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Abstract

We consider the two dimensional discrete Gaussian free field confined between two hard walls.

We show that the field becomes massive and identify the precise asymptotic behavior of the mass

and the variance of the field as the height of the wall goes to infinity. By large fluctuation of the

field, asymptotic behaviors of these quantities in the two dimensional case differ greatly from

those of the higher dimensional case studied by [14].
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1 Introduction and main results

The discrete Gaussian free field is represented as a Gibbs random field with massless interaction

potentials and is interpreted as a probabilistic model of phase separating random interfaces. Because

of its long range correlations the field exhibits many interesting behaviors, especially under the effect

of various external forces (wall, pinning, etc.) and its study has been quite active in recent years (cf.

[16] and references therein). Also, the two dimensional discrete Gaussian free field is related to the

scaling limit of a number of discrete random surface models (cf. [15, Section 1.3] and references

therein). In this paper, we study the behavior of the two dimensional discrete Gaussian free field

confined between two hard walls.

At first, we introduce the model. Let d ≥ 2, ΛN = [−N , N]d ∩ Zd . For a configuration

φ = {φx}x∈ΛN
∈ RΛN , consider the following massless Hamiltonian with quadratic interaction po-

tential:

HN (φ) =
1

8d

∑

{x ,y}∩ΛN 6=φ
|x−y|=1

(φx −φy)
2.

We define the corresponding Gibbs measure with 0-boundary conditions by

P0
N (dφ) =

1

Z0
N

exp
�
−HN (φ)
	∏

x∈ΛN

dφx

∏

x /∈ΛN

δ0(dφx),

where dφx denotes Lebesgue measure on R and Z0
N is a normalization factor. By summation by

parts, we have an identity:

HN (φ)

���
φ≡0 on Λc

N

=
1

2



φ, (−∆N )φ
�
ΛN

,

where ∆N is a discrete Laplacian on Zd with Dirichlet boundary condition outside ΛN and 〈 · , · 〉ΛN

denotes l2(ΛN )-scalar product. Hence the measure P0
N coincides with the law of a centered Gaus-

sian field on RΛN with the covariance matrix (−∆N )
−1. This model is called discrete Gaussian free

field or harmonic crystal. The configuration φ is interpreted as an effective modelization of (dis-

cretized) phase separating random interface embedded in the d+1-dimensional space and the spin

φx denotes the height of the interface at the position x ∈ ΛN .

Confinement of the field between two hard walls is one of the problems related to the study of

random interface. This was originally investigated by Bricmont et al. [4]. They showed that under

the condition:

WN (L) = {φ : |φx | ≤ L for every x ∈ ΛN},

the field turns to be massive and the following large L asymptotics holds.

• Free energy :

−
1

N d
log P0

N (WN (L)) =

(
e−O(L) if d = 2,

e−O(L2) if d ≥ 3,

for every N large enough (N depends on L).
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• Mass :

lim
|x |→∞

−
1

|x | log EP L
∞[φ0φx] =

(
e−O(L) if d = 2,

e−O(L2) if d ≥ 3.

• Variance :

VarP L
∞
(φ0) = O(L) if d = 2,

0≤ VarP∞(φ0)− VarP L
∞
(φ0)≤ e−O(L2) if d ≥ 3.

Here, P L
∞ is the thermodynamic limit of the conditioned measure P0

N ( · |WN (L)). Note that the

family of conditioned measures automatically satisfies tightness and the uniqueness of the infinite

limit is well known (e.g. [7] and references therein). P∞ denotes the thermodynamic limit of P0
N ,

namely the centered Gaussian field on RZ
d

with the covariance matrix (−∆)−1, ∆ is a discrete

Laplacian of Zd . Refinement of these results in the higher dimensional case was studied in [13] and

[14]. When d ≥ 3, the free energy behaves as e
− 1

2gd
L2(1+o(1))

, the mass behaves as e
− 1

4gd
L2(1+o(1))

and the difference of the variance VarP∞(φ0)− VarP L
∞
(φ0) is e

− 1

2gd
L2(1+o(1))

as L →∞, where gd =

(−∆)−1(0,0) for d ≥ 3.

The main aim of this paper is to make refinement of the above results when d = 2. The difficulty of

the two dimensional case arises from the fact that the field is rough. Namely, we have the following

property of the field:

VarP0
N
(φ0) = (−∆N )

−1(0,0)∼
(

g2 log N if d = 2,

gd if d ≥ 3,
(1.1)

as N → ∞, where g2 =
2

π
. By the uniform bound of variance the field is said to be smooth in the

higher dimensional case and this guarantees the existence of the infinite volume limit P∞ in d ≥ 3,

while the infinite volume limit does not exist in d = 2. For our problem, large fluctuation of the

field makes difficult to handle the effect of confinement in the two dimensional case. For example,

the precise upper bound of the free energy in the higher dimensional case simply follows from a

combination of Griffiths’ inequality:

P0
N (WN (L))≥
∏

x∈ΛN

P0
N (|φx | ≤ L),

Gaussian tail estimate:

P0
N (|φx | ≥ L)≤ exp

n
−

L2

2VarP0
N
(φx)

o
,

and the variance estimate (1.1). Actually the asymptotics is the same as the i.i.d. Gaussian random

variables with the same one site marginal distribution to P∞. On the other hand, in the two dimen-

sional case this argument does not work well because the variance diverges as N → ∞. Large L

asymptotics of the confined field in the two dimensional case is not clear at all since we first con-

sider the confinement of the rough field and take the limit N →∞. We also remark that there are

several numerical studies about this problem in the two dimensional case (e.g. [11] and references

therein).

Now we are in the position to state the results of this paper. We first give the precise asymptotic

behavior of the free energy.
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Theorem 1.1. Let d = 2 and g = 2

π
. For every ǫ > 0, there exists L0 = L0(ǫ) > 0 large enough such

that the following holds for every L ≥ L0: there exists N0 = N0(L) and it holds that

e
−( 1p

g
+ǫ)L ≤−

1

N2
log P0

N (WN (L))≤ e
−( 1p

g
−ǫ)L

, (1.2)

for every N ≥ N0.

For the mass and variance of the confined field, we treat the following slightly modified model: let

TN be a d-dimensional lattice torus with size 2N (we identify N and −N in ΛN ) and consider the

following Hamiltonian with quadratic interaction potential and self-potential:

HN ,m(φ) =
1

8d

∑

{x ,y}⊂TN

|x−y|=1

(φx −φy)
2+

1

2
m2
∑

x∈TN

φ2
x . (1.3)

P
per

N ,m is the corresponding Gibbs measure on RTN with periodic boundary conditions and P L
∞,m de-

notes the thermodynamic limit of the conditioned measure P
per

N ,m( · |WTN
(L)) where WA(L) = {φ :

|φx | ≤ L for every x ∈ A} for A ⊂ Zd . Similarly to the higher dimensional case [14], the reason of

this modification of the model is for the use of reflection positivity/chessboard estimate in the proof.

We stress that the periodic boundary conditions are crucial for reflection positivity, but the mass

term in the Hamiltonian (1.3) serves only to replace the 0-boundary conditions and to make the

model well-defined. See [14, Section 1] for detail. Then we have the following precise asymptotic

behavior of the mass and variance.

Theorem 1.2. Let d = 2 and g = 2

π
. For every ǫ > 0, there exists L0 = L0(ǫ) > 0 large enough such

that the following holds for every L ≥ L0:

1.

lim inf
m→0

lim inf
l→∞

n
−

1

l
log EP L

∞,m
�
φ0φ[lz]
�o
≥ e
−( 1

2
p

g
+ǫ)L

, (1.4)

lim sup
m→0

lim sup
l→∞

n
−

1

l
log EP L

∞,m
�
φ0φ[lz]
�o
≤ e
−( 1

2
p

g
−ǫ)L

, (1.5)

for every z ∈ Sd−1 = {z ∈ Rd ; |z|= 1}.

2.

(

p
g

2
− ǫ)L ≤ lim inf

m→0
VarP L

∞,m
(φ0)

≤ lim sup
m→0

VarP L
∞,m
(φ0)≤ (

p
g

2
+ ǫ)L.

(1.6)

Remark 1.1. Reflection positivity is needed only for the proof of the lower bound of mass (1.4) and the

upper bound of variance (1.6). The upper bound of mass (1.5) and the lower bound of variance (1.6)

hold for the original massless Gaussian field (with 0-boundary conditions). But for consistency, we treat

the case with periodic boundary conditions.
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The rest of this paper is organized as follows. In Section 2, we give the proof of the free energy

estimate. The strategy of the proof of the upper bound is that to suppress the large fluctuation of

the two dimensional Gaussian field, we insert a mass term (quadratic self-potential) to the Hamil-

tonian. This enables us to use Griffiths’ inequality and Gaussian tail estimate similarly to the higher

dimensional case. In the argument, certainly we need a cost to insert the mass term. But we have

precise asymptotic behaviors of several quantities as the inserted mass vanishes and the optimal

choice of the mass give the correct upper bound. For the proof of the lower bound, we use the

result of entropic repulsion [1]. The mass estimate under confinement is given in Sections 3 and

4. The proof of the lower bound (1.4) is based on a combination of a random walk representation

of the correlation of the field by Brydges-Fröhlich-Spencer [5] and reflection positivity. The precise

asymptotic behavior of the free energy plays an important role in the argument. The proof of the

upper bound (1.5) is also based on the random walk representation. The key ingredient is a precise

estimate on the number of multiple points of ballistically pinned random walk which represents the

fact that ballistically pinned two dimensional simple random walk turns to be transient. The proof

of the variance estimate (1.6) is given in Section 5.

Finally we remark that throughout this paper below, C represents a positive constant which does

not depend on the size of the system N , height of the wall L and mass m but may depend on other

parameters. Also, this C in estimates may change from place to place in the paper.

2 Free energy estimates

For the proof of the results, we prepare some notations. Let P0
N ,m be a Gibbs measure which cor-

responds to the Hamiltonian HN (φ) +
1

2
m2
∑

x∈ΛN

φ2
x with 0-boundary conditions and Z0

N ,m be its

partition function. Actually, P0
N ,m coincides with the law of the centered Gaussian field on RΛN with

the covariance matrix (m2 − ∆N )
−1. In the limit N → ∞, P0

N ,m weakly converges to P∞,m, the

law of the centered Gaussian field on RZ
d

with the covariance matrix (m2 −∆)−1 for every d ≥ 1.

{Sn}n≥0 is a simple random walk on Zd , Px denotes its law starting at x ∈ Zd and Ex denotes the

corresponding expectation.

Proof of the upper bound of (1.2). At first, we have

P0
N (WN (L))≥

Z0
N ,m

Z0
N

P0
N ,m(WN (L)) (2.1)

≥
Z0

N ,m

Z0
N

∏

x∈ΛN

P0
N ,m(|φx | ≤ L)

≥
Z0

N ,m

Z0
N

∏

x∈ΛN

n
1− exp
�
−

L2

2VarP0
N ,m
(φx)

	o
,

for every m > 0, where the second inequality follows from Griffiths’ inequality which holds for the

massless field with symmetric self-potentials (cf. [6, Appendix A] and [10]) and the last inequality
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follows from the Gaussian tail estimate. The crucial point is that we have the asymptotics

VarP0
N ,m
(φx)≤ VarP∞,m

(φ0)

=

∞∑

n=0

� 1

m2+ 1

�n
P0(Sn = 0) = g| log m|(1+ o(1)),

(2.2)

as m ↓ 0, where we used the local limit theorem

P0(Sn = 0) =
1

πn
+O(n−

3

2 ), (2.3)

as n → ∞ and the expansion − log(1− x) =
∞∑

n=1

xn

n
, 0 ≤ x < 1 for the last equality. Therefore, if

L2

| log m| is large enough then

∏

x∈ΛN

n
1− exp
�
−

L2

2VarP0
N ,m
(φx)

	o

≥ exp
n
−C |ΛN |exp
�
−

L2

2g| log m|(1+ o(1))

	o
.

Next, by a random walk representation (cf. [2, section 4.1]),

log Z0
N ,m = log
�
(2π)

|ΛN |
2 (det(m2−∆N ))

− 1

2

�

=
1

2
|ΛN | log(2π)−

1

2
|ΛN | log(m2+ 1)

+
1

2

∑

x∈ΛN

∞∑

n=1

1

n
(

1

m2+ 1
)nPx(Sn = x , n< τΛN

),

for every m≥ 0, where τA = inf{n≥ 1; Sn /∈ A} is the first exit time from A⊂ Zd . Then we have

1

|ΛN |
log

Z0
N ,m

Z0
N

= −
1

2
log(m2+ 1)−

1

2|ΛN |
∑

x∈ΛN

∞∑

n=1

1

n

�
1− (

1

m2+ 1
)n
	
Px(Sn = x , n< τΛN

)

≥ −
1

2
m2− C

∞∑

n=1

1

n2

�
1− (

1

m2+ 1
)n
	
,

for some constant C > 0 where we used the estimate P0(Sn = 0)≤ C

n
for the last inequality. Now, let

X be a random variable whose distribution is given by P(X = n) = m2

m2+1
( 1

m2+1
)n−1, n ∈ N, namely

geometric distribution with parameter m2

m2+1
. Then

∞∑

n=1

1

n2

�
1− (

1

m2+ 1
)n
	
=

∞∑

n=1

1

n2
P(X ≤ n)
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= E
� ∞∑

n=X

1

n2

�

≤ C E
� 1

X

�
= Cm2| log m|(1+ o(1)),

as m ↓ 0.

By collecting all the estimates, we obtain

−
1

|ΛN |
log P0

N (WN (L))

≤
1

2
m2+ Cm2| log m|(1+ o(1)) + exp

n
−

L2

2g| log m|(1+ o(1))

o
.

Finally, m= e
− L

2
p

g optimizes the right hand side and we get the lower bound of (1.2).

Remark 2.1. Actually, the above optimal choice of m indicates the precise asymptotic behavior of the

mass under confinement. This is also used in the proof of (1.5).

Proof of the lower bound of (1.2). The idea of the proof of the upper bound is the same as the higher

dimensional case. We divide ΛN into small boxes by 0-boundary conditions and apply the result

about entropic repulsion for the massless field.

By Griffiths’ inequality and Markov property of the field, we can divide ΛN into boxes with side-

length 2M + 1 by 0-boundary conditions and we have

P0
N

�
WN (L)
�
≤ P0

M

�
WM (L)
�C( N

M
)2

≤ P0
M

�
φx ≥ −L for every x ∈ ΛM

�C( N

M
)2

,

for every 1≤ M ≪ N . Now, take M as M = e
1−ǫ
2
p

g
L

for ǫ > 0. Then, by the result of [1] there exists a

constant C ∈ (0,1) such that

P0
M

�
φx ≥ −L for every x ∈ ΛM

�
≤ C ,

for every L large enough and we obtain

P0
N

�
WN (L)
�
≤ exp
�
−C(

N

M
)2
	
≤ exp
�
−CN2e

− 1−ǫp
g

L	
.

This gives the lower bound of (1.2).

3 Lower bound of mass

In this section, we prove (1.4). Once we have the precise estimate of the free energy (1.2), lower

bound of mass can be proved by a similar argument to the higher dimensional case. We explain

mainly the difference to the higher dimensional case.

At first we recall Brydges-Fröhlich-Spencer’s random walk representation (cf. [5, Theorem 2.2])

which is applied to our setting.
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Lemma 3.1. It holds that

EP
per

N ,m
�
φ0φx

��WTN
(L)
�
=
∑′

ω:0→x

� 1

2d(m2+ 1)

�|ω|
∫
ΞL

N ,m(
2

m2+1
ψ)

ΞL
N ,m

µω(dψ),

where the primed sum represents a summation with respect to paths of simple random walk on TN

connecting 0 and x. For a path ω, |ω| denotes its length. µω(dψ) =
∏

z∈TN

µn(z,ω)(dψz) is a product

measure, µn is a measure on [0,∞) defined by

µn(d t) =

(
δ0(d t) if n= 0,

e−t tn−1

(n−1)!
I(t ≥ 0)d t if n ∈ N.

n(z,ω) denotes the total number of visits of site z ∈ TN in the path ω. Also,

ΞL
N ,m(

2

m2+ 1
ψ) = P

per

N ,m(φ
2
z +

2

m2+ 1
ψz ≤ L2 for every z ∈ TN ),

ΞL
N ,m = P

per

N ,m(WTN
(L)).

Then, by the argument in [14, Section 2] using reflection positivity, we know that

EP
per

N ,m
�
φ0φx

��WTN
(L)
�
≤
∞∑

k=0

� 1

2d(m2+ 1)

�k ∑′

ω:0→x
|ω|=k

(qL
N ,m)

|R(ω)|, (3.1)

where

qL
N ,m =

∫
P

per

N ,m

�
φ2

x +
2

m2+ 1
t ≤ L2 for every x ∈ TN

��WTN
(L)
� 1

|TN |µ1(d t),

and R(ω) = {z ∈ TN ; n(z,ω)≥ 1} is the range of the random walk path ω.

We have the following estimate for qL
N ,m. The proof is given later.

Lemma 3.2. For every ǫ > 0, there exists L0 = L0(ǫ)> 0 such that

lim sup
N→∞

qL
N ,m ≤ 1− e

− 1+ǫp
g

L
,

for every L ≥ L0 and every m> 0 small enough.

By this lemma and (3.1), after taking the limit N →∞ (if necessary along subsequence) we obtain

EP L
∞,m[φ0φx]≤

∞∑

k=0

E0

�
I(Sk = x)(1− pL)|S[0,k]|�

=

∞∑

k=0

νpL ⊗ P0

�
Sk = x ,S[0,k] ⊂A c

�
,

(3.2)
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for every m > 0, where pL = e
− 1+ǫp

g
L

and S[0,k] denotes the set of points visited by the random walk

up to time k. νq denotes a Bernoulli measure on {0,1}Zd

with parameter q ∈ (0,1). For i.i.d. {0,1}-
valued random variables σ = {σz}z∈Zd with νq(σz = 1) = q = 1− νq(σz = 0), A denotes the set

{z ∈ Zd ;σz = 1}.
Asymptotic behavior of the right hand side of (3.2) as pL → 0 has been precisely studied in [3]. By

(3.2) and the proof of [3, Lemma 5.1.2], we have

lim inf
l→∞

n
−

1

l
log EP L

∞,m
�
φ0φ[lz]
�o

≥ lim inf
l→∞

n
−

1

l
logνpL ⊗ P0

�
T{[lz]} < TA
�o

,

(3.3)

for every z ∈ Sd−1, where TA = inf{k ≥ 0; Sk ∈ A} is the first hitting time to the set A⊂ Zd . Also, by

the proof of the lower bound of [3, Theorem 2.3] we know that

νpL ⊗ P0

�
T{x} < TA
�
= E0

�
(1− pL)

|S[0,T{x}]|
�

≤ e−C(pL)
1
2 | log pL |−

1
2 |x |,

(3.4)

for every x ∈ Zd and L large enough. Since pL = e
− 1+ǫp

g
L

and ǫ > 0 is arbitrary, we obtain (1.4) by

(3.3) and (3.4).

The rest is to prove Lemma 3.2. For this purpose we prepare the following lemma.

Lemma 3.3. For every ǫ > 0 and 0 < λ0 < 1, there exists L0 = L0(ǫ,λ0) > 0 large enough such that

the following holds: for every L ≥ L0, there exist N0 = N0(L) > 0 large enough and m0 = m0(L) > 0

small enough and it holds that

P
per

N ,m

�
WTN
(λL)
��WTN

(L)
�
≤ e−N2e

− λp
g
(1+ǫ)L

,

for every N ≥ N0, 0< m< m0 and λ0 ≤ λ < 1.

Proof. We first note that the conditioned measure P
per

N ,m( · |WTN
(L)) can be obtained as a weak limit

of the measure:

dQ
per

N ,β
∝ exp
�
−β
∑

x∈TN

I(|φx |> L)
	

dP
per

N ,m,

as β →∞. This also holds for the 0-boundary conditions case. By Griffiths’ inequality, we have

Q
per

N+1,β

�
WTN+1

(λL)
�
≤Q0

N ,β

�
WΛN

(λL)
�
.

Then, by taking the limits β →∞, we obtain

P
per

N+1,m

�
WTN+1

(λL)
��WTN+1

(L)
�
≤ P0

N ,m

�
WΛN

(λL)
��WΛN

(L)
�
.

Next, we have

P0
N ,m

�
WΛN

(λL)
��WΛN

(L)
�
=

P0
N ,m

�
WΛN

(λL)
�

P0
N ,m

�
WΛN

(L)
� ≤

Z0
N

Z0
N ,m

P0
N

�
WΛN

(λL)
�

P0
N

�
WΛN

(L)
� ,
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where we used (2.1) for the numerator and Griffiths’ inequality for the estimate on the denominator.

Also, by the proof of the lower bound of (1.2), we know that
Z0

N

Z0
N ,m

≤ eC |ΛN |m2| log m|. By these estimates

with the free energy estimate (1.2), we obtain the lemma.

Proof of Lemma 3.2. Let ǫ > 0 and 0< δ < 1. We compute that

qL
N ,m =

∫
P

per

N ,m

�
φ2

x +
2

m2+ 1
t ≤ L2 for every x ∈ TN

��WTN
(L)
� 1

|TN |µ1(d t)

=

∫ 1

0

1

2
(m2+ 1)L2e−

1

2
(m2+1)L2 t

× P
per

N ,m

�
φ2

x ≤ L2(1− t) for every x ∈ TN

��WTN
(L)
� 1

|TN | d t

≤ 1−
∫ 1−δ

0

1

2
(m2+ 1)L2e−

1

2
(m2+1)L2 t

×
�
1− P

per

N ,m

�
WTN
(
p

1− t L)
��WTN

(L)
� 1

|TN |
	

d t

=: 1− I1.

By Lemma 3.3 and Fatou’s lemma, there exists L1 = L1(ǫ,δ) > 0 such that the following holds: for

every L ≥ L1, there exists m1 = m1(L)> 0 small enough and for every 0< m< m1 it holds that

lim inf
N→∞

I1 ≥
∫ 1−δ

0

1

2
(m2+ 1)L2e−

1

2
(m2+1)L2 t(1− e−e

−
p

1−tp
g
(1+ǫ)L

)d t

≥ C L2

∫ 1−δ

0

e−
1

2
(m2+1)L2 t e

−
p

1−tp
g
(1+ǫ)L

d t

≥ e
− 1+2ǫp

g
L
,

where for the second inequality, we used an estimate: if 0 < C < 1 then 1− e−x ≥ C x for every

x > 0 small enough. The last estimate follows from changing the variable
p

1− t as 1− s and an

elementary computation. By these estimates we complete the proof of Lemma 3.2.

4 Upper bound of mass

In this section, we prove the upper bound of mass (1.5). Similarly to the proof of the lower bound

of (1.2), we first insert a mass term. By Lemma 3.1,

EP
per
N ,m
�
φ0φx

��WTN
(L)
�

≥ E
P

per

N ,m′
�
φ0φx

��WTN
(L)
�

=

∞∑

k=0

� 1

2d((m′)2+ 1)

�k ∑′

ω:0→x
|ω|=k

∫
ΞL

N ,m′(
2

(m′)2+1
ψ)

ΞL
N ,m′

µω(dψ),
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for every 0 < m < m′. Note that EP
per
N ,m
�
φ0φx

�� WTN
(L)
�

decreases as m > 0 increases by Griffiths’

inequality. Then, by the argument of [14, Section 3], we have

log EP L
∞,m
�
φ0φx

�

≥ k log
1

(m′)2+ 1
+
∑

j≥1

E0

�
Rk( j)
�� Sk = x
�

log qL
m′( j) + logP0(Sk = x)

=: I1+ I2+ I3,

(4.1)

for every 0 < m < m′, where k = [α|x |] with α > 0 is specified later on, Rk( j) = ♯{z ∈
Z

d ; n(z,S[0,k]) = j} denotes the total number of sites that the simple random walk visits exactly

j times in the first k steps and qL
m′( j) = P∞,m′ ⊗µ j

�
φ2

0 + 2ψ0 ≤ L2
�
.

Now, the proof of the upper bound of (1.2) indicates that m′ = e
− L

2
p

g gives the correct asymptotic

behavior of the mass under confinement. So we estimate the right hand side of (4.1) for this choice

of m′. Trivially, I1 ≥−k(m′)2. For I2, we first estimate qL
m′( j) from below.

qL
m′( j) = P∞,m′ ⊗µ j

�
φ2

0 + 2ψ0 ≤ L2
�

= EP∞,m′
�
µ j

�
ψ0 ≤

1

2
(L2−φ2

0)
�

I(|φ0| ≤ L)
�

.

Since Eµ j[eθψ0] = ( 1

1−θ )
j for every 0≤ θ < 1, for given φ0 with |φ0| ≤ L, we have

µ j

�
ψ0 ≤

1

2
(L2−φ2

0)
�
≥ 1− e−

1

2
(L2−φ2

0)θ
� 1

1− θ
� j

,

and this yields

qL
m′( j)≥ P∞,m′(|φ0| ≤ L)− e−

1

2
θ L2� 1

1− θ
� j

EP∞,m′
�

e
1

2
θφ2

0 I(|φ0| ≤ L)
�

.

We choose θ as θ = θm′ := (VarP∞,m′
(φ0))

−1. Then it holds that

EP∞,m′
�

e
1

2
θm′φ

2
0 I(|φ0| ≤ L)
�
=

r
2θm′

π
L,

and by combining these estimates with Gaussian tail estimate, we get

qL
m′( j)≥ 1− e−

1

2
θm′ L

2
n� 1

1− θm′

� j
r

2θm′

π
L + 1
	
.

Now, let ǫ > 0 be fixed. Since m′ = e
− L

2
p

g , by (2.2) we have θm′ =
2p
g L
(1+ o(1)) as L→∞ and

qL
m′( j)≥ 1− e

− 1−ǫp
g

L� 1

1− θm′

� j
,

for every j ≥ 1 and L > 0 large enough. Especially, if j is less than bL :=
� 1

− log(1−θm′ )
1−2ǫp

g
L
�

then

e
− 1−ǫp

g
L� 1

1− θm′

� j ≤ e
− ǫp

g
L
,
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and we obtain

qL
m′( j)≥ exp
n
−Ce

− 1−ǫp
g

L� 1

1− θm′

� jo
, (4.2)

for L large enough in this case. We remark that bL = O(L2) as L →∞. On the other hand, by [14,

(3.3)] we know that

qL
m′( j)≥ P∞,m′
�
φ2

0 ≤
1

2
L2
�
µ j

�
2ψ0 ≤

1

2
L2
�

≥ e−C L2

e−C j log j ,

(4.3)

for for every j ≥ 1 and L large enough.

By using estimate (4.2) for j ≤ bL and (4.3) for j ≥ bL + 1, we obtain

I2 ≥
∑

j≤bL

E0

�
Rk( j)
�� Sk = x
�n
−Ce

− 1−ǫp
g

L� 1

1− θm′

� jo

+
∑

j≥bL+1

E0

�
Rk( j)
�� ηk = x
�
{−C L2− C j log j}

=: J1+ J2.

The ingredient of our proof is the following estimate on the number of multiple points of the ballis-

tically pinned random walk. The proof is given in the end of this section.

Proposition 4.1. Let {Sn}n≥0 be a simple random walk on Zd . If d = 2, then there exists a constant

C > 0 such that for every ǫ > 0 there exists α0 = α0(ǫ)> 0 and for every α≥ α0 it holds that

1

k
E0

�
Rk( j)|Sk = x
�
≤ C
�

1−
1

g(1+ ǫ) logα

� j−1

,

for every x with |x | large enough and j ≥ 1, where we set k = [α|x |].

Remark 4.1. A similar estimate in the higher dimensional case is proved in [14]. For a simple random

walk on Zd without pinned condition, it is well known that
log n

n
Rn( j)→ π as n→∞ a.s. if d = 2 (cf.

[8]) and 1

n
Rn( j)→ γ2(1− γ) j−1 as n→∞ a.s. if d ≥ 3, where γ = P0(Sn 6= 0 for every n ≥ 1) (cf.

[12]).

Now, for k = [α|x |], choose α as α = αL := exp
� 1

g(1+ǫ)θm′

	
where m′ = e

− L

2
p

g . Then, by Proposition

4.1,

J1 ≥
∑

j≤bL

C(1− θm′)
j−1αL |x |
n
−Ce

− 1−ǫp
g

L� 1

1− θm′

� jo

≥−αL|x |e
− 1−2ǫp

g
L
,

for every L large enough. For J2, we have

J2 ≥
∑

j≥bL+1

C(1− θm′)
j−1αL|x |{−C L2 − C j log j}
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≥−αL|x |e
− 1−3ǫp

g
L
,

for every L large enough. Note that (1− θm′)
bL+1 ≤ e

− 1−2ǫp
g

L
by the definition of bL .

For I3 in (4.1), by a version of the local limit theorem [3, Proposition B.2] we obtain that

logP0(Sk = x)≥ log
n 1

Ck
d

2

exp
�
−C
|x |2

k

	o

≥ −C
|x |
αL

(1+ o|x |(1)),

for every L large enough and x with |x | large enough, where k = [α|x |] with α = αL and o|x |(1)
represents a term which goes to 0 as |x | →∞.

By collecting all the estimates, we have

lim sup
m→0

lim sup
l→∞

n
−

1

l
log EP L

∞,m
�
φ0φ[lz]
�o

≤ αL(m
′)2+αLe

− 1−2ǫp
g

L
+αLe

− 1−3ǫp
g

L
+

C

αL

(4.4)

≤ e
− 1−3ǫ

2
p

g
L
,

for every L large enough and every z ∈ Sd−1. Recall that m′ = e
− L

2
p

g , αL = exp
� 1

g(1+ǫ)θm′

	
and

θm′ =
2p
g L
(1+ o(1)). Since ǫ > 0 is arbitrary we obtain (1.5).

Remark 4.2. Our choice of αL optimizes (4.4). Furthermore, if we proceed the same argument without

identifying m′ in the beginning, then we can see that the choice of m′ = e
− L

2
p

g optimizes (4.4).

Proof of Proposition 4.1. Let {p(x)}x∈Zd be a transition kernel of the simple random walk, namely

p(x) = 1

2d
if |x | = 1 and p(x) = 0 otherwise. For λ ∈ Rd , we define a tilted measure pλ(x) =

1

Z(λ)
e〈λ,x〉p(x), x ∈ Zd where Z(λ) =

∑

x∈Zd

e〈λ,x〉p(x). We first remark that for a function f (S) =

f (S0,S1, · · · ,Sn), we have

E0[ f (S)I(Sn = x)] =
∑

ω:0→x
|ω|=n

f (ω)

n∏

i=1

p(ωi −ωi−1)

=
∑

ω:0→x
|ω|=n

f (ω)

n∏

i=1

Z(λ)e−〈λ,ωi−ωi−1〉pλ(ωi −ωi−1)

= Z(λ)ne−〈λ,x〉
E
λ
0[ f (S)I(Sn = x)],

where we denote the law of a random walk on Zd with the transition kernel {pλ(x)}x∈Zd and starting

at x ∈ Zd by Pλx . Eλx denotes the corresponding expectation. Especially, we have

P0(Sn = x) = Z(λ)ne−〈λ,x〉
P
λ
0(Sn = x), (4.5)
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and

E0[Rn( j)I(Sn = x)] = Z(λ)ne−〈λ,x〉
E
λ
0[Rn( j)I(Sn = x)], (4.6)

for every λ ∈ Rd .

Next, let T (0)x = 0 and T
( j)
x = inf{n > T

( j−1)
x ; Sn = x}, j ≥ 1 be the j-th hitting time to site x ∈ Zd .

By Markov property,

E
λ
0[Rn( j)I(Sn = x)]

=
∑

y∈Zd

P
λ
0

�
T ( j)y ≤ n, T ( j+1)

y > n,Sn = x
�

=
∑

y∈Zd

∑

0≤s+t≤n

P
λ
0

�
T (1)y = s
�
P
λ
0

�
T
( j−1)

0 = t
�
qλ

n−(s+t)
(x − y)

=
∑

0≤t≤n

P
λ
0

�
T
( j−1)

0 = t
� ∑

y∈Zd

∑

0≤s≤n−t

P
λ
0

�
T (1)y = s
�
qλ

n−(s+t)
(x − y),

where qλ
l
(x) = Pλ0
�
Sn 6= 0 for every 1≤ n≤ l − 1 and Sl = x

�
. Also,

∑

y∈Zd

∑

0≤s≤n

P
λ
0

�
T (1)y = s
�
qλn−s(x − y) =

∑

y∈Zd

P
λ
0

�
T (1)y ≤ n, T (2)y > n,Sn = x

�

= Eλ0[Rn(1)I(Sn = x)]

≤ nPλ0
�
Sn = x
�
.

Therefore, we have

E
λ
0[Rn( j)I(Sn = x)]≤

∑

0≤t≤n

(n− t)Pλ0
�

T
( j−1)

0 = t
�
P
λ
0

�
ηn−t = x
�
, (4.7)

for every n≥ 1 and x ∈ Zd .

Now, set k = [α|x |]. We show that there exists a constant C > 0 such that for every α > 0 large

enough there exists r0 = r0(α) > 0 and it holds that for every x with |x | ≥ r0, if we choose

λ = λ(α, x) appropriately then we have

P
λ
0

�
ηl = x
�
≤ CPλ0
�
ηk = x
�
, (4.8)

for every l ≤ k. Since ∇ log Z(0) = 0 and ∇2 log Z(0) = diag{ 1

d
, 1

d
, · · · , 1

d
}, the mapping λ →

∇ log Z(λ) is an analytic diffeomorphism from a neighborhood of 0 ∈ Rd to a neighborhood of

0 ∈ Rd . Hence, by inverse function theorem, for any ξ in a neighborhood of 0 ∈ Rd there exists

a unique eλ(ξ) ∈ Rd with ∇ log Z(eλ(ξ)) = ξ. Now, by choosing λ as λ0 := eλ( x

[α|x |]), we have

E
λ0

0 [Sk] = x and (4.8) easily follows from the local central limit theorem (see also the proof of [14,

Lemma 3.1] and [3, Proposition B.2] for this type argument.)

By (4.7) and (4.8), for the above choice of λ we obtain

E
λ0

0 [Rk( j)I(Sk = x)]≤ C
∑

0≤t≤k

kP
λ0

0

�
T
( j−1)

0 = t
�
P
λ0

0

�
Sk = x
�

≤ CkP
λ0

0

�
T
( j−1)

0 <∞
�
P
λ0

0

�
Sk = x
�
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= Ck(1− γλ0
) j−1
P
λ0

0

�
Sk = x
�
,

where γλ = P
λ
0

�
Sn 6= 0 for every n ≥ 1

�
, λ ∈ Rd . By combining this estimate with (4.5) and (4.6),

we get

E0

�
Rk( j)
�� Sk = x
�
≤ Ck(1− γλ0

) j−1.

Next, we compute the asymptotics of γλ0
as α→∞ when d = 2. For this purpose we first compute

the asymptotics of Z(λ0). By definition, we have

Z(λ) =
1

4
(eλ

(1)

+ e−λ
(1)

+ eλ
(2)

+ e−λ
(2)

),

for every λ = (λ(1),λ(2)) ∈ R2. Hence, by Taylor’s expansion

Z(λ) = 1+
1

4
((λ(1))2+ (λ(2))2)(1+ o(1)), (4.9)

as |λ| → 0. Also, by the choice of λ0,

E
λ0

0 [S
(i)

1 ] =
1

4Z(λ0)
(eλ

(i)
0 − e−λ

(i)
0 ) =

x (i)

α|x | , (4.10)

for i = 1,2. Especially, since Z(λ) ≥ 1 for every λ ∈ R2, this yields λ
(i)

0 = 0 if x (i) = 0 and |λ0| → 0

as α→∞ uniformly in x with |x | large enough. (4.10) also yields

1

16(Z(λ0))
2

�
(eλ

(1)
0 − e−λ

(1)
0 )2+ (eλ

(2)
0 − e−λ

(2)
0 )2
	
=

1

α2
.

Then, by the fact that lim
|λ|→0

Z(λ) = 1 and Taylor’s expansion we have

(λ
(1)
0 )

2+ (λ
(2)
0 )

2 =
4

α2
(1+ o(1)), (4.11)

as α→∞. By (4.9) and (4.11) we get

Z(λ0) = 1+
1

α2
(1+ o(1)), (4.12)

as α→∞ uniformly in x with |x | large enough.

Now, let τ= inf{n≥ 1; Sn = 0}. Then

Gλ :=

∞∑

n=0

P
λ
0(Sn = 0) = 1+

∞∑

n=1

n∑

k=1

P
λ
0(τ= k)Pλ0(Sn−k = 0)

= 1+

∞∑

k=1

� ∞∑

n=k

P
λ
0(Sn−k = 0)
�
P
λ
0(τ= k)

= 1+ GλPλ0(τ <∞),
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and we obtain

γλ = 1− Pλ0(τ <∞) =
1

Gλ
.

Finally, by using (4.5), (4.12), local limit theorem (2.3) and an expansion − log(1− x) =
∑
n=1

xn

n
, 0≤

x < 1, we have

Gλ0 =

∞∑

n=0

1

(Z(λ0))
n
P0(Sn = 0) =

2

π
logα(1+ o(1)),

as α → ∞. Hence we get γλ0
= 1

g logα(1+o(1))
as α → ∞ uniformly in x with |x | large enough and

this completes the proof.

5 Variance estimates

Proof of the upper bound of (1.6). By (3.2), we have

EP L
∞,m[(φ0)

2]≤
∞∑

k=0

E0

�
I(Sk = 0)(1− pL)|S[0,k]|�

≤
N0∑

k=0

P0(Sk = 0) +

∞∑

k=N0

E0

�
(1− pL)|S[0,k]|�

=: I1+ I2,

where pL = e
− 1+ǫp

g
L
,ǫ > 0. Now, by [3, Section 4.2] we know that I1 =

1

π
log N0(1 + o(1)) and

I2 ≤ 2

pLκ
e−

1

4
pLκN0 + o(1) as N0→∞ for κ > 0 small enough. Therefore, if we choose N0 as N0 =

β L

pL

with β = β(κ) > 0 large enough, then I2 = o(1) as L → ∞ and I1 gives the upper bound of

(1.6).

Proof of the lower bound of (1.6). The idea of the proof of the lower bound owes to Y.Velenik

(cf.[17]). For every N ≥ M and m> 0, by Griffiths’ inequality,

EP
per
N ,m
�
(φ0)

2|WTN
(L)
�

≥ EP0
N ,m
�
(φ0)

2|WΛN
(L)
�

≥ EP0
M ,m
�
(φ0)

2|WΛM
(L)
�

≥ EP0
M ,m
�
(φ0)

2 I(WΛM
(L))
�

= EP0
M ,m
�
(φ0)

2
�
− EP0

M ,m
�
(φ0)

2 I(|φx |> L for some x ∈ ΛM )
�

≥ EP0
M ,m
�
(φ0)

2
�
− EP0

M ,m
�
(φ0)

4
� 1

2 P0
M ,m(|φx |> L for some x ∈ ΛM )

1

2 .

After taking the limit N →∞ and m ↓ 0, we have

lim inf
m→0

EP L
∞,m
�
(φ0)

2
�

≥ EP0
M
�
(φ0)

2
�
− EP0

M
�
(φ0)

4
� 1

2 P0
M (|φx |> L for some x ∈ ΛM )

1

2 .
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Also, by Gaussian computation,

EP0
M
�
(φ0)

2
�
= g log M(1+ o(1)),

EP0
M
�
(φ0)

4
�
≤ C(log M)2,

and

P0
M (|φx |> L for some x ∈ ΛM )≤ C M2e

− L2

2g log M .

Now, take M as M = e
1−ǫ
2
p

g
L

for ǫ > 0. Then,

EP0
M
�
(φ0)

2
�
≥ g ·

1− ǫ
2
p

g
L(1+ o(1)) =

p
g(1− ǫ)

2
L(1+ o(1)),

and

EPM ,m
�
(φ0)

4
�

PM ,m(|φx |> L for some x ∈ ΛM )≤ C(log M)2M2e
− L2

2g log M

= o(1),

as L→∞. By these estimates we obtain the lower bound of (1.6).
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