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Abstract:
Fleming-Viot processes incorporating mutation and selection are considered. It is well-known
that if the mutation factor is of uniform type, the process has a reversible stationary distri-
bution, and it has been an open problem to characterize the class of the processes that have
reversible stationary distributions. This paper proves that if a Fleming-Viot process has a
reversible stationary distribution, then the associated mutation operator is of uniform type.

1 Problem and Result

Fleming-Viot processes form a class of probability measure-valued diffusion processes, which
are derived as a continuum limit from Markov chain models in population genetics. The
processes have attracted not only probabilists but also mathematical population genetists
since they are very reasonable models to analyze the geneological structure. (cf. [1], [3]).
In particular, if the mutation factor is of uniform type, namely the distribution of mutants
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is independent of their parent’s genotype, then the Fleming-Viot processes have reversible
stationary distributions, that makes the geneological analysis extremely tractable. However it
has been an open problem whether there exists another class of mutation operators such that
the associated Fleming-Viot processes have reversible stationary distributions.
In the present paper we shall solve this problem. Our result is that if a Fleming-Viot process
has a reversible stationary distribution, then the mutation operator is of uniform type.

Let us begin with description of the Fleming-Viot processes. Let E be a locally compact
separable space. We denote by B(E) the set of all bounded Borel measurable functions on
E, and by C∞(E) the Banach space of bounded continuous functions vanishing at infinity if
E is non-compact, which is equipped with the supremum norm ‖ · ‖∞. We denote by C0(E)
the set of continuous functions with compact support, and by C+

0 (E) the set of nonnegative
functions in C0(E). Let M1(E) be the space of Borel probability measures on E endowed with
the topology of weak convergence. For µ ∈ M1(E), we denote by µ⊗n ∈ M1(En) the n-fold
product of µ. We also use the notation µ(f) :=

∫
E

fdµ for f ∈ B(E) and µ ∈ M1(E).

Let (A, D(A)) be the generator of a conservative Markovian Feller semigroup Tt acting on
C∞(E), which governs a mutational evolution, and let σ = (σ(x, y)) be a symmetric bounded
Borel measurable function on E × E, which is interpreted as a selective density. For given
(A, D(A)) and σ let us consider the following operator (L, D(L)) :

Lφ(µ) =
1
2

∫
E

∫
E

(µ(dx)δx(dy) − µ(dx)µ(dy))
δ2φ(µ)

δµ(x)δµ(y)

+
∫

E

µ(dx)A
(

δφ(µ)
δµ(·)

)
(x) +

∫
E

∫
E

µ(dx)µ(dy)(σ(x, y) − µ⊗2(σ))
δφ(µ)
δµ(x)

where δφ(µ)/δµ(x) = limr→0+ r−1{φ(µ + rδx) − φ(µ)}, and we take D(L) to be the set of all
φ ∈ C(M1(E)) of the form

φ(µ) = F (µ(f1), . . . , µ(fk)),

where k ≥ 1, f1, . . . , fk ∈ D(A), and F ∈ C2(Rk).

Let Ω be the space of continuous paths from [0,∞) to M1(E) with the coordinate process
denoted by {Xt : t ≥ 0}. We furnish Ω with the compact uniform topology. Let (F ,Ft)t≥0 be
the natural σ-algebras on Ω generated by {Xt : t ≥ 0}. It is known that for every µ ∈ M1(E)
there is a unique probability measure Qµ on Ω such that for every φ ∈ D(L)

φ(Xt) − φ(µ) −
∫ t

0

Lφ(Xs)ds

is a Qµ-martingale starting at 0. Then
(
Ω, (Ft)t≥0, Qµ, Xt

)
defines a diffusion process in

M1(E), which is called a Fleming-Viot process incorporating mutation and selection. Hereafter
we simply write (Xt, Qµ) for the Fleming-Viot process

(
Ω, (Ft)t≥0, Qµ, Xt

)
.

It is convenient to describe the process (Xt) by the following stochastic equation associated
with a martingale measure introduced in [8]: For f ∈ D(A)

Xt(f) − X0(f) =
∫ t

0

{Xs(Af) + X⊗2
s (σf ⊗ 1) − X⊗2

s (σ)Xs(f)}ds +
∫ t

0

∫
E

f(x)M(dsdx)(1.1)

where σ · f ⊗ 1(x, y) = σ(x, y)f(x), and M(dsdx) is a martingale measure such that

Mt(f) =
∫ t

0

∫
E

f(x)M(dsdx)
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is a continuous martingale with quadratic variation process

〈M(f)〉t =
∫ t

0

(Xs(f2) − Xs(f)2)ds. (1.2)

Then it holds that for every f ∈ C∞(E)

Xt(f) = X0(Ttf) +
∫ t

0

{X⊗2
s (σ · (Tt−sf) ⊗ 1)

−X⊗2
s (σ)Xs(Tt−sf)}ds +

∫ t

0

∫
E

Tt−sf(x)M(dsdx). (1.3)

Now we give two examples.

Example 1.1 Let E = Rd, A = ∆ (Laplacian on Rd) and σ = 0. Then the associated
Fleming-Viot process is a limit process of the step-wise mutation model of Ohta-Kimura [7].
In this case there exists no stationary distribution, instead the process exhibits a wandering phe-
nomenon (c.f. [2]). If we start the step-wise mutation model with periodic boundary condition,
then the limit process is a Fleming-Viot process associated with E = T d (d-dimensional torus),
A is the Laplacian on T d and σ = 0. In this case there is a unique stationary distribution, but
it has not been known whether the stationary distribution is reversible or not.

Example 1.2 Let A be the following jump-type generator;

Af(x) =
θ

2

∫
E

(f(y) − f(x))P (x, dy),

where θ > 0 is a constant and P (x, dy) is a stochastic kernel on E×E. This class of Fleming-
Viot processes are investigated by Ethier and Kurtz ([3]) for sample path properties and ergodic
behaviors. In particular, if P (x, dy) = ν(dy) is independent of x ∈ E, that is

Af(x) =
θ

2

∫
E

(f(y) − f(x))ν(dy), (1.4)

the mutation operator is called of uniform type, which is the case having been well-studied from
geneological view point. An advantage of the uniform mutation is that the associated Fleming-
Viot process has a reversible stationary distribution which is identified with Poisson-Dirichlet
distribution (c.f. [3]).

It is known that in the non-selective case; σ = 0, the Fleming-Viot process is ergodic if and
only if the mutation semigroup is ergodic. In the selective case, i.e. σ 6= 0, it might be expected
that the same conclusion holds, but it has not yet been proved completely.

In the present paper we consider a reversibility problem for Fleming-Viot processes incorpo-
rating mutation and selection, that is to characterize the mutation operator (A,D(A)) with
which the associated Fleming-Viot process has a reversible stationary distribution.
Now we state our main theorem.

Theorem 1.1 Suppose that Tt is irreducible, i.e. for every x ∈ E and f ∈ C+
0 (E) with f 6= 0

Ttf(x) > 0 for some t > 0.

If the Fleming-Viot process (Xt, Qµ) with the mutation operator (A,D(A)) and the selective
density σ has a reversible stationary distribution Q, then (A, D(A)) is of the form (1.4) with
ν(f) =

∫
M1(E) µ(f)Q(dµ).
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We remark that the above irreducibility assumption seems to be natural. Because, if there
exists a unique stationary distribution, it can be reduced to this case by restricting the basic
space E to a smaller one. On the other hand, if there are more than two stationary distribu-
tions, the basic space E splits into several disjoint subsets, and on each subset the mutation
operator will be of uniform type.

Our method of the proof is based on moment calculations. Assuming that σ = 0, we first show
by second moment calculations that the barycenter of the reversible stationary distribution
Q is a reversible distribution for the mutation semigroup Tt, with which a regular Dirichlet
space is associated. Then combining the Beurling-Deny formula for the Dirichlet form with
third moment calculations we obtain the theorem in the non-selective case, which is discussed
in the next section. Section 3 is devoted to the proof in the selective case, which is carried out
by reducing it to the non-selective case by making use of a transformation of the probability
law Qµ.

2 The non-selective case

In this section we assume σ = 0. Let Q be a stationary distribution of the Fleming-Viot process
(Xt, Qµ). For Q we define the moment measures mn on the product space En = E × · · · × E
by

mn =
∫

M1(E)

µ⊗nQ(dµ), n = 1, 2, · · · , (2.1)

and simply write m = m1. From (1.3) with σ = 0 it is easy to see that m is a stationary
distribution of Tt.
Recall that m ∈ M1(E) is Tt-reversible if and only if it holds that

m(fTtg) = m(gTtf) (f, g ∈ C∞(E)). (2.2)

Lemma 2.1 The probability measure m is Tt-reversible if and only if

m2(f ⊗ Ttg) = m2(g ⊗ Ttf), t ≥ 0, f, g ∈ C∞(E), (2.3)

where f ⊗ g(x, y) = f(x)g(y). In particular, if Q is a reversible stationary distribution of
(Xt, Qµ), then m is Tt-reversible.

Proof. Applying (1.3) to f ∈ C∞(E) and Trg ∈ C∞(E), we have

Xt(f) = X0(Ttf) +
∫ t

0

∫
E

Tt−sf(x)M(dsdx),

and

Xt(Trg) = X0(Tt+rg) +
∫ t

0

∫
E

Tt+r−sg(x)M(dsdx).

Using the independence of X0 and M(dsdx) and (1.2) to compute m2(f⊗Trg) = E(Xt(f)Xt(Trg))
we have

m2(f ⊗ Trg) − m2(Ttf ⊗ Tt+rg) =
∫ t

0

m(TsfTs+rg)ds −
∫ t

0

m2(Tsf ⊗ Ts+rg)ds. (2.4)
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Suppose that (2.3) holds. Then (2.4) implies
∫ t

0

m(TsfTs+rg)ds =
∫ t

0

m(Ts+rfTsg)ds, (2.5)

which yields (2.2). Thus m is Tt-reversible.
Conversely, if m is Tt-reversible, then (2.2) holds. Let

h(r, t) = m2(Tt+rf ⊗ Ttg) − m2(Tt+rg ⊗ Ttf).

By (2.4) and (2.5) it satisfies

h(r, 0) = h(r, t) −
∫ t

0

h(r, s)ds,

which yields h(r, t) = 0 for all r, t ≥ 0. In particular, h(t, 0) = 0 is the conclusion (2.3).
Finally if Q is a reversible distribution of (Xt, Qµ), denoting by Q the associated stationary
Markovian probability measure on Ω with initial distribution Q, it holds

Q{X0(f)Xt(g)} = Q{X0(g)Xt(f)},
which yields (2.3) because of

Q{X0(f)Xt(g)} = Q{X0(f)X0(Ttg)} = m2(f ⊗ Ttg).

Hence m is Tt-reversible. �

In the sequel of this section, we assume Q is a reversible stationary distribution of (Xt, Qµ),
hence by Lemma 2.1 m is Tt-reversible. Let L2(E; m) be the Hilbert space of real-valued
m-square-integrable functions on E with the inner product (f, g)m := m(fg). Then Tt can be
extended as a symmetric contraction semigroup acting on L2(E; m). We denote its generator
by (Ā,D(Ā)), which is a self-adjoint and non-positive definite operator on L2(E; m). Let

D[E ] = D(
√

−Ā),

and for f, g ∈ D(
√

−Ā) let

E(f, g) = (
√

−Āf,
√
−Āg)m and Eα(f, g) = E(f, g) + α(f, g)m (α > 0).

Then (D[E ], Eα) is a Hilbert space, and (D[E ], E) defines an L2-Dirichlet space (cf. [6]). More-
over it holds that

Lemma 2.2 (D[E ], E) is a regular Dirichlet space, that is,

C0(E)
⋂D[E ] is dense both in C0(E) and in (D[E ], Eα).

Proof. Denote by Gλ (λ > 0) the resolvent operators of (A,D(A)). The Feller property of
Tt implies Gα[C∞(E)] ⊂ C∞(E), from which the desired regularity follows. (See [6], Lemma
1.4.2.) �

For a regular Dirichlet space, it is known that the Dirichlet form has the following expression
(cf. [5]).
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Lemma 2.3 [Beurling-Deny formula] For f, g ∈ D[E ]
⋂

C0(E),

E(f, g) = Ec(f, g) +
∫

E×E\∆
(f(y) − f(x))(g(y) − g(x))J(dx, dy), (2.6)

where Ec is the diffusion part which satisfies the local property;

Ec(f, g) = 0 if f, g ∈ D[E ]
⋂

C0(E) and supp(f)
⋂

supp(g) = ∅,
and J is the jumping measure, which is a symmetric Radon measure on the product space
E × E off the diagonal ∆.

Lemma 2.4

m2(dx, dy) =
1
2

m(dx)G1/2(x, dy), x, y ∈ E. (2.7)

Proof. From (2.4) with r = 0 it follows that

m2(f ⊗ g) = e−tm2(Ttf ⊗ Ttg) +
∫ t

0

e−sm(TsfTsg)ds, t ≥ 0.

Letting t → ∞ and using Tt-symmetry of m we get

m2(f ⊗ g) =
∫ ∞

0

e−s(Tsf, Tsg)mds =
∫ ∞

0

e−s(f, T2sg)mds =
1
2
(f, G1/2g)m,

which yields the desired conclusion. �

Lemma 2.5 For f ∈ D(A) and g, h ∈ C∞(E)

m3((I − A)f ⊗ g ⊗ h) =
1
2

m2((fg) ⊗ h + (fh) ⊗ g). (2.8)

Proof. We first assume f, g, h ∈ D(A). Let (Xt, Q) be the reversible stationary Markov process
with initial distribution Q. Note that by Itô’s formula

X⊗2
t (f ⊗ g) − X⊗2

0 (f ⊗ g) =
∫ t

0

{X⊗2
s (Af ⊗ g + f ⊗ Ag) + Xs(fg) − X⊗2

s (f ⊗ g)}ds

+ martingale. (2.9)

Now use the reversibility of (Xt, Q) to get

Q{(X⊗2
t (f ⊗ g) − X⊗2

0 (f ⊗ g)
)
X0(h)} = Q{X⊗2

0 (f ⊗ g) (Xt(h) − X0(h))},
from which together with (2.9) it follows that

Q{X⊗2
0 (f ⊗ g)X0(Tth − h)} =

∫ t

0

Q{(X⊗2
s (Af ⊗ g + f ⊗ Ag − f ⊗ g) + Xs(fg)

)
X0(h)}ds.

Then dividing the equality by t > 0 and letting t → 0 we get

m3(f ⊗ g ⊗ Ah) = m3(Af ⊗ g ⊗ h + f ⊗ Ag ⊗ h − f ⊗ g ⊗ h) + m2((fg) ⊗ h).
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Interchanging g and h,

m3(f ⊗ Ag ⊗ h) = m3(Af ⊗ g ⊗ h + f ⊗ g ⊗ Ah − f ⊗ g ⊗ h) + m2((fh) ⊗ g).

A combination of the last two equations gives the desired result for f, g, h ∈ D(A). The
extension to g, h ∈ C∞(E) is trivial. �

Lemma 2.6 If f, g ∈ D[E ] ∩ C∞(E) and h ∈ C∞(E), then fG1/2h, gG1/2h ∈ D[E ] and

E(g, fG1/2h) +
1
2

m(fhG1/2g) = E(f, gG1/2h) +
1
2

m(ghG1/2f). (2.10)

Proof. The former fact is found in [6], Lemma 1.4.2. If f ∈ D(A) and g, h ∈ C0(E), Lemmas
2.4 and 2.5 imply

m3((I − A)f ⊗ g ⊗ h) =
1
4

m(fgG1/2h) +
1
4

m(fhG1/2g).

Moreover, if g ∈ D(A), inserting (I − A)g in place of g in the above equation we get

m3((I − A)f ⊗ (I − A)g ⊗ h)

=
1
4

m(f(I − A)gG1/2h) +
1
4

m(fhG1/2(I − A)g)

=
1
4

m(fgG1/2h) +
1
4
E(g, fG1/2h) +

1
8

m(fhG1/2g) +
1
4

m(fhg).

Then the desired equality follows from the symmetry between f and g. It is trivial to extend
for f, g ∈ D[E ] ∩ C∞(E). �

Lemma 2.7 The jumping measure J(dx, dy) of (2.6) is everywhere dense in E × E \ ∆, that
is,

J(U × V ) > 0 for every disjoint non-empty open sets U, V ⊂ E.

Proof. Suppose that the conclusion fails. Then there are two non-empty open sets U and
V such that U ∩ V = ∅ and J(U × V ) = J(V × U) = 0. Now take non-zero functions
f, g ∈ D(E) ∩ C+

0 (E) and h ∈ C+
0 (E), supp(f) ⊂ U and supp(g) ⊂ V . Then by the local

property of Ec we have Ec(f, gG1/2h) = Ec(g, fG1/2h) = 0. Hence

E(f, gG1/2h) =
∫

E

∫
E

(
f(y) − f(x)

)(
g(y)G1/2h(y) − g(x)G1/2h(x)

)
J(dx, dy)

= −
∫

E

∫
E

(
f(x)g(y)G1/2h(y) + f(y)g(x)G1/2h(x)

)
J(dx, dy)

= 0.

Here we have used the symmetry of J for the last equality. Similarly E(g, fG1/2h) = 0 holds.
Accordingly by Lemma 2.6 we have

m(hfG1/2g) = m(hgG1/2f), h ∈ D(A). (2.11)
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Note that the irreducibility of Tt implies that m is everywhere dense in E and Gλf(x) >
0 (x ∈ E) for f ∈ C+

0 (E) with f 6= 0, so that from (2.11) and the Feller property of Gλ it
follows that

f(x)G1/2g(x) = g(x)G1/2f(x) (x ∈ E), (2.12)

which yields a contradiction, because G1/2f(x) > 0, G1/2g(x) > 0 for every x ∈ E, and f and
g have disjoint supports. Thus the proof is completed. �

Proof of Theorem 1.1 in the non-selective case. We claim that for f, g, h ∈ C0(E) with
mutually disjoint supports, it holds

∫
E

∫
E

f(x)g(y)
(
G1/2h(y) − G1/2h(x)

)
J(dx, dy) = 0. (2.13)

It suffices to show it for f, g ∈ D[E ]∩C0(E) since it follows from the regularity of the Dirichlet
space that for every f ∈ C+

0 (E) there exists {fn} ⊂ D[E ] ∩ C+
0 (E) such that

lim
n→∞ ‖fn − f‖∞ = 0 and supp(fn) ⊂ supp(f) (n ≥ 1).

Noting that

Ec(g, fG1/2h) = Ec(f, gG1/2h) = 0 and fh(x) = gh(x) = 0 (x ∈ E),

by Lemma 2.6 we have
∫

E

∫
E

(g(x) − g(y))
(
f(x)G1/2h(y) − f(y)G1/2h(y)

)
J(dx, dy)

=
∫

E

∫
E

(f(x) − f(y))
(
g(x)G1/2h(y) − g(y)G1/2h(y)

)
J(dx, dy),

hence it holds that ∫
E

∫
E

(
f(x)g(y)G1/2h(y) + f(y)g(x)G1/2h(x)

)
J(dx, dy)

=
∫

E

∫
E

(
g(x)f(y)G1/2h(y) + g(y)f(x)G1/2h(x)

)
J(dx, dy),

which yields (2.13) due to the symmetry of J .
Next, noting that J is everywhere dense in E × E \ ∆ by Lemma 2.7, (2.13) and the Feller
property of Gλ imply that G1/2h(x) is constant outside the support of h, so that for every
compact subset K, G1/2(x, K) is constant in x /∈ K. Accordingly for every compact set K
there exists a constant c(K) such that

G1/2(x, K) = c(K) (x /∈ K). (2.14)

It is easy to see that c(K) can be extended to a Borel measure on E such that (2.14) holds
for every Borel set. This observation implies that there exists a constant a ≥ 0 such that for
every x ∈ E

G1/2(x, ·) = aδx(·) + c(·).
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Here note that 0 < a < 2 and a+ c(E) = 2, which follow from the continuity, the irreducibility
and the conservativity of Tt. Inserting this to the resolvent equation we obtain

(
1 + (λ − 1

2
)a

)
Gλ(x, ·) = aδx(·) +

1
2λ

c(·),

so that

Af(x) = lim
λ→∞

λ(λGλf(x) − f(x)) =
1
2a

∫
E

(f(y) − f(x))c(dy).

Thus (A, D(A)) is of the type of (1.4). Moreover, it is easy to see that c agrees with m up
to a constant multiplication. Therefore the proof of Theorem 1.1 in the non-selective case is
completed. �

3 The selective case

The Fleming-Viot process incorporating selection is obtained from the non-selective process
by making use of Girsanov transformation. And if the selective density is of the form σ =
f ⊗ g + g ⊗ f with f, g ∈ D(A), it is straightforward to show that the reversible stationary
distribution of the selective model inherits the one of the non-selective model, so that the
non-selective result is applicable. Furthermore, for a bounded measurable selective density σ
it is possible to prove Theorem 1.1 by taking a suitable approximation.
In this section to emphasize the selective density σ, we denote by (Xt, Q

σ
µ) the associated

Fleming-Viot process. Let M(dsdx) be the martingale measure defined by (1.1) and (1.2). We
use the notation Bsym(E2) for the set of symmetric and bounded measurable functions on E2

For ϕ ∈ Bsym(E2) we define the martingales

M
(2)
t (ϕ) :=

∫ t

0

∫
E

Xs(ϕx)M(dsdx)

with ϕx(y) = ϕ(x, y), and

N
(2)
t (ϕ) := exp

{
− M

(2)
t (ϕ) − 1

2
〈M (2)(ϕ)〉t

}
, (3.1)

which is a positive martingale with mean one and

〈M (2)(ϕ)〉t =
∫ t

0

(∫
E

Xs(dx)Xs(ϕx)2 − X⊗2
s (ϕ)2

)
ds. (3.2)

Let Q0
µ be the probability measure on Ω such that Q0

µ(F ) = Qσ
µ{N (2)

t (σ)1F } for F ∈ Ft and
t ≥ 0.

Lemma 3.1 For f ∈ D(A)

M0
t (f) := Mt(f) +

∫ t

0

(
X⊗2

s (σ · f ⊗ 1) − X⊗3
s (σ ⊗ f)

)
ds, t ≥ 0, (3.3)
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is a Qσ
µ-martingale with quadratic variation process

〈M0(f)〉t =
∫ t

0

(Xs(f2) − Xs(f)2)ds, t ≥ 0. (3.4)

Accordingly, (Xt, Q0
µ) defines a Fleming-Viot process with (A,D(A)) and σ = 0.

Proof. It is sufficient to show that M0
t (f)N (2)

t (σ) is a Qσ
µ-martingale, from which it follows

that M0
t (f) is a Q0

µ-martingale, and (3.4) is trivial. By the definition of N
(2)
t (σ) we have

dN
(2)
t (σ) = −N

(2)
t (σ)dM

(2)
t (σ). It follows from (1.2) and (3.2)

d〈M(f), N (2)(σ)〉t = −N
(2)
t (σ)

(
X⊗2

t (σ · f ⊗ 1) − X⊗3
t (σ ⊗ f)

)
dt.

Thus, by (3.1), (3.3) and Itô’s formula

d(M0
t (f)N (2)

t (σ)) = M0
t (f)dN

(2)
t (σ) + N

(2)
t (σ)dMt(f),

which is a Qσ
µ-martingale. �

Now let Qσ be a stationary distribution of the Fleming-Viot process with mutation operator
A and selective density σ, and let Qσ be the corresponding stationary Markovian measure on
Ω. We denote by mn, n = 1, 2, · · ·, the moment measures of Qσ defined by (2.1).

Lemma 3.2 Suppose that {ϕ, ϕn : n = 1, 2, · · ·} ⊂ Bsym(E2) are uniformly bounded and
that ϕn → ϕ in L2(E2; m2) as n → ∞. Then for any t ≥ 0 it holds that

X⊗2
t (ϕn) → X⊗2

t (ϕ), M
(2)
t (ϕn) → M

(2)
t (ϕ), 〈M (2)(ϕn)〉t → 〈M (2)(ϕ)〉t

in L2(Ω; Qσ) as n → ∞.

Proof. The first convergence follows from

Qσ{|X⊗2
t (ϕn) − X⊗2

t (ϕ)|2} ≤ Qσ{X⊗2
t (|ϕn − ϕ|2)} = m2(|ϕn − ϕ|2).

The second one also follows from

Qσ{(M (2)
t (ϕn) − M

(2)
t (ϕ))2} = Qσ{〈M (2)(ϕn − ϕ)〉t}

≤
∫ t

0

Qσ{
∫

E

Xs(dx)(Xs((ϕn)x − ϕx))2}ds

≤
∫ t

0

2Qσ{X⊗2
s (|ϕn − ϕ|2)}ds

= 2t m2(|ϕn − ϕ|2).
The last convergence can be easily shown using

|〈M (2)(ϕn)〉t − 〈M (2)(ϕ)〉t| ≤ 2(‖ ϕn ‖∞ + ‖ ϕ ‖∞)
∫ t

0

X⊗2
s (|ϕn − ϕ|)ds.

Thus we can complete the proof of Lemma 3.2. �
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Lemma 3.3 If Qσ is a reversible stationary distribution of the Fleming-Viot process with
mutation operator (A,D(A)) and selective density σ, then

Q0(dµ) :=
( ∫

M1(E)

exp{−ν⊗2(σ)}Qσ(dν)
)−1

exp{−µ⊗2(σ)}Qσ(dµ) (3.5)

is a reversible stationary distribution of the Fleming-Viot process with mutation operator
(A, D(A)) and σ = 0.

Proof. Let Q0 be the probability measure on Ω of the Fleming-Viot process associated with
(A, D(A)) and σ = 0 starting at the initial distribution Q0. In order to see that Q0 is a
reversible stationary distribution of (Xt, Q

0) it suffices to show

Q0 {F (X0, Xt)} = Q0 (F (Xt, X0)} (3.6)

for all t ≥ 0 and bounded continuous functions F on M1(E). By Lemma 3.1 (3.6) is reduced
to showing

Qσ
{
exp{−X⊗2

0 (ϕ)}F (Xt, X0)N
(2)
t (ϕ)

}
= Qσ

{
exp{−X⊗2

0 (ϕ)}F (X0, Xt)N
(2)
t (ϕ)

}
(3.7)

for all ϕ ∈ Bsym(E2), since (3.6) follows from (3.7) with ϕ = σ.
We first assume that ϕ = f ⊗ g + g ⊗ f for some f, g ∈ D(A), then by Itô’s formula we have

1
2

(
X⊗2

t (ϕ) − X⊗2
0 (ϕ)

)
= M

(2)
t (ϕ) +

∫ t

0

G(ϕ; Xs)ds, (3.8)

where

G(ϕ; Xs) = Xs(f)
(
Xs(Ag) + X⊗2

s (σ · g ⊗ 1) − X⊗3
s (σ ⊗ g)

)
+ Xs(g)

(
Xs(Af) + X⊗2

s (σ · f ⊗ 1) − X⊗3
s (σ ⊗ f)

)
+ (Xs(fg) − Xs(f)Xs(g)) .

We rewrite (3.2) by using a function H(ϕ, µ) defined on M1(E) as follows:

〈M (2)(ϕ)〉t =
∫ t

0

H(ϕ, Xs)ds. (3.9)

Then from (3.8) and (3.9) it follows that

Qσ
{
exp{−X⊗2

0 (ϕ)}F (Xt, X0)N
(2)
t (ϕ)

}

= Qσ

{
exp{−X⊗2

0 (ϕ) − M
(2)
t (ϕ) − 1

2
〈M (2)(ϕ)〉t}F (Xt, X0)

}

= Qσ

{
exp

{ − 1
2

(X⊗2
0 (ϕ) + X⊗2

t (ϕ)) +
∫ t

0

(G(ϕ; Xs) − H(ϕ; Xs))ds
}
F (Xt, X0)

}
.

Then (3.7) follows by the reversibility of Qσ. Clearly, the linear span of {f ⊗ g + g ⊗ f : f, g ∈
D(A)} is dense in C0,sym(E2) with the supremum norm. Moreover, it is easy to see that for
an arbitrary ϕ ∈ Bsym(E2), there exists a uniformly bounded sequence {ϕn} ∈ C0,sym(E2)
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that converges to ϕ with the L2(E2; m2)-norm. Therefore by Lemma 3.2, (3.7) holds for every
ϕ ∈ Bsym(E2), �

Now we can complete the proof of Theorem 1.1 in the selective case. Suppose that there exists
a reversible stationary distribution Qσ of the Fleming-Viot process associated with (A, D(A))
and σ. Then by Lemma 3.3 Q0 defined by (3.5) is a reversible stationary distribution of the
non-selective Fleming-Viot process (Xt, Q0). Therefore, by the result of the non-selective case
in the previous section, we conclude that (A, D(A)) is of the form (4), which complete the
proof of Theorem 1.1 in the selective case. �
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