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Abstract

In this paper we rigorously derive stochastic amplitude equations for a rather general class of

SPDEs with quadratic nonlinearities forced by small additive noise. Near a change of stability

we use the natural separation of time-scales to show that the solution of the original SPDE

is approximated by the solution of an amplitude equation, which describes the evolution of

dominant modes. Our results significantly improve older results.

We focus on equations with quadratic nonlinearities and give applications to the one-dimensional

Burgers’ equation and a model from surface growth.
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1 Introduction

Stochastic partial differentail equations (SPDEs) with quadratic nonlinearities arise in various appli-

cations in physics. One example is the stochastic Burgers’ equation in the study of closure models

for hydrodynamic turbulence [6]. Other examples are the growth of rough amorphous surfaces

[23; 19], and the Kuramoto-Sivashinsky model, which originally models a fire front, but it is also

used for surface erosion [7; 17]. All these models fit in the abstract framework of this paper.

Consider the following SPDE in Hilbert spaceH with scalar product 〈·, ·〉 and norm ‖·‖:

du=
�

A u+ ǫ2L u+ B(u,u)
�

d t + ǫ2dW. (1)

We consider (1) near a change of stability, where the term ǫ2L u represents the distance from

bifurcation, which scales in the order of the noise strength ǫ2. The operator A is assumed to be

self-adjoint and non-positive, and we call the kernel of A the dominant modes. We allow for noise

given by a fairly general Q-Wiener process.

Near the bifurcation the equation exhibits two widely separated characteristic time-scales and it

is desirable to obtain a simplified equation which governs the evolution of the dominant modes.

This is well known on a formal level in many examples in physics (see e.g. [8]). Moreover, for

deterministic PDEs on unbounded domains, this method [16; 22; 24; 12] successfully overcomes

the gap of a lacking center manifold theory. This is also useful for SPDEs on bounded domains [4],

where no center manifold theory is available.

Moreover, there are numerous variants of this method. However, most of these results are non-

rigorous approximations using this type of formal multi-scale analysis. A noteable example is [9].

Another interesting question, which can be tackled with similar methods, is the stabilization effect

due to degenerate noise. Here noise is transported via nonlinear interaction to the dominant modes.

Examples are [20; 5; 14; 15; 13; 21].

The purpose of this paper is to derive rigorously an amplitude equation for a quite general class of

SPDEs (cf. (1)) with quadratic nonlinearities. This work is based on [5], where degenerate noise

in a different scaling was considered, and it improves significantly previously know results of [1],

where in a similar situation much more regular noise was considered. A related result can be found

in [2], where a simple multiplicative noise was considered, but again with much weaker results.

In this paper we focus on quadratic nonlinearities only. The case of cubic equations is much simpler,

as one can rely on nonlinear stability. This case was already considered in [3], for instance.

As an application of our main approximation result of Theorem 17, we discuss the stochastic Burgers’

equation and surface growth model. Both models are scalar, but systems of PDEs are also covered.

To illustrate our results consider the Burgers’ equation

∂tu=
�

∂ 2
x + 1

�

u+ ǫ2νu+ u∂xu+ ǫ2∂tW, (2)

on [0,π] subject to Dirichlet boundary conditions.

We show in our main result that near a change of stability on a time-scale of order ǫ−2 the solution

of (2) is of the type

u(t, x) = ǫb(ǫ2 t) sin(x) + O (ǫ2),
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where b is the solution of the amplitude equation on the slow time-scale

∂T b(T ) = ν b(T )−
1

12
b3(T ) + ∂Tβ(T ),

and β is a Wiener process with a suitable variance.

For the proofs we rely on a cut-off technique, as in general we cannot control moments of solution

and exclude the possibility of a blow up. Therefore all estimates are established only with high

probability and not in moments. To be more precise, we use a stopping time, in order to look only

at solutions that are not too large. Then we can use moments for time uniformly up to the stopping

time. Later we use the amplitude equation itself to verify that the stopping is not small, at least with

high probability.

As the general strategy we first show that all non-dominant modes are given by an Ornstein-

Uhlenbeck process and a quadratic term in the dominant modes. Then we rely on Itô -Formula

and some averaging argument, in order to transform the equation for the dominant modes to an

amplitude equation with an additional small remainder.

The rest of this paper is organized as follows. In Section 2 we state the assumptions that we make.

In Section 3 we give a formal derivation of the amplitude equation and state the main results. In

Section 4 we give the main results. Finally, in Section 5 we apply our theory to the stochastic

Burgers’ equation and the surface growth model.

2 Main Assumptions and Definitions

This section summarizes all assumptions necessary for our results. For the linear operatorA in (1)

we assume the following:

Assumption 1. (Linear Operator A ) Suppose A is a self-adjoint and non-positive operator on H
with eigenvalues 0 ≤ λ1 ≤ λ2 ≤ .... ≤ λk ≤ .... and λk ≥ Ckm for all large k. the corresponding

complete orthonormal system of eigenvectors is {ek}∞k=1
withA ek =−λkek.

We use the notation N := kerA , S =N ⊥ the orthogonal complement of N in H , and Pc for the

projection Pc :H →N . Define, Ps := I− Pc , and suppose that Pc and Ps commute withA . Suppose

that N has finite dimension n with basis
�
e1, ...., en

�
.

Definition 2. For α ∈ R, we define the spaceH α as

H α =

( ∞∑

k=1

γkek :

∞∑

k=1

γ2
k k2α <∞

)

with norm







∞∑

k=1

γkek







2

α

=

∞∑

k=1

γ2
k k2α,

where
�
ek

�

k∈N is the complete orthonormal basis inH defined by Assumption 1. We define the operator

Dα by Dαek = kαek, so that ‖u‖α = ‖Dαu‖.

Remark 3. The operatorA given by Assumption 1 generates an analytic semigroup
¦

etA ©

t≥0
defined

by

eA t

 ∞∑

k=1

γkek

!

=

∞∑

k=1

e−λk tγkek ∀ t ≥ 0.
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The analytic semigroup has the following well known property:

Lemma 4. Under Assumption 1 there are constants M > 0 and ω > 0 such that for all t > 0, β ≤ α,

and all u ∈H β

etA Psu



α
≤ M t−

α−β
m e−ωt


Psu



β

. (3)

Assumption 5. (Operator L ) Fix α ∈ R and let L : H α → H α−β for some β ∈ [0, m) be a

continuous linear mapping that in general does not commute with Pc and Ps.

Assumption 6. (Bilinear Operator B) With α, β from Assumption 5 let B be a bounded bilinear

mapping fromH α×H α toH α−β . suppose without loss of generality that B is symmetric, i.e. B(u, v) =

B(v,u), and satisfies PcB(u,u) = 0 for u ∈ N .

Remark 7. If B is not symmetric we can use

˜
B(u, v) :=

1

2
B(u, v) +

1

2
B(v,u).

Denote for shorthand notation Bs = PsB and Bc = PcB.

For the nonlinearity appearing later in the amplitude equation we define the following.

Definition 8. Define F :N →N , for u ∈ N , as

F (u,u,u) := Bc(u,A −1
s Bs(u,u)). (4)

Assume without loss of generality that F is given by a symmetric map F :N 3→N , where we define

F (u) =F (u,u,u) for short.

By Assumption 6 the operator F is already trilinear, continuous and therefore bounded. One stan-

dard example being a cubic like u3.

Remark 9. In order to obtain a symmetric map F , we can always use

F (u, v, w) := 1

3
Bc(u,A −1

s Bs(v, w)) + 1

3
Bc(w,A −1

s Bs(u, v)) + 1

3
Bc(v,A −1

s Bs(w,u)).

Moreover, we assume the following:

Assumption 10. (Stability) Assume that the nonlinearity F satisfies

〈F (u,u, w), w〉> 0 ∀ u, w ∈ N − {0}.

Remark 11. Using the fact that N is finite dimensional and F is trilinear and symmetric, we easily

derive the existence of some δ > 0 such that

〈u,F (u)〉 ≥ δ ‖u‖4 ∀ u ∈ N , (5)

and

〈F (u,u, w), w〉 ≥ δ‖u‖2‖w‖2 ∀ u, w ∈ N . (6)

For the noise we suppose:
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Assumption 12. (Wiener Process W ) Let W be a cylindrical Wiener process on an abstract probability

space (Ω, b, P) with a bounded covariance operator Q :H →H defined by Q fk = α
2
k

fk where (αk)k is

a bounded sequence of real numbers and ( fk)k∈N is an orthonormal basis inH . Using the orthonormal

basis ek from Assumption 1, we assume

∞∑

l=n+1

l2αλ
2γ−1

l
‖Q

1

2 el‖2 <∞ for some γ ∈ (0, 1

2
) . (7)

We note that W (t) and ǫW (ǫ−2 t) are in law the same process due to scaling properties of the Wiener

process.

Let us discuss two different representations of W . One with the basis ek and the other one with fk.

For t ≥ 0, we can write W (t) (cf. Da Prato and Zabczyk [10]) as

W (t) :=

∞∑

k=1

αkβk(t) fk =

∞∑

l=1

ßl(t)el , (8)

where (βk)k are independent, standard Brownian motions in R. Furthermore, the ßl :=
∑∞

k=1αk〈 fk, el〉βk are real valued Brownian motions, which are in general not independent.

Moreover, it follows easily from the definition of Pc , Ps and W (t) that

PcW (t) =

∞∑

k=1

αkβk(t)Pc fk =

n∑

l=1

ßl(t)el , (9)

and

PsW (t) =

∞∑

k=1

αkβk(t)Ps fk =

∞∑

l=n+1

ßl(t)el , (10)

Definition 13. The stochastic convolution of eA t and W (t) is defined by

WA (t) =

∫ t

0

e(t−s)A dW (s) =

∞∑

l=1

∫ t

0

e−(t−s)λl dßl(s)el . (11)

For our result we rely on a cut off argument. We consider only solutions that are not too large. To

be more precise we introduce a stopping time, at which the solution is larger than order one. Later

we will show that this time is large with high probability.

Definition 14. (Stopping Time) For the N ×S -valued stochastic process (a,ψ) defined later in (14)

we define, for some small 0< κ < 1

7
and some time T0 > 0, the stopping time

τ∗ := T0 ∧ inf
¦

T > 0 : ‖a(T )‖α > ǫ−κ or

ψ(T )



α
> ǫ−3κ

©

. (12)

Definition 15. For a real-valued family of processes
�

Xǫ(t)
	

t≥0 we say Xǫ = O ( fǫ), if for every p ≥ 1

there exists a constant Cp such that

E sup
t∈[0,τ∗]

�
�Xǫ(t)

�
�
p ≤ Cp f p

ǫ . (13)

We use also the analogous notation for time-independent random variables.

Finally note, that we use the letter C for all constants that depend only on other constants like T0,

κ, or α and the data of the equation given by B, Q, L , andA .
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3 Formal Derivation and the Main Result

Let us first discuss a formal derivation of the Amplitude equation corresponding to Equation (1). We

split the solution u into

u(t) = ǫa(ǫ2 t) + ǫ2ψ(ǫ2 t) , (14)

with a ∈ N and ψ ∈ S , and rescale to the slow time scale T = ǫ2 t, in order to obtain for the

dominant modes

da =
�
Lca+ ǫLcψ+ 2Bc(a,ψ) + ǫBc(ψ,ψ)

�
dT + d

s

Wc . (15)

For the fast modes we derive

dψ = [ǫ−2Asψ+ ǫ
−1Lsa+Lsψ+ ǫ

−2Bs(a, a) + 2ǫ−1Bs(a,ψ) (16)

+ Bs(ψ,ψ)]dT + ǫ−1d
s

W s ,

where
s

W (T ) := ǫW (ǫ−2T ) is a rescaled version of the Wiener process. Now we use (16) in order to

remove ψ from Equation (15).

From (16) we obtain in lowest order of ǫ that

Asψ≈ −Bs(a, a).

AsAs is invertible on S , we derive

ψ ≈−A −1
s Bs(a, a), (17)

which we substitute into (15). Neglecting all small terms in ǫ yields

da ≈
�
Lca− 2F (a)

�
dT + d

s

Wc .

Thus we consider solutions b : [0, T0]→N of

d b =
�
Lc b− 2F (b)

�
dT + d

s

Wc . (18)

This approximating equation is the amplitude equation that approximates the dynamics of the orig-

inal SPDE. The main aim of this paper to show that the solution of (1) is

u(t) = ǫb(ǫ2 t) + O (ǫ2−) .

Remark 16. In order to obtain higher order corrections in N , we can add the higher order term

ǫ2η(ǫ2 t), with η ∈ N , to the ansatz in (14).

Unfortunately, in order to deal with terms like Bc(a,η) we then need a slightly stronger condition on B

like PcB(u, v) = 0 for u, v ∈ N . In this case we obtain in lowest order

dTη=Lcη+ 2Bc(η,ψ) +Lcψ+ 2Bc(ψ,ψ). (19)

Thus using (17), we derive formally

dTη=Lcη− 2Bc(η,A −1
s Bs(a, a)) + Γ(a) ,
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where Γ is a polynomial in a given by

Γ(a) =−LcA −1
s Bs(a, a) + 2Bc(A −1

s Bs(a, a),A −1
s Bs(a, a)) .

In our cut-off technique, using the stopping time τ∗, we only assume that ψ = O (ǫ−3κ). Thus, we

cannot bound the term Bc(η,ψ) in a usefull way.

We can easily add a cut off-condition on η in the definition of τ∗, but this at first glance will not improve

the bound, and we will not be able to show directly that the modified τ∗ is large.

The solution is to replace ψ in the term Bc(η,ψ) in Equation (19) by applying Itô-formula to

Bc(η,A −1
s ψ), which is quite similar to removing ψ from the term Bc(a,ψ) in equation (15), which

is discussed below. Moreover, we need a similar argument for Bc(ψ,ψ). This is an explicit averaging

argument, but it will result in many and lengthy terms to estimate.

For simplicity and shortness of presentation we refrain from this analysis.

In the following, let us be more precise. Applying Itô’s formula to Bc(a,A −1
s ψ) we obtain the

amplitude equation with remainder

a(T ) = a(0) +

∫ T

0

Lca(τ)dτ− 2

∫ T

0

F (a(τ))dτ+
s

Wc(T ) + R(T ), (20)

where the remainder R is given by

R(T ) = ǫ2Bc(a(T ),A −1
s ψ(T ))− 2ǫ2

∫ T

0

Bc(Bc(a(τ),ψ(τ)),A −1
s ψ(τ))dτ

− ǫ3

∫ T

0

Bc(Bc(ψ(τ),ψ(τ)),A −1
s ψ(τ))dτ− ǫ2

∫ T

0

Bc(Lca,A −1
s ψ)dτ

− 2ǫ

∫ T

0

Bc(a(τ),A −1
s Bs(a(τ),ψ(τ)))dτ− ǫ3

∫ T

0

Bc(Lcψ,A −1
s ψ)dτ

− ǫ
∫ T

0

Bc(a,A −1
s Lsa)dτ− ǫ2

∫ T

0

Bc(a,A −1
s Lsψ)dτ+ ǫ

∫ T

0

Lcψ(τ)dτ

− ǫ2

∫ T

0

Bc(a(τ),A −1
s Bs(ψ(τ),ψ(τ)))dτ+ ǫ

∫ T

0

Bc(ψ(τ),ψ(τ))dτ

− ǫ2

∫ T

0

Bc(d
s

Wc(τ),A −1
s ψ(τ))− ǫ

∫ T

0

Bc(a(τ),A −1
s d

s

W s(τ)). (21)

For our main aim we need to show that the remainder R is of order ǫ. This involves carefull analysis

of all terms using moments of uniform bounds up to the stopping time like E sup[0,τ∗] ‖R‖
p
α. Later,

we need an explicit error estimate to actually remove R from the equation. Finally, we use the

nonlinear stability of the amplitude equation to show that τ∗ = T0 with high probability.

To be more precise, the main result is:

Theorem 17. (Approximation) Under Assumptions 1, 5, 6 and 12, let u be a solution of (1) defined in

(14) with the initial condition u(0) = ǫa(0) + ǫ2ψ(0) where a(0) and ψ(0) are of order one. Suppose
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that b is a solution of the amplitude equation (18). Then for all p > 1 and T0 > 0 there exists C > 0

such that

P

�

sup
t∈[0,ǫ−2T0]

‖u(t)− ǫb(ǫ2 t)‖α > ǫ2−7κ
�

≤ Cǫp . (22)

Remark 18. Let us finally remark without proof, that the scaling assumption on the initial conditions

is not very restrictive. Using linear stability the following is easy to show: If u(0) = O (ǫ), then after

some time tǫ = O (ln(1/ǫ)) the following attractively result holds true

u(tǫ) = ǫaǫ + ǫ
2ψǫ with aǫ,ψǫ = O (1) .

4 Proof of the Main result

As a first step of the approximation result, we show that in (14) the modes ψ ∈ S are essentially

an OU-process plus a quadratic term in the modes a ∈ N . Later we will use this to replace the ψ in

(15). After this, we will proceed to show that ψ is with high probability not too large.

Lemma 19. Under Assumption 1, 5, 6 and 12 let z(T ), T > 0 be the S -valued process solving the SDE

dz = ǫ−2AszdT + ǫ−1d
s

W s, z(0) =ψ(0). (23)

Then for ǫ ∈ (0,1) and T ≤ τ∗





ψ(T )− z(T )− ǫ−2

∫ T

0

eǫ
−2As(T−τ)Bs(a(τ), a(τ))dτ






α

≤ Cǫ1−5κ. (24)

Proof. The mild formulation of (16) is

ψ(T ) = z(T ) +

∫ T

0

eǫ
−2As(T−τ)

�

Lsψ+ ǫ
−1Lsa+ ǫ

−2Bs(a+ ǫψ)
�

dτ.

Thus we derive



ψ(T )− z(T )− ǫ−2

∫ T

0

eǫ
−2As(T−τ)Bs(a, a)dτ




α

≤




∫ T

0

eǫ
−2As(T−τ)Lsψ(τ)dτ




α
+ ǫ−1





∫ T

0

eǫ
−2As(T−τ)Lsa(τ)dτ




α

+2ǫ−1




∫ T

0

eǫ
−2As(T−τ)Bs(a(τ),ψ(τ))dτ




α

+





∫ T

0

eǫ
−2As(T−τ)Bs(ψ(τ),ψ(τ))dτ




α

= : I1+ I2+ I3+ I4.
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We now bound all four terms separately. Using Lemma 4 with 0 ≤ β < m we obtain for the first

term for all T ≤ τ∗

I1 =





∫ T

0

eǫ
−2As(T−τ)Lsψ(τ)dτ




α

≤ Cǫ
2β

m

∫ T

0

e−ǫ
−2ω(T−τ)(T −τ)−

β

m


ψ(τ)



α

dτ

≤ Cǫ2−3κ ,

where we used the definition of τ∗ and Assumption 5. Analogously, for the second term, we obtain

for all T ≤ τ∗

I2 ≤ Cǫ
2β

m
−1

∫ T

0

e−ǫ
−2ω(T−τ)(T −τ)−

β

m


Lsa(τ)



α−β dτ≤ Cǫ1−κ .

For the third term, we obtain

I3 ≤ Cǫ
2β

m
−1

∫ T

0

e−ǫ
−2ω(T−τ)(T −τ)−

β

m ‖Bs(a(τ),ψ(τ))‖α−βdτ

≤ Cǫ
2β

m
−1 sup
τ∈[0,τ∗]

‖Bs(a(τ),ψ(τ))‖α−β ·
∫ T

0

e−ǫ
−2ωττ−

β

m dτ.

Using Assumption 6 yields for T ≤ τ∗,

I3 ≤ Cǫ sup
τ∈[0,τ∗]

{‖a(τ)‖α‖ψ(τ)‖α} ·
∫ ǫ−2ωT

0

e−ηη−
β

m dη ≤ Cǫ1−4κ.

Analogously, we derive for the fourth term

I4 ≤ ǫ
2β

m

∫ T

0

e−ǫ
−2ω(T−τ)(T −τ)−

β

m


Bs(ψ(τ),ψ(τ))



α−β dτ

≤ Cǫ
2β

m sup
τ∈[0,τ∗]

‖Bs(ψ(τ),ψ(τ))‖α−β ·
∫ T

0

e−ǫ
−2ω(T−τ)(T −τ)−

β

m dτ

≤ Cǫ2 sup
τ∈[0,τ∗]

‖ψ(τ)‖2α ·
∫ ǫ−2ωT

0

e−ηη−
β

m dη≤ Cǫ2−6κ .

Combining all four results yields (24).

In the following we will show that ψ ≪ O (ǫ−3κ). First, the next Lemma provides bounds for the

stochastic convolution based on the well know factorization method. This also implies bounds for

the process z defined in (23).

Lemma 20. Under Assumption 1 and 12, let ‖z(0)‖α = O (1). Now for every κ0 > 0, p > 1 and T > 0,

there exists a constant C > 0 such that

E

�

sup
t∈[0,T]

‖z(t)‖2p
α

�

≤ Cǫ−κ0 . (25)
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Proof. The mild solution of equation (23) is given by

z(t) = eǫ
−2As tz(0) + ǫ−1

s

W ǫ−2As
(t). (26)

The main part in the proof of a bound on z(t) is the bound on
s

W ǫ−2As
. For this, we use the celebrated

factorization method introduced in [11]. Here, for γ from Assumption 12

s

W ǫ−2As
(t) = Cγ

∫ t

0

eǫ
−2As(t−s)(t − s)γ−1 y(s)ds, (27)

with y(s) :=
∫ s

0
eǫ
−2As(s−σ)(s−σ)−γd

s

W s(σ). Hence, by Gaussianity

E

y(s)




2p

α
≤ Cp

�

E

y(s)




2

α

�p

Using the series expansion (cf. (10)) yields

y(s) =

∞∑

l=n+1

∫ s

0

e−ǫ
−2(s−σ)λl (s−σ)−γd

s

ßl(σ)el .

From Itô-Isometry

E

y(s)




2p

α
≤ Cp

 ∞∑

l=n+1

l2αE

�∫ s

0

e−ǫ
−2(s−σ)λl (s−σ)−γd

s

ßl(σ)

�2
!p

= Cpǫ
2p−4pγ






∞∑

l=n+1

l2α �λl

�2γ−1


Q

1

2 el





2
∫ ǫ2s

2λl

0

e−ττ−2γdτ






p

,

where we used

(d
s

ßl(σ))
2 =

∞∑

k=1

α2
k〈 fk, el〉2dσ = ‖Q

1

2 el‖2dσ. (28)

Integrating from 0 to T we obtain

E

∫ T

0


y(s)




2p

α
ds ≤ Const · ǫ2p−4γp. (29)

Taking theH α norm in (27) yields

‖
s

W ǫ−2As
(t)‖2p

α ≤ C
�
∫ t

0

e(−ǫ
−2ω)(t−s)(t − s)γ−1‖y(s)‖αds

�2p

.

Hölder inequality with 1

2p
+ 1

2q
= 1 for sufficiently large p implies

‖
s

W ǫ−2As
(t)‖2p

α ≤ Const · ǫ4pγ−2

∫ t

0

‖y(s)‖2p
α ds.
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Hence, using (29) we obtain

E sup
t∈[0,T]

‖
s

W ǫ−2As
(t)‖2p

α ≤ Cǫ4pγ−2

∫ T

0

E‖y(s)‖2p
α ds ≤ Cǫ2p−2.

For the bound on z take the norm in equation (26) to obtain for sufficiently large p

E sup
t∈[0,T]

‖z(t)‖2p
α ≤ C

�

E sup
t∈[0,T]

‖eǫ−2As z(0)‖2p
α + ǫ

−2pE sup
t∈[0,T]

‖
s

W ǫ−2As
(t)‖2p

α

�

≤ CE sup
t∈[0,T]

e−2pǫ−2ωt‖z(0)‖2p
α + C · ǫ−2p · ǫ2p−2

≤ Cǫ−2.

Using Hölder inequality we derive for all p > 1 and sufficiently large q > 2

κ0

E sup
t∈[0,T]

‖z(t)‖2p
α ≤ E

�

sup
t∈[0,T]

‖z(t)‖2pq
α

� 1

q ≤ Cǫ−κ0 ,

where the constant C depends among other things on T , p, and κ0.

We now need the following simple estimate.

Lemma 21. Under Assumption 1 and 6, using τ∗ defined in Definition 14,

E




 sup

T∈[0,τ∗]







∫ T

0

eǫ
−2As(T−τ)Bs(a (τ) , a (τ))dτ







2p

α




 ≤ Cǫ4p−4pκ, (30)

for all ǫ ∈ (0,1) .

Proof. Using Lemma 4 and Assumption 6 we obtain for T < τ∗





∫ T

0

eǫ
−2As(T−τ)Bs(a, a)dτ




α
≤ Cǫ

2β

m

∫ T

0

e−ǫ
−2ω(T−τ)(T −τ)−

β

m ‖Bs(a, a)‖α−βdτ

≤ Cǫ2 sup
τ∈[0,τ∗]

‖a(τ)‖2α ·
∫ ǫ−2ωT

0

e−ηη−
β

m dη

≤ Cǫ2−2κ.

Now we can proceed to bound ψ. The following lemma states that ψ(T ) is with high probability

much smaller than ǫ−3κ, as asserted by the Definition 14 for T ≤ τ∗. Here a key fact is that in the

Definition of τ∗ that a = O (ǫ−κ), while ψ = O (ǫ−3κ), but we already proved that ψ is essentially a

quadratic term in a.

Lemma 22. Let the assumptions of Lemmas 19, 20, and 21 be true. Then for all p ≥ 1 there is a

constant C > 0 such that

E sup
T∈[0,τ∗]

‖ψ(T )‖2p
α ≤ Cǫ−4pκ. (31)
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Proof. From (24), by triangle inequality and Lemma 19, we obtain

E sup
[0,τ∗]
‖ψ‖2p

α ≤ Cǫ2p−10pκ+ CE sup
[0,τ∗]
‖z‖2p

α

+ Cǫ−4pE sup
[0,τ∗]





∫ T

0

eǫ
−2As(T−τ)Bs(a, a)dτ





2p

α
.

Using Lemma 20 and 21 we finish the proof.

Corollary 23. Under the assumptions of Lemma 22, there is for every every p > 1 a constant C > 0

such that

P

�

sup
T∈[0,τ∗]

‖ψ(T )‖α < ǫ−3κ
�

≥ 1− Cǫ2pκ. (32)

Proof. From Chebychev inequality

P

�

sup
[0,τ∗]
‖ψ‖α < ǫ−3κ

�

≥ 1− ǫ6κp ·E sup
[0,τ∗]
‖ψ‖2p

α .

We finish the proof by using (31).

Now the next step is to bound the remainder R defined in (21), and use it in order to show the

approximation result later.

Lemma 24. We assume that Assumptions 1, 5, 6, and 12 hold. Then for all p > 1 there exists a

constant C > 0 such that

E sup
T∈[0,τ∗]

‖R(T )‖pα ≤ Cǫp−6pκ. (33)

Proof. For the bound on R we bound all terms in (21) separately. The estimates rely on As-

sumption 6 and the inequality ‖ψ‖γ ≤ C‖ψ‖γ+δ for all γ ∈ R and δ ≥ 0. Moreover, we use

that Bc(a(τ),A −1
s ψ(τ)) ∈ N (finite dimensional) and A −1

s being a bounded linear operator on

S ⊂H α to obtain for all times up to the stopping time τ∗ that

ǫ2Bc(a,A −1

s ψ)


α
≤ Cǫ2


Bc(a,A −1

s ψ)


α−β ≤ Cǫ2 ‖a‖α


A −1

s ψ


α

≤ Cǫ2 ‖a‖α

ψ


α

.

Using the definition of τ∗, we obtain

E sup
[0,τ∗]
‖ǫ2Bc(a,A −1

s ψ)‖pα ≤ Cǫ2p−4pκ. (34)

For the second term in (21) with T ≤ τ∗ ≤ T0



2ǫ2

∫ T

0

Bc(Bc(a,ψ),A −1
s ψ)dτ




α
≤ Cǫ2

∫ T

0

‖Bc(Bc(a,ψ),A −1
s ψ)‖α−βdτ

≤ Cǫ2T · sup
[0,τ∗]
‖Bc(a,ψ)‖α‖A −1

s ψ‖α

≤ Cǫ2T · sup
[0,τ∗]
‖a‖α‖ψ‖2α

≤ Cǫ2−7κ. (35)
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Analogously, for the third term in (21)



ǫ3

∫ T

0

Bc(Bc(ψ,ψ),A −1
s ψ)dτ




α
≤ Cǫ3

∫ T

0

‖Bc(Bc(ψ,ψ),A −1
s ψ)‖α−βdτ

≤ Cǫ3T · sup
[0,τ∗]


ψ



3

α
≤ Cǫ3−9κ. (36)

The 4th term in (21) is bounded by



ǫ2

∫ T

0

Bc(Lca,A −1
s ψ)dτ




α
≤ Cǫ2

∫ T

0

‖Bc(Lca,A −1
s ψ)‖α−βdτ

≤ Cǫ2 · sup
[0,τ∗]
‖Lca‖α‖A −1

s ψ‖α

≤ Cǫ2 · sup
[0,τ∗]
‖a‖α‖ψ‖α

≤ Cǫ2−4κ, (37)

where we used ‖Lca‖α ≤ C‖Lca‖α−β , as N is finite dimensional.

For the 5th term in (21)



2ǫ

∫ T

0

Bc(a,A −1
s Bs(a,ψ))dτ




α
≤ Cǫ

∫ T

0

‖Bc(a,A −1
s Bs(a,ψ))‖α−βdτ

≤ Cǫ · sup
[0,τ∗]
‖a‖α‖A −1

s Bs(a,ψ)‖α

≤ Cǫ · sup
[0,τ∗]
‖a‖2α‖ψ‖α

≤ Cǫ1−5κ. (38)

The 6th term in (21) is bounded by



ǫ3

∫ T

0

Bc(Lcψ,A −1
s ψ)dτ




α
≤ Cǫ3

∫ T

0

‖Bc(Lcψ(τ),A −1
s ψ(τ))‖α−βdτ

≤ Cǫ3 · sup
[0,τ∗]
‖Lcψ‖α‖A −1

s ψ)‖α

≤ Cǫ3 · sup
[0,τ∗]
‖ψ‖2α

≤ Cǫ3−6κ. (39)

The 7th term in (21) is bounded by



ǫ

∫ T

0

Bc(a,A −1
s Lsa)dτ




α
≤ Cǫ

∫ T

0

‖Bc(a,A −1
s Lsa)‖α−βdτ

≤ Cǫ · sup
[0,τ∗]
‖a‖α‖A −1

s Lsa‖α

≤ Cǫ · sup
[0,τ∗]
‖a‖α‖Lsa‖α−m

≤ Cǫ · sup
[0,τ∗]
‖a‖2α

≤ Cǫ1−2κ. (40)
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The 8th term in (21) is completely analogous. We have



ǫ2

∫ T

0

Bc(a,A −1
s Lsψ)dτ




α
≤ Cǫ2−4κ. (41)

Moreover for the 9th term in (21):



ǫ

∫ T

0

Bc(ψ,ψ)dτ




α
≤ Cǫ

∫ T

0

‖Bc(ψ,ψ)‖α−βdτ≤ Cǫ1−6κ . (42)

For the 10th term in (21)



ǫ

∫ T

0

Lcψdτ




α
≤ Cǫ

∫ T

0

‖Lcψ‖αdτ≤ Cǫ

∫ T

0

‖Lcψ‖α−βdτ

≤ Cǫ · sup
[0,τ∗]
‖ψ(τ)‖α ≤ Cǫ1−3κ. (43)

The 11th term in (21) is bounded by



ǫ2

∫ T

0

Bc(a,A −1
s Bs(ψ,ψ))dτ




α
≤ Cǫ2

∫ T

0

‖Bc(a,A −1
s Bs(ψ,ψ))‖α−βdτ

≤ Cǫ2 · sup
[0,τ∗]
‖a‖α‖A −1

s Bs(ψ,ψ)‖α

≤ Cǫ2 sup
[0,τ∗]
‖a‖α‖ψ‖2α

≤ Cǫ2−7κ. (44)

For the stochastic integral ǫ2
∫ T

0
Bc(d

s

Wc,A −1
s ψ) in (21) note that the covariance operator of Wc is

Qc = PcQPc . Define

$(τ)u := Bc(u(τ),A −1
s ψ(τ)),

to obtain

E sup
T∈[0,τ∗]





∫ T

0

Bc(d
s

Wc(τ),A −1
s ψ(τ))





p

α
= E sup

T∈[0,τ∗]





∫ T

0

$(τ)d
s

Wc(τ)





p

α
.

By Burkholder-Davis-Gundy (cf. Theorem 1.2.4 in [18]) we derive

E sup
T∈[0,τ∗]





∫ T

0

$d
s

Wc





p

α
= E sup

T∈[0,τ∗]





∫ T

0

Dα$d
s

Wc





p

≤ C ·E
�
∫ τ∗

0

‖Dα$Q
1

2
c ‖2HSdτ

� p

2

= C ·E
�
∫ τ∗

0

∞∑

k=1

‖Dα$Q
1

2
c gk‖2dτ

� p

2
,
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where (gk)k∈N is any orthonormal basis in H and Dα was defined in Definition 2. The space HS

is the space of Hilbert-Schmidt operators on H , equipped with the norm ‖Ψ‖HS = Trace[ΨΨ∗].
Hence,

E sup
T∈[0,τ∗]





∫ T

0

$d
s

Wc





p

α
≤ C ·E

�
∫ τ∗

0

∞∑

k=1

‖DαBc(Q
1

2
c gk,A −1

s ψ)‖2dτ
� p

2

= C ·E
�
∫ τ∗

0

∞∑

k=1

‖Bc(Q
1

2
c gk,A −1

s ψ)
︸ ︷︷ ︸

∈N

‖2αdτ
� p

2

≤ CE
� ∞∑

k=1

sup
[0,τ∗]
‖Bc(Q

1

2
c gk,A −1

s ψ)‖2α−β
� p

2

≤ C
� ∞∑

k=1

‖Q
1

2
c gk‖2α

� p

2 ·E sup
[0,τ∗]
‖A −1

s ψ(τ)‖pα

≤ Cǫ−3pκ, (45)

where we used the fact that the norm in HS is invariant under taking the adjoint, and independent

of the choice of the basis, in order to obtain

∞∑

k=1

‖Q
1

2
c gk‖2α = ‖D

αQ
1

2
c ‖2HS = ‖Q

1

2
c Dα‖2HS =

∞∑

k=1

‖Q
1

2
c Dαek‖2

=

∞∑

k=1

〈Q
1

2
c Dαek,Q

1

2
c Dαek〉=

∞∑

k=1

k2α〈PcQPcek, ek〉

=

n∑

k=1

k2α〈Qek, ek〉=
n∑

k=1

k2α‖Q
1

2 ek‖2 ≤ C .

For ǫ
∫ T

0
Bc(a,A −1

s d
s

W s), the last stochastic integral in (21), note that the covariance operator of
s

W s is Qs = PsQPs. Similar to the previous estimate we define

$1(τ)u := Bc(a(τ),A −1
s u).
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Now by Burkholder-Davis-Gundy (cf. Theorem 1.2.4 in [18]) we obtain

E sup
T∈[0,τ∗]



ǫ

∫ T

0

Bc(a,A −1
s d

s

W s)





p

α
= E sup

T∈[0,τ∗]



ǫ

∫ T

0

Dα$1d
s

W s





p

= C ·E
�

ǫ2

∫ τ∗

0

‖Dα$1Q
1

2
s ‖2HSdτ

� p

2

= C ·E
�

ǫ2

∫ τ∗

0

∞∑

k=1

‖Dα$1Q
1

2
s ek‖2dτ

� p

2

= Cǫp ·E
�
∫ τ∗

0

∞∑

k=1

‖DαBc(a,A −1
s Q

1

2
s ek)‖2dτ

� p

2

≤ Cǫp ·E
� ∞∑

k=1

sup
[0,τ∗]
‖Bc(a,A −1

s Q
1

2
s ek)‖2α−β

� p

2

≤ Cǫp−pκ
� ∞∑

k=1

‖A −1
s Q

1

2
s ek‖2α

� p

2

≤ Cǫp−pκ, (46)

where we used

∞∑

k=1

‖A −1
s Q

1

2
s ek‖2α = ‖D

αA −1
s Q

1

2
s ‖2HS = ‖Q

1

2
sA −1

s Dα‖2HS =

∞∑

k=1

‖Q
1

2
sA −1

s Dαek‖2

=

∞∑

k=1

k2α

λ2
k

‖Q
1

2
s ek‖2 =

∞∑

k=1

k2α

λ2
k

〈PsQPsek, ek〉

=

∞∑

k=n+1

k2α

λ2
k

‖Q
1

2 ek‖2 ≤ C .

The last step follows from Assumption 12, as λk→∞.

As we supposed κ < 1

7
in the definition of τ∗, we can collect all term in the equations from (34)

until (46). This implies the result.

In order to prove now the approximation result, we first need the following a-priori estimate for

solutions of the amplitude equation.

Lemma 25. Let Assumptions 1, 5, 10 and 12 hold. Define the stochastic process b(T ) , with initial

condition E‖b(0)‖ ≤ C, in N as the solution of

b(T ) = b(0) +

∫ T

0

Lc b(τ)dτ− 2

∫ T

0

F (b(τ))dτ+
s

Wc(T ). (47)

Then for T0 > 0 there exists a constant C > 0 such that

E sup
T∈[0,T0]

‖b(T )‖pα ≤ C . (48)
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We note that all norms in a finite dimensional space are equivalent. Thus for simplicity of notation

in the proof we use only the standard Eucledian norm and suppose that b ∈ Rn.

Proof. The existence and uniqueness of solutions for equation (47) is standard. To verify the bound

in (48) we define X as

X (T ) = b(T )−
s

Wc(T ) . (49)

Substituting into (47), we obtain

∂T X =Lc(X +
s

Wc)− 2F (X +
s

Wc).

Taking the scalar product 〈·, X 〉 on both sides of (56) yields

1

2
∂T ‖X‖2 = 〈Lc(X +

s

Wc), X 〉 − 2〈F (X +
s

Wc), X 〉.

Using Young and Cauchy-Schwarz inequalities and Assumption 10 yields

∂T ‖X‖2 ≤ C + C





s

Wc





4

−
δ

2
‖X‖4.

Neglecting the fourth power, integrating from 0 to T , taking
p

2
-th power, and finally the expectation,

we obtain

E sup
[0,T0]

‖X‖p ≤ C T
1

2
p

0 + C T
1

2
p

0 E sup
[0,T0]





s

Wc





2p

≤ C .

Together with (49), this implies

E sup
[0,T0]

‖b‖p ≤ CE sup
[0,T0]

‖X‖p + CE sup
[0,T0]





s

Wc





p

≤ C .

Definition 26. Define the set Ω∗ ⊂ Ω such that all these estimates

sup
[0,τ∗]
‖ψ‖α < Cǫ−3κ , (50)

sup
[0,τ∗]
‖R‖α < Cǫ1−7κ , (51)

and

sup
[0,τ∗]
‖b‖α < Cǫ−

κ
2 , (52)

hold on Ω∗.

Remark 27. The set Ω∗ has approximately probability 1, as

P(Ω∗)≥ 1− P( sup
[0,τ∗]
‖ψ‖α ≥ Cǫ−3κ)

− P( sup
[0,τ∗]
‖R‖α ≥ Cǫ1−7κ)− P( sup

[0,τ∗]
‖b‖α ≥ Cǫ−

κ
2 ).

Using Chebychev inequality and Lemmas 22, 24 and 25, we obtain for sufficient large q

P(Ω∗)≥ 1− C[ǫqκ + ǫqκ + ǫ
1

2
qκ]≥ 1− Cǫp .
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Theorem 28. We assume that Assumption 1, 5, 6, 10 and 12 hold. Let b be a solution of (47) and

a as defined in (20) with ‖a(0)‖ ≤ C on Ω∗. If the initial conditions satisfies a(0) = b(0), then, for

κ < 1

7
, we obtain

sup
T∈[0,τ∗]

‖a(T )− b(T )‖α ≤ Cǫ1−7κ, (53)

and

sup
T∈[0,τ∗]

‖a(T )‖α ≤ Cǫ−
κ
2 , (54)

on Ω∗.

Proof. Define ϕ(T ) as

ϕ(T ) := a(T )− R(T ).

From (20) we obtain

ϕ(T ) = a(0) +

∫ T

0

Lc

�
ϕ(τ) + R(τ)

�
dτ− 2

∫ T

0

F (ϕ(τ) + R(τ))dτ+
s

Wc(T ). (55)

Define now h(T ) by

h(T ) := b(T )−ϕ(T ).
Subtracting (55) from (47), we obtain

h(T ) =

∫ T

0

Lch(τ)dτ−
∫ T

0

LcR(τ)dτ+ 2

∫ T

0

[F (b− h+ R)−F (b)](τ)dτ.

Thus

∂T h=Lch−LcR+ 2[F (b− h+ R)−F (b)] . (56)

Taking the scalar product 〈·,h〉 on both sides of (56) yields

1

2
∂T ‖h‖2 = 〈∂T h,h〉= 〈Lch,h〉 − 〈LcR,h〉+ 2〈F (b− h+ R)−F (b),h〉 .

Using Young and Cauchy-Schwarz inequalities and (6) , we obtain the following linear ordinary

differential inequality

∂T ‖h‖2 ≤ C[‖h‖2+ ‖h‖4] + C ‖R‖2
�

1+ ‖R‖2+ ‖b‖2+ ‖b‖4+ ‖b‖2 ‖R‖2
�

≤ C[‖h‖2+ ‖h‖4] + C‖R‖2
�

1+ ‖R‖4+ ‖b‖4
�

.

Using (51) and (52), we obtain

∂T ‖h‖2 ≤ C[‖h‖2+ ‖h‖4] + Cǫ2−14κ on Ω∗.

Now we will show that h stays small for a long time. As long as ‖h‖ ≤ 1, we obtain

∂T ‖h‖2 ≤ 2C ‖h‖2+ Cǫ2−14κ.

Using Gronwall’s Lemma, we obtain for sufficiently small ǫ that

‖h‖2 ≤ Cǫ2−14κ < 1
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and thus

sup
[0,τ∗]
‖h‖ ≤ Cǫ1−7κ on Ω∗. (57)

We finish the first part by using (51) and (57) together with

sup
[0,τ∗]
‖a− b‖= sup

[0,τ∗]
‖h− R‖ ≤ sup

[0,τ∗]
‖h‖+ sup

[0,τ∗]
‖R‖.

For the second part of the theorem consider

sup
[0,τ∗]
‖a‖ ≤ sup

[0,τ∗]
‖a− b‖+ sup

[0,τ∗]
‖b‖ .

Using the first part and (52), we obtain (54).

Finally, we use the results previously obtained to prove the main result of Theorem 17 for the

approximation of the solution of the SPDE (1).

Proof of Theorem 17. For the stopping time, we note that

Ω ⊃ {τ∗ = T0} ⊇ { sup
T∈[0,τ∗]

‖a(T )‖α < ǫ−κ, sup
T∈[0,τ∗]

‖ψ(T )‖α < ǫ−3κ} ⊇ Ω∗.

Now let us turn to the approximation result. Using (14) and triangle inequality, we obtain

sup
T∈[0,τ∗]

‖u(ǫ−2T )− ǫb(T )‖α ≤ ǫ sup
[0,τ∗]
‖a− b‖α+ ǫ2 sup

[0,τ∗]
‖ψ‖α.

From (50) and (53), we obtain

sup
t∈[0,ǫ−2T0]

‖u(t)− ǫb(ǫ2 t)‖α = sup
t∈[0,ǫ−2τ∗]

‖u(t)− ǫb(ǫ2 t)‖α ≤ Cǫ2−7κ on Ω∗.

5 Application

There are numerous examples in the physics literature of equations with quadratic nonlinearities

where our theory does apply. For simplicity we focus on two scalar examples, although our result

applies also to systems of PDEs.

Before we give examples, we suppose in our applications for simplicity that W is a cylindrical Wiener

process on H with a covariance operator Q defined by Qek = α
2
k
ek where

�
αk

�

k is a bounded

sequence of real numbers and ek are the eigenfunctions of the dominant linear operator. Thus,

W (t) =
∑

k

αkβk(t)ek

for a family of independent standard Brownian motions βk.
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5.1 Burgers’ equation

One example is the Burgers’ equation (cf. (2)) on the interval [0,π], with Dirichlet boundary con-

ditions. We take

H = L2([0,π]), ek(x) =

q

2

π
sin(kx) and N = span{sin}.

First note that Assumption 1 is true. All the eigenvalues of −A = −∂ 2
x − 1 are λk = k2 − 1 with

m = 2 and limk→∞λk = ∞. If we fix Pc to be the H -orthogonal projection onto N , then both Pc

and Ps commute withA .

Moreover, it is easy to check that all conditions of Assumption 6 are satisfied with

B(u, v) = 1

2
∂x(uv).

To be more precise:

PcB(u,u) = Pc

�

γ2 sin(x) cos(x)
�

= 0 for u= γ sin ∈ N ,

and for α= 1

4
and β = 5

4
< m, we obtain

2‖B(u, v)‖H −1 = ‖∂x(uv)‖H −1 ≤ ‖uv‖L2

≤ C‖u‖L4‖v‖L4 ≤ C‖u‖
H

1
4
‖v‖
H

1
4
,

where we used Sobolev embedding fromH 1/4 into L4. After a straightforward calculation we derive

F (γ1 sin,γ2 sin,γ3 sin) =
1

24
γ1γ2γ3 sin .

This function is trilinear, continuous and satisfies the conditions (5) and (6) as follows

〈γ1 sin,F (γ1 sin)〉= Cγ4
1 > 0, if γ1 6= 0

and

〈F (γ1 sin,γ1 sin,γ2 sin),γ2 sin〉=
π

48
γ2

1γ
2
2 > 0

for γ1 6= 0 and γ2 6= 0.

Now our main theorem states that

u(t) = ǫγ(ǫ2 t) sin+O (ǫ2−) ,

where

γ′ = νγ− 1

12
γ3+α1β̃

′ ,

with a rescaled standard Brownian motion β̃ given by ǫ
Æ

2

π
PcW (ǫ

−2T ).
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5.2 Surface growth model

The second example that falls into the scope of our work is the growth of rough amorphous surfaces.

The equation is of the type

∂th= −△2h−µ△h−△|∇h|2+σ∂tW (t). (58)

Here △ is the Laplacian with respect to periodic boundary conditions on [0,2π]. Usually one

supposes initial condition h(0) = 0 corresponding to an initially flat surface.

For this model we consider µ = 1+ ǫ2ν and σ = ǫ2, which reflects the fact that one is sufficiently

close to the first bifurcation, where the flat surface gets unstable. The distance from bifurcation

scales like the noise-strength.

For the abstract setting define

A =−△2−△, L =−ν△ and B(u, v) = −△(∂xu · ∂x v).

We take

ek(x) =







1p
π

sin(kx) if k > 0,
1p
π

cos(kx) if k < 0,
1p
2π

if k = 0,

and

H = {u ∈ L2([0,2π]) :

∫ 2π

0

ud x = 0} and N = span{sin, cos}.

The eigenvalues of −A = △2 + △ are λk = k4 − k2 with m = 4 and limk→∞λk = ∞. Thus

Assumption 1 is satisfied.

If we define u(t) := h(t)− h0(t)e0, then we obtain

∂tu= −△2u−µ△u−△|∇u|2+σ
∑

k 6=0

αk∂tβk(t)ek, (59)

and

h0(t) = σα0β0(t). (60)

If u= u1 sin+u−1 cos ∈ N , then

B(u,u) = 2
�

u2
1− u2

−1

�

cos(2x)− 4u1u−1 sin(2x),

and

PcB(u,u) = 0,

and for α= 5

4
and β = 13

4
< m, we obtain

‖B(u, v)‖H −2 = ‖△(∂xu · ∂x v)‖H −2 ≤ c‖∂xu · ∂x v‖L2

≤ c‖u‖
H

5
4
‖v‖
H

5
4
.

Hence all conditions of Assumption 6 are satisfied. Moreover, it is easy to check that Assumption 10

also holds true. For F we derive

F (u,u,u) = 3

18
(u2

1+ u2
−1)u,
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and for the symmetric version of F we obtain

F (u,u, w) =
2

3
Bc(u,A −1

s Bs(u, w)) +
1

3
Bc(w,A −1

s Bs(u,u))

= 1

18
[(3u2

1w1+ w1u2
−1+ 2u1w−1u−1) sin

+(u2
1w−1+ 3w−1u2

−1+ 2u1w1u−1) cos],

where u= u1 sin+u−1 cos, w = w1 sin+w−1 cos ∈ N , . Now

〈F (u),u〉> 0 ∀ u 6= 0 .

and if u 6= 0 and v 6= 0

〈F (u,u, w), w〉=
π

18
[3(u1w1+ w−1u−1)

2+ (w1u−1− u1w−1)
2]> 0 .

The amplitude equation for (59) is a system of two stochastic ordinary differential equations:

dγi = [νγi − 1

3
γi(γ

2
1+ γ

2
−1)]d t + 1p

π
αidβ̃i for i =±1,

where

u(t) = ǫγ(ǫ2 t) ·
�

sin

cos

�

+ O (ǫ2−) .

and β̃i(T ) = ǫβi(ǫ
−2T ) rescaled Brownian motions.
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