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Abstract

The analyses of many algorithms and data structures (such as digital search trees)
for searching and sorting are based on the representation of the keys involved as bit
strings and so count the number of bit comparisons. On the other hand, the standard
analyses of many other algorithms (such as Quicksort) are performed in terms of the
number of key comparisons. We introduce the prospect of a fair comparison between
algorithms of the two types by providing an average-case analysis of the number of
bit comparisons required by Quicksort. Counting bit comparisons rather than key
comparisons introduces an extra logarithmic factor to the asymptotic average total.
We also provide a new algorithm, “BitsQuick”, that reduces this factor to constant
order by eliminating needless bit comparisons.
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1 Introduction and summary

Algorithms for sorting and searching (together with their accompanying analyses)
generally fall into one of two categories: either the algorithm is regarded as comparing
items pairwise irrespective of their internal structure (and so the analysis focuses on
the number of comparisons), or else it is recognized that the items (typically numbers)
are represented as bit strings and that the algorithm operates on the individual bits.
Typical examples of the two types are Quicksort and digital search trees, respectively;
see [15].

In this paper—a substantial expansion of the extended abstract [7]—we take a first
step towards bridging the gap between the two points of view, in order to facilitate
run-time comparisons across the gap, by answering the following question posed many
years ago by Bob Sedgewick [personal communication]: What is the bit complexity
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The Number of Bit Comparisons Used by Quicksort

of Quicksort? (For a discussion of related work that has transpired in the time be-
tween [7] and this paper, see Remark 1.6 at the end of this section.)

More precisely, we consider Quicksort (see Section 2 for a review) applied to n dis-
tinct keys (numbers) from the interval (0, 1). Many authors (Knuth [15], Régnier [18],
Rösler [20], Knessl and Szpankowski [14], Fill and Janson [5] [6], Neininger and Rüschen-
dorf [17], and others) have studied Kn, the (random) number of key comparisons per-
formed by the algorithm. This is a natural measure of the cost (run-time) of the algo-
rithm, if each comparison has the same cost. On the other hand, if comparisons are
done by scanning the bit representations of the numbers, comparing their bits one by
one, then the cost of comparing two keys is determined by the number of bits compared
until a difference is found. We call this number the number of bit comparisons for the
key comparison, and let Bn denote the total number of bit comparisons when n keys
are sorted by Quicksort.

We assume that the keys X1, . . . , Xn to be sorted are independent random variables
with a common continuous distribution F over (0, 1). It is well known that the distribu-
tion of the numberKn of key comparisons does not depend on F . This invariance clearly
fails to extend to the number Bn of bit comparisons, and so we need to specify F .

For simplicity, we study mainly the case that F is the uniform distribution, and,
throughout, the reader should assume this as the default. But we also give a result
valid for a general absolutely continuous distribution F over (0, 1) (subject to a mild
integrability condition on the density).

In this paper we focus on the mean of Bn. One of our main results is the following
Theorem 1.1, the concise version of which is the asymptotic equivalence

EBn ∼ n(lnn)(lg n) as n→∞.

Throughout, we use ln (respectively, lg) to denote natural (resp., binary) logarithm,
and use log when the base doesn’t matter (for example, in remainder estimates). The
symbol

.
= is used to denote approximate equality, and γ

.
= 0.57722 is Euler’s constant.

Theorem 1.1. If the keys X1, . . . , Xn are independent and uniformly distributed on
(0, 1), then the numberBn of bit comparisons required to sort these keys using Quicksort
has expectation given by the following exact and asymptotic expressions:

EBn = 2

n∑
k=2

(−1)k
(
n

k

)
1

(k − 1)k[1− 2−(k−1)]
(1.1)

= n(lnn)(lg n)− c1n lnn+ c2n+ πnn+O(log n), (1.2)

where, with β := 2π/ ln 2,

c1 :=
1

ln 2
(4− 2γ − ln 2)

.
= 3.105,

c2 :=
1

ln 2

[
1

6
(6− ln 2)2 − (4− ln 2)γ +

π2

6
+ γ2

]
.
= 6.872,

and

πn :=
∑

k∈Z: k 6=0

i

πk(−1− iβk)
Γ(−1− iβk)niβk (1.3)

is periodic in lg n with period 1 and amplitude smaller than 5× 10−9.

Small periodic fluctuations as in Theorem 1.1 come as a surprise to newcomers
to the analysis of algorithms but in fact are quite common in the analysis of digital
structures and algorithms; see, for example, Chapter 6 in [16].
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The Number of Bit Comparisons Used by Quicksort

For our further results, it is technically convenient to assume that the number of keys
is no longer fixed at n, but rather Poisson distributed with mean λ and independent of
the values of the keys. (In this paper, we shall not deal with the “de-Poissonization” that
would be needed to transfer results back to the fixed-n model.) In obvious notation, the
Poissonized version of (1.1)–(1.2) is

EB(λ) = 2

∞∑
k=2

(−1)k
λk

k!
× 1

(k − 1)k[1− 2−(k−1)]
(1.4)

= λ(lnλ)(lg λ)− c1λ lnλ+ c2λ+ πλλ+O(log λ) as λ→∞, (1.5)

with πλ as in (1.3). The exact formula follows immediately from (1.1), and the asymp-
totic formula is established in Section 5 as Proposition 5.4. We will also see (Proposi-
tion 5.6) that VarB(λ) = O(λ2), so B(λ) is concentrated about its mean. Since the num-
ber K(λ) of key comparisons is likewise concentrated about its mean EK(λ) ∼ 2λ lnλ

for large λ (see Lemmas 5.1 and 5.3), it follows that

2

lg λ
× B(λ)

K(λ)
→ 1 in probability as λ→∞. (1.6)

In other words, about 1
2 lg λ bits are compared per key comparison.

Remark 1.2. Further terms can be obtained in (1.2) and (1.5) by the methods used in
the proofs below. In particular, the O(log λ) in (1.5) can be refined to

−2 log λ− c4 +O(λ−M )

for any fixed M , with
c4 := 4 ln 2 + 2 + 2γ

.
= 5.927.

For non-uniform distribution F , we have the same leading term for the asymptotic
expansion of EB(λ), but the second-order term is larger. (Throughout, ln+ denotes the
positive part of the natural logarithm function. We denote the uniform distribution by
unif.)

Theorem 1.3. Let X1, X2, . . . be independent with a common distribution F over (0, 1)

having density f , and letN be independent and Poisson with mean λ. If
∫ 1

0
f(ln+ f)4 <∞,

then the expected number of bit comparisons, call it µf (λ), required to sort the keys
X1, . . . , XN using Quicksort satisfies

µf (λ) = µunif(λ) + 2H(f)λ lnλ+ o(λ log λ)

as λ→∞, where H(f) :=
∫ 1

0
f lg f ≥ 0 is the entropy (in bits) of the density f .

In applications, it may be unrealistic to assume that a specific density f is known.
Nevertheless, even in such cases, Theorem 1.3 may be useful since it provides a mea-
sure of the robustness of the asymptotic estimate in Theorem 1.1.

Bob Sedgewick (among others who heard us speak on the material of this paper)
suggested that the number of bit comparisons for Quicksort might be reduced sub-
stantially by not comparing bits that have to be equal according to the results of earlier
steps in the algorithm. In the final section (Theorem 7.1), we note that this is indeed
the case: For a fixed number n of keys, the average number of bit comparisons in
the improved algorithm (which we dub “BitsQuick”) is asymptotically equivalent to
2(1 + 3

2 ln 2 )n lnn, only a constant (
.
= 3.2) times the average number of key comparisons

[see (2.2)]. A related algorithm is the digital version of Quicksort by Roura [21]; it too
requires Θ(n log n) bit comparisons (we do not know the exact constant factor).
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We may compare our results to those obtained for radix-based methods, for example
radix exchange sorting, see [15, Section 5.2.2]. This method works by bit inspections,
that is, by comparisons to constant bits, rather than by pairwise comparisons. In the
case of n uniformly distributed keys, radix exchange sorting uses asymptotically n lg n

bit inspections. Since radix exchange sorting is designed so that the number of bit
inspections is minimal, it is not surprising that our results show that Quicksort uses
more bit comparisons. More precisely, Theorem 1.1 shows that Quicksort uses about
lnn times as many bit comparisons as radix exchange sorting. For BitsQuick, this is
reduced to a small constant factor. This gives us a measure of the cost in bit compar-
isons of using these algorithms; Quicksort is often used because of other advantages,
and our results open the possibility of seeing when they outweigh the increase in bit
comparisons.

In Section 2 we review Quicksort itself and basic facts about the number Kn of
key comparisons. In Section 3 we derive the exact formula (1.1) for EBn, and in Sec-
tion 4 we derive the asymptotic expansion (1.2) from an alternative exact formula that
is somewhat less elementary than (1.1) but much more transparent for asymptotics. In
the transitional Section 5 we establish certain basic facts about the moments of K(λ)

and B(λ) in the Poisson case with uniformly distributed keys, and in Section 6 we use
martingale arguments to establish Theorem 1.3 for the expected number of bit compar-
isons for Poisson(λ) draws from a general density f . Finally, in Section 7 we study the
improved BitsQuick algorithm discussed in the preceding paragraph.

Remark 1.4. The results can be generalized to bases other than 2. For example, base
256 would give corresponding results on the “byte complexity”.

Remark 1.5. Cutting off and sorting small subfiles differently would affect the results
in Theorems 1.1 and 1.3 by O(n log n) and O(λ log λ) only. In particular, the leading
terms would remain the same.

Remark 1.6. In comparison with the extended abstract [7], new in this expanded treat-
ment are Remark 5.2, Propositions 5.4 and 5.7, and Lemma 6.2, together with complete
proofs of Theorem 1.3, Lemmas 5.1 and 5.3, and Remark 6.3. Section 7 has been sub-
stantially revised.

In the time between [7] and the present paper, the following developments have
occurred:

• Fill and Nakama [8] followed the same sort of approach as in this paper to ob-
tain certain exact and asymptotic expressions for the number of bit comparisons
required by Quickselect, a close cousin of Quicksort.

• Vallée et al. [22] used analytic-combinatorial methods to extend the results of [7]
and [8] by deriving asymptotic expressions for the expected number of symbol
comparisons for both Quicksort and Quickselect. In their work, as in the present
paper, the keys are assumed to be independent and identically distributed, but the
authors allow for quite general probabilistic models (also known as “sources”) for
how each key is generated as a symbol string.

• Fill and Nakama [9] obtained, for quite general sources, a limiting distribution
for the (suitably scale-normalized) number of symbol comparisons required by
Quickselect.

• Fill [4] obtained, for quite general sources, a limiting distribution for the (suitably
center-and-scale-normalized) number of symbol comparisons required by Quicksort.

We were motivated to expand [7] to the present full-length paper in large part because
this paper’s Lemmas 5.1 and 5.3, and an extension of (the proof of) Proposition 5.7, play
key roles in [4].
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2 Review: number of key comparisons used by Quicksort

In this section we briefly review certain basic known results concerning the num-
ber Kn of key comparisons required by Quicksort for a fixed number n of keys uni-
formly distributed on (0, 1). (See, for example, [6] and the references therein for further
details.)

Quicksort, invented by Hoare [13], is the standard sorting procedure in Unix sys-
tems, and has been cited [3] as one of the ten algorithms “with the greatest influence
on the development and practice of science and engineering in the 20th century.” The
Quicksort algorithm for sorting an array of n distinct keys is very simple to describe.
If n = 0 or n = 1, there is nothing to do. If n ≥ 2, pick a key uniformly at random from
the given array and call it the “pivot”. Compare the other keys to the pivot to partition
the remaining keys into two subarrays. Then recursively invoke Quicksort on each of
the two subarrays.

With K0 := 0 as initial condition, Kn satisfies the distributional recurrence relation

Kn
L
=KUn−1 +K∗n−Un

+ n− 1, n ≥ 1,

where
L
= denotes equality in law (i.e., in distribution), and where, on the right, Un is

distributed uniformly over the set {1, . . . , n}, K∗j
L
=Kj for every j, and

Un; K0, . . . ,Kn−1; K∗0 , . . . ,K
∗
n−1

are all independent.
Passing to expectations we obtain the “divide-and-conquer” recurrence relation

EKn =
2

n

n−1∑
j=0

EKj + n− 1,

which is easily solved to give

EKn = 2(n+ 1)Hn − 4n (2.1)

= 2n lnn− (4− 2γ)n+ 2 lnn+ (2γ + 1) +O(1/n). (2.2)

It is also routine to use a recurrence to compute explicitly the exact variance of Kn. In
particular, the asymptotics are

VarKn = σ2n2 − 2n lnn+O(n)

where σ2 := 7 − 2
3π

2 .
= 0.4203. Higher moments can be handled similarly. Further, the

normalized sequence
K̂n := (Kn −EKn)/n, n ≥ 1,

converges in distribution, with convergence of moments of each order, to K̂, where
the law of K̂ is characterized as the unique distribution over the real line with van-
ishing mean that satisfies a certain distributional identity; and the moment generating
functions of K̂n converge pointwise to that of K̂.

3 Exact mean number of bit comparisons

In this section we establish the exact formula (1.1), repeated here for convenience
as (3.1), for the expected number of bit comparisons required by Quicksort for a fixed
number n of keys uniformly distributed on (0, 1):

EBn = 2

n∑
k=2

(−1)k
(
n

k

)
1

(k − 1)k[1− 2−(k−1)]
. (3.1)
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LetX1, . . . , Xn denote the keys, andX(1) < · · · < X(n) their order statistics. Consider
ranks 1 ≤ i < j ≤ n. Formula (3.1) follows readily from the following three facts, all
either obvious or very well known:

• The event Cij := {keys X(i) andX(j) are compared} and the random vector (X(i), X(j))

are independent.

• P(Cij) = 2/(j − i + 1). [Indeed, Cij equals the event that the first pivot chosen
from among X(i), . . . , X(j) is either X(i) or X(j).]

• The joint density gn,i,j of (X(i), X(j)) is given by

gn,i,j(x, y) =

(
n

i− 1, 1, j − i− 1, 1, n− j

)
xi−1(y − x)j−i−1(1− y)n−j . (3.2)

Let b(x, y) denote the index of the first bit at which the numbers x, y ∈ (0, 1) differ.
(For definiteness we take in this paper the terminating expansion with infinitely many
zeros for dyadic rationals in [0, 1), but 1 = .111 . . . .) Then

EBn =
∑

1≤i<j≤n

P(Cij)

∫ 1

0

∫ 1

x

b(x, y) gn,i,j(x, y) dy dx

=

∫ 1

0

∫ 1

x

b(x, y) pn(x, y) dy dx,

(3.3)

where pn(x, y) has the definition and interpretation

pn(x, y) :=
∑

1≤i<j≤n

P(Cij)gn,i,j(x, y)

=
P(keys in (x, x+ dx) and (y, y + dy) are compared)

dx dy
.

By a routine calculation,

pn(x, y) =
2

(y − x)2
[(1− (y − x))

n − 1 + n(y − x)]

= 2

n∑
k=2

(−1)k
(
n

k

)
(y − x)k−2,

(3.4)

which depends on x and y only through the difference y − x. Plugging (3.4) into (3.3),
we find

EBn = 2

n∑
k=2

(−1)k
(
n

k

)∫ 1

0

∫ 1

x

b(x, y)(y − x)k−2 dy dx.

But, by routine (if somewhat lengthy) calculation,∫ 1

0

∫ 1

x

b(x, y)(y − x)k−2 dy dx =

∞∑
`=0

(`+ 1)

∫∫
0<x<y<1: b(x,y)=`+1

(y − x)k−2 dx dy

=

∞∑
`=0

(`+ 1)2`
∫ 2−(`+1)

0

∫ 2−`

2−(`+1)

(y − x)k−2 dy dx

=
1

(k − 1)k[1− 2−(k−1)]
.

This now leads immediately to the desired (3.1).

EJP 17 (2012), paper 43.
Page 6/22

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v17-1812
http://ejp.ejpecp.org/


The Number of Bit Comparisons Used by Quicksort

4 Asymptotic mean number of bit comparisons

Formula (1.1), repeated at (3.1), is hardly suitable for numerical calculations or
asymptotic treatment, due to excessive cancellations in the alternating sum. Indeed, if
(say) n = 100, then the terms (including the factor 2, for definiteness) alternate in sign,
with magnitude as large as 1025, and yet EBn

.
= 2295. Fortunately, there is a standard

complex-analytic technique designed for precisely our situation (alternating binomial
sums), namely, Rice’s method. We will not review the idea behind the method here, but
rather refer the reader to (for example) Section 6.4 of [16]. Let

h(z) :=
2

(z − 1)z[1− 2−(z−1)]

and let B(z, w) := Γ(z)Γ(w)/Γ(z + w) denote the (meromorphic continuation) of the
classical beta function. According to Rice’s method, EBn equals the sum of the residues
of the function B(n+ 1,−z)h(z) at

• the triple pole at z = 1;

• the simple poles at z = 1 + iβk, for k ∈ Z \ {0};
• the double pole at z = 0.

The residues are easily calculated, especially with the aid of such symbolic-manipulation
software as Mathematica or Maple. Corresponding to the above list, the residues equal

• n
ln 2

[
H2
n−1 − (4− ln 2)Hn−1 + 1

6 (6− ln 2)2 +H
(2)
n−1

]
;

• i
πk(−1−iβk)Γ(−1− iβk) n!

Γ(n−iβk) ;

• −2(Hn + 2 ln 2 + 1),

where H(r)
n :=

∑n
j=1 j

−r denotes the nth harmonic number of order r and Hn := H
(1)
n .

Summing the residue contributions gives an alternative exact formula for EBn, from
which the asymptotic expansion (1.2) (as well as higher-order terms) can be read off
easily using standard asymptotics for H(r)

n and Stirling’s formula; we omit the details.

This completes the proof of Theorem 1.1.

Remark 4.1. We can calculate EKn in the same fashion (and somewhat more easily),
by replacing the bit-index function b by the constant function 1. Following this approach,
we obtain first the following analogue of (3.1):

EKn = 2

n∑
k=2

(−1)k
(
n

k

)
1

(k − 1)k
.

Then the residue contributions using Rice’s method are

• 2n(Hn − 2− 1
n ), at the double pole at z = 1;

• 2(Hn + 1), at the double pole at z = 0.

Summing the two contributions gives an alternative derivation of (2.1).

5 Poissonized model for uniform draws

As a warm-up for Section 6, we now suppose that the number of keys (throughout
this section still assumed to be uniformly distributed) is Poisson with mean λ.
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5.1 Key comparisons

We begin with a lemma which provides both the analogue of (2.1)–(2.2) and two
other facts we will need in Section 6.

Lemma 5.1. In the setting of Theorem 1.3 with F uniform, the expected number of key
comparisons is a strictly convex function of λ given by

EK(λ) = 2

∫ λ

0

(λ− y)(e−y − 1 + y)y−2 dy.

Asymptotically, as λ→∞ we have

EK(λ) = 2λ lnλ− (4− 2γ)λ+ 2 lnλ+ 2γ + 2 +O(e−λλ−2) (5.1)

and as λ→ 0 we have
EK(λ) = 1

2λ
2 +O(λ3). (5.2)

Comparing the n→∞ expansion (2.2) with the corresponding expansion for Poisson(λ)
many keys, note the difference in constant terms and the much smaller error term in
the Poisson case.

Proof. To obtain the exact formula, begin with

EKn =

∫ 1

0

∫ 1

x

pn(x, y) dy dx;

cf. (3.3) and recall Remark 4.1. Then multiply both sides by e−λλn/n! and sum, using
the middle expression in (3.4); we omit the simple computation. Strict convexity then
follows from the calculation d2

dλ2EK(λ) = 2(e−λ − 1 + λ)/λ2 > 0, and asymptotics as

λ→ 0 are trivial: EK(λ) = 2
∫ λ

0
(λ− y)[ 1

2 +O(y)] dy = 1
2λ

2 +O(λ3).
To derive the result for λ → ∞, letting 1[A] denote 1 if A holds and 0 otherwise, we

observe

1
2EK(λ)

= λ

∫ ∞
0

(
e−y − 1 + y1[y < 1]

)
y−2 dy − λ

∫ ∞
λ

(e−y − 1)y−2 dy + λ

∫ λ

1

y−1 dy

−
∫ ∞

0

(
e−y − 1[y < 1]

)
y−1 dy +

∫ ∞
λ

e−yy−1 dy +

∫ λ

1

y−1 dy −
∫ λ

0

dy

= −λ(1− γ) +

[
1− λ

∫ ∞
λ

e−yy−2 dy

]
+ λ lnλ+ γ +

∫ ∞
λ

e−yy−1 dy + lnλ− λ

= λ lnλ− (2− γ)λ+ lnλ+ γ + 1 +O(e−λλ−2),

as desired. The calculations∫ ∞
0

(
e−y − 1[y < 1]

)
y−1 dy = −γ, (5.3)∫ ∞

0

(
e−y − 1 + y1[y < 1]

)
y−2 dy = −(1− γ), (5.4)∫ ∞

λ

e−yy−1 dy = e−λλ−1 +O(e−λλ−2), (5.5)∫ ∞
λ

e−yy−2 dy = e−λλ−2 +O(e−λλ−3), (5.6)

used at the second and third equalities are justified in Appendix A.
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Remark 5.2. The error term in (5.1) can, using Lemma A.2, be refined to an asymptotic
expansion. Indeed, for any M ≥ 1 it can be written as

e−λ
M−1∑
k=1

(−1)k+1k · k!λ−k−1 +O(e−λλ−M−1).

To handle the number of bit comparisons, we will also need the following bounds
on the moments of K(λ). Together with Lemma 5.1, these bounds also establish con-
centration of K(λ) about its mean when λ is large. For real 1 ≤ p < ∞, we let

‖W‖p := (E |W |p)1/p denote Lp-norm and use E(W ;A) as shorthand for the expecta-
tion of the product of W and the indicator of the event A.

Lemma 5.3. For every real p ≥ 1, there exists a constant cp <∞ such that

‖K(λ)−EK(λ)‖p ≤ cpλ for λ ≥ 1,

‖K(λ)‖p ≤ cpλ2/p for λ ≤ 1.

In particular, VarK(λ) ≤ c22λ2 for all λ > 0.

Proof. We use the notation of Theorem 1.3 with F uniform [so that K(λ) = KN with N
distributed Poisson(λ)] and write κn := EKn for n ≥ 0.

(a) The first result is certainly true for λ ≥ 1 bounded away from∞. For λ→∞ the
result can be established by Poissonizing standard Quicksort moment calculations, as
we now sketch. (Although the following argument is valid for all p ≥ 1, the reader that
so prefers may assume that p is an even integer.) We start with

‖K(λ)−EK(λ)‖p ≤ ‖KN − κN‖p + ‖κN −EK(λ)‖p (5.7)

and proceed to argue that the first term on the right is asymptotically linear in λ while
the second term is o(λ).

To handle the first term, observe that

‖KN − κN‖pp = E|KN − κN |p = EE[|KN − κN |p |N ].

But
E[|KN − κN |p |N = n] = E|Kn − κn|p;

by the comments at the very end of Section 2 this equals (1+o(1))
(
E |K̂|p

)
np as n→∞

and so can be bounded for all n by a constant times np. Thus one need only observe
that ENp = (1 + o(1))λp as λ → ∞ to complete treatment of the first term on the right
in (5.7).

To treat the second term in RHS(5.7) as λ → ∞, one can show using (2.2) and (5.1)
and the normal approximation to the Poisson that

‖κN −EK(λ)‖p = (1 + o(1)) 2‖N lnN − λ lnλ‖p = (1 + o(1))2‖Z‖p λ1/2 lnλ = o(λ)

where Z has the standard normal distribution. We omit the details.
(b) For λ ≤ 1 we use

EKp(λ) ≤ E

[(
N

2

)p
;N ≥ 2

]
≤ E [N2p;N ≥ 2] = λ2

∞∑
n=2

e−λ
λn−2

n!
n2p ≤ cppλ2,

provided cp is taken to be at least the finite value
[∑∞

n=2(n2p/n!)
]1/p

.
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5.2 Bit comparisons

We now turn our attention from K(λ) to the more interesting random variable B(λ),
the total number of bit comparisons. We discuss first asymptotics for the mean µunif(λ)

and then the variability of B(λ) about the mean. In our next proposition we will derive
the asymptotic estimate (1.5) by applying standard asymptotic techniques to the exact
formula (1.4).

Proposition 5.4. Asymptotically as λ→∞, we have

µunif(λ) = EB(λ) = λ(lnλ)(lg λ)− c1λ lnλ+ c2λ+ πλλ+O(log λ).

Proof (outline). Recalling (1.4) and noting that for x > 0 we have

∞∑
k=2

(−1)k
xk

k!(k − 1)k
=

∫ x

0

∫ w

0

v−2(e−v − 1 + v) dv dw =: g(x),

it follows that µ(λ) ≡ µunif(λ) has the harmonic sum form

µ(λ) = 2

∞∑
j=0

2jg(2−jλ),

rendering it amenable to treatment by Mellin transforms, see, e.g., [10] or [11]. Indeed,
it follows immediately that the Mellin transform µ∗ of µ is given for s in the fundamental
strip {s ∈ C : −2 < Re s < −1} by

µ∗(s) = 2g∗(s)Λ(s)

in terms of the Mellin transform g∗ of g and the generalized Dirichlet series

Λ(s) =

∞∑
j=0

2j(s+1) =
1

1− 2s+1
.

But it’s also easy to check using the integral formula for g that

g∗(s) =
Γ(s)

(s+ 1)s
,

and so

µ∗(s) =
2Γ(s)

(s+ 1)s(1− 2s+1)
.

The desired asymptotic expansion for µ(λ) (including the remainder term) can then be
read off from the singular behavior of µ∗(s) at its poles located at s = −1 (triple pole),
s = −1− iβk for k ∈ Z \ {0} (simple poles), and s = 0 (double pole), paralleling the use
of Rice’s method for EBn in Section 4.

In order to move beyond the mean of B(λ), we define

Ik,j := [(j − 1)2−k, j2−k)

to be the jth dyadic rational interval of rank k, and consider

Bk(λ) := number of comparisons of (k + 1)st bits,

Bk,j(λ) := number of comparisons of (k + 1)st bits between keys in Ik,j .
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Observe that

B(λ) =

∞∑
k=0

Bk(λ) =

∞∑
k=0

2k∑
j=1

Bk,j(λ). (5.8)

A simplification provided by our Poissonization is that, for each fixed k, the variables
Bk,j(λ) are independent. Further, the marginal distribution of Bk,j(λ) is simply that of
K(2−kλ).

Remark 5.5. Taking expectations in (5.8), we find

µunif(λ) = EB(λ) =

∞∑
k=0

2k EK(2−kλ). (5.9)

If one is satisfied with a remainder of O(λ) rather than O(log λ), then Proposition 5.4
can also be proved by means of (5.9). This is done by splitting the sum

∑∞
k=0 there

into
∑blg λc
k=0 and

∑∞
k=blg λc+1 and utilizing (5.1) (to the needed order) for the first sum

and (5.2) [or rather the simpler EK(λ) = O(λ2) as λ → 0] for the second. We omit the
details. (See also Section 6 where this argument is used in a more general situation as
part of the proof of Theorem 1.3.)

Moreover, we are now in position to establish the concentration of B(λ) about
µunif(λ) promised just prior to (1.6).

Proposition 5.6. There exists a constant c such that VarB(λ) ≤ c2λ2 for 0 < λ <∞.

Proof. For 0 < λ <∞, we have by (5.8), the triangle inequality for ‖ · ‖2, independence

and Bk,j(λ)
L
=K(2−kλ), and Lemma 5.3, with c := c2

∑∞
k=0 2−k/2,

[VarB(λ)]1/2 ≤
∞∑
k=0

[VarBk(λ)]1/2 ≤
∞∑
k=0

[2kVarK(2−kλ)]1/2 ≤ cλ.

Our next proposition extends the previous one but is limited to λ ≥ 1.

Proposition 5.7. For any real 1 ≤ p <∞, there exists a constant c′p <∞ such that

‖B(λ)−EB(λ)‖p ≤ c′pλ for λ ≥ 1.

Proof. Because Lp-norm is nondecreasing in p, we may assume that p ≥ 2. The proof
again starts with use of the triangle inequality for ‖ · ‖p: For 0 < λ < ∞ we have
from (5.8) that

‖B(λ)−EB(λ)‖p ≤
∞∑
k=0

‖Bk(λ)−EBk(λ)‖p. (5.10)

Further,

Bk(λ)−EBk(λ) =

2k∑
j=1

[
Bk,j(λ)−EBk,j(λ)

]
,

where the summands are independent and centered, each with the same distribution
as K(2−kλ) − EK(2−kλ). Hence, by Rosenthal’s inequality [19, Theorem 3] (see also,
e.g., [12, Theorem 3.9.1]) and Lemma 5.3,

‖Bk(λ)−EBk(λ)‖p ≤ b1
(

2k/p‖Bk,j(λ)−EBk,j(λ)‖p + 2k/2‖Bk,j(λ)−EBk,j(λ)‖2
)

= b12k/p‖K(2−kλ)−EK(2−kλ)‖p + b12k/2‖K(2−kλ)−EK(2−kλ)‖2
≤ b12k/pcp

(
2(2−kλ)2/p + 2−kλ

)
+ b12k/2c22−kλ

≤ b22−k/pλ2/p + b32−k/2λ
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for some constants b1, b2 and b3 (depending on p). Therefore, by (5.10),

‖B(λ)−EB(λ)‖p ≤ b′2λ2/p + b′3λ ≤ (b′2 + b′3)λ

when λ ≥ 1.

Remark 5.8. For the (rather uninteresting) case λ ≤ 1, the same proof yields ‖B(λ)−
EB(λ)‖p ≤ c′pλ2/p for p ≥ 2. This inequality actually holds (for some c′p) for all p ≥ 1; the
case 1 ≤ p < 2 follows easily from (5.8) and Lemma 5.3.

Remark 5.9. In [1] it is shown (in a more general setting) that the variables Bk(λ) are
positively correlated, from which it is easy to check that VarB(λ) = Ω(λ2) for λ ≥ 1.
We then have ‖B(λ)− EB(λ)‖p = Θ(λ) for each real 2 ≤ p < ∞. In fact, it is even true
that [B(λ)−EB(λ)]/λ has a nondegenerate limiting distribution: see [4].

6 Mean number of bit comparisons for keys drawn from an arbi-
trary density f

In this section we outline martingale arguments for proving Theorem 1.3 for the ex-
pected number of bit comparisons for Poisson(λ) draws from a rather general density f .
(For background on martingales, see any standard measure-theoretic probability text,
e.g., [2].) In addition to the notation above, we will use the following:

pk,j :=

∫
Ik,j

f,

fk,j := (average value of f over Ik,j) = 2kpk,j ,

fk(x) := fk,j for all x ∈ Ik,j ,
f∗(·) := sup

k
fk(·).

Note for each k ≥ 0 that
∑
j pk,j = 1 and that fk : (0, 1)→ [0,∞) is the smoothing of f to

the rank-k dyadic rational intervals. From basic martingale theory we have immediately
the following simple but key observation.

Lemma 6.1. With f∞ := f ,

(fk)0≤k≤∞ is a Doob’s martingale,

and fk → f almost surely (and in L1).

Our proof of Theorem 1.3 will also utilize the following technical lemma.

Lemma 6.2. If (as assumed in Theorem 1.3) the probability density f on (0, 1) satisfies∫ 1

0
f(ln+ f)4 <∞, then ∫ 1

0

f∗(ln+ f
∗)3 <∞. (6.1)

Proof. This follows readily by applying one of the standard maximal inequalities for non-
negative submartingales which asserts that for a nonnegative submartingale (Yk)1≤k<∞
and Y ∗ := sup1≤k<∞ Yk we have

EY ∗ ≤ e

e− 1

[
1 + sup

1≤k<∞
E(Yk ln+ Yk)

]
; (6.2)
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see, e.g., [12, Theorem 10.9.4]. The process (Yk := fk(ln+ fk)3)1≤k<∞ is a submartingale
by Lemma 6.1 and the convexity of the function x→ x(ln+ x)3, and for every 1 ≤ k <∞
we have ∫ 1

0

Yk ln+ Yk ≤ 4

∫ 1

0

fk(ln+ fk)4 ≤ 4

∫ 1

0

f(ln+ f)4 <∞,

so (6.2) does indeed give the desired conclusion.

Before we begin the proof of Theorem 1.3 we remark that the asymptotic inequality
µf (λ) ≥ µunif(λ) observed there in fact holds for every 0 < λ <∞. Indeed,

µf (λ) =

∞∑
k=0

2k∑
j=1

EK(λpk,j)

≥
∞∑
k=0

2kEK(λ2−k) = µunif(λ),

(6.3)

where the first equality appropriately generalizes (5.9), the inequality follows by the
convexity of EK(λ) (recall Lemma 5.1), and the second equality follows by (5.9). Fur-
thermore, strict inequality µf (λ) > µunif(λ) holds unless pk,j = 2−k for all k and j, i.e.,
unless the distribution F is uniform. (This argument is valid also if F does not have a
density.)

Proof of Theorem 1.3. Assume λ ≥ 1 and, with m ≡ m(λ) := dlg λe, split the double sum
in (6.3) as

µf (λ) =

m∑
k=0

2k∑
j=1

EK(λpk,j) +R(λ), (6.4)

with R(λ) a remainder term. Our first aim is to show that

R(λ) :=

∞∑
k=m+1

2k∑
j=1

EK(λpk,j) = O(λ).

Since EK(·) is nondecreasing, we have the inequality

EK(λpk,j) ≤
∞∑

n=−∞
EK(2n+1)1[2n ≤ λpk,j < 2n+1]

≤
∞∑

n=−∞
2−nEK(2n+1)λpk,j 1[λpk,j ≥ 2n].

Now if λpk,j ≥ 2n, then for x ∈ Ik,j we have

f∗(x) ≥ fk(x) = 2k pk,j ≥ 2kλ−12n ≥ 2k−m+n.

Hence

EK(λpk,j) ≤
∞∑

n=−∞
2−nEK(2n+1)λpk,j 1[λpk,j ≥ 2n]

≤ λ
∞∑

n=−∞
2−nEK(2n+1)

∫
Ik,j

fk(x)1[2k−m+n ≤ f∗(x)] dx
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and therefore

2k∑
j=1

EK(λpk,j) ≤ λ
∞∑

n=−∞
2−nEK(2n+1)

∫ 1

0

fk(x)1[2k−m+n ≤ f∗(x)] dx

≤ λ
∫ 1

0

f∗(x)

∞∑
n=−∞

2−nEK(2n+1)1[2k−m+n ≤ f∗(x)] dx.

From this we conclude

R(λ) ≤ λ
∫ 1

0

f∗(x)

∞∑
n=−∞

2−nEK(2n+1)

∞∑
k=1

1[2k+n ≤ f∗(x)] dx

= λ

∫ 1

0

f∗(x)

∞∑
k=1

ν(x,k)∑
n=−∞

2−nEK(2n+1) dx,

with ν(x, k) := blg f∗(x)c − k. We proceed to bound the sum on n here. If ν ≤ 0, then
using the bound of (constant times λ2) on EK(λ) from Lemma 5.1 we can bound the
sum

∑
n≤ν 2−nEK(2n+1) by a constant (say, b′) times 2ν , while if ν > 0 we can again

use the estimates from Lemma 5.1 to bound, for some constants b1, b2, b′′ the same sum
by

b1 +

ν∑
n=1

2−n b2 (n+ 1)2n+1 ≤ b′′ν2.

Therefore, for another constant b we have

∞∑
k=1

ν(x,k)∑
n=−∞

2−nEK(2n+1) ≤
blg f∗(x)c−1∑

k=1

b′′ν2(x, k) +

∞∑
k=blg f∗(x)c

b′2ν(x,k)

≤ b′′

3(ln 2)3
[ln+ f

∗(x)]3 + 2b′ ≤ b
(
1 + [ln+ f

∗(x)]3
)
.

Using Lemma 6.2 we finally conclude

R(λ) ≤ b λ
∫ 1

0

f∗[1 + (ln+ f
∗)3] = O(λ).

Plugging R(λ) = O(λ) and the consequence

EK(x) = 2x lnx− (4− 2γ)x+O(x1/2),

which holds uniformly in 0 ≤ x <∞, of Lemma 5.1 into (6.4), we find

µf (λ) =

m∑
k=0

2k∑
j=1

[
2λpk,j(lnλ+ ln pk,j)− (4− 2γ)λpk,j +O

(
(λpk,j)

1/2
)]

+O(λ)

=

m∑
k=0

[
2λ lnλ+ 2λ

2k∑
j=1

pk,j ln pk,j − (4− 2γ)λ+O
(
λ1/22k/2

)]
+O(λ)

= µunif(λ) + 2λ

m∑
k=0

∫
fk ln fk +O(λ),

where we have used the Cauchy–Schwarz inequality at the second equality and com-
parison with the uniform case (f ≡ 1) at the third.
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But, by Lemma 6.1, (6.1), and the dominated convergence theorem,∫
fk ln fk −→

∫
f ln f as k →∞, (6.5)

from which follows

µf (λ) = µunif(λ) + 2λ(lg λ)

∫
f ln f + o(λ log λ)

= µunif(λ) + 2λ(lnλ)

∫
f lg f + o(λ log λ),

as desired.

Remark 6.3. If we make the stronger assumption that

f is Hölder(α) continuous on [0, 1] for some α > 0,

then we can quantify (6.5) and improve the o(λ log λ) remainder in the statement of
Theorem 1.3 to O(λ). A proof is provided in Appendix B.

7 An improvement: BitsQuick

Recall the operation of Quicksort described in Section 2. Suppose that the pivot
[call it x = 0.x(1)x(2) . . . ] has its first m1 bits x(1), x(2), . . . , x(m1) all equal to 0. Then
the subarray of keys smaller than x all have length-m1 prefix consisting of all 0s as well,
and it wastes time to compare these known bits when Quicksort is called recursively
on this subarray.

We call BitsQuick the obvious recursive algorithm that does away with this waste.
We give one possible implementation in the boxed pseudocode, which calls for some ex-
planation. The initial call to the routine BitsQuick(A,m) is to BitsQuick(A0, 0), where
A0 is the full array to be sorted; in general, the routine BitsQuick(A,m) in essence
sorts a subarray A of A0 in which every element has (and is known to have) the same
prefix of length m

There, for m1 = 0, 1, . . . , we use the notation Lm1(y) for the result of rotating
to the left m1 bits the register containing key y—i.e., replacing y = .y(1) y(2) . . . by
.y(m1 + 1) y(m1 + 2) . . . . The input m indicates how many bits each element of the
array A needs to be rotated to the right before the routine terminates, and Rm(A) (in
the last line of the pseudocode) is the resulting array after these right-rotations. The
symbol ‖ denotes concatenation (of sorted arrays). (We omit minor implementational
details, such as how to do sorting in place and to maintain random ordering for the
generated subarrays, that are the same as for Quicksort and very well known.) The
routine BitsQuick(A,m) returns the sorted version of A.

A related but somewhat more complicated algorithm has been considered by Roura
[21, Section 5].

The following theorem is the analogue for BitsQuick of Theorem 1.1.

Theorem 7.1. If the keys X1, . . . , Xn are independent and uniformly distributed on
(0, 1), then the numberQn of bit comparisons required to sort these keys using BitsQuick
has expectation given by the following exact and asymptotic expressions:

EQn =

n∑
k=2

(−1)k
(
n

k

)
k−1

[
2(k − 2)

1− 2−k
− k − 4

1− 2−(k−1)

]
+ 2nHn − 5n+ 2Hn + 1

=
(

2 +
3

ln 2

)
n lnn− c̃1n+ π̃nn+O(log2 n),
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The routine BitsQuick(A,m)

If |A| ≤ 1

Return A
Else
Set A− ← ∅ and A+ ← ∅
Choose a random pivot key x = 0.x(1)x(2) . . . from A

If x(1) = 0

Set m1 ← 1

While x(m1 + 1) = 0

Set m1 ← m1 + 1

For y ∈ A with y 6= x

If y < x

Set y ← Lm1(y) and then A− ← A− ∪ {y}
Else
Set A+ ← A+ ∪ {y}

Set A− ← BitsQuick(A−,m1) and
A+ ← BitsQuick(A+, 0)

Set A← A− ‖ {x} ‖ A+

Else
While x(m1 + 1) = 1

Set m1 ← m1 + 1

For y ∈ A with y 6= x

If y < x

Set A− ← A− ∪ {y}
Else
Set y ← Lm1(y) and then A+ ← A+ ∪ {y}

Set A− ← BitsQuick(A−, 0) and
A+ ← BitsQuick(A+,m1)

Set A← A− ‖ {x} ‖ A+

Return Rm(A)

where, with β := 2π/ ln 2 as before,

c̃1 :=
7

ln 2
+

15

2
−
( 3

ln 2
+ 2
)
γ
.
= 13.9

and

π̃n :=
1

ln 2

∑
k∈Z: k 6=0

3− iβk
1 + iβk

Γ(−1− iβk)niβk

is periodic in lg n with period 1 and amplitude smaller than 2× 10−7.

Proof. We establish only the exact expression; the asymptotic expression can be derived
from it using Rice’s method, just as we outlined for EBn in Section 4. Further, in light
of the exact expression (1.1) for EBn, we need only show that the expected savings
EBn −EQn enjoyed by BitsQuick relative to Quicksort is given by the expression

EBn −EQn =

n∑
k=2

(−1)k
(
n

k

)
k−1

{
−2(k − 2)

1− 2−k
+

(k − 3)(k − 2)

(k − 1)
[
1− 2−(k−1)

]} (7.1)

− (2nHn − 5n+ 2Hn + 1).
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We use the order-statistics notation X(1), . . . , X(n) from Section 3. To derive (7.1),
we will compute the (random) total savings for all comparisons with X(i) as pivot,
sum over i = 1, . . . , n, and take the expectation. For convenience, we may assume
that the algorithm chooses a pivot also in the case of a (sub)array with exactly 1 ele-
ment, although it is not compared to anything; thus every key becomes a pivot. Ob-
serve that X(i) is compared as pivot with keys X(L), . . . , X(R) (except itself) and with
no others, where L ≡ L(i) and R ≡ R(i) with L ≤ i ≤ R are the (random) values
uniquely determined by the condition that X(i) is the first pivot chosen from among
X(L), . . . , X(R) but not (if L 6= 1) the first from among X(L−1), . . . , X(R) nor (if R 6= n)
the first from among X(L), . . . , X(R+1). Hence, X(i) is compared as a pivot with R − L
other keys. The comparisons with X(i) as pivot are performed with the knowledge that
all the keys X(L), . . . , X(R) have values in the interval (X(L−1), X(R+1)), where if L = 1

we interpret X(0) as 0 = .000 . . . and if R = n we interpret X(n+1) as 1 = .111 . . ..
The total savings gained by this knowledge is

∑
j∈[L,R]: j 6=i[b(X(L−1), X(R+1)) − 1] =

(R − L) [b(X(L−1), X(R+1)) − 1], where we recall that b(x, y) denotes the index of the
first bit at which x and y differ.

Therefore the grand total savings is

Bn −Qn =

n∑
i=1

[R(i)− L(i)]
[
b
(
X(L(i)−1), X(R(i)+1)

)
− 1
]

=
∑

(l,r): 1≤l≤r≤n

(r − l) [b(X(l−1), X(r+1))− 1]
∣∣∣{i : (L(i), R(i)) = (l, r)}

∣∣∣,
and so by independence we have

EBn −EQn =
∑

(l,r): 1≤l≤r≤n

(r − l) [E b(X(l−1), X(r+1))− 1]E
∣∣∣{i : (L(i), R(i)) = (l, r)}

∣∣∣.
The second expectation on the right is easily computed:

E
∣∣∣{i : (L(i), R(i)) = (l, r)}

∣∣∣ =

r∑
i=l

P[(L(i), R(i)) = (l, r)] = (r − l + 1)θ(l, r)

where, abbreviating r − l to d and writing “xor” for “exclusive or”,

θ(l, r) =


(d+ 1)−1 − 2(d+ 2)−1 + (d+ 3)−1 if l 6= 1 and r 6= n

(d+ 1)−1 − (d+ 2)−1 if l = 1 xor r = n

(d+ 1)−1 if l = 1 and r = n,

so that

E
∣∣∣{i : (L(i), R(i)) = (l, r)}

∣∣∣ =


2[(d+ 2)(d+ 3)]−1 if l 6= 1 and r 6= n

(d+ 2)−1 if l = 1 xor r = n

1 if l = 1 and r = n,
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Therefore

EBn −EQn

= 2
∑

(l,r): 2≤l≤r≤n−1

r − l
(r − l + 2)(r − l + 3)

[E b(X(l−1), X(r+1))− 1]

+

n−1∑
r=1

r − 1

r + 1
[E b(0, X(r+1))− 1] +

n∑
l=2

n− l
n− l + 2

[E b(X(l−1), 1)− 1]

+ (n− 1) [E b(0, 1)− 1]

= 2
∑

(l,r): 2≤l≤r≤n−1

r − l
(r − l + 2)(r − l + 3)

[E b(X(l−1), X(r+1))− 1]

+ 2

n−1∑
r=1

r − 1

r + 1
[E b(0, X(r+1))− 1]

= 2

n∑
i=1

n∑
j=i+2

j − i− 2

(j − i)(j − i+ 1)
E b(X(i), X(j)) + 2

n∑
j=2

j − 2

j
E b(0, X(j))− qn

= 2Dn + 2En − qn, (7.2)

where: at the second equality we have used symmetry and the observation that b(0, 1) =

1; the last two sums are denoted Dn and En, respectively; and

qn := 2
∑

(l,r): 2≤l<r≤n−1

r − l
(r − l + 2)(r − l + 3)

+ 2

n−1∑
r=2

r − 1

r + 1

= 2nHn − 5n+ 2Hn + 1. (7.3)

The expectation E b(X(i), X(j)) may be computed (for 1 ≤ i < j ≤ n) by recalling the
joint density gn,i,j of (X(i), X(j)) given at (3.2). We then find

E b(X(i), X(j)) =

∞∑
`=0

P[b(X(i), X(j)) ≥ `+ 1]

=

∞∑
`=0

2`∑
m=1

∫∫
(m−1)2−`<x<y<m2−`

gn,i,j(x, y) dx dy

=

∞∑
`=0

2`∑
m=1

∫∫
(m−1)2−`<x<y<m2−`

(
n

i− 1, 1, j − i− 1, 1, n− j

)
× xi−1(y − x)j−i−1(1− y)n−j dx dy.
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Now, suppressing some computational details,
n∑
i=1

n∑
j=i+2

j − i− 2

(j − i)(j − i+ 1)

(
n

i− 1, 1, j − i− 1, 1, n− j

)
xi−1(y − x)j−i−1(1− y)n−j

=

n∑
i=1

n∑
j=i+2

(j − i− 2)

(
n

i− 1, j − i+ 1, n− j

)
xi−1(y − x)j−i−1(1− y)n−j

=

n∑
k=3

(k − 3)

(
n

k

)
(y − x)k−2

n−k∑
i=0

(
n− k
i

)
xi(1− y)n−k−i

=

n∑
k=3

(k − 3)

(
n

k

)
(y − x)k−2[1− (y − x)]n−k

=
1

2

n∑
k=3

(−1)k(k − 3)(k − 2)

(
n

k

)
(y − x)k−2,

and so

Dn =

∞∑
`=0

2`∑
m=1

∫∫
(m−1)2−`<x<y<m2−`[

1

2

n∑
k=3

(−1)k(k − 3)(k − 2)

(
n

k

)
(y − x)k−2

]
dx dy

=
1

2

∞∑
`=0

2`
∫∫

0<x<y<2−`

[
n∑
k=3

(−1)k(k − 3)(k − 2)

(
n

k

)
(y − x)k−2

]
dx dy

=
1

2

n∑
k=3

(−1)k
(k − 3)(k − 2)

(k − 1)k

(
n

k

) ∞∑
`=0

2−`(k−1)

=
1

2

n∑
k=2

(−1)k
(
n

k

)
k−1 (k − 3)(k − 2)

(k − 1)[1− 2−(k−1)]
. (7.4)

Similarly (and somewhat more easily), one sees (for 1 ≤ j ≤ n) that

E b(0, X(j)) =

∞∑
`=0

P[b(0, X(j)) ≥ `+ 1]

=

∞∑
`=0

∫ 2−`

0

(
n

j − 1, 1, n− j

)
yj−1(1− y)n−j dy

and that
n∑
j=2

j − 2

j

(
n

j − 1, 1, n− j

)
yj−1(1− y)n−j =

n∑
k=2

(−1)k−1(k − 2)

(
n

k

)
yk−1,

whence

En =

∞∑
`=0

∫ 2−`

0

[
n∑
k=2

(−1)k−1(k − 2)

(
n

k

)
yk−1

]
dy

=

n∑
k=2

(−1)k−1 k − 2

k

(
n

k

) ∞∑
`=0

2−`k

=

n∑
k=2

(−1)k−1

(
n

k

)
k−1 k − 2

1− 2−k
. (7.5)

Plugging (7.3)–(7.5) into (7.2), we obtain (7.1), thus completing the proof.
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A Some calculus

The following calculus lemmas establish the calculations (5.3)–(5.6) used in the proof
of Lemma 5.1.

Lemma A.1. Define

γ0(z) :=

∫ ∞
0

e−yyz dy, Re z > −1;

γ1(z) :=

∫ ∞
0

(
e−y − 1[y < 1]

)
yz dy, Re z > −2;

γ2(z) :=

∫ ∞
0

(
e−y − 1 + y1[y < 1]

)
yz dy, − 3 < Re z < −1.

Then the following identities hold for z 6= −1:

γ0(z) = Γ(z + 1),

γ1(z) = (z + 1)−1[γ0(z + 1)− 1] = (z + 1)−1[Γ(z + 2)− 1],

γ2(z) = (z + 1)−1[1 + γ1(z + 1)],

and so γ1(−1) = Γ′(1) = −γ and γ2(−2) = −[1 + γ1(−1)] = −(1− γ).

Proof. The identity for γ0 is the definition of the function Γ, and the identities for γ1 and
γ2 follow by integration by parts. Since γ1(z) is continuous in z for Re z > −2, it follows
from the identity for γ1(z) by passage to the limit that γ1(−1) = Γ′(1) = −γ. Finally,
we obtain the desired value of γ2(−2) simply by plugging z = −2 into the identity for
γ2(z).

Let sk denote the falling factorial power s(s− 1) · · · (s− k + 1).

Lemma A.2. For any fixed s ∈ C and M = 0, 1, . . . , and all λ ≥ 1,∫ ∞
λ

e−yys dy = e−λλs

[
M−1∑
k=0

skλ−k +O(λ−M )

]
.

(The implicit constant depends on s and M , but not on λ.)

Proof. For λ > 0, let I(λ; s) :=
∫∞
λ
e−yys dy. If Re s ≤ 0, then

|I(λ; s)| ≤
∫ ∞
λ

e−yyRe s dy ≤
∫ ∞
λ

e−yλRe s dy = λRe se−λ,

which yields the result for Re s ≤M = 0.
Further, integration by parts yields

I(λ; s) = e−λλs + sI(λ; s− 1),

and the result for Re s ≤ M follows by induction on M . Finally, if Re s > M , we use the
result just proven with M replaced by some M ′ ≥ Re s.

B Proof of Remark 6.3

We prove that if

f is Hölder(α) continuous on [0, 1] for some α > 0, (B.1)

then, as claimed in Remark 6.3, the conclusion of Theorem 1.3 holds with the remainder
o(λ log λ) improved to O(λ).
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Proof. Using the notation m ≡ m(λ) := dlg λe of the proof of Theorem 1.3 appearing in
Section 6, it follows from that proof that we need only establish the asymptotic estimate

m∑
k=0

(∫
fk ln fk −

∫
f ln f

)
= O(1)

as λ→∞, and for this it is clearly sufficient to show that

fk(x) ln fk(x)− f(x) ln f(x) = O((k + 1)2−kα) uniformly in x ∈ [0, 1]. (B.2)

But indeed (B.1) evidently implies

fk(x)− f(x) = O(2−kα) uniformly in x ∈ [0, 1],

and thence, routinely, (B.2).
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