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Abstract

We present limit theorems for a sequence of Piecewise Deterministic Markov Pro-
cesses (PDMPs) taking values in a separable Hilbert space. This class of processes
provides a rigorous framework for stochastic spatial models in which discrete random
events are globally coupled with continuous space-dependent variables solving par-
tial differential equations, e.g., stochastic hybrid models of excitable membranes. We
derive a law of large numbers which establishes a connection to deterministic macro-
scopic models and a martingale central limit theorem which connects the stochas-
tic fluctuations to diffusion processes. As a prerequisite we carry out a thorough
discussion of Hilbert space valued martingales associated to the PDMPs. Further-
more, these limit theorems provide the basis for a general Langevin approximation
to PDMPs, i.e., stochastic partial differential equations that are expected to be similar
in their dynamics to PDMPs. We apply these results to compartmental-type models of
spatially extended excitable membranes. Ultimately this yields a system of stochastic
partial differential equations which models the internal noise of a biological excitable
membrane based on a theoretical derivation from exact stochastic hybrid models.
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1 Introduction

In this study we present limit theorems for sequences of Piecewise Deterministic
Markov Processes (PDMPs) with values in a separable Hilbert space. PDMPs are a par-
ticular class of càdlàg, strong Markov processes which combine continuous determin-
istic time evolution and discontinuous, instantaneous, random ‘jump’ events originally
introduced in [15, 16, 45] in filtering theory and stochastic control problems. We note
that in view of applications this paper is ultimately motivated by the interest in the
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Limit theorems for infinite-dimensional PDMPs

derivation of a justifiable Langevin approximation to spatio-temporal stochastic hybrid
models of excitable membranes, e. g., neuronal membranes. This is accomplished by
the limit theorems we present in the following.

We start briefly introducing the general idea of our framework and the main results
which are made precise in the subsequent sections. We consider a family of fully cou-
pled, Hilbert space-valued PDMPs indexed by n ∈ N. Here fully coupled means that the
PDMPs which split into a continuously moving and a piecewise constant component are
such that the jump rates of the processes depend on the state of the full system and the
continuous dynamics depend on the state of the jump component. For the limit theo-
rems we rely on two key assumptions. Firstly, jumps possess heights decreasing to zero
for n → ∞ but occur at an increasing frequency roughly inversely proportional to the
jump size. We are therefore in the fluid limit setting, cf. [31, 32]. Secondly, we assume
that for each n the continuous dynamics in between jumps depend on the piecewise con-
stant component only via a finite set of (Hilbert space-valued) functions thereof, which
we call coordinate functions. It is the sequence of coordinate functions coupled to the
continuous component for which we derive limits. The first limit theorem we present
is a weak law of large numbers for PDMPs in infinite-dimensional Hilbert spaces where
the deterministic limit is given by a solution of an abstract evolution equation. Next
we proceed to the presentation of a central limit theorem for the martingales asso-
ciated with a PDMP. This central limit theorem gives the basis for an approximation
of PDMPs by diffusion processes which are solutions of stochastic partial differential
equations. Finally, we show how to represent the stochastic process arising as the limit
in the central limit theorem as a solution of a stochastic partial differential equation
(SPDE) which then yields a Langevin approximation for PDMPs by a system of SPDEs.
The new results presented extend previous results for PDMPs and pure jump processes
in Euclidean space [32, 18, 37]. The difficulties in extending the fluid limit theorems
in [31, 32, 37] to processes taking values in infinite-dimensional Hilbert spaces lie, on
the one hand, in the appropriate treatment of Hilbert space-valued martingales. These
arise by splitting a PDMP, being a semi-martingale, into a sum of a part with finite vari-
ation and a local martingale. As these considerations are essential we have devoted
a full section, Section 3, to the discussion of the martingales. On the other hand, the
more intricate existence theory of solutions to abstract evolution equations compared to
solutions of ordinary differential equations in Euclidean space demands for additional
technical rigour.

We apply our theoretical findings to spatially extended hybrid models of excitable
membranes. A first hybrid formulation of one such model in the context of neuroscience
was presented in [5] and reformulated and extended as examples for PDMPs taking
values in infinite-dimensional Hilbert spaces in [13]. For example, the Hodgkin-Huxley
model is a deterministic, macroscopic model for the coupled evolution of the neuronal
membrane potential and the averaged gating dynamics of ion channels [23]. More
realistically, the membrane potential, which is the macroscopically observed variable
of interest, arises from the stochastic dynamics of finitely many ion channels. Thus
the application of our limit theorems shows that the Hodgkin-Huxley is obtained as the
limit of a sequence of stochastic microscopic models taking the form of Hilbert space
valued PDMPs in the sense of a law of large numbers. Conceptually, here the fluid limit
corresponds to increasing the number of ion channels while simultaneously decreasing
the individual influence of an individual channel on the total current. The martingale
central limit theorem can then be used to define the Langevin approximation providing a
relatively simple stochastic version of the Hodgkin-Huxley model incorporating internal
fluctuations.

Concluding this introduction, we comment on related work to fluid limits in the
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infinite-dimensional setting. Averaging for PDMPs in infinite-dimension, in particular
for the neuron model introduced in [5], wherein also a law of large numbers was con-
sidered, has been recently considered in [22]. For a model of linear chemical reactions
by jump Markov processes a law of large numbers [4] and a central limit theorem [27]
have been proven based on the original work of [31, 32] for finite-dimensional jump-
processes. In these cases the deterministic limit is a reaction-diffusion partial differen-
tial equation and the central limit theorem yields diffusion processes given by stochas-
tic partial differential equations. Limit theorems for variations of this model have been
investigated in two series of studies, cf. [28, 29, 30] and [7, 8, 9, 10, 11]. A central
difference between spatial models of excitable media to models of chemical reactions
is that the latter exhibit diffusive motion of the reactants (∼ channels) which is absent
in the former. Additionally excitable media equations exhibit non-local interaction of
channels as their dynamics are coupled globally via the membrane potential. The limit
theorems we establish have to account for these differences. Further, there is also a
difference on the technical side. The technique employed in [27] and in all subsequent
publications cited above is based on the semigroup approach to stochastic / determin-
istic evolution equations. In contrast, we pursue in the present paper the approach of a
weak formulation. At large, the weak formulation of evolution problems allows to con-
sider more general equations as when dealing with mild, strong or classical solutions,
cf. a discussion of this aspect in [46, Chap. 23.1]. Finally, we also mention a central
limit theorem for Hilbert-valued martingales in [36] and a diffusion approximation of
SPDEs on nuclear spaces driven by Poisson random measures in [25]. The methods of
proof we employ for the theoretical results in this study are motivated by the two last
references, but differ as the classes of stochastic processes considered therein and in
the present manuscript are different.

The remainder of the paper is organised as follows. We first briefly define PDMPs
in Section 2 and precisely state the structure for a sequence of such PDMPs to allow
for a limit. Then we discuss in detail the associated martingale process in Section
3. Limit theorems and the diffusion approximation are presented in Sections 4 and 5.
We have deferred the proofs of the main results to Section 6. Next in Section 7 we
discuss applications of these limit theorems to compartmental-type models of excitable
membranes where the proofs of the conditions are deferred to Appendix B. The paper is
concluded in Section 8 with a brief discussion and an outlook on further developments
and applications. Finally, the Appendix A of the paper contains the proof of the technical
Theorem 3.1 that guarantees the square-integrability of the associated Hilbert space
valued martingales and establishes an appropriate Itô-isometry.

2 Piecewise Deterministic Markov Processes

In the first subsection we briefly define PDMPs and, in particular, discuss the specific
subclass of PDMPs for which we present limit theorems in this study. For a general
discussion of PDMPs we refer to the monographs [17, 24] and, specifically, for Hilbert
space valued PDMPs associated to solutions of partial differential equations we refer
to [13, 42]. In the second subsection we present the sequence of PDMPs for which the
limits are analyzed in this study. Finally, a notational remark: in this paper pairings (·, ·)
and 〈·, ·〉 denote the inner product or the duality pairing, respectively, with respect to a
certain Hilbert space which is usually indicated with a subindex. Further, ∗ is used to
denote dual spaces.
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2.1 PDMPs on Hilbert spaces

Let (Ω,F , (Ft)t≥0,P) denote a filtered probability space satisfying the usual condi-
tions, X ⊂ H ⊂ X∗ be an evolution triple of separable real Hilbert spaces and K be
a countable set of isolated states. The product H × K serves as the state space for a
PDMP. Then, a PDMP is a càdlàg strong Markov process Xt(ω) = (Ut(ω),Θt(ω)) ∈ H×K
for all t ≥ 0 which consists of two components. The first, Ut, takes values in H, pos-
sesses continuous sample paths and is denoted the continuous component of the PDMP.
The second, Θt, taking values in K and possessing right-continuous, piecewise constant
sample paths, we call its jump component. We say a PDMP is regular if the number of
jumps of Θt is a.s. finite in every finite time interval [0, T ]. In this study PDMPs are
always regular.

We next state the mechanisms which govern the time evolution of the paths of such
a PDMP. Firstly, there exist for each θ ∈ K an abstract evolution equation

u̇ = A(θ)u+B(θ, u) (2.1)

where A(θ) : X → X∗ is a linear and B(θ, ·) : X → X∗ a (possibly nonlinear) operator.
We assume that the family of abstract evolution equations (2.1) is well-posed, i.e., given
any θ ∈ K and any initial condition u ∈ H there exists a unique global weak solution
φ(·, (u, θ)) ∈ L2((0, T ), X) ∩ H1((0, T ), X∗) depending continuously on the initial condi-
tion. Note, that the regularity implies φ(·, (u, θ)) ∈ C([0, T ], H), cf. [40, Chap. 11]. Then
the trajectory of the continuous component Ut follows in between jumps of the jump
component Θt the weak solution to (2.1) corresponding to the parameter θ given by the
current state of the jump component. That is, for τk, k ∈ N, denoting the jump times of
the PDMP we have that

Ut = φ(t− τk, (Uτk ,Θτk)) ∀ t ∈ [τk, τk+1) .

Secondly, describing the stochastic transition dynamics of the jump component Θt there
exist measurable transition rates Λ : H ×K → R+ that define the distributions of the
random jump time of Θt in the sense that for all θ ∈ K

P
[
Θt+s = Θt, 0 ≤ s ≤ ∆t

∣∣Θt

]
= exp

(
−
∫ ∆t

0

Λ(Ut+s,Θt) ds
)
. (2.2)

In view of (2.2) we assume that Λ is integrable along the solutions of (2.1) on any finite
time interval, i.e., ∫ T

0

Λ(φ(t, (u, θ)), θ) dt <∞ ∀T <∞

for all θ ∈ K and all initial conditions u ∈ H, but diverging as T → ∞. We note that
in applications we usually find that the transition rate Λ is bounded which implies the
regularity of the PDMP. Finally, there exists a Markov kernel µ on H × K into K that
gives the distribution of the post jump value, i.e.,

P
[
Θt = ξ |Θt 6= Θt−

]
= µ

(
(Ut,Θt−), {ξ}

)
∀ ξ ∈ K . (2.3)

The elements of the quadruple (A,B,Λ, µ) are called the characteristics of the pro-
cess and under the above conditions define a regular PDMP uniquely (up to versions).
Furthermore, under these conditions the following result characterising the extended
generator of PDMPs is proven in [13, 42].

Theorem 2.1. A function f : H × K → R is in the domain of the extended generator
of a PDMP if the mapping t 7→ f(Ut,Θt) is absolutely continuous almost surely and
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the mapping (ξ, s, ω) 7→ f(Us−, ξ) − f(Us−(ω),Θs−(ω)) is integrable with respect to the
random measure Λ(Us−,Θs−)µ

(
(Us−,Θs−),dξ

)
ds.

Moreover, if in addition f is continuously Fréchet-differentiable with respect to its
first argument such that the Riesz Representation1 fu ∈ H of the Fréchet derivative
satisfies fu(u, θ) ∈ X for u ∈ X and is a locally bounded composition operator in
L2((0, T ), X),2 then the extended generator Af is given by

Af(u, θ) =
〈
A(θ)u+B(θ, u), fu(u, θ)

〉
X

+Λ(u, θ)

∫
K

(
f(u, ξ)−f(u, θ)

)
µ
(
(u, θ),dξ

)
. (2.4)

2.2 An appropriate sequence of PDMPs

Let E denote another separable real Hilbert space. Further, for a certain m ∈ N (its
significance is explained in the next paragraph) we denote by H =×m

i=1H, E =×m
i=1E

the direct products of the Hilbert spaces H and E which are Hilbert spaces themselves.
Finally we set E∗ =×m

j=1E
∗ which is the dual space to E .

We now define the structure of the sequence of processes for which we derive
the limit theorems. For all n ∈ N let (Ωn,Fn, (Fnt )t≥0,P

n) be a a filtered probabil-
ity space satisfying the usual conditions and the processes (Xn

t )t≥0 = (Unt ,Θ
n
t )t≥0 de-

fined thereon are regular PDMPs taking values in H ×Kn with path properties as de-
fined in Section 2.1. Correspondingly, the characteristics of the PDMPs are given by
(An, Bn,Λn, µn). Note that the state space Kn for the piecewise constant component
changes with varying index n whereas the state space H for the continuous component
remains fixed. Therefore, in order for such a sequence of processes to allow for a limit
we need to impose a special structure on the characteristics referring to the contin-
uous component. To this end we assume there exists an m ∈ N, introduced above,
such that for each PDMP (Unt ,Θ

n
t )t≥0 there exists a family of measurable coordinate

functions zni : Kn → E, i = 1, . . . ,m, such that the characteristics An(θ), Bn(θ) depend
on the piecewise constant component and on the index n only via the E–valued coor-
dinate process zn(θ) = (zn1 (θ) , . . . , znm(θ)). That is, there exist measurable operators
A,B : E ×X → X∗ such that for all n ∈ N, all u ∈ H and all θ ∈ Kn

An(θ)u = A(zn(θ))u, Bn(θ, u) = B(zn(θ), u). (2.5)

The coordinates zn can be interpreted as a ‘sufficient statistic’ of the piecewise constant
component for the evolution of the continuous component. In statistics a sufficient
statistic for a quantity of interest is a function of the observations that is sufficient to
estimate this particular quantity. For example, the sample average of independently
and identically distributed real random variables is a sufficient statistic for the mean
of their distribution. In the present setting, this means that the coordinate functions
contain all information about the vector θ that is needed to determine the continuous
dynamics in between jumps. Further, the essence of the subsequent limit theorems is
that the sequence of coordinate processes on the space E allows for a limit under certain
conditions. Typically, in applications one is interested in the dynamics of the continuous
components only, thus a restriction of the attention to the coordinate functions is well
justified. As E is a (vector-valued) Hilbert space itself, no generality would be lost if
instead of the family of coordinate functions we assumed the existence of Hilbert space-
valued functions zn taking values in the same Hilbert space for each n. However, we
decided to use this more detailed notation since in examples one usually encounters that
it is a set of coordinate functions that encodes the information necessary for defining

1Note that the Fréchet derivative at a point u ∈ H is a linear, bounded functional onH and thus an element
of the dual H∗.

2An example of such a function f is (u, θ) 7→ ‖u‖2H in which case fu(u, θ) = 2u.
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the dynamics of the continuous component.

In order to illustrate this set-up let us briefly discuss the Hodgkin-Huxley model as
an example of the general excitable membrane model considered in Section 7. Here the
sequence of abstract evolution equations (2.1) arises from parabolic partial differential
equations modelling the space-time evolution of the membrane potential of the form

u̇(t, x) = ∆u(t, x) +
∑

i=Na,K,L

gipi(t, x)
(
Ei − u(t, x)

)
, t ≥ 0, x ∈ D ⊂ Rd (2.6)

with constants gi > 0 and Ei ∈ R, cf. (7.6). The indices refer to electrical currents due
to the movement of charged Sodium (Na) and Potassium (K) ions across the membrane
and ohmic leakage (L) current mainly due to Chloride ions [26]. In hybrid versions
of the Hodgkin-Huxley system the conductances pi(t, x) depend on the finite number
of open ion channels distributed in the membrane which increases with n. Each in-
dividual channel is modelled stochastically opening or closing at random times with
dynamics depending on u, cf. Section 7.2 for more details. In the case of constant po-
tential u(t, x) ≡ u each channel were a continuous time Markov chain. The collection of
channel states at any time instant t defines the discrete component Θn

t . Finally, the co-
ordinate functions zn relate channels in a specific state to their location in the physical
space D, cf. their definition in (7.5). They map the channel configurations into piece-
wise constant space-time functions stating the local density of channels in the particular
states, thus pni (t, x) := zni (Θn

t ) ∈ L2(D) = E. Hence, equipped with suitable boundary
conditions equation (2.6) is an abstract evolution equation of the type (2.1) where the
Hilbert spaces H, X and E are spaces of real functions on D ⊂ Rd.

3 The associated martingale process

For the limit theorems we derive in this paper, the main estimation procedures con-
cern certain martingales associated with the PDMP. As these are of such central impor-
tance we discuss them in this separate section. The principle aim is, on the one hand,
to derive conditions that imply the convergence in probability of the associated martin-
gales as needed for the law of large numbers (cf. condition (4.5) in Theorem 4.1) and,
on the other hand, we present some necessary structure for the central limit theorems.
Therefore we define for all j = 1, . . . ,m the E-valued stochastic process Mn

j by

Mn
j (t) := znj (Θn

t )− znj (Θn
0 )−

∫ t

0

[
An〈 · , znj (·)〉E

]
(Uns ,Θ

n
s ) ds, (3.1)

where the integrand in the right hand side is given by

[
An〈 · , znj (·)〉E

]
(Uns ,Θ

n
s ) = Λn(Uns ,Θ

n
s )

∫
Kn

(
znj (ξ)− znj (Θn

s )
)
µn
(
(Uns ,Θ

n
s ),dξ

)
= Λn(Uns ,Θ

n
s )
∑
ξ∈Kn

(
znj (ξ)− znj (Θn

s )
)
µn
(
(Uns ,Θ

n
s ), {ξ}

)
. (3.2)

Hence the integrand is a countable convex combination of elements in E with time-
dependent coefficients and in between jumps it depends continuously on s. Anticipating
condition (3.4) below, which we generally assume to hold, we find that the integral in
the right hand side of (3.1) almost surely exists in the sense of Bochner. For a brief
discussion of the Bochner integral we refer to [39, App. A]. For an application of a
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functional φ ∈ E∗ to (3.1) we obtain

〈φ,Mn
j (t)〉E = 〈φ, znj (Θn

t )〉E − 〈φ, znj (Θn
0 )〉E −

∫ t

0

[
An〈φ, znj (·)〉E

]
(Uns ,Θ

n
s ) ds, (3.3)

where the integrand is

[
An〈φ, znj (·)〉E

]
(Uns ,Θ

n
s ) = Λn(Uns ,Θ

n
s )

∫
Kn

〈φ, znj (ξ)〉E − 〈φ, znj (Θn
s )〉E µn

(
(Uns ,Θ

n
s ),dξ

)
.

Thus the integral has the form of the extended generator, cf. Theorem 2.1, applied to
the mapping (u, θ) 7→ 〈φ, znj (θ)〉E . This already suggests that the processes (3.3) are
martingales under suitable boundedness conditions. In fact we are able to establish
that the processes Mn

j are E–valued càdlàg martingales. We refer to [14, 39] for a brief
discussion of martingales in infinite-dimensional spaces. The easiest way to validate
the martingale property is due to the following result [39, Sec. 2.3]: If En‖Mn

j (t)‖E <

∞ for all t ∈ [0, T ], the Hilbert space-valued martingale property holds if and only if
〈φ,Mn

j (t)〉E is a real-valued martingale for all φ ∈ E∗. The following theorem gives a
condition that guarantees that the processes (3.1) are square-integrable martingales
and satisfy an Itô-isometry. The proof is rather technical and thus we have deferred it
to the Appendix A.

Theorem 3.1. Let n ∈ N be fixed and assume that for all t > 0 it holds that

E

∫ t

0

[
Λn(Uns ,Θ

n
s )

∫
Kn

‖znj (ξ)− znj (Θn
s )‖2E µn

(
(Uns ,Θ

n
s ),dξ

)]
ds <∞ . (3.4)

Then the process Mn
j is a square-integrable martingale and satisfies the Itô-isometry

En‖Mn
j (t)‖2E =

∫ t

0

En
[
Λn(Uns ,Θ

n
s )

∫
Kn

‖znj (ξ)− znj (Θn
s )‖2E µn

(
(Uns ,Θ

n
s ),dξ

)]
ds . (3.5)

We continue the investigation of the processes Mn
j as Hilbert space valued mar-

tingales. From now on we always assume that assumption (3.4) holds. Note that the
finiteness of the second moments of the jump sizes is a standard condition in related
fluid limit theorems [31, 37, 36]. We introduce a concept akin to the quadratic covari-
ance operator in Euclidean finite dimensional spaces. This concept is important for the
central limit theorems in, on the one hand, establishing weak convergence, and, on the
other hand, characterising the limit. For further reference we refer to [35].

Definition 3.1. For the square-integrable, E–valued, càdlàg martingale Mn
j we denote

by (�Mn
j � t)t≥0 its predictable quadratic variation process, i.e., the unique (up to

indistinguishability), predictable L1(E∗, E)-valued3 process which satisfies that for all
φ, ψ ∈ E∗ the real-valued process

t 7→ 〈φ,Mn
j (t)〉E 〈ψ,Mn

j (t)〉E − 〈φ,�Mn
j�tψ〉E (3.6)

is a local martingale.

The aim now is to obtain an explicit formula for the quadratic variation process of the
individual martingales Mn

j as well as of the vector-valued process Mn of all martingales
Mn
j , i.e., the E–valued process

t 7→Mn(t) =
(
Mn

1 (t), . . . ,Mn
m(t)

)
.

3L1(E∗, E) denotes the space of trace class operators from the Hilbert space E∗ into E.
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To this end we define for all i, j = 1, . . . ,m operators Gnij ∈ L(E∗, E) by

ψ 7→ Gnij(u, θ
n)ψ := (3.7)

:= Λn(u, θn)

∫
Kn

〈ψ, zni (ξ)− zni (θn)〉E
(
znj (ξ)− znj (θn)

)
µn
(
(u, θn),dξ).

Clearly, these are linear, bounded operators mapping E∗ → E and depend measurably
on (u, θn) ∈ H ×Kn. For i = j each operator is non-negative, i.e., 〈φ,Gnjj(u, θn)φ〉E ≥ 0

for all φ ∈ E∗, and symmetric, i.e., 〈ψ,Gnjj(u, θn)φ〉E = 〈φ,Gnjj(u, θn)ψ〉E for all φ, ψ ∈ E∗.
Let (ϕk)k∈N denote an orthonormal basis in E∗. We find due to the Riesz Representation
Theorem and Parseval’s identity that the trace of the operators Gjj satisfies

TrGnjj(u, θ
n) = Λn(u, θn)

∫
Kn

∑
k∈N

(
〈ϕk, znj (ξ)− znj (θn)〉E

)2

µn
(
(u, θn),dξ)

= Λn(u, θn)

∫
Kn

∥∥znj (ξ)− znj (θn)
∥∥2

E
µn
(
(u, θn),dξ). (3.8)

For arbitrary i, j the trace is bounded in terms of (3.8) as it follows from Young’s in-
equality that TrGnij(u, θ

n) ≤ 1
2TrGnii(u, θ

n) + 1
2TrGnjj(u, θ

n).

Let Φ = (φ1, . . . , φm) and Ψ = (ψ1, . . . , ψm) be elements of E∗. Summing over all
operators (3.7) applied to the components of Φ, Ψ as indicated by the indices, i.e.,

〈Φ, Gn(u, θn) Ψ〉E :=

m∑
i,j=1

〈φi, Gnij(u, θn)ψj〉E , (3.9)

we obtain a linear, bounded operator Gn(u, θn) mapping E∗ to E . This operator is sym-
metric as the operators Gnij satisfy 〈φ,Gnij(u, θn)ψ〉E = 〈ψ,Gnji(u, θn)φ〉E for all i, j. More-
over, the operator Gn(u, θn) is non-negative as it holds that

〈Ψ, Gn(u, θn) Ψ〉E = Λn(u, θn)

∫
Kn

( m∑
i=1

〈
ψi, z

n
i (ξ)− zni (θn)

〉
E

)2

µn
(
(u, θn

)
,dξ) .

Finally, the operator Gn(u, θn) is of trace class if the operators Gjj , j = 1, . . . ,m, are of
trace class and the trace satisfies

TrGn(u, θn) = Λn(u, θn)

∫
kn

‖zn(ξ)− zn(θn))‖2E µn
(
(u, θn),dξ

)
. (3.10)

We next prove that the operators (3.8) give the quadratic variations of the martin-
gales (3.1).

Proposition 3.1. The quadratic variation of the martingale Mn
j satisfies for all t ≥ 0

�Mn
j�t =

∫ t

0

Gnjj(U
n
s ,Θ

n
s ) ds . (3.11)

Remark 3.1. It is an immediate consequence of Proposition 3.1 that the quadratic
variation of the E–valued martingale Mn is given analogously to (3.11) by integrating
the operator Gn.

Proof. First of all note that due to the characterisation of the trace (3.8) and condition
(3.4) it holds that the process in the right hand side of (3.11) takes values in L1(E∗, E)
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almost surely. Further, it holds that�Mn
j�t satisfies for all φ, ψ ∈ E that

〈φ,�Mn
j�tψ〉E =

=

∫ t

0

Λn(Uns ,Θ
n
s )

∫
Kn

〈ψ, znj (ξ)− znj (Θn
s )〉E 〈φ, znj (ξ)− znj (Θn

s )〉E µn
(
(Uns ,Θ

n
s ),dξ) ds

as this right hand side is, due to [24, Prop. 4.6.2], the unique real-valued process such
that 〈φ,Mn

j (t)〉E 〈ψ,Mn
j (t)〉E − 〈φ,�Mn

j �tψ〉E is a local martingale. Here 〈φ,Mn
j (t)〉E

and 〈ψ,Mn
j (t)〉E are understood as real-valued stochastic integrals with respect to the

associated martingale measure of the PDMP. Thus we infer that for all φ, ψ ∈ E it holds

〈φ,�Mn
j�tψ〉E =

∫ t

0

〈φ,Gnjj(Uns ,Θn
s )ψ〉E ds .

Finally, the linearity of the Bochner integral (note that L1(E∗, E) is a Banach space)
implies (3.11).

A further second property of the quadratic variation is that the process

t 7→ ‖Mn
j (t)‖2E − Tr�Mn

j�t

is a local martingale. We note that the trace process t 7→ Tr�Mn
j�t is the unique, pre-

dictable increasing process exhibiting this property. Using the characterisation (3.11)
of the quadratic variation we thus obtain that the process

t 7→ ‖Mn
j (t)‖2E − Tr

(∫ t

0

Gnjj(U
n
s ,Θ

n
s ) ds

)
= ‖Mn

j (t)‖2E −
∫ t

0

TrGnjj(U
n
s ,Θ

n
s ) ds (3.12)

is a local martingale vanishing almost surely at t = 0 and analogously in the case of the
E–valued martingale Mn.

We are now in a position to state a lemma which establishes the convergence in
probability (3.14) of the processes (Mn

j )t≥0 necessary for the law of large numbers,
cf. condition (4.5) in Theorem 4.1.

Lemma 3.1. Assume that for all T > 0

lim
n→∞

E

∫ T

0

[
Λn(Uns ,Θ

n
s )

∫
Kn

‖zni (ξ)− zni (Θn
s )‖2E µn

(
(Uns ,Θ

n
s ),dξ

)]
ds = 0 . (3.13)

Then the process (3.12) is a martingale and for all T, ε > 0, it holds that

lim
n→∞

Pn
[
sup t∈[0,T ] ‖Mn

j (t)‖E > ε
]

= 0 . (3.14)

Proof. As the process Mn
j is an E-valued càdlàg martingale, it holds that ‖Mn

j ‖2E is a
càdlàg submartingale. Thus an application of Markov’s and Doob’s inequalities yield
the estimates

Pn
[
sup t∈[0,T ] ‖Mn

j (t)‖2E > ε
]
≤ 1

ε
En
[
sup t∈[0,T ] ‖Mn

j (t)‖2E
]
≤ 4

ε
En‖Mn

j (T )‖2E .

Now, the Itô-isometry (3.5) and condition (3.13) imply the convergence in probability
(3.14). It remains to show that the process (3.12) is a martingale. A sufficient condition,
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see, e.g., [24, Prop. B.0.13], is that for all T > 0 it holds

En
[
supt∈[0,T ]

∣∣∣‖Mn
j (t)‖2E −

∫ t

0

TrGnjj(U
n
s ,Θ

n
s ) ds

∣∣∣] <∞ . (3.15)

Estimating the term inside the expectation we obtain

supt∈[0,T ]

∣∣∣‖Mn
j (t)‖2E −

∫ t

0

TrGnjj(U
n
s ,Θ

n
s ) ds

∣∣∣
≤ supt∈[0,T ] ‖Mn

j (t)‖2E + supt∈[0,T ]

∫ t

0

Λn(u,Θn)

∫
Kn

∥∥znj (ξ)− znj (Θn)
∥∥2

E
µn
(
(u,Θn),dξ) ds.

The expectation of the first supremum term in the right hand side is bounded due to
Doob’s inequality and the square-integrability of the martingale. The term inside the
second supremum is increasing, thus its expectation is finite due to condition (3.13).

4 A weak law of large numbers

In order to propose a deterministic limit of the sequence of PDMPs we consider
functions Fj : E × H → E, j = 1, . . . ,m. In combination with the operators A, B

these functions are used to define a coupled system of deterministic abstract evolution
equations

u̇ = A(p)u+B(p, u),

ṗj = Fj(p, u), j = 1, . . . ,m .
(4.1)

We assume that to suitable initial condition (u0, p0) ∈ H × E there exists a unique weak
solution (u(t), p(t))t≥0 in C(R+, H × E) of (4.1). Additionally, we assume that for all
i = 1, . . . ,m the components pi satisfy

〈φ, pi(t)〉E = 〈φ, pi(0)〉E +

∫ t

0

〈φ, Fi(p(s), u(s))〉E ds ∀ t ∈ [0, T ], φ ∈ E∗ . (4.2)

That is, the components pj satisfy the equation (4.1) in the sense of an Hilbert space
valued integral equation. We note that in application one usually encounters deter-
ministic limit systems that possess strong or classical solutions and hence the cur-
rent weak framework is satisfied. Finally, we assume that the operators A, B and Fj ,
j = 1, . . . ,m, satisfy Lipschitz-type conditions on L2((0, T ), E ×X) in the sense that for
every T > 0 there exist constants L1 and L2 such that for all u, v ∈ L2((0, T ), X) and all
p, q ∈ L2((0, T ), E) it holds that∫ T

0

〈A(q) v −A(p)u, v − u〉X + 〈B(q, v)−B(p, u), v − u〉X dt

≤ L1

∫ T

0

‖v − u‖2H +

m∑
i=1

‖qi − pi‖2E dt . (4.3)

and (∫ T

0

‖Fj(q, v)− Fj(p, u)‖E dt
)2

≤ L2

∫ T

0

‖v − u‖2H +

m∑
i=1

‖qi − pi‖2E dt, (4.4)

where we have omitted the arguments t of the functions u, v, p and q.

Remark 4.1. In the proof of the law of large numbers, see Section 6.1, these Lipschitz
conditions are applied such that one pairing (v, q) refers to a path segment of the con-
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tinuous component of a PDMP and the coordinate process and the second (u, p) to the
deterministic limit functions. Thus for the applications of (4.3) and (4.4) in the proof
it is sufficient that these hold only for pairings (v, q) out of a set containing almost all
paths of the sequence of PDMPs and (u, p) being the deterministic limit, i.e., one (!) dis-
tinguished pairing. This restriction of (4.3) and (4.4) to be satisfied only for particular
pairings (v, q) and (u, p) out of the whole path space has a decisive advantage: In order
to establish these conditions we are able to incorporate additional qualitative results on
the trajectories of the PDMPs and the deterministic limit and the constants L1, L2 may
depend on (u, p). For example, in the application to excitable membrane models such
an additional qualitative is that the components corresponding to u, v, p, q are pointwise
bounded.

We now present a weak law of large numbers in Theorem 4.1 below. The proof of the
theorem follows the lines of previously published limit theorems considering processes
in finite dimensions [31, 37]. The main difficulties arising in infinite-dimensional phase
space concerns the bounds on the martingale part, cf. condition (C1), which is rarely
a problem in finite dimensions. However, using the appropriate martingale theory in
Hilbert spaces these can be kept to a minimum. Then the difficulties are mainly of a
technical nature as martingale theory in connection with PDMPs in infinite-dimensional
spaces gets more involved and is not covered by previous results in [24]. We have
established the necessary theory in the preceding Section 3 and addressed the question
of the convergence of the martingale part (C1) within this framework. Most importantly,
in Lemma 3.1 we have proven a sufficient condition for (C1) to be satisfied. In particular,
this sufficient condition (3.13) is a natural extension of the condition employed in finite
dimensions, cf. [31, 37].

A different approach to establishing condition (C1) which avoids using martingale
theory in Hilbert spaces is exemplified in the law of large numbers proved in [5]. In
infinite-dimensional space this approach encounters the problem of simultaneously con-
trolling countably many real martingales compared to only finitely many in the case of
its finite-dimensional counterpart. This problem can be overcome with an intricate com-
pactness argument which relies on the assumption that the dual space E∗ is compactly
embedded in some additional normed space and all estimates – especially an estimate
which also implies condition (3.13) – have to be derived in the norm of this additional
space. Furthermore, the condition, that all martingales (〈φ,Mn

j (t)〉E)t≥0, j = 1, . . . ,m

and φ ∈ E∗, possess almost surely uniformly bounded paths, has to be introduced. We
are of the opinion that our approach is more elegant, but, more importantly, it avoids
the introduction of additional conditions.

Finally, consistently with the notation in Section 3 we use in the subsequent the-
orem and its proof the notation

[
An〈·, znj (·)〉E

]
as defined in (3.2). Then, for given

(u, θn) ∈ H × Kn functionals
[
An〈 · , znj (·)〉E

]
(u, θn) on E∗ are defined by the map-

pings φ 7→
[
An〈φ, znj (·)〉E

]
(u, θn). As usual we identify the bidual E∗∗ with E and thus[

An〈 · , znj (·)〉E
]
(u, θn) ∈ E.

Theorem 4.1. We assume that the following conditions hold:

(C1) For all j = 1, . . . ,m it holds that for fixed T, ε > 0

lim
n→∞

Pn
[
sup t∈[0,T ] ‖Mn

j (t)‖E > ε
]

= 0 . (4.5)

(C2) The functions Fj , j = 1, . . . ,m, satisfy for all ε > 0 that

lim
n→∞

Pn
[∫ T

0

∥∥[An〈 · , znj (·)〉E
]
(Unt ,Θ

n
t )− Fj(zn(Θn

t ), Unt )
∥∥
E

dt > ε
]

= 0 , (4.6)
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where we have omitted the argument t of the functions u and θ.

(C3) The initial conditions (Un0 ,Θ
n
0 ) of the sequence of PDMPs converge in probability

to the initial conditions of the deterministic limit in the sense that for all ε > 0

lim
n→∞

Pn
[
‖Un0 − u0‖H +

m∑
i=1

‖zni (Θn
0 )− pi(0)‖E > ε

]
= 0 .

Then, for every ε > 0 and every fixed T > 0 it holds that

lim
n→∞

Pn
[
sup t∈[0,T ]

(
‖Unt − u(t)‖2H +

m∑
j=1

‖znj (Θn
t )− pj(t)‖2E

)
> ε

]
= 0 . (4.7)

Remark 4.2. The result (4.7) implies convergence in probability of the processes
(Unt , z

n(Θn
t ))t≥0 to the deterministic function (u(t), p(t))t∈[0,T ] in the Hilbert space L2((0, T ), H×

E). If the differences of the components are almost surely bounded independent of n
the convergence even holds in the mean, cf. the application of the law of large numbers
in Theorem 7.1. Further, the conditions (C1)–(C3) are generalisations from Euclidean
space to infinite-dimensional Hilbert spaces of those employed in the corresponding the-
orems for PDMPs in Euclidean space [37] and, in particular, of the original formulation
in case of pure jump processes in Euclidean space [31]. In these cases the conditions
above reduce to the corresponding assumptions.

5 The central limit theorem and the Langevin approximation

We proceed to the presentation of the central limit theorem for associated martin-
gales (Mn

t )t≥0 defined in (3.1). The central limit theorem provides the theoretical basis
for an approximation of spatio-temporal PDMPs by Hilbert-space valued diffusion pro-
cesses where the latter can be represented by solutions of stochastic partial differential
equations, see Section 5.2.

Proving central limit theorems usually involves two tasks: On the one hand, one has
to show the existence of a limit and, on the other hand, one has to provide a charac-
terisation of the limit as a certain stochastic process. The former is equivalent to the
problem of tightness of the stochastic processes. In the case of martingales sufficient
conditions for tightness depending on the quadratic variation process are stated in [36].
In order to characterise the limit there exist different approaches, showing either that
the limit solves a given (local) martingale problem which is known to have a unique so-
lution (cf. [25, 36]) or proving weak convergence of the finite dimensional distributions
(cf. [27, 37]). We present two central limit theorems, Theorems 5.1 and 5.2, employing
the two methods, respectively, however, to avoid repetition we state only the proof of
the first in the present study and refer to the PhD thesis of one of the authors [42] for
the proof of the second. The two theorems differ in a technical assumption which in
each case arises in addition to the central condition of the convergence of the quadratic
variations. We believe that for applications of the limit theorems it is advantageous
to know both versions of the martingale central limit theorem, as it is easily conceiv-
able that only one of these technical assumptions is satisfied. Hence the theorems are
applicable in different situations.

Finally, we emphasise that in the following the space E need not necessarily be the
same space for which the law of large numbers is satisfied. However, clearly, the space
E in the present section contains the space in the law of large numbers as subspace. In
applications, usually, the law of large numbers holds in a space with a stronger norm,
for example, for the excitable membrane model considered in Section 7 the law of large
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numbers holds in L2(D) whereas the central limit theorem holds in the space H−2s(D).4

This is a major difference to the corresponding results in finite-dimensional space where
both limit theorems hold in the same space.5

5.1 A martingale central limit theorem

In this section we present central limit theorems for the scaled E–valued martingales
(
√
αnM

n
t )t≥0 associated with a sequence of PDMPs where αn ∈ R+, n ∈ N, is a suitable

rescaling sequence such that limn→∞ αn = ∞. Clearly, the rescaling is necessary in
order to be able to obtain a limit different from the trivial limit as (4.5) implies that
(Mn

t )t≥0 converges to zero in distribution. We note that the sequence αn can also be
interpreted as characterising the speed of convergence of the martingales (Mn

t )t≥0.
In the following let t 7→ G(u(t), p(t)) ∈ L

(
E∗, E

)
be a Bochner-integrable operator-

valued map such that each G(u(t), p(t)) is a symmetric, positive trace class operator.
Particularly this implies for all Φ ∈ E∗ and all t > 0, that it holds that∫ t

0

〈
Φ, G(u(s), p(s)) Φ

〉
E ds <∞ . (5.1)

Here (u(t), p(t))t≥0 is the deterministic limit obtained in Theorem 4.1 and the use of this
notation for the – at this point – arbitrary time-dependent operatorG only illustrates that
in applications the time-dependence is due to a dependence on the deterministic limit
system. These operator-valued functions are used to define a unique centred diffusion
process on E , i.e., an E–valued centred Gaussian process with independent increments,
continuous sample paths. Such a process is uniquely defined by its covariance operator
and due to a theorem of Itô stated in [27] every family of trace class operators C∗(t) ∈
L1(E , E) which are increasing and continuous in t define a centred diffusion process. In
the present situation we define C∗ in the following way. We denote by ι : E → E∗ the
canonical identification of a Hilbert space with its dual, hence we can define for x, y ∈ E ,

(
x,C∗(t) y

)
E =

∫ t

0

〈
ι(x), G(u(s), p(s)) ι(y)

〉
E ds

which is continuous and increasing for all x ∈ E and C∗(t) is a trace class operator on
E . Moreover, for operators C(t) ∈ L1(E∗, E), defined by

〈
Φ, C(t) Ψ

〉
E =

∫ t

0

〈
Φ, (G(u(s), p(s)) Ψ

〉
E ds, (5.2)

there is obviously a one-to-one relationship between C∗ and C. Hence, we may say that
also the latter defines a diffusion process on the space E .

We proceed to the statement of the central limit theorem. The proof of the theorem
employs a characterisation of the limit via the local martingale problem. The essential
condition characterising the limit is the convergence of the quadratic variation pro-
cesses (5.6). The second condition (5.7) is a technical condition on the jump heights
which arises due to the method of proof and is usually satisfied in applications. The
remaining conditions are such that (D1) guarantees tightness of the sequence of pro-
cesses and in combination with (D2) that any limit is a continuous stochastic process.
The proof of the following theorem is deferred to Section 6.2.

4Here and everywhere else H−2s(D) is the dual space to the Sobolev space H2s(D) where D ⊂ Rd and
s > d/2.

5Note also that in finite-dimensional spaces all norms, and hence also all norms on subspaces, are equiva-
lent which does not hold in the case of an infinite-dimensional Hilbert space.
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Theorem 5.1. We assume that the following conditions hold:

(D1) For all t > 0 it holds that

sup
n∈N

αnE
n

∫ t

0

[
Λn(Uns ,Θ

n
s )

∫
Kn

‖zn(ξ)− zn(Θn
s )‖2E µn

(
(Uns ,Θ

n
s ),dξ

)
ds
]
<∞, (5.3)

and there exists an orthonormal basis (ϕk)k∈N of E∗ such that for all k ∈ N and all
(u, θn) ∈ H ×Kn except on a set of potential zero6

αnE
n
[∫ t

0

〈ϕk, Gn(Uns ,Θ
n
s )ϕk〉E ds

∣∣∣ (Un0 ,Θn
0 ) = (u, θn)

]
≤ γk C(t), (5.4)

where the constants γk > 0, independent of n, t and (u, θn), satisfy
∑
k∈N γk < ∞,

and the constant C(t) > 0, independent of n, k and (u, θn), satisfies limt→0 C(t) = 0.

(D2) For all β > 0 and every Φ ∈ E∗ it holds that

lim
n→∞

En
[∫ t

0

Λn(Uns ,Θ
n
s )

∫
√
αn |〈Φ,zn(ξ)−zn(Θns )〉E |>β

µn
(
(Uns ,Θ

n
s ),dξ

)
ds
]

= 0 . (5.5)

(D3) Further, for all Φ ∈ E∗ and all t > 0 it holds that

lim
n→∞

∫ t

0

En
∣∣〈Φ, G(u(s), p(s)) Φ

〉
E − αn

〈
Φ, Gn(Uns ,Θ

n
s ) Φ

〉
E

∣∣ ds = 0 . (5.6)

Finally, we assume that the jump heights of the rescaled martingales are almost
surely uniformly bounded, i.e., there exists a constant C < ∞ such that it holds
almost surely for all n ∈ N that

sup
t≥0

√
αn ‖zn(Θn

t )− zn(Θn
t−)‖E < C . (5.7)

Then it follows that the process (
√
αnM

n
t )t≥0 converges weakly to an E–valued centred

diffusion process characterised by the covariance operator (5.2).

We now state a second version of the martingale central limit theorem wherein the
limiting process is characterised by the convergence of the characteristic functions.

Theorem 5.2. Assume that the laws of the martingales (
√
αnM

n
t )t≥0 form a tight se-

quence, e.g., condition (D1) is satisfied.

(D3’) The convergence (5.6) holds and there exists a sequence βn > 0 decreasing to
zero such that for all Φ ∈ E∗

lim
n→∞

αnE
n
[∫ t

0

Λn(Uns ,Θ
n
s )

∫
√
αn |〈Φ,zn(ξ)−zn(Θns )〉E |>βn

(5.8)

∣∣〈Φ, zn(ξ)− zn(Θn
s )〉E

∣∣2 µn((Uns ,Θn
s ),dξ

)
ds
]

= 0.

Then it follows that the process (
√
αnM

n
t )t≥0 converges weakly to an E–valued centred

diffusion process characterised by the covariance operator (5.2).

6A set of potential zero is a subset of the state space of the process which the process almost surely never
reaches.
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The central condition of the convergence of the quadratic variation processes (5.6) is
unchanged, however, the second, technical condition (5.7) in (D3) is changed due to the
different method of proof. That is, condition (5.8) arises instead of (5.7) as an assump-
tion on the distribution of the jump heights employing a characterisation of the limit
process using convergence of characteristic functions instead of the local martingale
problem. The significance for applications of condition (5.8) in contrast to (5.7) is that
the former avoids the almost sure uniform bound on the jump heights in the latter. That
is, arbitrarily large jumps are possible for each martingale in the sequence as long as
their probability decreases sufficiently fast. Note that (5.8) is stronger than the similar
condition (D2) in the preceding theorem. We omit the proof of the theorem which is an
adaptation of the estimating procedures in [32, 37] to the infinite-dimensional setting.
For details we refer to the PhD thesis of one of the present authors [42].

Remark 5.1. We remark without proof that the assumptions (D1) and (5.6) imply the
convergence of the trace processes, i.e., for all T > 0

lim
n→∞

αn

∫ T

0

EnTrGn(Uns ,Θ
n
s ) ds =

∫ T

0

TrG(u(s), p(s)) ds .

5.2 Langevin approximation

Usually, e.g., in models of excitable membranes, one is ultimately interested in the
dynamics of the continuous component. We have discussed in Section 2.2 that the co-
ordinate functions zni , i = 1, . . . ,m, carry all the information needed for the dynamics
of the continuous component (Unt )t≥0. Therefore, the knowledge of the coordinate pro-
cess (zn(Θn

t ))t≥0, or a close approximation thereof, is sufficient for many applications.
From this point of view the significance of the law of large numbers and the martingale
central limit theorem is that they provide a justification of an approximation of the pro-
cesses (Unt , z

n(Θn
t ))t≥0 for large enough n by a deterministic evolution equation, on the

one hand, and, as we argue in this section, by a stochastic partial differential equation
on the other hand.

To this end we first discuss representations of the limiting diffusion in Theorems
5.2 and 5.1 as a stochastic integral. By definition G(u(s), p(s)) ◦ ι is a non-negative,
self-adjoint trace class operator acting on E , hence there exists a unique non-negative
square root, i.e., a non-negative operator

√
G(u(s), p(s)) ◦ ι such that G(u(s), p(s)) ◦ ι =√

G(u(s), p(s)) ◦ ι ◦
√
G(u(s), p(s)) ◦ ι. Let (Wt)t≥0 be a standard cylindrical Wiener pro-

cess on E with covariance operator given by the identity (cf. [14, 39]). Then, as

E

∫ t

0

Tr
(√

G(u(s), p(s)) ◦ ι
√
I
)(√

G(u(s), p(s)) ◦ ι
√
I
)∗

ds =

∫ t

0

TrG(u(s), p(s)) ds <∞ ,

the mapping t 7→
√
G(u(s), p(s)) ◦ ι is a valid integrand process for a stochastic integral

with respect to (Wt)t≥0. That is, the process (Zt)t≥0 defined for all t ≥ 0 by

Zt :=

∫ t

0

√
G(u(s), p(s)) ◦ ιdWs (5.9)

is an E–valued Gaussian process with continuous sample paths and independent incre-
ments which, in addition, is also a square-integrable martingale. Moreover, the process
has the covariance given by the operator

∫ t
0
G(u(s), p(s)) ds. Therefore, due to unique

definition of Gaussian processes via their covariance operators, the process (Zt)t≥0 is a
version of the limiting diffusion identified for the sequence of martingales (

√
αnM

n
t )t≥0.

Hence, formally inserting the limits into the decomposition of the PDMP we obtain
that the Langevin approximation (Ũnt , P̃

n
t )t≥0 of (Unt , z

n(Θn
t ))t≥0 is given by the solution
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of the system of stochastic partial differential equations

dŨnt =
(
A(P̃nt ) Ũnt +B(P̃nt , Ũ

n
t )
)

dt

dP̃nt = F (P̃nt , Ũ
n
t ) dt+ 1√

αn

√
G(Ũnt , P̃

n
t ) dWt .

(5.10)

The sequence of Langevin approximations (Ũnt , P̃
n
t )t≥0 possesses the same asymptotic

behaviour as the sequence of processes (Unt , z
n(Θn))t≥0. It is obvious that for n → ∞

and thus αn → ∞ the noise term in (5.10) vanishes and the system approximates the
deterministic solution (u(t), p(t))t≥0 of the system (4.1), just as was proven in the law
of large numbers Theorem 4.1 for the sequence of PDMPs. It poses no difficulties to
make this statement precise in the form of a weak law of large numbers similar to
Theorem 4.1. Thus for large enough αn one might expect that equation (5.10) produces
a similar behaviour than the PDMP with the major advantage of being analytically (and
numerically) to a great extent less complex.

In order to analyse properties of the Langevin approximation, clearly, well-posedness
of the system (5.10) has to be addressed first. This is suitably done within the varia-
tional approach to stochastic partial differential equations. That is, equation (5.10)
is assumed to hold as an integral equation in X∗ × E∗ in contrast to the semigroup
approach which defines the solution via the semigroup generated by the linear part
of (5.10) and the variation of constants formula. (Note that in its generic form (5.10)
does not neceassarily posses a fully linear part.) The variational approach reflects the
approach of using weak solution to abstract evolution equations defining the determin-
istic inter-jump motion of PDMPs taken in this paper. We refer to [33, Sec. 1.3.1] for
a concise introduction to the variational approach to SPDEs containing an existence
and uniqueness theorem as well as further references. We do not pursue the issue of
well-posedness of the Langevin approximation any further at this point, as we are of the
opinion that this question is best addressed when analysing the Langevin approximation
for particular models.

Remark 5.2. The process (5.9) is not necessarily the only stochastic integral process
which is a version of the limiting diffusion. Let U be another separable, real Hilbert
space, where U = E is possible, and assume there exists an operator Q ∈ L1(U,U) (or Q
cylindrical) and a function7 g ∈ L2((0, T ), L2(U, E)) for all T > 0 such that G(u(t), p(t)) ◦
ι = g(u(s), p(s))◦Q◦ g∗(u(s), p(s)) for all t ≥ 0. Then, the process (ZQt )t≥0 defined by the
stochastic integral

ZQt :=

∫ t

0

g(u(s), p(s)) dWQ
s , (5.11)

where (WQ
t )t≥0 is an E-valued Q–Wiener process, has the same quadratic variation as

(Zt)t≥0 hence the processes coincide in distribution. Then starting from the represen-
tation (5.11) the Langevin approximation is given by (5.10) with the obvious changes
in the diffusion term. We note that in finite dimensions the non-uniqueness, see, e.g.,
[3, Chap. 8], of a stochastic integral associated to a given covariance matrix can be ex-
ploited to improve the speed of numerical approximations in Monte-Carlo simulations
of diffusion approximations by choosing an optimal diffusion coefficient structure, see
[34]. In infinite-dimensions the question of a practical implication of choosing a diffu-
sion approximation based on (5.11) over (5.10) needs, to the best of our knowledge, still
to be addressed.

7Here, L2((0, T ), L2(U, E)) denotes the space of square-integrable functions on (0, T ) taking values in the
Hilbert-space of Hilbert-Schmidt operators from U to E .
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6 Proofs of the main results

6.1 Proof of Theorem 4.1 (Law of large numbers)

The central argument of the subsequent proof is an appropriate application of Gron-
wall’s Lemma such that the upper bound satisfies the convergence in probability. Here
the estimating procedure yielding the estimate to which Gronwall’s Lemma is applied
necessitates careful attention due to more intricate regularity aspects of solutions to
abstract evolution equations in contrast to solutions of ODEs in Euclidean space.

The continuous component Unt of each PDMP is in between successive jump times
the weak solution of an abstract evolution equation. Similarly u(t) is the weak solution
of the abstract evolution equation (4.1). Therefore also the difference of the two paths
is in between jump times the weak solution of an abstract evolution equation. It thus
holds due to [19, Sec. 5.9, Thm. 3] for almost all t that

d

dt
‖Unt − u(t)‖2H =

2
〈
A(zn(Θn

t ))Unt +B(Unt , z
n(Θn

t ))−A(p(t))u(t)−B(u(t), p(t)) , Unt − u(t)
〉
X
.

Integrating this equation we obtain the integral equation

‖Unt1 − u(t1)‖2H = ‖Unt0 − ut0‖
2
H (6.1)

+ 2

∫ t1

t0

〈
A(zn(Θn

s ))Uns +B(Uns , z
n(Θn

s ))−A(p(s))u(s)−B(u(s), p(s)) , Uns −u(s)
〉
X

ds,

which is valid for almost all t0, t1 in between two successive jump times. Since both
sides of equation (6.1) are continuous the equality (6.1) holds for all t0, t1 between
successive jump times. Moreover, as Unt is continuous also at jump times it follows that
equation (6.1) holds for all t ∈ [0, T ], i.e., we have

‖Unt − u(t)‖2H = ‖Un0 − u0‖2H (6.2)

+ 2

∫ t

0

〈
A(zn(Θn

s ))Uns +B(Uns , z
n(Θn

s ))−A(p(s))u(s)−B(u(s), p(s)) , Uns −u(s)
〉
X

ds .

Next we employ the one-sided Lipschitz condition (4.3) to estimate the integral in the
right hand side of equation (6.2). This yields the inequality

‖Unt − ut‖2H ≤ ‖Un0 − u0‖2H + 2L1

∫ t

0

‖Uns − u(s)‖2H ds+ 2L1

m∑
j=1

∫ t

0

‖znj (Θn
s )− pj(s)‖2E ds.

(6.3)
The overall aim is to apply Gronwall’s inequality to the growth inequality (6.3). There-
fore, in the next step we derive a control on the terms ‖znj (Θn

s ) − pj(s)‖2E in the right
hand side of inequality (6.3). As p is a solution of (4.1) satisfying (4.2) we obtain for
every functional φ ∈ E∗ a decomposition

〈φ, znj (Θn
t )− pj(t)〉E = 〈φ, znj (Θn

0 )− pj(0)〉E (6.4)

+

∫ t

0

[
An〈φ, znj (·)〉E

]
(Uns ,Θ

n
s ) ds−

∫ t

0

〈φ, Fj(p(s), u(s))〉E ds+ 〈φ,Mn
j (t)〉E ,

where the term 〈φ,Mn
j (t)〉E has precisely the form (3.3) for all t ∈ [0, T ]. Next we expand
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the decomposition (6.4) to obtain

〈φ, znj (Θn
t )− pj(t)〉E = 〈φ, znj (Θn

0 )− pj(0)〉E

+ 〈φ,Mn
j (t)〉E +

∫ t

0

[
An〈φ, znj (·)〉E

]
(Uns ,Θ

n
s )− 〈φ, Fj(zn(Θn

s ), Uns )〉E ds

+

∫ t

0

〈
φ, Fj(z

n(Θn
s ), Uns )− Fj(p(s), u(s))

〉
E

ds .

We take the supremum over all φ ∈ E∗ with ‖φ‖E∗ ≤ 1 on both sides of this equation,
square both sides and apply to the right hand side the inequality |a1 + . . . + ak|2 ≤
k(|a1|2 + . . .+ |ak|2) and the Cauchy-Schwarz inequality which yields

‖znj (Θn
t )− pj(t)‖2E

≤ 4 ‖znj (Θn
0 )−pj(0)‖2E + 4 ‖Mn

j (t)‖2E + 4
(∫ t

0

∥∥Fj(zn(Θn
s ), Uns −Fj(p(s), u(s))

∥∥
E

ds
)2

+ 4
(∫ t

0

∥∥[An〈 · , znj (·)〉E
]
(Uns ,Θ

n
s )− Fj(zn(Θn

s ), Uns )
∥∥
E

ds
)2

.

We next apply the Lipschitz condition (4.4) on F and obtain the estimate

‖znj (Θn
t )− pj(t)‖2E

≤ 4 ‖znj (Θn
0 )− pj(0)‖2E + 4L2

∫ t

0

‖Uns − u(s)‖2H ds+ 4L2

m∑
i=1

∫ t

0

‖zni (Θn
s )− pi(s)‖2E ds

+ 4
(∫ t

0

∥∥[An〈 · , znj (·)〉E
]
(Uns ,Θ

n
s )− Fj(zn(Θn

s ), Uns )
∥∥
E

ds
)2

+ ‖Mn
j (t)‖2E . (6.5)

To further estimate this term we employ the convergence (4.5) of the term ‖Mn
j ‖E and

the convergence (4.6) of the generator. It follows by the definition of these limits that
for every ε1 > 0 and every δ > 0 we can find an Nε1,δ such that for all n ≥ Nε1,δ it holds
due to (4.5) for all j = 1, . . . ,m and all t ∈ [0, T ] that

‖Mn
j (t)‖E ≤

√
ε1
m
,

and due to (4.6) and the Continuous mapping Theorem that(∫ T

0

∥∥[An〈 · , znj (·)〉E
]
(Uns ,Θ

n
s )− Fj(zn(Θn

s ), Uns )
∥∥
E

ds
)2

≤ ε1
m

on a set Ω1 ⊂ Ω satisfying Pn(Ω\Ω1) ≤ δ for all n ≥ Nε1,δ. Thus continuing to estimate
only for paths on the set Ω1 we obtain from (6.5) the inequality

‖znj (Θn
t )− pj(t)‖2E ≤ 4 ‖znj (Θn

0 )− pj(0)‖2E + 5
ε1
m

(6.6)

+ 4L2

∫ t

0

‖Uns − u(s)‖2H ds+ 4L2

m∑
i=1

∫ t

0

‖zni (Θn
s )− pi(s)‖2E ds.

In order to finally obtain the growth estimate suitable for an application of Gronwall’s
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inequality we add inequality (6.3) and inequalities (6.6) for all j = 1, . . . ,m which yields

‖Unt − u(t)‖2H +

m∑
j=1

‖znj (Θn
t )− pj(t)‖2E ≤ ‖Un0 − u0‖2H + 4

m∑
j=1

‖znj (Θn
0 )− pj(0)‖2E (6.7)

+ 5ε1 + C

∫ t

0

‖Uns − u(s)‖2H ds+ C

m∑
j=1

∫ t

0

‖znj (Θn
s )− pj(s)‖2E ds

with constant C = 2L1 + 4L2m. An application of Gronwall’s inequality to (6.7) yields

sup
t∈[0,T ]

(
‖Unt − u(t)‖2H +

m∑
j=1

‖znj (Θn
t )− pj(t)‖2E

)
≤ K1 eC T (6.8)

where

K1 = ‖Un0 − u0‖2H + 4

m∑
j=1

‖znj (Θn
0 )− pj(0)‖2E + 5ε1 .

Finally, due to (C3), i.e., the convergence in probability of the initial conditions, it holds
that for every ε2 > 0 we can find to every δ > 0 an Nε2,δ such that on a set Ω2 ⊂ Ω with
Pn(Ω\Ω2) < δ it holds for all n ≥ Nε2,δ that

‖Un0 − u0‖2H ≤
ε2

m+ 2
, ‖znj (Θn

0 )− pj(0)‖2E ≤
ε2

4(m+ 2)
∀ j = 1, . . . ,m . (6.9)

Let ε, δ > 0 be arbitrary. Then we obtain choosing ε2 = ε e−CT and ε1 = ε2
5(m+2) , thus

K1 = ε2, that for all n ≥ Nε,δ := Nε1,δ ∨Nε2,δ it holds that

supt∈[0,T ]

(
‖Unt − u(t)‖2H +

m∑
j=1

‖znj (Θn
t )− pj(t)‖2E

)
≤ ε

on the set Ω1 ∩ Ω2. Therefore it holds for all n ≥ Nε,δ that

Pn
[
supt∈[0,T ]

(
‖Unt − u(t)‖2H +

m∑
j=1

‖znj (Θn
t )− pj(t)‖2E

)
> ε

]
≤ 2δ .

As δ and ε are arbitrary the statement (4.7) follows.

6.2 Proof of Theorem 5.1 (Central limit theorem)

The proof of Theorem 5.1 is split into three successive steps. In the first step we
prove tightness of the sequence of martingales which guarantees the existence of a
limit. Secondly, we show that any limit is a continuous process. Finally, in the last step
we prove that the limit is the specific diffusion process as stated in the theorem. The
conditions (D1)–(D3) in Theorem 5.1 are such that each, in addition, to the preceding is
needed in the successive steps of the proof.

Tightness

In order to prove tightness of the sequence of E–valued martingales (
√
αnM

n
t )t≥0 it

suffices to show that the following conditions are satisfied, cf. [36] wherein general con-
ditions for tightness of sequences of Hilbert space valued processes and, in particular,
martingales are considered:

(T1) The sequence of initial conditions (
√
αnM

n
0 )n≥0 is tight.

EJP 17 (2012), paper 55.
Page 19/48

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v17-1946
http://ejp.ejpecp.org/


Limit theorems for infinite-dimensional PDMPs

(T2) For all t ≥ 0 it holds that

lim
δ→∞

sup
n∈N

Pn
[
Tr�

√
αnM

n�t > δ
]

= 0 , (6.10)

and there exists an orthonormal basis (ϕk)k∈N of E∗ such that for each ε > 0

lim
m→∞

sup
n∈N

Pn
[∑

k>m
〈ϕk,�

√
αnM

n�t ϕk〉E > ε
]

= 0. (6.11)

(A) The sequence of the real-valued trace processes (Tr �√αnMn�t)t≥0, n ≥ N,
satisfies the Aldous condition: For every T, ε, δ > 0 there exists a h > 0 and an
N > 0 such that for any sequence of stopping times8 (σn)n≥0 with σn ≤ T it is
valid that

sup
n≥N

sup
0≤s≤h

Pn
[
|Tr�

√
αnM

n�σn+s −Tr�
√
αnM

n�σn | ≥ δ
]
≤ ε . (6.12)

We next establish the above conditions. First note that condition (T1) is trivially
satisfied as Mn

0 = 0 for all n > 0. Hence we proceed to condition (T2). In order to
establish the first condition (6.10) we use Markov’s inequality to obtain the estimate

Pn
[
Tr�

√
αnM

n�t> δ
]
≤ αn

δ
En
[∫ t

0

TrGn(Y ns , θ
n
s ) ds

]
,

where the right hand side is finite due to assumption (5.3). Taking the supremum on
both sides the same assumption implies (6.10).

Next, in order to show the second condition (6.11) we employ Markov’s inequality,
the monotone convergence theorem (in order to change the order of expectation and
the countable summation over all k > m), the form of the quadratic variation (3.11) and
inequality (5.4) to obtain for the term in the left hand side the estimates

Pn
[∑

k>m
〈ϕk,�

√
αnM

n�t ϕk〉E > δ
]
≤ αn

δ
En
[∑

k>m
〈ϕk,�Mn�t ϕk〉E

]
≤ 1

δ

(∑
k>m

γk

)
C(t) ,

where the upper bound is independent of n ∈ N. Moreover, the property
∑
k∈N γk <∞

implies that limm→∞
∑
k>m γk = 0 and hence (6.11) holds for all t ≥ 0.

Finally, it remains to show (A). Let T, δ > 0 and σn < T be an arbitrary sequence of
stopping times, then for all for all h > 0 it holds that for s ≤ h

Pn
[ ∣∣αnTr�Mn�σn+s −αnTr�Mn�σn

∣∣ ≥ δ]
≤ αn

δ
En
[∫ σn+h

σn
TrGn(Y nr , θ

n
r ) dr

]
=

1

δ
En
[∑
k∈N

αnE
Xnσn

∫ h

0

〈ϕk, Gn(Y nr , θ
n
r )ϕk〉E dr

]
≤ C(h)

δ

∑
k∈N

γk.

Here we have used Markov’s inequality, the strong Markov property of the PDMP and
the assumption (5.4). As the final upper bound is independent of s and n and converges

8Here every σn is a stopping time on the respective probability space (Ωn,Fn, (Fn
t )t≥0,P

n).
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to zero for h→ 0 condition (A) follows.

Any Limit is a continuous process

In the preceding part of the proof we have established that the laws of the sequence
of martingales (

√
αnM

n
t )t≥0 are tight which is equivalent to there existence of a weakly

convergent subsequence. We now prove that under the additional condition (D2) any
cluster point of the sequence is a measure supported on C(R+, E). The method of
proof follows the outline of [25, Lemma 3.2] adapted for the stochastic processes being
PDMPs on Hilbert spaces, the general setup in this study and the particular conditions
(D1) and (D2) in Theorem 5.1 which differ from [25]. Furthermore, we have extended
the result in [25, Lemma 3.2], which only considers convergence on finite time intervals
[0, T ], to convergence on D(R+, E). In the following we employ the abbreviations Znt :=√
αnM

n
t and ∆tZ

n := Znt − Znt−, i.e., (∆tZ
n)t≥0 denotes the process of jump heights.

Note that ∆tZ
n =
√
αn ∆tz

n(θn).
Further, let P∗ denote an accumulation point of the sequence (Pn)n∈N. Without loss

of generality we use Pn, n ≥ 1, to also denote the subsequence converging weakly to P∗.
Furthermore, here Pn is understood as a law on the Skorokhod space D(R+, E) given
by the pushforward measure of the process (

√
αnM

n
t )t≥0. Then due to the Skorokhod

Representation Theorem, e.g., [18, Chap. 3,Thm. 1.8], there exists a probability space
(Ωo,Fo,Po) supporting D(R+, E)–valued random variables ζn, n ≥ 1, and ζ∗ with distri-
butions Pn and P∗, respectively, such that ζn converges to ζ∗ almost surely with respect
to Po. Further, it clearly holds that Enf(Zn) = Eof(ζn) for suitable functionals f .

We begin the proof with preliminary estimates on functions evaluated along the
path of the PDMPs. These ultimately allow to infer that the process of jumps vanishes
in the limit. Let g be a measurable, bounded, non-negative function g : R → R, that
vanishes in a neighbourhood of 0 and of ∞, that is, there exists a finite constant Cg :=

supx∈R g(x)/x2 <∞. For such a function g and any Φ ∈ E∗ we define the process

Gnt (〈Φ, Zn〉E) :=
∑
s∈(0,t]

g
(
〈Φ,∆sZ

n〉E
)

−
∫ t

0

Λn(Uns ,Θ
n
s )

∫
Kn

g
(√
αn〈Φ, zn(ξ)− zn(Θn

s )〉E
)
µn
(
(Uns ,Θ

n
s )
)

ds

=

∫ t

0

∫
Kn

g
(√
αn〈Φ, zn(ξ)− zn(Θn

s−)〉E
)
Mn(dξ,ds) ,

where Mn is the martingale measure associated with the PDMP, and we infer that
Gnt (〈Φ, Zn〉E) is a martingale. Note that the above summation over all s ∈ (0, t] is well-
defined as the PDMPs are regular and thus g

(
〈Φ,∆sZ

n〉E
)

is non-zero for only finitely
many s ≤ t.

The proof now proceeds as follows. We first show (a) that for all t ≥ 0 the random
variables Gnt (〈Φ, ζn〉E), n ∈ N, are uniformly integrable for all t and (b) that they con-
verge to

∑
s∈(0,t] g

(
〈Φ,∆sζ

n〉E
)

in probability. This allows to infer that the convergence
result also holds as convergence in mean. In part (c) we then use these results to show
that the jump heights of the canonical process of the law P∗ are constantly zero al-
most surely. This implies that P∗

(
C([0, t], E)

)
= 1 for every t > 0 where C([0, t], E) is

understood as the subset of D(R+, E) consisting of those càdlàg functions which are
continuous up to and including time t. The proof is completed by (d) extending this
result to P∗

(
C(R+, E)

)
= 1.

(a) To show that the sequence of random variablesGnt (〈Φ, ζn〉E), n ∈ N, is uniformly
integrable in the space (Ωo,Fo,Po) it is sufficient that the second moments are uni-
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formly bounded, cf. [18, Appendix, Prop. 2.2]. The Itô-isometry for real-valued stochas-
tic integrals with respect to the associated martingale measures, which is implied by
taking the expectation of the processes in [24, Prop. 4.5.3], yields

sup
n∈N

Eo|Gnt (〈Φ, ζn〉E)|2 = sup
n∈N

En|Gnt (〈Φ, Zn〉E)|2

= sup
n∈N

En
[∫ t

0

Λn(Uns ,Θ
n
s )

∫
Kn

g
(√
αn〈Φ, zn(ξ)− zn(Θn

s )〉E
)2
µn
(
(Uns , θ

n
s ),dξ

)
ds
]
.

Therefore, employing the special structure of the map g we obtain the estimate

sup
n∈N

Eo|Gnt (〈Φ, ζn〉E)|2

≤ Cg sup
n∈N

αnE
n
[∫ t

0

Λn(Uns ,Θ
n
s )

∫
Kn

∣∣〈Φ, zn(ξ)− zn(Θn
s )〉E

∣∣2 µn((Uns ,Θn
s ),dξ

)
ds
]
,

where the right hand side is finite for every t > 0 due to condition (5.3) in (D1).

(b) In this part of the proof we establish convergence in probability of the random
variables Gnt (〈Φ,∆ζn〉E). Let β > 0 be such that g(x) = 0 for |x| ≤ β, i.e., the interval
(−β, β) is contained in the neighbourhood of 0 whereon g vanishes. Then we obtain
using Markov’s inequality and due to the boundedness of g the estimates

Po
[∑

s∈(0,t]
g(〈Φ,∆sζ

n〉E)−Gnt (〈Φ, ζn〉E) > δ
]

= Pn
[∫ t

0

Λn(Uns ,Θ
n
s )

∫
Kn

g
(√
αn 〈Φ, zn(ξ)− zn(Θn

s )〉E
)
µn
(
(Uns ,Θ

n
s ),dξ

)
ds > δ

]
≤ 1

δ
En
[∫ t

0

Λn(Uns ,Θ
n
s )

∫
Kn

g
(√
αn〈Φ, zn(ξ)− zn(Θn

s )〉E
)
µn
(
(Uns ,Θ

n
s )
)

ds
]

≤
supx∈R |g(x)|

δ
En
[∫ t

0

Λn(Uns ,Θ
n
s )

∫
√
αn |〈Φ,zn(ξ)−zn(Θns )〉E |>β

µn
(
(Uns ,Θ

n
s ),dξ

)
ds
]
.

Thus due to condition (5.5) in (D2) it holds that

lim
n→∞

Po
[∑

s∈(0,t]
g(〈Φ,∆sζ

n〉E)−Gnt (〈Φ, ζn〉E) > δ
]

= 0 .

Moreover, it holds on (Ωo,Fo,Po) almost surely that

lim
n→∞

∑
s∈(0,t]

g(〈Φ,∆sζ
n〉E) =

∑
s∈(0,t]

g(〈Φ,∆sζ
∗〉E) .

Therefore, combining these two convergence results we obtain that

Gnt (〈Φ, ζn〉E) −→
∑
s∈(0,t]

g(〈Φ,∆sζ
∗〉E) (6.13)

holds as convergence in probability.

(c) From parts (a) and (b) we infer that (6.13) also holds as convergence in mean.
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Together with Jensen’s inequality this implies

lim
n→∞

∣∣∣Eo(Gnt (〈Φ,∆sζ
n〉E)−

∑
s∈(0,T ]

g(〈Φ,∆sζ
∗〉E)

)∣∣∣
≤ lim

n→∞
Eo
∣∣∣Gnt (〈Φ,∆sζ

n〉E)−
∑
s∈(0,t]

g(〈Φ,∆sζ
∗〉E)

∣∣∣ = 0 ,

and hence we infer that

Eo
∑
s∈(0,t]

g(〈Φ,∆sζ
∗〉E) = lim

n→∞
EoGnt (〈Φ, ζn〉E) . (6.14)

Furthermore, Gnt (〈Φ, Zn〉E) is a martingale which satisfies Gn0 (〈Φ, Zn〉E) = 0. This, in
turn, implies that EnGnt (〈Φ, Zn〉E) = 0 for every n ∈ N. Therefore we obtain due to
(6.14)

E∗
∑
s∈(0,t]

g(〈Φ,∆sZ〉E) = Eo
∑
s∈(0,t]

g(〈Φ,∆sζ
∗〉E) (6.15)

= lim
n→∞

EoGnt (〈Φ, ζn〉E) = lim
n→∞

EnGnt (〈Φ, Zn〉E) = 0 .

In a next step, let gm be a sequence of functions satisfying the properties for functions
g proposed above. Further we assume that the functions gm(x) increase pointwise to
x2 for m → ∞ (for an example of such functions we refer to [25]). Then due to the
monotone convergence theorem it holds that

lim
m→∞

E∗
∑
s∈(0,t]

gm(〈Φ,∆sZ〉E) = E∗
∑
s∈(0,t]

|〈Φ,∆sZ〉E |2 .

Furthermore, the limiting expectation in the right hand side is zero as each element of
the sequence of expectations in the left hand side is zero due to (6.15). Next we choose
Φ to be an element of an orthonormal basis (ϕk)k∈N of E and sum the expectations over
all elements of the basis yielding∑

k∈N

E∗
∑

s∈(0,t]
|〈ϕk,∆sZ〉E |2 .

Due to the dominated convergence theorem we can interchange the countable summa-
tion and the expectation and, as the PDMP is regular, we afterwards interchange the
resulting two summation inside the expectation. Then Parseval’s identity yields

E∗
∑
s∈(0,t]

‖∆sZ‖2E = 0 .

As the non-negative random variable inside the expectation is zero only for continu-
ous paths of the process (Zs)s∈[0,t] we infer that almost all paths are continuous, i.e.,
P∗
(
C([0, t], E)

)
= 1.

(d) To conclude the proof let tk, k ∈ N, be a sequence of times increasing to infinity
then

C(R+, E) =
⋂
k∈N

C([0, tk], E) ,

and the events in the right hand side satisfy C([0, tk+1], E) ⊆ C([0, tk], E). The properties
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of a probability measure thus yield

P∗
(
C(R+, E)

)
= lim
k→∞

P∗
(
C([0, tk], E)

)
= 1 ,

that is a process with distribution given by the limit P∗ possesses almost surely contin-
uous paths.

Limit is a diffusion process

In the final part of the proof we uniquely characterise the limit of the sequence of
martingales (

√
αnM

n
t )t≥0 under the additional assumptions (D3). The method of proof

is via the local martingale problem motivated by a proof presented in [36], i.e., the
limiting probability measure is the unique solution to a particular martingale problem.
The author in [36] considers Hilbert space valued stochastic integral equations driven
by Hilbert space valued martingales with state dependent quadratic variation. A central
limit theorem for the martingales is presented. The arguments of the subsequent proof
are closely related to [36]. This is as the general result on martingales associated with
PDMPs, which we have proven in Section 3, result in the problem in this part of the
proof to be of the same underlying structure as in [36]. One difference, however, is
that the present conditions (D1)–(D3) are more general than the conditions in [36] and
adapted to the PDMP setup, hence some estimates differ.

As in the preceding part of the proof we interpret the sequence of martingales
(
√
αnM

n
t )t≥0 defined on the probability spaces (Ωn,Fn, (Fnt )t≥0,P

n) as random vari-
ables on the space D(R+, E) equipped with its natural σ-field D. Further, laws on the
canonical space are given by the pushforward measure. In order to simplify the notation
we denote the laws on the canonical space also by Pn. Due to results in the preceding
two parts of the proof we know the sequence Pn, n ∈ N, admits a limit P∗ supported on
C(R+, E). We use (ζt)t≥0 to denote the canonical process on D(R+, E) which is a version
of the martingale (

√
αnM

n
t )t≥0 under the push-forward maesure Pn for all n ∈ N or of

the weak limit under the measure P∗.

In the following we prove that the limit P∗ is a solution to a local martingale problem
the unique solution of which is an E–valued centered diffusion process with covariance
operator C(t) ∈ L1(E∗, E) as given in (5.2). For any twice continuously differentiable
function f : E → R the extended generator Af of such a diffusion is given by

Af(x, t) =
1

2
Tr (D2f(x) ◦G(t)) .

Then, in order to uniquely characterise the solution to the local martingale problem
connected with this generator and supported on the space C(R, E) it suffices to consider
mappings f of the form 〈Φ, ·〉E and 〈Φ, ·〉2E for all Φ ∈ E∗, cf. [36]. That is, we have to
show that the canonical process ζt is such that for all Φ ∈ E∗ the processes 〈Φ, ζt〉E and

〈Φ, ζt〉2E −
∫ t

0

〈Φ, G(us, ps)Φ〉E ds (6.16)

are P∗-local martingales. We start introducing some notation and then show in parts (a)
and (b) the local martingale properties of the two indicated processes on the canonical
space D(R+, E).

As before we use Znt :=
√
αnM

n
t and ∆tZ

n := Znt −Znt−. Further, as indicated above
the notation is such that we use Pn and En to denote probabilities and expectations
on the original given measurable spaces (Ωn,Fn) as well as on the canonical space
(D(R+, E),D). That is, e.g., Enf(Znt ) = Enf(ζt) for any bounded function f , where the
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former is the expectation taken on the original space (Ωn,Fn,Pn) and the latter the
expectation on the canonical space of càdlàg processes with respect to the pushfor-
ward measure. Furthermore, we employ the Itô-formula [35, Thm. 25.7] for smooth
functions f ∈ C∞c (R) applied to semi-martingales. For the particular choice of the
semi-martingales being the real martingales 〈Φ, Znt 〉E the Itô-formula reads

f
(
〈Φ, Znt 〉E

)
=

1

2

∫ t

0

f ′′
(
〈Φ, Zns−〉E

) (
〈Φ, αn�Mn�tΦ〉E

)
ds

+
∑
s≤t

[
f(〈Φ, Zns 〉E)− f(〈Φ, Zns−〉E)− 〈Φ,∆sZ

n〉E f ′(〈Φ, Zns−〉E)
]

−1

2

∑
s≤t

[
〈Φ,∆sZ

n〉sE f ′′(〈Φ, Znt 〉E)
]
+Mf,n

t (6.17)

where (Mf,n
t )t≥0 is some martingale on (Ωn,Fn, (Fnt )t≥0,P

n) depending on Zn and f .
Next, we introduce on the canonical space for all positive ρ the stopping times

τρ := inf{t ∈ R+ | ‖ζt‖E > ρ} and note that due to the bound (5.7) in (D3) on the jump
heights we have that for any law Pn, n ≥ 1, it holds almost surely

‖ζτρ‖E ≤ ρ+ C . (6.18)

Analogously we define the stopping times τnρ := inf{t ∈ R+ | ‖Znt ‖E > ρ} on the spaces
(Ωn,Fn, (Fnt )t≥0,P

n).
Finally, as already mentioned (Dt)t≥0 denotes the natural filtration on the canonical

space. Then for A ∈ Dt we define An := (Zn)−1F ∈ Fnt its preimage with respect to the
random variable Zn. We now proceed to show that the two processes 〈Φ, ζt〉E and (6.16)
are indeed local martingales with respect to the limit measure P∗.

(a) Let Φ ∈ E∗ be fixed and we choose for every ρ a smooth function fρ ∈ C∞c (R)

which satisfies fρ(x) = x if |x| ≤ ‖Φ‖E∗(ρ + C) and thus f ′(x) = 1 and f ′′(x) = 0 for
|x| ≤ ‖Φ‖E∗(ρ+C). Therefore it holds for t < τnρ , which implies the estimate |〈Φ, Znt−〉E | ≤
‖Φ‖E∗(ρ+ C), that

f ′′ρ (〈Φ, Znt−〉E) = 0

and
fρ(〈Φ, Znt 〉E)− fρ(〈Φ, Znt−〉E)− 〈Φ,∆tZ

n〉E f ′ρ(〈Φ, Zns−〉E) = 0.

It follows that applying the Itô-formula (6.17) to the function fρ and the martingale Znt∧τnρ
all terms besides the martingale Mn,fρ vanish in the the right hand side. Therefore we
obtain for t2 ≥ t1 and all A ∈ Dt1 that

En
[
IA

(
〈Φ, ζt2∧τρ〉E − 〈Φ, ζt1∧τρ〉E

)]
= En

[
IA

(
fρ
(
〈Φ, ζt2∧τρ〉E

)
− fρ

(
〈Φ, ζt1∧τρ〉E

))]
= En

[
IAn

(
fρ
(
〈Φ, Znt2∧τnρ 〉E

)
− fρ

(
〈Φ, Znt1∧τnρ 〉E

))]
= 0 . (6.19)

The proof of the first martingale property is concluded as in [36]: The mapping ζ →
fρ(〈Φ, ζt2∧τρ〉E) is almost surely (with respect to the probability P∗) continuous and as
Pn converges weakly to P∗ it holds due to (6.19) that

E∗
[
IA

(
〈Φ, ζt2∧τρ〉E − 〈Φ, ζt1∧τρ〉E

)]
= 0 .

Here we have employed a weaker version of the continuous mapping theorem, see, e.g.,
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[6, Thm. 2.7] .
We infer from the definition of the conditional expectation that the stopped pro-

cesses are martingales. Furthermore, as ζt possesses continuous paths almost surely
under the measure P∗ it holds that τρ diverges to ∞ almost surely for ρ → ∞. Hence,
we can find a sequence of stopping times τρk , k ∈ N, such that τρk → ∞ almost surely
for k →∞. Thus, the process 〈Φ, ζt〉 is a local martingale with respect to P∗.

(b) For the second class of processes we consider smooth functions gρ ∈ C∞c (R)

such that gρ(x) = x2 for all |x| ≤ ‖Φ‖E∗(ρ + C). Starting from the definition of the
conditional expectation as in (6.19) we obtain

En
[
IA

(
〈Φ, ζt2∧τρ〉2E −

∫ t2∧τρ

0

〈Φ, G(u(s), p(s))Φ〉E ds− 〈Φ, ζt1∧τρ〉2E

+

∫ t1∧τρ

0

〈Φ, G(u(s), p(s))Φ〉E ds
)]

= En
[
IA

(
〈Φ, ζt2∧τρ〉2E − 〈Φ, ζt1∧τρ〉2E −

∫ t2∧τρ

t1∧τρ
〈Φ, G(u(s), p(s))Φ〉E ds

)]
= En

[
IAn

(
〈Φ, Znt2∧τρ〉

2
E − 〈Φ, Znt1∧τρ〉

2
E −

∫ t2∧τρ

t1∧τρ
αn 〈Φ, Gn(Y ns , θ

n
s )Φ〉E ds

)]
+ En

[
IAn

(∫ t2∧τρ

t1∧τρ
αn 〈Φ, Gn(Y ns , θ

n
s )Φ〉E − 〈Φ, Gn(u(s), p(s))Φ〉E ds

)]
.

Here the first expectation in the final right hand side vanishes due to the Itô-formula
(6.17): We apply the Itô-formula for the function gρ and the martingales Znt∧τnρ to the

terms 〈Φ, Znt2∧τρ〉
2
E and 〈Φ, Znt1∧τρ〉

2
E . Then we find – similarly to part (a) – that the sum-

mands in the right hand side of the Itô-formula vanish. Therefore we are left with only
the martingale Mn,gρ and the integral term, wherein g′′ρ (〈φ,Znt−〉E) = 2 for all t < τnρ .
The martingale term vanishes due to the martingale property and the remaining inte-
gral is cancelled by the integral in the above expectation. Overall this shows that the
first expectation vanishes.

Next we take the absolute value on both sides of the above equality and obtain,
estimating the second expectation and extending the integration interval to [0, T ], the
inequality∣∣∣En[IA (〈Φ, ζt2∧τρ〉2E − ∫ t2∧τρ

0

〈Φ, G(u(s), p(s))Φ〉E ds− 〈Φ, ζt1∧τρ〉2E

+

∫ t1∧τρ

0

〈Φ, G(u(s), p(s))Φ〉E ds
)]∣∣∣

≤
∫ T

0

En
∣∣∣αn 〈Φ, Gn(Y ns , θ

n
s )Φ〉E − 〈Φ, G(u(s), p(s))Φ〉E

∣∣∣ds .
The convergence of the upper bound to zero for n → ∞ follows by assumption (5.6).
Hence we have proven an analogous result to (6.19) in part (a). The same line of argu-
ment that concluded part (a) also concludes part (b). The proof is completed.

7 Application to models of excitable membranes

The primary motivation for the present work stems from the study of stochastic
version of the Hodgkin-Huxley model [23] describing action potential generation and
propagation in spatially extended neurons in a PDMP formulation. This model is analo-
gous in structure to hybrid models that are used for the modelling of Calcium dynamics,
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cf. [20, 26, 44], or models of cardiac tissue, cf. [21]. Therefore, we consider as an ex-
ample of the application of the presented limit theorems a general compartmental-type
hybrid stochastic model for spatially extended excitable membranes introduced in [42,
Sec. 3.2] which subsumises the above mentioned applications. (Another example for
the application of Theorem 4.1 is the law of large numbers that is presented in [5] for a
particular one-dimensional hybrid model.) We refrain from discussing the physiological
derivations of this type of model and the implications and interpretations of the limit
theorems in this setting. These aspects will be subject to a forthcoming publication.
We now fix some notation for the remainder of the section. The set D ⊂ Rd denotes
bounded spatial domain with the physically reasonable dimensions d ≤ 3. That is, the
set D is a bounded interval when d = 1 and when d ∈ {2, 3} we assume it possesses a
C3–boundary. Further, for a given dimension d, let s denote the smallest integer such
that s > d/2. Finally, let m ∈ N be the fixed number of states ion channels can be in.

7.1 Deterministic limit system

The deterministic limit is the solution to the membrane equation

u̇ =

d∑
i,j=1

aij(x)uxixj +

m∑
i=1

gi(x) pi (Ei − u) (7.1)

with pj , j = 1 . . . ,m given by solutions of the coupled equations

ṗj = Fj(p, u) :=
∑
i6=j

qij(u) pi − qij(u) pj . (7.2)

We choose Dirichlet boundary conditions for the component u, i.e., u(t, x) = 0 for all
x ∈ ∂D and all t ∈ [0, T ], which, however, is of no particular importance for the con-
siderations that follow and can be readily changed. Here the coefficient functions aij
and gi are smooth on D, with gi non-negative, and the differential operator is strongly
elliptic. Further, the rate functions qij are sufficiently smooth.9 Finally, the initial con-
ditions satisfy u0 ∈ H1

0 (D) ∩ Hs(D) and pi(0) ∈ Hs(D) and, in addition, the pointwise
bounds u(0, x) ∈ [u−, u+] and pi(0, x) ∈ [0, 1], i = 1, . . . ,m, such that

∑m
i=1 pi(0, x) = 1,

hold for all x ∈ D. Then, the deterministic system (7.1), (7.2) is well-posed, that is,
there exists a unique global solution depending continuously on the initial condition,
which also satisfies (4.2) [42, Sec. 3.3.1]. In particular, the solution (u(t), p(t))t∈[0,T ]

is in C([0, T ], Hs(D)) componentwise for every T > 0 and pointwise bounded, i.e.,
u(t, x) ∈ [u−, u+] and pi(t, x) ∈ [0, 1] for all (t, x) ∈ [0, T ]×D and all i = 1, . . . ,m.

7.2 Compartmental-type membrane models

We briefly summarise the essential features of PDMPs (Unt ,Θ
n
t )t≥0, n ∈ N, constitut-

ing compartmental-type membrane models.

Firstly, an integral component of the sequence of models is a sequence of compart-
mentalisation of the spatial domain D. Thus, for each n ∈ N let Pn be a convex partition
of the domain D, i.e., Pn is a finite collection of mutually disjoint convex10 subsets of D,
called compartments, such that their union equals D.

The second fundamental aspect is the channel distribution across the compartments

9In detail the conditions are [42, Sec. 3.3.1]: The functions qij are bounded and bounded away from zero
on the interval [u−, u+]. Further, on this interval they satisfy a Lipschitz and polynomial growth condition
and are twice continuously differentiable with bounded derivatives.

10The convexity of the compartments is a technical assumption which allows to employ Poincarè’s inequality
in the proof of the limit theorems with a known optimal Poincaré constant [1, 38].
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yielding the stochastic jump dynamics and the coordinate functions zn. We assume that
each compartment either does not contain channels or a fixed deterministic number.
Let p(n) denote the number of non-empty compartments of the nth model denoted by
D1,n, . . . , Dp(n),n and l(k, n) be for k ≤ p(n) the total number of channels in the kth non-
empty compartment of the nth model. Then the piecewise constant components of the
PDMPs are given by mp(n)-dimensional vectors Θn

t = (Θk,n
i (t))i=1,...,m, k=1,...,p(n) with

finite state spaces Kn. Each component Θk,n
i (t) counts the number of channels located

in the domain Dk,n which are in state i at time t. and it holds that

m∑
i=1

Θk,n
i (t) = l(k, n) .

as channels can neither be destroyed nor created. We proceed to define the stochastic
jump dynamics. As two channel switching do not occur simultaneously, the only jumps
in the configuration θn ∈ Kn with non-zero probability are transitions concerning one
single channel. That is, events for which in one particular compartment one particular
channel changes its state. Let qij : R→ R+ denote the u-dependent instantaneous rate
of one channel switching from state i to j. Then given a specific configuration θn ∈ Kn

the rate that one channel in compartment Dk,n switches from state i to j is given by

θk,ni Qk,nij (u) ∈ R+ , (7.3)

where Qnij(u) is a functional of the membrane variable u ∈ L2(D) defined as

Qk,nij (u) := qij

( 1

|Dk,n|

∫
Dk,n

u(x) dx
)
.

That is, Qk,nij (u) is the instantaneous rate qij evaluated at the average value of the
membrane variable over the compartment Dk,n. Hence the rate (7.3) is the number of
channels in state i in domain Dk,n times the rate of one channel switching from i to j.
This definition yields by summing over all events the total instantaneous rate

Λn(u, θn) :=

m∑
i,j=1

p(n)∑
k=1

θk,ni Qk,nij (u) . (7.4)

Note that for each n the total instantaneous rate is bounded and as expected propor-
tional to the total number of channels which implies that the PDMPs are regular. Finally,
we define on the set Kn for i = 1, . . . ,m the coordinate functions

zni (θn) :=

p(n)∑
k=1

θk,ni
l(k, n)

IDk,n ∈ L2(D) . (7.5)

The coordinate process zn(Θn
t ) is càdlàg with each component taking values in L2(D).

Clearly, the coordinate process is zero on those compartments which do not contain
channels. Moreover, each zni (Θn

t ) is for every t ≥ 0 a piecewise constant function on the
spatial domain D which takes values in [0, 1].

Thirdly, the family of abstract evolution equations (2.1) defining the dynamics of the
PDMP’s continuous component Un are given by the parabolic, linear, inhomogeneous
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second order partial differential equations

u̇ =

d∑
i,j=1

aij(x)uxixj +

m∑
i=1

gi(x) zni (θn) (Ei − u) . (7.6)

Consistently with the deterministic limit system we equip equation (7.6) with Dirichlet
boundary conditions. Finally, we define the operators A, B depending on θn only via
suitable coordinate functions, cf. (2.5), by

A(zn(θn))u :=

d∑
i,j=1

aij(x)uxixj , B(zn(θn), u) :=

m∑
i=1

gi(x) zni (θn) (Ei − u) . (7.7)

To conclude, it is easy to see that the characteristics defined via the individual rates
(7.3), the total jump rate (7.4) and the evolution equation (7.7) define a sequence of
L2(D) ×Kn–valued infinite-dimensional PDMPs (Unt ,Θ

n
t )t≥0. Moreover, the membrane

component (Unt )t≥0 is almost everywhere pointwise bounded, i.e., Unt (x) ∈ [u−, u+] for
almost all x ∈ D and all t ≥ 0, where u− := miniEi ≤ 0 and u+ := maxiEi ≥ 0, for initial
conditions Un0 satisfying these bounds, cf. [42, Sec. 3.2], which we always assume.

7.3 Limit theorems for compartmental-type models

Applying the limit theorems derived in Sections 4 and 5 to compartmental models we
find that the conditions therein translate into assumptions on the behaviour of the se-
quence of partitions Pn and the number of ion channels in the membrane, see Appendix
B. Thus, we denote by δ(n) the maximal diameter of the non-empty compartments in
the nth model, i.e.,

δ+(n) := max
k=1,...,p(n)

diam(Dk,n) ,

and by `+(n) and `− the maximal and minimal number of channels in non-empty com-
partments, i.e.,

`+(n) := max
k=1,...,p(n)

l(k, n), `−(n) := min
k=1,...,p(n)

l(k, n) .

Then the law of large numbers takes the following form.

Theorem 7.1. Assume that the sequence of partitions satisfies that

lim
n→∞

δ+(n) = 0, lim
n→∞

`−(n) =∞, (7.8)

and that the initial conditions (Un0 , z
n(Θn

0 )) converge in probability to (u0, p0) in the
space L2(D)m+1. Then the compartmental-type models converge in probability to the
deterministic solution of the excitable media system (7.1), (7.2) in the sense that it
holds for all ε > 0 that

lim
n→∞

P
[
supt∈[0,T ] ‖Unt − u(t)‖L2 +

m∑
i=1

supt∈[0,T ] ‖zni (Θn
t )− p(t)‖L2 > ε

]
= 0 . (7.9)

Moreover, the convergence also holds in the mean in the space L2((0, T ), L2(D)), i.e.,

lim
n→∞

En
[
‖Unt − u(t)‖L2((0,T ),L2) +

m∑
i=1

‖zni (Θn
t )− p(t)‖L2((0,T ),L2)

]
= 0 . (7.10)

Next we present the appropriate quadratic variation process for the martingale cen-
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tral limit theorem. For the definition of the limiting diffusion we consider for u, pi ∈
C(D) the bilinear form

(Ψ,Φ) 7→
(
G(u, p) Ψ,Φ

)
L2 =

m∑
j=1

∑
i 6=j

∫
D

pi(x) qij(u(x))ψj(x)φj(x) dx

+

m∑
j=1

∑
i 6=j

∫
D

pj(x) qji(u(x))ψj(x)φj(x) dx

−
m∑
j=1

∑
i 6=j

∫
D

pj(x) qji(u(x))ψi(x)φj(x) dx

−
m∑
j=1

∑
i 6=j

∫
D

pi(x) qij(u(x))ψi(x)φj(x) dx .

(7.11)

Note that the right hand side is finite for all φi, ψi ∈ L2(D) as pi and qij(u) are bounded
functions. Hence, for every given Ψ ∈ L2(D)m the mapping Φ 7→ (G(u, p)Ψ,Φ) is a
linear, bounded functional on L2(D)m and, conversely, for every given Φ ∈ L2(D)m the
mapping Ψ 7→ (G(u, p)Ψ,Φ) is a linear, bounded functional on L2(D)m.

Proposition 7.1. The operator G(u, p) defined via (7.11) is for s > d/2 a trace class
operator mapping Hs(D) into its dual H−s(D). Moreover, the operator-valued map
t 7→ G(u(t), p(t)) defines a unique centred diffusion process on H−s(D).

Proof. As stated in [27] it is sufficient for the statement of the proposition that the
operator G(u(t), p(t)) is self-adjoint, positive and of trace class. These properties are
easily verified and for a detailed proof we refer to [42].

In order to state the conditions on the partitions in the central limit theorem we
define ν+(n) and ν−(n) to be the maximum and minimum Lebesgue measure of non-
empty compartments, i.e.,

ν+(n) := max
k=1,...,p(n)

|Dk,n| , ν−(n) := min
k=1,...,p(n)

|Dk,n| .

Finally, note that in the following the coordinate functions zn are considered as maps
from Kn into the space H−2s(D).

Theorem 7.2. Let s be the smallest integer such that s > d/2. If in addition to (7.8)
and the convergence of the initial conditions the sequence of partitions satisfies

lim
n→∞

`−(n) ν−(n)

`+(n) ν+(n)
= 1 , (7.12)

then the sequence of H−2s(D)–valued martingales
(√

`−(n)
ν+(n) M

n
t

)
t≥0

converges weakly

to the (H(D)−2s)m–valued diffusion defined by (7.11).

Remark 7.1. We note that for all reasonable physical domains D and all initial condi-
tions (u0, p0) sequences of partitions Pn and initial conditions (Un0 ,Θ

n
0 ) for the PDMPs

can be found satisfying the conditions of Theorems 7.1 and 7.2. For example, a suit-
able sequence of partitions is obtained by grids of uniform cubes with decreasing edge
length covering the domain D and putting channels only into these cubes which are
fully contained in D. For a more detailed discussion of these aspects we refer to the
PhD thesis of one of the present authors [42].
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8 Conclusions

As a general theoretical results for PDMPs we have derived a law of large numbers
and martingale central limit theorem in Sections 4 and 5 of this study. The former es-
tablishes a connection of stochastic hybrid models to deterministic models given, e.g.,
by systems of partial differential equations. Whereas the latter connects the stochastic
fluctuations in the hybrid models to diffusion processes. As a prerequisite to these limit
theorems we carried out a thorough discussion of Hilbert space valued martingales
associated to the PDMPs. Furthermore, these limit theorems provide the basis for a
general Langevin approximation to PDMPs, i.e., certain stochastic partial differential
equations that are expected to be similar in their dynamics to PDMPs. We have applied
these results to compartmental-type models of spatially extended excitable membranes.
Ultimately this yields a system of SPDEs which models the internal noise of a biologi-
cal excitable membrane based on a theoretical derivation from exact stochastic hybrid
models.

Topics for further research are motivated by corresponding results in finite-dimensions
[32, 37] and for spatially inhomogeneous chemical reaction systems converging to re-
action diffusion equations, cf. [27]. In these studies limit theorems are derived for the
fluctuations around the deterministic limit identified by the law of large numbers. Us-
ing the notation of Section 5 we conjecture that the sequence of processes,

(√
αn (Unt −

u(t), zn(Θn
t ) − p(t)

)
t≥0

, n ∈ N, converges in distribution to a suitable diffusion process.
Moreover, we further conjecture that this limit is closely related to the asymptotic lin-
earisation of the Langevin approximation around the solution of the deterministic limit,
cf. [37] wherein this result is proven for finite-dimensional PDMPs.

Further, on the applications side we believe that the Langevin approximation to
spatio-temporal PDMP models of excitable membranes poses an important object for
further investigation. Its derivation was the initial motivation of the study of the limit
theorems in the present study and it is their main application herein which enables to
write down the system of SPDEs that constitute a Langevin approximation. This system
now demands for further analysis, particularly, first of all the question of existence
and uniqueness of the Langevin approximation has to be addressed. Subsequently, as
SPDEs are analytically more accessible than PDMPs a theoretical analysis of qualitative
and quantitative properties of the models may be possible.

Finally, we want to mention that the limit theorems presented also find applications
beyond excitable membrane models. In current work in progress by one of the present
authors the limit theorems derived in Sections 4 and 5 are applied to stochastic neural
field equations, based on a model presented in [12], cf. a preliminary account in [41].
We also plan to investigate the connection to similar limits derived for reaction-diffusion
models, cf. the series of results on variations of the model in [27, 28, 29, 30] and [7, 8,
9, 10, 11]. An answer to this question would contribute to a more complete picture of
limit-theorems for spatio-temporal stochastic models.
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was a PhD student at Heriot-Watt University supported by the EPSRC grant EP/E03635X/1.
M. Riedler further acknowledges support from a joint UK Mathematical Neuroscience
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authors thank one anonymous reviewer for a fast reviewing of our work.

A Proof of Theorem 3.1 (Itô-isometry)

In this proof we show that under condition (3.4) the processes Mn
j , j = 1, . . . ,m,

n ∈ N, defined in (3.1) are square-integrable, càdlàg martingales which satisfy the Itô-
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isometry (3.5). Throughout the proof we fix a j = 1, . . . ,m and n ∈ N and the results
holds for any such j and n. Therefore, speaking of a PDMP in the following always
refers to the PDMP (Unt ,Θ

n
t )t≥0 corresponding to the fixed n. Further, for notational

simplicity we omit the indices n and j discriminating processes and characteristics of
PDMPs, i.e., Mn

j and znj (Θn) are denoted simply by M and z(Θ). Finally, recall that τk,
k = 1, 2, . . ., denotes the sequence of increasing random jump times of the PDMP which
are stopping times satisfying limk→∞ τk =∞ almost surely.

First of all, note that the process M is càdlàg by definition. The proof of the remain-
ing open results is split into three parts. In the first, part (a), we prove the martingale
property for the real process (〈φ,M(t)〉E)t≥0 for every φ ∈ E∗. Then, the first main
statement of Theorem 3.1, the square-integrability of the process M(t), is proved in
part (b). Moreover, as square-integrability implies integrability, the Hilbert space mar-
tingale property follows. Finally, the second main statement, the Itô-Isometry (3.5), is
established in part (c). The proof we present in part (b) is motivated by the proof of
[24, Prop. 4.5.3] which states the corresponding results for real-valued martingales as-
sociated with PDMPs. In extending to the present setup the method of proof employed
therein one has to ensure, on the one hand, that the employed results and estima-
tion procedures all have corresponding analoga in the infinite-dimensional setting. On
the other hand, one has to carefully make sure that only the weaker regularity results
available in infinite-dimensions are used. Finally, the introduction of random initial
conditions, not considered in [24], also necessitates some adaptations.

(a) First note that for all φ ∈ E∗ the real-valued processes 〈φ,M(t)〉E satisfy

〈φ,M(t)〉E = 〈φ, z(Θt)〉E − 〈φ, z(Θ0)〉E (A.1)

−
∫ t

0

Λ(Us−,Θs−)

∫
K

〈φ, z(ξ)〉E − 〈φ, z(Θs−)〉E µ
(
(Us−,Θs−),dξ

)
ds.

Equation (A.1) is obtained from (3.3) due to the regularity of the PDMP as the set of
jump times in [0, t] is almost surely finite for all t ≥ 0. Therefore the integrands in
the right hand sides of (3.3) and (A.1) differ only on a set of Lebesgue measure zero
almost surely. Moreover, the integrand in the right hand side of (A.1) has the form of
the extended generator, cf. Theorem 2.1, applied to the map

(u, ξ) 7→ 〈φ, z(ξ))〉E , (A.2)

which is independent of u. It follows that the process 〈φ,M(t)〉E is a local martingale if
the map (A.2) is in the domain of the extended generator, cf. Theorem 2.1. Obviously,
path-differentiability almost everywhere is trivially satisfied as the map t 7→ 〈φ, z(Θt)〉E
is piecewise constant. Hence, it remains to consider the integrability condition for
which it is a sufficient that

E

∫ t

0

Λ(Us−,Θs−)

∫
K

∣∣〈φ, z(ξ)− z(Θs−)〉E
∣∣µ((Us−,Θs−),dξ) ds <∞ ∀ t ≥ 0 , (A.3)

cf. [13, 17, 24]. Using Young’s inequality we obtain an upper bound to (A.3) by

1

2
E

∫ t

0

Λ(Us−,Θs−) ds+
1

2
E

∫ t

0

Λ(Us−,Θs−)

∫
K

∣∣〈φ, z(ξ)− z(Θs−)〉E
∣∣2 µ((Us−,Θs−),dξ) ds.

Here the first expectation is finite due to the PDMP being regular and the second is
finite by an immediate consequence of assumption (3.4).

Next, we show that the process is not only a local martingale but even a martingale.

EJP 17 (2012), paper 55.
Page 32/48

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v17-1946
http://ejp.ejpecp.org/


Limit theorems for infinite-dimensional PDMPs

As mentioned above the process 〈φ,M(t)〉E satisfies

〈φ,M(t)〉E =

∫ t

0

∫
K

〈φ, z(ξ)− z(Θs−)〉E M̃(ds,dξ)

where M̃ := N − N̂ is the random martingale measure associated with the PDMP with
counting measure N and compensator N̂(dξ,ds) = Λ(Us−,Θs−)µ

(
(Us−,Θs−),dξ) ds.

The validity of this formula follows as (A.2) is in the extended generator. Thus the
process 〈φ,M(t)〉E has the form of a stochastic integral with respect to the martingale
measure associated with the PDMP. Furthermore, due to [24, Thm. 4.6.1] it holds that
the process is a martingale if (A.3) is finite for all t ≥ 0. But we have already shown that
this holds due to the regularity of the PDMP and assumption (3.4).

(b) We now prove the square-integrability of the process M . In a first step we
prove in (b.1) that M stopped at the first jump τi is square-integrable. Subsequently in
part (b.2) this result is extended to M stopped at any jump time τk, k ∈ N. Then we
are able to infer square-integrability of the process M . As square-integrability implies
integrability it follows from part (a) that M is a Hilbert space valued martingale.

(b.1) Note that prior to τ1 the jump component Θ of the PDMP remains constant.
We introduce the notation

Ñ(s) :=

∫ s

0

Λ(Ur,Θ0)

∫
K

z(ξ)− z(θ0)µ
(
(Ur,Θ0),dξ) dr

which implies that s 7→ ‖Ñ(s)‖2E is almost surely absolutely continuous with derivative

d

ds
‖Ñ(s)‖2E = 2

(
d
dtÑ(s), Ñ(s)

)
E

= 2 Λ(Us,Θ0)

∫
K

(
z(ξ)− z(Θ0), Ñ(s)

)
E
µ
(
(Us,Θs),dξ

)
. (A.4)

Due to the structure of a PDMP we obtain for the conditional expectation with respect
to the initial condition

E
[
‖M(τ1 ∧ t)‖2E | F0

]
= ‖Ñ(t)‖2E exp

(
−
∫ t

0

Λ(Ur,Θ0) dr
)

+

∫ t

0

[∫
K

∥∥z(ϑ)−z(Θ0)−Ñ(s)
∥∥2

E
µ
(
(Us,Θ0),dϑ)

)]
Λ(Us,Θ0) exp

(
−
∫ s

0

Λ(Ur,Θ0) dr
)

ds.

That is, the first term in the right hand side is the position of the stopped process
‖M(τ1 ∧ t)‖2E at time t if t < τ1 times the conditional probability that the first jump does
not occur before t. The second term is its position after the jump integrated over the
conditional density that a jump occurs in [0, t]. We apply integration by parts to the first
term (note that Ñ(0) = 0) and find that

‖Ñ(t)‖2E exp
(
−
∫ t

0

Λ(Us,Θ0) ds
)

=

∫ t

0

[
2( d

dtÑ(s), Ñ(s))E exp
(
−
∫ s

0

Λ(Ur,Θ0) dr
)

− ‖Ñ(s)‖2E Λ(Us,Θ0) exp
(
−
∫ s

0

Λ(Ur,Θ0) dr
)]

ds .
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Therefore we obtain

E
[
‖M(τ1 ∧ t)‖2E | F0

]
=

∫ t

0

[
2( d

dtÑ(s), Ñ(s))E exp
(
−
∫ s

0

Λ(Ur,Θ0) dr
)]

ds

+

∫ t

0

[(∫
K

∥∥z(ϑ)− z(Θ0)− Ñ(s)
∥∥2

E
−
∥∥Ñ(s)

∥∥2

E
µ
(
(Us,Θ0),dϑ)

))
Λ(Us,Θ0) exp

(
−
∫ s

0

Λ(Ur,Θ0) dr
)]

ds .

Note that ‖z(ϑ)− z(Θ0)− Ñ(s)‖2E = ‖z(ϑ)− z(Θ0)‖2E + ‖Ñ(s)‖2E − 2(z(ϑ)− z(Θ0), Ñ(s))E
and thus

E
[
‖M(τ1 ∧ t)‖2E | F0

]
=∫ t

0

[
2( d

dtÑ(s), Ñ(s))E exp
(
−
∫ s

0

Λ(Ur,Θ0) dr
)]

ds

− 2

∫ t

0

[(∫
K

(
z(ϑ)−z(Θ0), Ñ(s)

)
E
µ
(
(Us,Θ0),dϑ)

))
Λ(Us, θ0) exp

(
−
∫ s

0

Λ(Ur,Θ0) dr
)]

ds

+

∫ t

0

[(∫
K

‖z(ϑ)− z(Θ0)‖2E µ
(
(Us,Θ0),dϑ)

))
Λ(Us,Θ0) exp

(
−
∫ s

0

Λ(Ur,Θ0) dr
)]

ds.

Due to form of the derivative (A.4) the first two terms cancel and we are left with the
equality

E
[
‖M(τ1 ∧ t)‖2E | F0

]
(A.5)

=

∫ t

0

Λ(Us,Θ0)

∫
K

‖z(ϑ)− z(Θ0)‖2E µ
(
(Us,Θ0),dϑ)

)
exp
(
−
∫ s

0

Λ(Ur,Θ0) dr
)

ds .

Next we calculate the expectation of the real-valued process

Ñ2(s) :=

∫ s

0

Λ(Ur,Θ0)

∫
K

‖z(ϑ)− z(Θ0)‖2E µ
(
(Ur,Θ0),dϑ

)
dr

stopped at τ1. The process Ñ2 is connected to the process Ñ defined at the beginning
of part (b.1) inasmuch as the integrand of the former is the squared norm of the latter.
Furthermore note that Ñ2 is the term inside the expectation in the right hand side of
the Itô-isometry (3.5). Thus the aim is now to show that the conditional expectation of
Ñ2(t∧τ1) equals the conditional expectation of ‖M(t∧τ1)‖2E . Again due to the particular
structure of the PDMP we obtain for the conditional expectation

E
[
Ñ2(τ1 ∧ t) | F0

]
= Ñ2(s) exp

(
−
∫ t

0

Λ(Ur,Θ0) dr
)

+

∫ t

0

[
Ñ2(s) Λ(Us,Θ0) exp

(
−
∫ s

0

Λ(Ur,Θ0) dr
)]

ds .

Integration by parts applied to the integral term yields∫ t

0

[
Ñ2(s) Λ(Us,Θ0) exp

(
−
∫ s

0

Λ(Ur,Θ0) dr
)]

ds = −Ñ2(t) exp
(
−
∫ t

0

Λ(Ur,Θ0) dr
)

+

∫ t

0

[
Λ(Us,Θ0)

∫
K

‖z(ϑ)− z(Θ0)‖2E µ
(
(Us,Θ0),dϑ

)
exp
(
−
∫ s

0

Λ(Ur,Θ0) dr
)]

ds.
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Therefore we obtain that

E
[
Ñ2(τ1 ∧ t) | F0

]
(A.6)

=

∫ t

0

Λ(Us,Θ0)

∫
K

‖z(ϑ)− z(Θ0)‖2E µ
(
(Us,Θ0),dϑ

)
exp
(
−
∫ s

0

Λ(Ur,Θ0) dr
)

ds .

A comparison of the right hand sides in equalities (A.5) and (A.6) shows that they are
equal and thus we obtain after taking the expectation of both conditional expectations
that

E‖M(τ1 ∧ t)‖2E = EÑ2(τ1 ∧ t) . (A.7)

As Ñ2 is increasing and thus Ñ2(τ1 ∧ t) ≤ Ñ2(t) almost surely, we obtain that the right
hand side in this equation is finite due to condition (3.4). Note that (A.7) is the Itô-
isometry (3.5) for the stopped process M(t ∧ τ1).

(b.2) In this part of the proof we show the square-integrability for the process M
stopped at an arbitrary jump time τk, k ∈ N, and finally for the non-stopped process M .
To this end we first note that Analogously to part (b.1) we find that

E
[∥∥M(τk+1 ∧ t)−M(τk ∧ t)

∥∥2

E

∣∣Fτk] = E
[
Ñ2(τk+1 ∧ t)− Ñ2(τk ∧ t)

∣∣Fτk] .
Thus taking expectations on both sides of this equality yields

E ‖M(τk+1 ∧ t)−M(τk ∧ t)
∥∥2

E
= E Ñ2(τk+1 ∧ t)− E Ñ2(τk ∧ t) <∞ , (A.8)

where the right hand side is finite as due to(3.4) both expectations are finite.

By induction we next show that each M(τk ∧ t) is square-integrable. Assume that
E‖M(τk ∧ t)‖2E < ∞, where the induction basis for k = 1 holds due to part (b.1). Then
the reverse triangle inequality yields that

E‖M(τk+1 ∧ t)‖2E + E‖M(τk ∧ t)‖2E − 2E
(
‖M(τk+1 ∧ t)‖E ‖M(τk ∧ t)‖E

)
≤ E‖M(τk+1 ∧ t)−M(τk ∧ t)‖2E .

Here the right hand side is finite due to (A.8) and an application of Young’s inequality
to the product in the left hand side yields that for all ε > 0

(1− 2ε)E‖M(τk+1 ∧ t)‖2E+
(
1− 1

2ε

)
E‖M(τk ∧ t)‖2E < ∞

Assume that E‖M(τk+1 ∧ t)‖2E = ∞. Then choosing ε < 1/2 we obtain a contradiction
due to the induction hypotheses.

In a final step of this part of the proof we show square-integrability for the non-
stopped process. Using Fatou’s Lemma and monotone convergence for interchanging
limits and expectation we obtain the following upper estimate

E‖M(t)‖2E = E lim inf
k→∞

‖M(τk ∧ t)‖2E

≤ lim inf
k→∞

E‖M(τk ∧ t)‖2E = lim
k→∞

EÑ2(τk ∧ t) = EÑ2(t) , (A.9)

where the final term is finite due to condition (3.4). Moreover, as square-integrability
implies integrability, the martingale property for the Hilbert space valued process M
now follows due to part (a).

(c) Finally, in the last part of the proof we establish the Itô-isometry. To this end we
first show that equality (A.7) holds for all τk ∧ t, k ∈ N. Again we proceed by induction
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with the induction basis given by (A.7). We observe that

‖M(τk+1 ∧ t)−M(τk ∧ t)‖2E = ‖M(τk+1 ∧ t)‖2E − ‖M(τk ∧ t)‖2E

− 2
(
M(τk ∧ t),M(τk+1 ∧ t)−M(τk ∧ t)

)
E
. (A.10)

Taking the conditional expectation with respect to the stopped σ-field Fτk∧t we find that
the second term in the right hand side of (A.10) vanishes as it holds

E
[(
M(τk ∧ t),M(τk+1 ∧ t)−M(τk ∧ t)

)
E

∣∣Fτk∧t] =

=
(
M(τk ∧ t),E

[
M(τk+1 ∧ t)−M(τk ∧ t)

) ∣∣Fτk∧t])E = 0

due to the following properties of the conditional expectation: Firstly, for E–valued
random variables X,Y such that E‖X‖E‖Y ‖E < ∞ it holds for G–measurable X that
E
[
(X,Y )E |G

]
=
(
X,E[Y |G]

)
E

[43, Lemma 2.1.2]. Secondly, the Optional Sampling The-
orem, i.e., E

[
M(τk+1 ∧ t)

∣∣Fτk∧t] = M(τk ∧ t)
)

in the above application, also holds for
Hilbert space-valued martingales11. Thus we obtain

E
[
‖M(τk+1 ∧ t)‖2E

∣∣Fτk∧t]− E[‖M(τk ∧ t)‖2E
∣∣Fτk∧t]

= E
[
Ñ2(τk+1 ∧ t)

∣∣Fτk∧t]− E[Ñ2(τk ∧ t)
∣∣Fτk∧t] .

Taking the expectation on both sides of this equality and using the induction hypotheses,
i.e., the second expectations on both sides of the above equality equate, yields

E‖M(τk+1 ∧ t)‖2E = EÑ2(τk+1 ∧ t) . (A.11)

We conclude the proof extending the Itô-isometry (A.11) from the stopped processes to
the non-stopped process. We have already obtained the upper estimate E‖M(t)‖2E ≤
EÑ2(t), cf. (A.9). Hence it remains to prove that a lower bound is given by the same
term. As ‖M(t)‖2E is a real-valued submartingale it holds for all k ≥ 1 due to the stan-
dard Optional Sampling Theorem for càdlàg submartingales, see, e.g., [24, App. B],
that

E‖M(t)‖2E ≥ E‖M(τk ∧ t)‖2E = EÑ2(τk ∧ t) .

Hence, for k → ∞ we obtain by monotone convergence E‖M(t)‖2E ≥ EÑ2(t) which,
combined with the upper bound (A.9), yields the Itô-isometry (3.5). The proof is com-
pleted.

B Proofs for the excitable membrane models

B.1 Proof of Theorem 7.1 (Conditions for the LLN)

We apply Theorem 4.1 for the choice of spaces X = H1
0 (D), H = L2(D) and E =

L2(D). Hence, we have to prove in the following that the assumptions therein are satis-
fied, i.e., (i) the one-sided Lipschitz condition (4.3) on the operators A and B defined by
(7.7), (ii) the Lipschitz condition on the right hand side of the gating system (7.2), (iii)
the uniform convergence of the generator and (iv) the martingale convergence. Finally,
in (v) we extend the convergence in probability due to Theorem 4.1 to convergence
in the mean (7.10). In the following we use · to denote the pointwise product of real
functions on D.

11The Optional Sampling Theorem can be proved similarly to the methods employed for [43, Lemma 2.1.2]
relying on the linearity properties of the Bochner integral and the monotone convergence theorem.
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(i) For the non-linear operator B we find that the left hand side in the Lipschitz
condition is for almost all t given by a finite sum of terms

〈pi · (Ei − u)− p̂i · (Ei − v), u− v〉H1 , i = 1, . . . ,m, (B.1)

with u, v ∈ H1
0 (D) and pi, p̂i ∈ L2(D). Hence, the duality pairing corresponds to the

inner product in L2(D). We estimate each of the summand of the type (B.1) separately.
Using the triangle inequality we obtain∣∣〈pi · (Ei− u)− ·p̂i · (Ei− v), u− v〉H1

∣∣ ≤ |Ei| ∣∣(pi− p̂i, u− v)L2

∣∣+ ∣∣(pi · u− p̂i · v, u− v)L2

∣∣ .
Here, the first term in this right hand side is further estimated using Cauchy-Schwarz
and Young’s inequality, which yields∣∣(pi − p̂i, u− v)L2

∣∣ ≤ 1
2

∥∥pi − p̂i∥∥2

L2 + 1
2

∥∥u− v∥∥2

L2 .

For the second term we obtain, making use of the triangle inequality, Cauchy-Schwarz
and Young’s inequality and the pointwise bounds on pi and v, the sequence of estimates∣∣(pi · u− p̂i · v, u− v)L2

∣∣ ≤ ∣∣(pi · (u− v), u− v)L2

∣∣+
∣∣(pi − p̂i, v · (u− v))L2

∣∣
≤

∥∥pi · (u− v)
∥∥
L2

∥∥u− v∥∥
L2 +

∥∥pi − p̂i∥∥L2

∥∥v · (u− v)
∥∥
L2

≤
∥∥u− v∥∥2

L2 + u2

2

∥∥u− v∥∥2

L2 + 1
2

∥∥pi − p̂i∥∥2

L2 .

A summation over all these estimates for i = 1, . . .m yields

〈B(p, u)−B(p̂, v), u− v〉H1 ≤ m
(
1 + u+u2

2

)
‖u− v‖2L2 +

1 + u

2

m∑
i=1

∥∥pi − p̂i∥∥2

L2 .

Adding the estimate

〈A(u− v), u− v〉H1 ≤ −γ1‖u− v‖2H1 + γ2‖u− v‖2L2 ≤ γ2‖u− v‖2L2

for some γ1, γ2 > 0, which holds as the linear operator A is coercive and independent of
p, we obtain

〈A(u− v), u− v〉H1 + 〈B(p, u)−B(p̂, v), u− v〉H1 ≤ C
(
‖u− v‖2L2 +

m∑
i=1

∥∥pi − p̂i∥∥2

L2

)
for a suitable constant C. Finally, integrating over (0, T ) we find the one-sided Lipschitz
condition (4.3) is satisfied.

(ii) Due to the triangle inequality it suffices to consider differences of the form
‖pi · q(u)− p̂i · q(v)‖L2 , where q substitutes for an arbitrary rate function qjk. Using the
triangle inequality, the pointwise boundedness of p̂i and q by 1 and q, respectively, and
the Lipschitz condition on the rate functions q (with common Lipschitz constant L) we
obtain

‖pi · q(u)− p̂i · q(v)‖L2 ≤ ‖pi · q(u)− p̂i · q(u)‖L2 + ‖p̂i · q(u)− p̂i · q(v)‖L2

≤ q ‖pi − p̂i‖L2 + L ‖u− v‖L2 .

A summation over all such separate estimates, integrating and squaring both resulting
sides yield the Lipschitz condition (4.4).
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(iii) In order to prove the convergence of the generators (4.6) we employ in the
following two technical results which we collect in a separate proposition. Firstly, the
purpose of the formula (B.2) is to transform the generator of the PDMP into a form that
allows comparison with the deterministic limit system (7.2). Secondly, the inequality
(B.3), which bounds the norm ‖Un‖L2((0,T ),H1) by a deterministic constant uniformly
over n ∈ N, is used repeatedly in the subsequent estimation procedures.

Proposition B.1. (a) The generator of the PDMP satisfies

Λn(u, θn)

∫
Kn

(
zni (ξ)− zni (θn)

)
µn
(
(u, θn),dξ

)
=
∑
j 6=i

(
znj (θn) · qnji(u)− zni (θn) · qnij(u)

)
(B.2)

where

qnij(u) =

p(n)∑
k=1

Qk,nij (u) IDk,n ∈ L2(D) .

(b) For all n ∈ N and all T > 0 it holds that∫ T

0

‖Unt ‖2H1 dt ≤ C1(1 + T )e2C2T , (B.3)

where the constants C1, C2 are deterministic and independent of n ∈ N.

Proof. (a) We denote by θnk,i→j for all k = 1, . . . , p(n) and all i 6= j, i, j = 1, . . .m the con-
figuration in Kn that arises from the configuration θn through the event that a channel
in state i located in the compartment Dk,n switches to state j. Then simple reorganisa-
tion of finite sums yields

Λn(u, θn)

∫
Kn

(
zni (ξ)− zni (θn)

)
µn
(
(u, θn),dξ

)
=

p(n)∑
k=1

∑
j 6=i

(
zni (θnk,j→i)− zni (θn)

)
θk,nj Qk,nji (u) +

p(n)∑
k=1

∑
j 6=i

(
zni (θnk,i→j)− zni (θn)

)
θk,ni Qk,nij (u)

=

p(n)∑
k=1

∑
j 6=i

( 1

l(k, n)
IDk,n

)
θk,nj Qk,nji (u) +

p(n)∑
k=1

∑
j 6=i

(
− 1

l(k, n)
IDk,n

)
θk,ni Qk,nij (u)

=
∑
j 6=i

znj (θn) ·
( p(n)∑
k=1

Qk,nji (u) IDk,n

)
−
∑
j 6=i

zni (θn) ·
( p(n)∑
k=1

Qk,nij (u) IDk,n

)
.

Thus we obtain that the generator satisfies (B.2).
(b) By definition of a PDMP it holds that the component (Unt )t≥0 is the weak solution

of the evolution equation

U̇nt = AUnt +

m∑
i=1

gi z
n
i (Θn

t ) (Ei − Unt )

with initial condition Un0 . We consider the reaction term in this equation as a given in-
homogeneity. Then standard estimation procedures from the theory of linear parabolic
partial differential equations, cf. [19, Sec. 7], yield, after appropriately estimating the
inhomogeneous term,∫ T

0

‖Unt ‖2H1 dt ≤ K1e2K2T
(
‖Un0 ‖2L2 + 2u2

∑
i

‖gi‖L∞
∫ T

0

‖zni (Θn
t )‖L1 dt

)
,
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where the constants K1,K2 are deterministic and depend only on the domain D and
the coefficients of A. Further, it holds that ‖zni (Θn

t )‖L1
≤ |D| and the sequence of initial

conditions is bounded by assumption as Un0 (x) ∈ [u−, u+] for all x ∈ D almost surely.
The inequality (B.3) follows.

We now proceed to the actual proof of the convergence (4.6). To this end we need
to consider for almost every t and all i = 1, . . . ,m, the convergence in L2(D) of (B.2) to
Fi(z

n(Θn
t ), Unt ) where Fi is as defined in (7.2). That is, we have to estimate∥∥∥∑

j 6=i

(
znj (Θn

t ) · qnji(Unt )− zni (Θn
t ) · qnij(Unt )

)
−
∑
j 6=i

(
znj (Θn

t ) · qji(Unt )− zni (Θn
t ) · qij(Unt )

)∥∥∥
L2
.

(B.4)
We find that the single summands in the two summations match up and thus it suffices
to consider each of them separately. Employing the boundedness of the coordinate
functions, i.e., ‖znj (Θn

t )‖L∞ ≤ 1 we obtain the estimates∥∥znj (Θn
t ) · qnji(Unt )− znj (Θn

t ) · qji(Unt )
∥∥2

L2 = ‖znj (Θn
t )
∥∥2

L∞

∥∥qnji(Unt )− qji(Unt )
∥∥2

L2

≤
∥∥∥ p(n)∑
k=1

(
IDk,nQ

k,n
ij (Unt )

)
− qij(Unt )

∥∥∥2

L2

=

p(n)∑
k=1

∫
Dk,n

∣∣Qk,nij (Unt )− qij(Unt (x))
∣∣2 dx . (B.5)

For the last equality we have used that the summands are mutually orthogonal in L2(D).
Next we estimate each of the remaining integrals in (B.5) using the Lipschitz continuity
of qij and Poincaré’s inequality in L2(Dk,n), i.e.,∫

Dk,n

∣∣∣qij( 1

|Dk,n|

∫
Dk,n

Unt (y) dy
)
− qij(Unt (x))

∣∣∣2dx

≤ L2

∫
Dk,n

∣∣∣ 1

|Dk,n|

∫
Dk,n

Unt (y) dy − Unt (x)
∣∣∣2dx

≤ L2π−2diam(Dk,n)2 ‖∇Unt ‖2L2(Dk,n) ,

where ‖∇Unt ‖L2(Dk,n) is the norm in L2(Dkn) of the Euclidean norm of the gradient
vector ∇Unt . Here we have employed that for convex domains the optimal Poincaré
constant is given by π−1diam(Dk,n) [38]. Hence, a summation over all k = 1, . . . , p(n)

and employing the estimate ‖∇Unt ‖2L2 ≤ ‖Unt ‖2H1 yields∥∥qnji(Unt )− qji(Unt )
∥∥2

L2 ≤ δ+(n)2 L2π−2‖Unt ‖2H1 .

Integrating over (0, T ) we therefore obtain for (B.4) the estimate∫ T

0

∥∥∥[A(φ, znj (·))L2

]
(Unt ,Θ

n
t )− Fj(zn(Θn

t ), Unt )
∥∥∥2

L2
dt

≤ δ+(n)2 L2π−2 2(m− 1)

∫ T

0

‖Unt ‖2H1 dt .

Finally, the norm ‖Unt ‖L2((0,T ),H1) is bounded independently of n ∈ N by a deterministic
constant due to Proposition B.1(b). This upper bound holds for almost all paths of the
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PDMPs (Unt , θ
n
t )t≥0 and thus there exists a constant C > 0 independent of n such that∫ T

0

∥∥∥[A(φ, znj (·))L2

]
(Unt ,Θ

n
t )− Fj(zn(Θn

t ), Unt )
∥∥∥2

L2
dt ≤ δ+(n)2 C (B.6)

almost surely. Due to the assmuption (7.8) the estimate in the right hand side converges
to zero for n→∞ and the convergence (4.6) follows.

(iv) Next we consider convergence in probability of the martingale part. To this
end we employ Lemma 3.1. As before we denote by θnk,i→j the channel configuration
that arises from the configuration θn if a channel in compartment Dk,n switches from
state i to state j. Then it holds that

Λn(Uns ,Θ
n
s )

∫
Kn

‖zni (ξ)− zni (Θn
s )‖2L2 µn

(
(Uns ,Θ

n
s ),dξ

)
=

p(n)∑
k=1

∑
j 6=i

(
‖zni (θnk,i→j(s))− zni (Θn

s )‖2L2 Q
k,n
ij (Uns ) Θn

i (s)

+ ‖zni (θnk,j→i(s))− zni (Θn
s )‖2L2 Q

k,n
ji (Uns ) Θn

j (s)
)

≤ q

p(n)∑
k=1

|Dk,n|
l(k, n)2

∑
j 6=i

(
Θn
i (s) + Θn

j (s)
)
.

This implies that

En
∫ t

0

[
Λn(Uns ,Θ

n
s )

∫
Kn

‖zni (ξ)− zni (Θn
s )‖2L2 µn

(
(Uns ,Θ

n
s ),dξ

)]
ds = O

(
`−(n)−1

)
.

Hence, under condition (7.8) the assumption of Lemma 3.1 is satisfied.

(v) Finally, we extend the convergence in probability to convergence in the mean
for the individual components being in the space L2((0, T ), L2), see the remark following
Theorem 4.1. First of all note that the components are bounded, i.e.,

‖Unt − u(t)‖L2 ≤ 2u |D|, ‖zni (Θn
t )− pi(t)‖L2 ≤ 2 |D| .

Therefore it holds that

‖Xn −X‖ := ‖Un − u‖L2((0,T ),L2) +

m∑
i=1

‖zni (Θn)− pi‖L2((0,T ),L2) ≤ C

for a suitable deterministic bound C < ∞ independent of n ∈ N. Then for all ε0 > 0 it
holds that

En‖Xn −X‖ = En
[
‖Xn −X‖ I[‖Xn−X‖≤ε0]

]
+ En

[
‖Xn −X‖ I[‖Xn−X‖>ε0]

]
≤ ε0 +M Pn

[
‖Xn −X‖ > ε0

]
.

Next choose ε0 < ε/2 and note that due to the convergence in probability there exists
an Nε such that M Pn

[
‖Xn − X‖ > ε0

]
≤ ε/2 for all n > Nε. Hence, for every ε > 0

there exists an Nε such that En‖Xn −X‖ < ε for all n > Nε. Convergence in the mean
is proven.
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B.2 Proof of Theorem 7.2 (Conditions for the CLT)

In order to prove Theorem 7.2 we employ Theorem 5.1 for the space E = H−2s(D)

where s is the smallest integer such that s > d/2. We usually employ the simpler no-
tation E and E = Em throughout the proof, however occasionally switch to H−2s(D)

if we want to emphasise the specific choice of the Hilbert space. The reason choosing
this particular integer s is that it is the smallest integer such that the embedding of
H2s(D) into Hs(D) is of Hilbert-Schmidt type12 due to Maurin’s Theorem [2, Thm. 6.61]
and Hs(D) is embedded in C(D) due to the Sobolev Embedding Theorem. These two
properties are essential in order to prove the conditions (5.3) – (5.7) of Theorem 5.1.
All conditions except (5.6), which establishes the convergence of the quadratic varia-
tion, are straightforward consequences of the assumptions of the theorem. These are
shown in part (i) of the subsequent proof. For condition (5.6) more involved estimation
procedures are necessary which are presented in part (ii).

(i) We first show condition (5.3). As in the preceding section θnk,i→j denotes the
element of Kn that differs from θn by one channel in the kth compartment being in
state i instead of state j. Then, the Sobolev Embedding Theorem yields the estimate

‖zni (θnk,i→j(t))− zn(Θn
t )‖E = sup

‖φ‖H2s=1

∣∣l(k, n)−1〈φ, IDk,n〉H2s

∣∣ ≤ C

l(k, n)
|Dk,n| , (B.7)

where C is a constant resulting from the continuous embedding of H2s(D) into C(D).
Using this estimate for the jump heights in the space H−2s(D) we find similarly to part
(iv) of the proof of Theorem 7.1 that it holds

αnE
n

∫ T

0

[
Λn(Unt ,Θ

n
t )

∫
Kn

‖zn(ξ)− zn(Θn
t )‖2E µn

(
(Unt ,Θ

n
t ),dξ

)
dt
]

= O(1) .

Hence, condition (5.3) is satisfied. Moreover, we infer from (B.7) that the rescaled jump
sizes are bounded almost surely uniformly, i.e., condition (5.7) is satisfied. Particularly,
it holds that

√
αn ‖zn(θnk,i→j)− zn(θn)‖E = O(`−(n)−1/2). This implies that for arbitrary

β > 0 and any Φ ∈ (H2s(D))m there exists Nβ such that for all n ≥ Nβ∫
√
αn|〈Φ,zni (ξ)−zni (θn)〉E |>β

µn
(
(u, θn),dξ

)
= 0

holds for all values (u, θn) the PDMP attains. Therefore, by dominated convergence we
infer that also condition (5.5) is satisfied. It remains to consider condition (5.4). To this
end let (ϕk)k∈N be an orthonormal basis in (H2s(D))m, where ϕk = (ϕ1

k, . . . , ϕ
m
k ) and

hence (ϕik)k∈N is an orthonormal basis in H2s(D) for all i = 1, . . . ,m. Then we obtain
the estimate

〈ϕk, Gn(Unt ,Θ
n
t )ϕk〉E

= Λn(Unt ,Θ
n
t )

∫
Kn

( m∑
i=1

〈ϕik, zni (ξ)− zni (Θn
t )〉H−2s

)2

µn
(
(Unt ,Θ

n
t ),dξ

)
≤ m

m∑
i=1

‖ϕik‖2Hs
(

Λn(Unt ,Θ
n
t )

∫
Kn

‖zni (ξ)− zni (Θn
t )‖2H−s µ

n
(
(Unt ,Θ

n
t ),dξ

))
.

Here we have employed for the the individual summands in the right hand side that
for zni (ξ) − zni (Θn

t ) ∈ L2(D) the duality pairing in H2s(D) equals the duality pairing in

12The embedding of a Hilbert space X into another Hilbert space H is of Hilbert-Schmidt type if∑
k∈N ‖ϕk‖2H <∞ for every orthonormal basis (ϕk)k∈N of X.
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Hs(D). Further, note that ‖zni (ξ) − zni (θnt )‖H−s satisfies an estimate analogous to (B.7)
due to the continuous embedding of Hs(D) in C(D). Therefore we overall obtain that

αn 〈ϕk, Gn(Unt ,Θ
n
t )ϕk〉E ≤ C

m∑
i=1

‖ϕik‖2Hs

for a suitable non-random constant C independent of n. Finally, set γk :=
∑m
i=1 ‖ϕik‖2Hs

then it holds that
∑
k∈N γk < ∞ as the embedding H2s(D) ↪→ Hs(D) is of Hilbert-

Schmidt type. We infer that condition (5.4) is satisfied.

(ii) In the second part of the proof we establish the central condition (5.6) of the
convergence of the quadratic variation. For simplicity of notation we omit the time
argument of the PDMP paths and the deterministic solution as the following estimates
hold for almost all t. First of all we expand the quadratic variation of the martingales
into the finite sum

Λn(Un,Θn)

∫
Kn

〈Φ, zn(ξ)− zn(Θn)〉2E µn
(
(Un,Θn),dξ

)
=

m∑
j=1

m∑
i=1
i 6=j

p(n)∑
k=1

Θk,n
j

l(k, n)2
Qk,nji (Un)〈φj , IDk,n〉2E +

m∑
j=1

m∑
i=1
i6=j

p(n)∑
k=1

Θk,n
i

l(k, n)2
Qk,nij (Un)〈φj , IDk,n〉2E

−
m∑

i,j=1
i 6=j

p(n)∑
k=1

( Θk,n
i

l(k, n)2
Qk,nij (Un) +

Θk,n
j

l(k, n)2
Qk,nji (Un)

)
〈φi, IDk,n〉E〈φj , IDk,n〉E .

We find that the terms in this summation match with the integral terms in the definition
of the operator G(u, p) in (7.11). Thus, due to the triangle inequality it suffices to
consider the convergence of the single summands separately, i.e., we have to consider,
on the one hand, for all j = 1, . . . ,m and i 6= j the differences

∣∣∣ ∫
D

pj(x) qji(u(x))φ2
j (x) dx − αn

p(n)∑
k=1

Θk,n
j

l(k, n)2
Qk,nji (Un)〈φj , IDk,n〉2E

∣∣∣ (B.8)

and, on the other hand, for all i, j = 1, . . . ,m such that i 6= j the differences

∣∣∣ ∫
D

pi(x) qij(u)φi(x)φj(x) dx− αn
p(n)∑
k=1

Θk,n
i

l(k, n)2
Qk,nij (Un)〈φi, IDk,n〉E〈φj , IDk,n〉E

∣∣∣ . (B.9)

We next estimate these terms separately in parts (ii.1) and (ii.2). Finally, in part (ii.3)
the estimates are combined to prove the convergence of the quadratic variation.

(ii.1) A further application of the triangle inequality yields

(B.8) =
∣∣∣ ∫
D

pj(x) qji(u(x))φ2
j (x) dx −

∫
D

znj (Θn)(x) qji(U
n(x))φ2

j (x) dx
∣∣∣

+
∣∣∣ p(n)∑
k=1

Θk,n
j

l(k, n)

∫
Dk,n

qji(U
n(x))φ2

j (x) dx − αn

p(n)∑
k=1

Θk,n
j

l(k, n)2
Qk,nji (Un)〈φj , IDk,n〉2E

∣∣∣ .
(B.10)

We estimate the two resulting differences separately and obtain for the first term in the
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right hand side of (B.10) the estimate∣∣∣ ∫
D

pj(x) qji(u(x))φ2
j (x) dx −

∫
D

znj (Θn)(x) qji(U
n(x))φ2(x) dx

∣∣∣
≤
∣∣∣ ∫
D

pj(x) qji(u(x))φ2
j (x) dx−

∫
D

znj (Θn)(x) qji(u(x))φ2(x) dx
∣∣∣

+
∣∣∣ ∫
D

znj (Θn)(x) qji(u(x))φ2(x) dx−
∫
D

znj (Θn)(x) qji(U
n(x))φ2(x) dx

∣∣∣
≤ q ‖φj‖2L∞ ‖pj − znj (Θn)‖L1 + L ‖φj‖2L∞ ‖u− Un‖L1 . (B.11)

For the second term in the right hand side of (B.10) we obtain by employing Θk,n
j /l(k, n)

≤ 1 the estimate

p(n)∑
k=1

∣∣∣ ∫
Dk,n

qji(U
n(x))φ2

j (x) dx− αn
l(k, n)

qji

( 1

|Dk,n|

∫
Dk,n

Un(x) dx
)(∫

Dk,n

φj(x) dx
)2∣∣∣
(B.12)

and we continue estimating each summand therein separately. We begin employing the
Mean Value Theorem to expand the rate function qji in the integral in the left hand side
such that

qji(U
n(x)) = qij

( 1

|Dk,n|

∫
Dk,n

Un(y) dy
)

+ q′ji(ϑ
k,n(x))

(
Un(x)− 1

|Dk,n|

∫
Dk,n

Un(y) dy
)
,

(B.13)
where ϑk,n(x) denotes an appropriate mean value. For now we omit the remainder
term, i.e., the second term in the right hand side of (B.13), a consideration of which
is deferred. Hence, we obtain for the absolute value in each summand in (B.12) the
estimate

qji

( 1

|Dk,n|

∫
Dk,n

Un(y) dy
) ∣∣∣ ∫

Dk,n

φ2
j (x) dx− αn

l(k, n)

(∫
Dk,n

φj(x) dx
)2∣∣∣ .

We note that qji is bounded by q and continue estimating which yields

≤ q |Dk,n|
∣∣∣ 1

|Dk,n|

∫
Dk,n

φ2
j (x) dx− αn|Dk,n|2

l(k, n)|Dk,n|

( 1

|Dk,n|

∫
Dk,n

φj(x) dx
)2∣∣∣

≤ q

∫
Dk,n

(
φj(x)− 1

|Dk,n|

∫
Dk,n

φj(y) dy
)2

dx (B.14)

+ q |Dk,n|
∣∣∣(1− αn|Dk,n|2

l(k, n)|Dk,n|

)( 1

|Dk,n|

∫
Dk,n

φj(x) dx
)2∣∣∣ (B.15)

The term (B.14) is estimated using Poincaré’s inequality which yields an upper bound by
q π−2 diam2(Dk,n) ‖∇φ‖2L2(Dk,n). For the terms (B.15) a summation over all k = 1, . . . , p(n)

yields

q

p(n)∑
k=1

|Dk,n|
∣∣∣1− αn|Dk,n|2

l(k, n)|Dk,n|

∣∣∣( 1

|Dk,n|

∫
Dk,n

φj(x) dx
)2

≤ q
∣∣∣1− `−(n) ν−(n)

`+(n) ν+(n)

∣∣∣ ‖φnj ‖2L2 ,

(B.16)
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where φnj is a piecewise constant approximation to φj defined by

φnj :=

p(n)∑
k=1

( 1

|Dk,n|

∫
Dk,n

φj(x) dx
)
IDk,n .

As φnj converges to φj in L2(D) it holds that the sequence of norms converge, hence
‖φnj ‖L2 is a bounded sequence. Therefore the right hand side in (B.16) is a componen-
twise product of convergent sequences. The sequence |1 − (`−(n) ν−(n)/(`+(n) ν+(n))|
converges to zero, cf. condition (7.12), thus the right hand side in (B.16) converges to
zero for n→∞.

Finally, it remains to consider the term arising from the remainder in the expansion
of qji, see (B.13), inserted into (B.12). By assumption q′ji is bounded (by a constant q).
Therefore we obtain an upper bound on the respective term by

q ‖φj‖2L∞
p(n)∑
k=1

∫
Dn,k

∣∣∣Un(x)− 1

|Dk,n|

∫
Dk,n

Un(y) dy
∣∣∣dx ≤ q ‖φj‖2L∞

p(n)∑
k=1

δ+(n)

2
‖∇Un‖L1(Dn,k)

≤ q ‖φj‖2L∞
δ+(n)

2
‖∇Un‖L1 .

Here we have employed the Poincaré inequality in L1 with optimal Poincaré constant
given by diam(Dk,n)/2 [1].

A combination of these estimates yields an upper bound to (B.8) by

(B.8) ≤ CΦ

(
‖pj − znj (Θn)‖L1 + ‖u−Un‖L1 + δ+(n)2‖∇Un‖L1 + δ2

+(n) + δ+(n) +R(n)
)
,

(B.17)
where the term R(n) is given by the right hand side of (B.16) and converges to zero for
n→∞. The constant CΦ <∞ is a suitable deterministic constant independent of n ∈ N
which depends on Φ ∈ (H2s(D))m via the norm in Hs(D) of the components of Φ.

(ii.2) Next we consider the mixed terms (B.9). Analogously to part (ii.1) we apply
the triangle inequality and obtain

(B.9) ≤
∣∣∣ ∫
D

pj(x) qji(u(x))φj(x)φi(x) dx −
∫
D

znj (Θn)(x) qji(U
n(x))φj(x)φi(x) dx

∣∣∣
+
∣∣∣ p(n)∑
k=1

Θk,n
j

l(k, n)

∫
Dk,n

qji(U
n(x))φj(x)φi(x) dx

− αn

p(n)∑
k=1

Θk,n
j

l(k, n)2
Qk,nji (Un)〈φj , IDk,n〉E〈φi, IDk,n〉E

∣∣∣
As in (ii.1) we obtain for the first term in this right hand side an upper bound by

q ‖φi‖L∞‖φj‖L∞‖pj − znj (Θn)‖L1 + L ‖φi‖L∞‖φj‖L∞‖u− Un‖L1 .

Also the second term is treated as in (ii.1), i.e., applying the Mean Value Theorem
and estimating the resulting terms accordingly. In particular the remainder term is
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estimated completely analogously. Therefore, the only term we are left to estimate is

q |Dk,n|
∣∣∣ 1

|Dk,n|

∫
Dk,n

φi(x)φj(x) dx−
( 1

|Dk,n|

∫
Dk,n

φi(x) dx
)( 1

|Dk,n|

∫
Dk,n

φj(x) dx
)∣∣∣

(B.18)

+ q |Dk,n|
∣∣∣(1− αn|Dk,n|2

l(k, n)|Dk,n|

)( 1

|Dk,n|

∫
Dk,n

φi(x) dx
)( 1

|Dk,n|

∫
Dk,n

φj(x) dx
)∣∣∣ .

(B.19)

First of all, using Young’s inequality we obtain for the second term the estimate

(B.19) ≤ q

2

∣∣∣1− `−(n) ν−(n)

`+(n) ν+(n)

∣∣∣ (‖φni ‖2L2 + ‖φnj ‖2L2

)
, (B.20)

which converges to zero for n→∞.

We next estimate the term (B.18). Firstly, we note that as in part (a) we find using
Poincaré’s inequality an upper bound to the term

|Dk,n|
∣∣∣ 1

Dk,n

∫
Dk,n

(
φi(x)− φj(x)

)2
dx−

( 1

Dk,n

∫
Dk,n

φi(x)− φj(x) dx
)2∣∣∣ (B.21)

and the upper bound is proportional to δ+(n)2. Next, expanding the two squared terms
in (B.21) we find using the reverse triangle inequality that the term (B.21) is an upper
bound to

|Dk,n|
∣∣∣∣ ∣∣∣ 1

Dk,n

∫
Dk,n

φi(x)2 dx+
1

Dk,n

∫
Dk,n

φj(x)2 dx

−
( 1

Dk,n

∫
Dk,n

φi(x) dx
)2

−
( 1

Dk,n

∫
Dk,n

φj(x) dx
)2∣∣∣

− 2
∣∣∣ 1

|Dk,n|

∫
Dk,n

φi(x)φj(x) dx−
( 1

Dk,n

∫
Dk,n

φi(x) dx
)( 1

Dk,n

∫
Dk,n

φj(x) dx
)∣∣∣ ∣∣∣∣ .

Thus also this term possesses an upper bound which is proportional to δ+(n)2. For
n→∞ the upper bound converges to zero. As for δ+(n)→ 0 also the term spanning the
first and second line converges to zero which was established in (ii.1), necessarily also
the term in the third line converges to zero. Therefore we infer that the term (B.18)
converges to zero proportional to δ+(n)2.

Now, a combination of these estimates yields analogously to (B.17) in (ii.1) that

(B.9) ≤ CΦ

(
‖pj−znj (θn)‖L2 +‖u−Un‖L2 +δ(n)2‖∇Un‖L1 +δ2(n)+δ(n)+R(n)

)
. (B.22)

Here R(n) is a term converging to zero for n → ∞ arising from (B.20) and it is of the
same type as the term R(n) in (ii.1). The deterministic constant CΦ is independent of
n ∈ N and depends on Φ via the norm in Hs(D) of the components of Φ.

(ii.3) A combination of the final results (B.17) and (B.22) in (ii.1) and (ii.2) yields
that there exists a constant CΦ <∞ such that for almost all t it holds that∣∣∣〈Φ, G(u(t), p(t)) Φ

〉
E − αn

〈
Φ, Gn(Unt ,Θ

n
t ) Φ

〉
E

∣∣∣
≤ CΦ

( m∑
i=1

‖pi(t)−zni (Θn
t )‖L2 +‖u(t)−Un(t)‖L2 +δ(n)2‖∇Un‖L2 +δ2(n)+δ(n)+R(n)

)
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Here we have also employed the continuous embedding of L2(D) ↪→ L1(D). We next
square both sides of this inequality and integrate over (0, T ). Afterwards we take the
square root of the integral terms and further take the expectation of the resulting in-
equality. Finally, appropriate applications of Jensen’s inequality yields that∫ T

0

En
∣∣∣〈Φ, G(u(t), p(t)) Φ

〉
E − αn

〈
Φ, Gn(Unt ,Θ

n
t ) Φ

〉
E

∣∣∣dt (B.23)

≤ CΦ,T

(
δ2(n)+δ(n)+R(n)+En

[
‖u−Un‖L2((0,T ),L2)+

m∑
i=1

‖pi−zni (Θn)‖L2((0,T ),L2)

])
for an appropriate constant CT,Φ <∞. Note that in order to arrive at the estimate (B.23)
we have further employed that the random term ‖∇Un‖L2((0,T ),L2) can be estimated by
a deterministic bound independent of n ∈ N due to Proposition B.1 (b). Finally, due to
the law of large numbers, i.e., Theorem 7.1, the sequence of PDMPs converges to the
deterministic limit in the mean. Hence the expectation in the right hand side in (B.23)
converges to zero for n → ∞. Furthermore, δ+(n) converges to zero by assumption
(7.8), as does the term R(n). Thus, overall the right hand side in (B.23) converges to
zero. The convergence of the quadratic variation is proved which completes the proof
of Theorem 7.1.
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