ, x)χjk(µ, x)Flk(ν) + o(N−2).
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Therefore for any µ ∈MF (E : Ueq)

NRN F̂ (µ) = N2
∑
i,j∈Q

∫
E

βij(h)

(
F̂

(
µ+

1

N
δjx

)
− F̂ (µ)

)
µi(dx)

+N2
∑
i∈Q

∫
E

ρi(h)

(
F̂

(
µ− 1

N
δix

)
− F̂ (µ)

)
µi(dx)

= N

m∑
l=1

∑
i,j∈Q

βij(h)〈χjl (µ, ·), µi〉 −
∑
i∈Q

ρi(h)〈χil(µ, ·), µi〉

Fl(ν)

+

m∑
l=1

∑
i,j∈Q

βij(h)〈φjl (µ, ·), µi〉+
∑
i∈Q

ρi(h)〈φil(µ, ·), µi〉

Fl(ν)

+
1

2

∑
1≤l 6=k≤m

∑
i,j∈Q

βij(h)〈χjl (µ, ·)χ
j
k(µ, ·), µi〉

+
∑
i∈Q

ρi(h)〈χil(µ, ·)χil(µ, ·), µi〉

Flk(ν) + o(1).

But note that∑
i,j∈Q

βij(h)〈χjl (µ, ·), µi〉+
∑
i∈Q

ρi(h)〈χil(µ, ·), µi〉

=
∑
r∈Q
〈fl, µr〉

∑
j∈Q

∂Λr(h)

∂hj

∑
i∈Q

βij(h)hi − ρj(h)hj

+
∑
j∈Q

βrj(h)Λj(h)− ρr(h)Λr(h)


=
∑
r∈Q
〈fl, µr〉

∑
j∈Q

∂Λr(h)

∂hj
θj(h) +

∑
j∈Q

Arj(h)Λj(h)

 ,

where the matrix A(h) and the vector θ(h) are defined by (2.13) and (2.14). Since the
function Λ satisfies (4.39), the expression on the right is just 0. Hence the formula for
NRN F̂ (µ) simplifies to

NRN F̂ (µ)

=

m∑
l=1

∑
i,j∈Q

βij(h)〈φjl (µ, ·), µi〉+
∑
i∈Q

ρi(h)〈φil(µ, ·), µi〉

Fl(ν) (4.86)

+
1

2

∑
1≤l 6=k≤m

∑
i,j∈Q

βij(h)〈χjl (µ, ·)χ
j
k(µ, ·), µi〉+

∑
i∈Q

ρi(h)〈χil(µ, ·)χil(µ, ·), µi〉

Flk(ν) + o(1).

Equation (4.40) says that for all h ∈ Ûeq∑
i∈Q

hiΛi(h) = 1.

Pick a j ∈ Q. Differentiating the above equation with respect to hj we get∑
i∈Q

hi
∂Λi(h)

∂hj
+ Λj(h) = 0 (4.87)
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and differentiating again with respect to hj we obtain∑
i∈Q

hi
∂2Λi(h)

∂h2
j

+ 2
∂Λj(h)

∂hj
= 0. (4.88)

Recall that for any µ ∈ MF (E : Ueq), ν = Γ(µ) is given by (4.72). Using (4.40) one
can verify that for any f ∈ C(E) and i ∈ Q

〈f, µi〉 = hi〈f, ν〉+
∑
j∈Q

(hj〈f, µi〉 − hi〈f, µj〉) Λj(h). (4.89)

But the second term on the right is a function in the class Υ. Hence for all µ ∈ MF (E :

Ueq)

〈f, µi〉 = hi〈f, ν〉+ Υ. (4.90)

From the definitions of χjl and φjl (see (4.84)) it is immediate that for any j ∈ Q, l ∈
{1, . . . ,m} and x ∈ E we have the following relations. For all µ ∈MF (E : Ueq)

χjl (µ, x) = Λj(h)fl(x) +

∑
i∈Q

hi
∂Λi(h)

∂hj

 〈fl, ν〉+ Υ

and φjl (µ, x) =
∂Λj(h)

∂hj
fl(x) +

1

2

∑
i∈Q

hi
∂Λ2

i (h)

∂h2
j

 〈fl, ν〉+ Υ.

Using (4.87) and (4.88) we obtain

χjl (µ, x) = Λj(h) (fl(x)− 〈fl, ν〉) + Υ (4.91)

and φjl (µ, x) =
∂Λj(h)

∂hj
(fl(x)− 〈fl, ν〉) + Υ. (4.92)

Recall that the class Υ is invariant under multiplication by functions in C(MF (E : Ueq)).
It can be checked that for any i, j ∈ Q and l, k ∈ {1, . . . ,m}

〈χjl (µ, ·)χ
j
k(µ, ·), µi〉 = hi(Λj(h))2 (〈flfk, ν〉 − 〈fl, ν〉〈fk, ν〉) + Υ

and the function µ 7→ 〈φjl (µ, ·), µi〉 belongs to class Υ. Substituting these two relations
in (4.86) proves part (A) of this proposition.

Recall the definition of the operator Bn
i from Section 2.1. If G(ν) =

∏l
j=1〈gj , ν〉 ∈ C0

then one can verify (see Section 2.2 in [7]) that there is a constant c (depending on l

and g1, . . . , gl) such that

sup
n∈N

sup
ν∈Pn,a

n
∣∣∣∣∣∣Bn

i G(ν)−
l∑

j=1

〈Bigj , ν〉
l∏

k=1,k 6=j

〈gk, ν〉

∣∣∣∣∣∣
 ≤ c.

From the definition of the operator BN and (4.90) it is immediate that

BN F̂ (µ) =

m∑
l=1

∑
i∈Q

Λi(h)〈Bifl, µi〉

Fl(ν) + o(1)

=

m∑
l=1

∑
i∈Q

Λi(h)hi〈Bifl, ν〉

Fl(ν) + Υ + o(1).
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This proves part (B) of the proposition.

Using (4.85), (4.91) and (4.90) we get

GN
1 F̂ (µ) = N

∑
i,j∈Q

∫
E

bsij(x, h)

(
F̂

(
µ+

1

N
δjx

)
− F̂ (µ)

)
µi(dx)

+
∑
i∈Q

∫
E

dsi (x, h)

(
F̂

(
µ− 1

N
δix

)
− F̂ (µ)

)
µi(dx)


=

m∑
l=1

∑
i,j∈Q

〈
bsij(·, h)χjl (µ, ·), µi

〉

−
∑
i∈Q

〈
dsi (·, h)χil(µ, ·), µi

〉Fl(ν) + Υ + o(1)

=

m∑
l=1

∑
i,j∈Q

Λj(h)
〈
bsij(·, h) (fl(·)− 〈fl, ν〉) , µi

〉

−
∑
i∈Q

Λi(h) 〈dsi (·, h) (fl(·)− 〈fl, ν〉) , µi〉

Fl(ν) + Υ + o(1)

=

m∑
l=1

∑
i,j∈Q

Λj(h)hi
〈
bsij(·, h) (fl(·)− 〈fl, ν〉) , ν

〉

−
∑
i∈Q

Λi(h)hi 〈dsi (·, h) (fl(·)− 〈fl, ν〉) , ν〉

Fl(ν) + Υ + o(1)

=

m∑
l=1

((〈bs(·, h)fl(·), ν〉 − 〈bs(·, h), ν〉〈fl, ν〉)

+ (〈ds(·, h), ν〉〈fl, ν〉 − 〈ds(·, h)fl(·), ν〉))Fl(ν) + Υ + o(1),

where the functions bs and ds are defined in (4.81). This proves part (C).

Observe that Assumption 2.2 implies that for any f ∈ D0 and i, j ∈ Q

N

∫
E

pNij (x)

∫
E

(f(y)− f(x))ϑNij (x, dy)µi(dx) = 〈Cijf, µi〉+ o(1)

and

∫
E

pNij (x)

∫
E

(f(y)− f(x))ϑNij (x, dy)µi(dx) = o(1).
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Using (4.85) , (4.84) and (4.90) we obtain

GN
2 F̂ (µ)

= N2
∑
i,j∈Q

βij(h)

∫
E

pNij (x)

(∫
E

(
F̂

(
µ+

1

N
δjy

)
− F̂

(
µ+

1

N
δjx

))
ϑNij (x, dy)

)
µi(dx)

=

m∑
l=1

N ∑
i,j∈Q

βij(h)

∫
E

pNij (x)

∫
E

(
χjl (µ, y)− χjl (µ, x)

)
ϑNij (x, dy)µi(dx)

Fl(ν) + o(1)

=

m∑
l=1

N ∑
i,j∈Q

βij(h)Λj(h)

∫
E

pNij (x)

[∫
E

(fl(y)− fl(x))ϑNij (x, dy)

]
µi(dx)

Fl(ν) + o(1)

=

m∑
l=1

∑
i,j∈Q

βij(h)Λj(h)〈Cijfl, µi〉

Fl(ν) + o(1)

=

m∑
l=1

∑
i,j∈Q

βij(h)Λj(h)hi〈Cijfl, ν〉

Fl(ν) + Υ + o(1).

This proves part (D).
Again using (4.85), (4.91) and (4.90) we see that

GN
3 F̂ (µ) = N

q∑
i=1

κi(h)

∫
E

(
F̂

(
µ+

1

N
δix

)
− F̂ (µ)

)
Θi(dx)

=

m∑
l=1

∑
i∈Q

κi(h)

∫
E

χil(µ, x)Θi(dx)

Fl(ν) + o(1)

=

m∑
l=1

∑
i∈Q

κi(h)Λi(h)

∫
E

(fl(x)− 〈fl, ν〉) Θi(dx)

Fl(ν) + Υ + o(1).

This proves part (E) and completes the proof of this proposition.

Remark 4.9. For any (h, ν) ∈ Ueq × P(E) let ζRF (h, ν), ζBF (h, ν), ζG,1F (h, ν), ζG,2F (h, ν) and
ζG,3F (h, ν) be the first terms that appear on the right hand side of equations (4.77),
(4.79), (4.80), (4.82) and (4.83) respectively. Let ζG,0F (h, ν) = 0 for all (h, ν) ∈ Ueq×P(E).
Recall the definitions of the operators Al for l ∈ {0, 1, 2, 3} from (2.39), (2.40), (2.41)
and (2.42). One can verify that for each l ∈ {0, 1, 2, 3}, F ∈ C0 and ν ∈ P(E)

AlF (ν) = ζBF (heq, ν) + ζRF (heq, ν) + ζG,lF (heq, ν). (4.93)

To check this relation observe that Λ satisfies (4.41). Furthermore for each i ∈ Q,
θi(heq) =

∑
j∈Q βji(heq)heq,j−ρi(heq)heq,i = 0, which shows that the value of the function

γ (given by (4.78)) at heq is equal to the constant γsmpl (given by (2.36)).

We now prove the main theorem of the paper.

Proof of Theorem 2.6. Fix a l ∈ {0, 1, 2, 3} and let {µN (t) : t ≥ 0} be a solution to the
martingale problem for AN

l . Let {hN (t) = H
(
µN (t)

)
: t ≥ 0} be the corresponding

density process. Since µN (0) ⇒ µ(0) as N → ∞ and H(µ(0)) ∈ Ueq a.s. we must
have that hN (0) ⇒ h(0) and h(0) ∈ Ueq a.s. It suffices to prove the theorem under the
assumption that for all N ∈ N, hN (0) ∈ K0 a.s. for some compact K0 ⊂ Ueq.
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By Lemma 4.5, we can find a bigger compact set K ⊂ Ueq containing K0 such that if
we define the stopping time σN by

σN = inf
{
t ≥ 0 : hN (t) /∈ K

}
then σN ⇒∞ as N →∞.

Let F ∈ C0 be a function of the form (4.74) and let F̂ ∈ Cq0 have the form (4.76). From
(2.31) and Proposition 4.8 we can conclude that for all µ ∈MF (E : Ueq)

AN
l F̂ (µ) = ζBF (h, ν) + ζRF (h, ν) + ζG,lF (h, ν) + Υ + o(1), (4.94)

where h = H(µ), ν ∈ Γ(µ) and the continuous functions ζBF , ζ
R
F , ζ

G,0
F , ζG,1F , ζG,2F , ζG,3F from

Ueq × P(E) to R are defined in Remark 4.9.
The relation (4.94) implies that

sup
N∈N

sup
µ∈MF (E:K)

|AN
l F̂ (µ)| <∞. (4.95)

The function F̂ belongs to the domain of AN
l and the process {µN (t) : t ≥ 0} is a solution

to the martingale problem for AN
l . Hence

F̂ (µN (t))− F̂N (µN (0))−
∫ t

0

AN
l F̂ (µN (s))ds

is a martingale and using the optional sampling theorem we see that

mN
F (t) = F̂ (µN (t ∧ σN ))− F̂N (µN (0))−

∫ t∧σN

0

AN
l F̂ (µN (s))ds

is also a martingale. Note that for all t ≥ 0, µN (t∧σN ) is in the setMF (E : Ueq). Define
a P(E)-valued process by

νN (t) = Γ
(
µN (t ∧ σN )

)
for t ≥ 0. (4.96)

The form of the functions F and F̂ shows that F̂ (µN (t ∧ σN )) = F (νN (t)) for any t ≥ 0.
Hence the martingale mN

F can be rewritten as

mN
F (t) = F (νN (t))− F (νN (0))−

∫ t∧σN

0

AN
l F̂ (µN (s))ds. (4.97)

The linear span of functions in the class C0 is a dense sub-algebra of C (P(E)) and for
every F ∈ C0 we have the martingale relation (4.97). Theorems 3.9.1 and 3.9.4 in Ethier
and Kurtz [12] along with the estimate (4.95) imply that the sequence of processes
{νN : N ∈ N} is tight in the space DP(E)[0,∞).

Let tN be a sequence satisfying the conditions of Theorem 2.6. Pick a T > 0. It is
easy to see that

sup
t∈[0,T ]

∣∣∣∣∣
∫ t∧σN+tN

tN

AN
l F̂ (µN (s))ds−

∫ t∧σN

0

AN
l F̂ (µN (s))ds

∣∣∣∣∣⇒ 0 as N →∞. (4.98)

From parts (A) and (B) of Proposition 2.5 we know that as N →∞

sup
t∈[0,T ]

∥∥hN (t+ tN )− heq

∥∥
1
⇒ 0 (4.99)
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and for any f ∈ C(E) and i, j ∈ Q

sup
t∈[0,T ]

∣∣hNj (t+ tN )〈f, µNi (t+ tN )〉 − hNi (t+ tN )〈f, µNj (t+ tN )〉
∣∣⇒ 0. (4.100)

Note that this also implies that if L is a function in the class Υ then

sup
t∈[0,T ]

∣∣L(µN (t+ tN ))
∣∣⇒ 0 as N →∞. (4.101)

We argued before that the sequence of processes {νN : N ∈ N} is tight. Let {ν(t) :

t ≥ 0} be a limit point. Then along some sequence kN , νN ⇒ ν as N → ∞. Since
σN ⇒ ∞, using the continuous mapping theorem and (4.99) we obtain that along the
subsequence kN

sup
t∈[0,T ]

∣∣∣∣∣
∫ t∧σN+tN

tN

ζ(hN (s), νN (s))ds−
∫ t

0

ζ(heq, ν(s))ds

∣∣∣∣∣⇒ 0 as N →∞, (4.102)

where ζ is any of the continuous functions ζBF , ζ
R
F , ζ

G,0
F , ζG,1F , ζG,2F , ζG,3F defined in Remark

4.9. From (4.94), (4.98), (4.101), (4.102) and (4.93) we get that along the subsequence
kN

sup
t∈[0,T ]

∣∣∣∣∣
∫ t∧σN

0

AN
l F̂ (µN (s))ds−

∫ t

0

AlF (ν(s))ds

∣∣∣∣∣⇒ 0 as N →∞. (4.103)

Using (4.103) and the continuous mapping theorem we can conclude that for any F ∈
C0, as N →∞, the sequence of martingales mN

F (given by (4.97)) converges in distribu-
tion along the subsequence kN to the martingale given by

F (ν(t))− F (ν(0))−
∫ t

0

AlF (ν(s))ds. (4.104)

This shows that {ν(t) : t ≥ 0} is a solution to the martingale problem for Al. Let
π ∈ P(P(E)) be the distribution of Γ(µ(0)). Since µN (0) ⇒ µ(0) as N → ∞ and Γ is
a continuous map we must also have that νN (0) ⇒ ν(0), where ν(0) has distribution
π. We argued in Section 2.4 that the martingale problem for each Al is well-posed.
Hence {ν(t) : t ≥ 0} is the unique solution to the martingale problem for (Al, π) and
thus νN ⇒ ν as N → ∞, along the entire sequence. Moreover the limiting process has
sample paths in CP(E)[0,∞) almost surely.

Let {µ̂N (t) : t ≥ 0} be the process defined by (2.43). Pick a i ∈ Q and f ∈ C(E).
From (4.89) for any 0 ≤ t < σN − tN we can write〈
f, µ̂Ni (t)

〉
=
〈
f, µNi (t+ tN )

〉
= hNi (t+ tN )〈f, νN (t+ tN )〉

+
∑
j∈Q

(
hNj (t+ tN )〈f, µNi (t+ tN )〉 − hNi (t+ tN )〈f, µNj (t+ tN )〉

)
Λj(h

N (t+ tN )).

Since νN ⇒ ν, σN ⇒ ∞ and tN → 0, (4.99) , (4.100) and the continuity of the sample
paths of {ν(t) : t ≥ 0} imply that for any T > 0

sup
t∈[0,T ]

∣∣〈f, µ̂Ni (t)
〉
− heq,i〈f, ν(t)〉

∣∣⇒ 0 as N →∞.

This holds for any f ∈ C(E) and i ∈ Q. Hence by Theorem 3.7.1 in Dawson[7], µ̂N ⇒
heqν as N →∞ in the Skorohod topology on DMq

F (E)[0,∞). This completes the proof of
Theorem 2.6.
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Remark 4.10. In the statement of Theorem 2.6 we did not specify how the initial distri-
bution π of the limiting Fleming-Viot process {ν(t) : t ≥ 0} is related to the distribution
of µ(0). However the above proof makes it clear that π is the distribution of Γ(µ(0))

where Γ is the map defined by (4.71).

A Appendix.

Lemma A.1. For each h ∈ Rq+ let A(h) ∈M(q, q) be the matrix given by (2.13). Suppose
that Assumption 2.1 is satisfied and let heq ∈ Rq+ be the nonzero vector such that

A(heq)heq = 0̄q. (A.1)

Then we have the following.

(A) The vector heq is in Rq∗, that is, all its components are strictly positive.
(B) The matrix A(heq) has 0 as an eigenvalue with algebraic multiplicity 1. All the

other eigenvalues of A(heq) have strictly negative real parts.
(C) There exists a unique vector veq ∈ Rq∗ such that veqA(heq) = 0̄q and 〈veq, heq〉 = 1.
(D) Let G(heq) ∈M(q, q) be the matrix given by

G(heq) =

(
Iq −

heq

〈1̄q, heq〉
1̄Tq

)
A(heq).

Then the matrix G(heq) has the same eigenvalues as the matrix A(heq).
(E) Let Ḡ(heq) ∈M(q − 1, q − 1) be the matrix defined by

Ḡij(heq) = Gij(heq)−Giq(heq) for all i, j ∈ {1, . . . , q − 1}.

Then the matrix Ḡ(heq) is stable, that is, all its eigenvalues have strictly negative
real parts.

Proof. Observe that all the non-diagonal entries of the matrix A(heq) are nonnegative.
Such matrices are sometimes referred to as Metzler-Leontief matrices in mathematical
economics (see Section 2.3 in Seneta [32]). Their important property is that they can
be transformed to a nonnegative matrix by adding a constant multiple of the identity
matrix. This allows extensions of the Perron-Frobenius type results to such matrices.

Note that the matrix A(heq) is irreducible (part (C) of Assumption 2.1) and has 0 as
an eigenvalue with heq as a right eigenvector (see (A.1)). Theorem 2.6 in [32] proves
parts (A),(B) and (C) of this lemma.

We now prove parts (D) and (E). Let P and its inverse P−1 be the matrices in M(q, q)

given by

P =

[
Iq−1 1̄q−1

0̄Tq−1 1

]
and P−1 =

[
Iq−1 −1̄q−1

0̄Tq−1 1

]
.

Observe that 1̄Tq G(heq) = 0̄q and

PTG(heq)(PT )−1 =

[
Ḡ(heq) v

0̄Tq−1 0

]
, (A.2)

where v is some vector in Rq−1. Let L = Diag(heq) and Q = P−1L−1. Note that Qheq =

P−1L−1heq = P−11̄q = 0̄q and hence

Q

(
Iq −

heq

〈1̄q, heq〉
1̄Tq

)
= Q− 1

〈1̄q, heq〉
[Qheq]1̄Tq = Q.

This shows that QG(heq)Q−1 = QA(heq)Q−1. Hence the matrices G(heq) and A(heq) are
similar and have the same eigenvalues. Part (B) of this lemma and (A.2) imply that the
matrix Ḡ(heq) is stable. This completes the proof of this lemma.
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Let Â, θ̂, ψ̂ and Ûeq be as defined in Section 4.3 (just prior to Proposition 4.7).

Lemma A.2. Fix a t0 > 0. For (h, t) ∈ Ûeq× [0, t0] consider the following matrix equation

Φ(h, t, t0) = Iq +

∫ t0

t

ÂT (ψ̂(h, u))Φ(h, u, t0)du, (A.3)

where Iq is the q × q identity matrix. This equation has a unique solution in C2(Ûeq ×
[0, t0],MR(q, q)) that satisfies the following for any h ∈ Ûeq, s ≥ 0 and 0 ≤ t ≤ t0.

(A) If s ∈ [t, t0] then Φ(h, t, t0) = Φ(h, t, s)Φ(h, s, t0).

(B) For any s ≥ 0, Φ(ψ̂(h, s), t, t0) = Φ(h, t+ s, t0 + s).

(C) If v0 ∈ Rq∗ then Φ(h, t, t0)v0 ∈ Rq∗.

Proof. The function ψ̂ is in C2(Rq × R+,R
q) and the matrix-valued function (h, t) 7→

ÂT (ψ̂(h, t)) is in C2(Rq × R+,M(q, q)). Standard existence and uniqueness results for
ordinary differential equations guarantee that there is a unique solution for (A.3) in the
class C2(Ûeq × [0, t0],MR(q, q)).

Part (A) of the lemma is just the Chapman-Kolmogorov property (see Proposition
2.12 in Chicone [6]). Note that due to the semigroup property for ψ̂ (similar to (2.19))
both Φ(ψ̂(h, s), t, t0) and Φ(h, t+ s, t0 + s) satisfy the same equation for t ∈ [0, t0]. Hence
by uniqueness of solutions, part (B) is immediate.

We now prove part (C). Note that only the diagonal elements of the matrix ÂT (ψ̂(h, t))

can be negative. For t ∈ [0, t0] let

c(t) = − min
1≤i≤q

Âii(ψ̂(h, t)).

Fix a v0 ∈ Rq∗ and define

L(t) = exp

(∫ t0

t0−t
c(s)ds

)
Φ(h, t0 − t, t0)v0.

Then

dL(t)

dt
=
(
c(t0 − t)Iq + ÂT (ψ̂(h, t0 − t))

)
L(t).

But the matrix
(
c(t0 − t)Iq + ÂT (ψ̂(h, t0 − t))

)
has all entries positive for any t ∈ [0, t0].

Since L(0) = v0 ∈ Rq∗, for any t ∈ [0, t0] we have dL(t)/dt ∈ Rq+. Therefore L(t) ∈ Rq∗ and
this proves part (C).
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