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Abstract
Rogers-Pitman have shown that the sum of the absolute value of B(µ), Brownian motion with
constant drift µ, and its local time L(µ) is a diffusion R(µ). We exploit the intertwining relation
between B(µ) and R(µ) to show that the same addition operation performed on a one-parameter
family of diffusions {X(α,µ)}α∈R+ yields the same diffusion R(µ). Recently we obtained an
exponential analogue of the Rogers-Pitman result. Here we exploit again the corresponding
intertwining relationship to yield a one-parameter family extension of our result.

1 Introduction

In our recent paper [9], we have obtained some interesting examples of a diffusion process
X = {Xt, t = 0} on R and an additive functional {At, t = 0} of X such that there exists
a particular function θ : R × R+ → R+ for which Θt = θ(Xt, At) gives another diffusion
process. The difficulty (or the interest) of the situation is that Θ = {Θt, t = 0} enjoys the
Markov property with respect to its natural filtration {Zt, t = 0} and not with respect to the
larger filtration, say X = {Xt, t = 0}, of the original diffusion X .
In fact, to get more precisely into our framework, there exists a Markov kernel K such that

E[f(Xt)|Zt] = (Kf)(Θt )
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holds for every bounded Borel function f : R → R+ and the Markov property of Θ is inherited
from that of X , via K . Such situations have been described and studied by Rogers-Pitman
[13]; see Kurtz [7] for a more recent discussion.
The purpose of this article is to examine, through concrete examples, how these properties are
transformed after a change of probabilities of the form

dQ|Xt = Dt · dP |Xt (1.1)

for some functional {Dt}, which we shall assume to be of the form Dt = φ(Xt, At, t).
In Section 2 we show that a number of different diffusion processes {Xt, t = 0} have the
property that {|Xt|+ Lt(X), t = 0} is distributed as {|B(µ)

t |+Lt(B(µ)), t = 0}, where B(µ) =
{B(µ)

t , t = 0} denotes the Brownian motion with constant drift µ ∈ R and {Lt(Y ), t = 0} is
the local time of a diffusion process Y = {Yt, t = 0} at 0.
In Section 3 our choice for {Dt} turns out to yield only “strict” local martingales, i.e., local
martingales which are not martingales (see, e.g., Elworthy-Li-Yor [1], [2] for detailed study
of such processes). Therefore the equation (1.1) has to be considered carefully and yields
“explosive” real-valued diffusions (see Feller [4], McKean [10]).

2 Kennedy’s Martingales

Let B = {Bt, t = 0} be a standard Brownian motion and {Lt, t = 0} be its local time at 0.
Then it is known (cf. Kennedy [5], Revuz-Yor [12], Exercise (4.9), p.264) that

Dα,µ
t = (cosh(µBt) +

α

µ
sinh(µ|Bt|)) exp(−αLt − 1

2
µ2t), t = 0,

defines a martingale for every α, µ > 0.
We set

Rt = |Bt| + Lt,

which is a three-dimensional Bessel process by virtue of Pitman’s celebrated theorem. Then,
since the conditional distribution of |Bt| given Rt = σ{Rs; s 5 t} is the uniform distribution
on [0, Rt], it is easy to obtain the following.

Proposition 2.1 For every α, µ > 0 and t > 0, it holds that

E[Dα,µ
t |Rt] =

sinh(µRt)
µRt

exp(−µ2t/2). (2.1)

We may rewrite (2.1) in the following manner by using Girsanov’s theorem.

Proposition 2.2 Let {γt, t = 0} be a standard Brownian motion with γ0 = 0 and Bα,µ =
{Bα,µ

t , t = 0} be the solution of the stochastic differential equation

dXt = dγt + (logϕα,µ)′(Xt)dt, X0 = 0, (2.2)

where ϕα,µ(x) = cosh(µx) + µ−1α sinh(µ|x|). Then one has

{|Bα,µ
t | + Lα,µ

t , t = 0} (law)
= {ρ(µ)

t , t = 0}, (2.3)
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where {Lα,µ
t , t = 0} is the local time of Bα,µ at 0 and {ρ(µ)

t , t = 0} is the R+-valued diffusion
process with infinitesimal generator

1
2
d2

dx2
+ µ coth(µx)

d

dx
.

Remark 2.1 The case α = 0 is precisely the extension of Pitman’s theorem by Rogers-Pitman
[13]. Here we simply remark that α does not appear on the right hand side of (2.3).

Proof. On one hand, using Girsanov’s theorem, the law Qα,µ of Bα,µ, the solution of (2.2),
satisfies

dQα,µ|Xt = Dα,µ
t · dP |Xt ,

where Xt = σ{Xs; s 5 t}, t > 0, on the canonical space and P denotes the Wiener measure.
On the other hand, if we set Rt = |Xt| + Lt(X), t = 0, then, thanks to (2.1) and Girsanov’s
theorem again, {Rt, t = 0} satisfies, under Qα,µ, the equation

dRt = dγt + µ coth(µRt)dt,

where {γt, t = 0} denotes a one-dimensional Brownian motion. �

3 Local martingales Related to Geometric Brownian Mo-

tion

In this section we discuss some computations analogous to those in the previous section, but
now we are concerned with geometric Brownian motion and related stochastic processes.
Let B(µ) = {Bt + µt, t = 0} be a Brownian motion starting from 0 with constant drift µ > 0,
defined on a probability space (Ω,B, P ), and {B(µ)

t , t = 0} be its natural filtration (which,
obviously, does not depend on µ). We set

e
(µ)
t = exp(B(µ)

t ) and A
(µ)
t =

∫ t

0

(e(µ)
s )2ds.

Our main objects of study in [9] are the stochastic processes given by

Z
(µ)
t = (e(µ)

t )−1A
(µ)
t and ξ

(µ)
t = (e(µ)

t )−2A
(µ)
t ,

which turn out to be, in fact, diffusion processes [with respect to their own filtrations, re-
spectively]. It should be remarked that σ{ξ(µ)

s ; s 5 t} coincides with B(µ)
t and that Z(µ)

t ≡
{Z(µ)

s ; s 5 t} is strictly contained in B(µ)
t . Here are the main facts, drawn from [9], about these

diffusions.

Proposition 3.1 (i) {ξ(µ)
t , t = 0} is a diffusion process with respect to its natural filtration

{B(µ)
t , t = 0} and it admits the infinitesimal generator

2x2 d
2

dx2
+ (2(1 − µ)x+ 1)

d

dx
.
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(ii) {Z(µ)
t , t = 0} is a (transient) diffusion process with respect to its natural filtration {Z(µ)

t , t =
0} with infinitesimal generator

1
2
z2 d

2

dz2
+ {(1

2
− µ)z +

(
K1+µ

Kµ

) (
1
z

)
} d
dz

and a scale function is sµ(z) = −(Iµ/Kµ)(z−1).
(iii) For any t > 0, B(µ)

t = Z(µ)
t ∨σ(e(µ)

t ) and the conditional law of e(µ)
t given Z(µ)

t is expressed
by

P (e(µ)
t ∈ dx|Z(µ)

t , Z
(µ)
t = z) =

xµ−1

2Kµ(1/z)
exp(− 1

2z
(x+

1
x

))dx, (3.1)

where Kµ is the usual Macdonald (modified Bessel) function.

Now we set ϕµ(x) = x−µIµ(x) for a modified Bessel function Iµ and consider the stochastic
process

∆µ,δ
t =

ϕµ(δe(µ)
t )

ϕµ(δ)
exp(−δ

2

2
A

(µ)
t ).

Then, by using Itô’s formula and the fact that Iµ solves the differential equation

u′′(x) +
1
x
u′(x) − (1 +

µ2

x2
)u(x) = 0,

it is easy to show that ∆µ,δ = {∆µ,δ
t , t = 0} is a (B(µ)

t )-local martingale.
Another proof of the local martingale property of ∆µ,δ consists in using Lamperti’s represen-
tation (see, e.g., [12], Exercise (1.28), p.452)

e
(µ)
t = R(µ)(A(µ)

t ),

where R(µ) = {R(µ)(u), u = 0} denotes a Bessel process with index µ, and the well-known fact
that the stochastic process {ϕµ(δR(µ)

1 (u)) exp(−δ2u/2), u = 0} is a martingale with respect to
the natural filtration of R(µ) (see, e.g., Kent [6]); the corresponding result for ∆µ,δ follows by
time change.
However, the following proposition shows how different the situation is from that in the pre-
vious section.

Proposition 3.2 ∆µ,δ is a strict (B(µ)
t )-local martingale, that is, it is a local martingale, but

not a martingale. More precisely, its “martingale default” may be computed from the formula

E[∆µ,δ
t |Z(µ)

t ] = P (L(µ)
1/δ = t|Z(µ)

t ), (3.2)

where L(µ)
y = sup{t = 0;Z(µ)

t = y}. Moreover, one has

P (L(µ)
y = t|Z(µ)

t , Z
(µ)
t = z) = min{sµ(z)

sµ(y)
, 1}. (3.3)

Remark 3.1 A general study of “strict” local martingales and their martingale defaults has
been undertaken by Elworthy-Li-Yor [1], [2]; see also Takaoka [14].
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Proof. Formula (3.3) is deduced from the conditional law (3.1); indeed, one has

E[∆µ,δ
t |Z(µ)

t , Z
(µ)
t = z]

=
1

ϕµ(δ)
E[ϕµ(δe(µ)

t ) exp(−δ
2

2
e
(µ)
t Z

(µ)
t )|Z(µ)

t , Z
(µ)
t = z]

=
1

ϕµ(δ)

∫ ∞

0

ϕµ(δx) exp(−δ
2

2
xz)

1
2Kµ(1/z)

xµ−1 exp(− 1
2z

(x+
1
x

))dx

=
1

2Iµ(δ)Kµ(1/z)

∫ ∞

0

Iµ(
1
zδ
v) exp(−1

2
((1 +

1
δ2z2

)v +
δ2

v
))
dv

v
.

We now recall the integral representation of the product of the modified Bessel functions,

Iµ(δa)Kµ(δb) =
1
2

∫ ∞

0

Iµ(abv) exp(−1
2
((a2 + b2)v +

δ2

v
))
dv

v

for 0 5 a 5 b (cf. [3], p.284 (56)). Then, noting that ψµ(x) = (Iµ/Kµ)(x) is an increasing
function, we obtain

E[∆µ,δ
t |Z(µ)

t , Z
(µ)
t = z] = min{ψµ(z−1)

ψµ(δ)
, 1}, (3.4)

which implies that ∆µ,δ is a strict local martingale.
Formula (3.2) is a particular case of the computation of the supermartingale P (L(µ)

y = t|Z(µ)
t )

attached to the last passage time L(µ)
y for a transient diffusion, here {Z(µ)

t } (see, e.g., Pitman-
Yor [11], Section 6 and also Revuz-Yor [12], Exercise (4.16), p.321). �

Despite Proposition 3.2, we wish to apply Girsanov’s theorem with respect to P and the
(strict) local martingale ∆µ,δ. This type of extension of Girsanov’s theorem is dealt with in
McKean [10], pp.63–64, who considers there explosive Itô stochastic differential equations, and
our situation fits into his framework perfectly well. See also Yoeurp [15].

Theorem 3.3 Let µ = 0, δ > 0, and {βt, t = 0} be a standard Brownian motion with β0 = 0.
(i) The solution of the equation

Xt = βt + µt+
∫ t

0

(
ϕ′

µ

ϕµ

)
(δ exp(Xs))δ exp(Xs)ds (3.5)

is explosive a.s., that is, one can construct a process {Xt, t < e} which solves (3.5); moreover
one has P (e <∞) = 1.
(ii) Let Eµ,δ denote the expectation with respect to the law Wµ,δ of {Xt, t < e}. Then one has

Eµ,δ[F (Xs, s 5 t)1{t<e}] = E[F (B(µ)
s , s 5 t)∆µ,δ

t ] (3.6)

for every positive Borel functional F defined on C([0, t];R), where E on the right hand side
of (3.6) denotes the expectation with respect to the Wiener measure P .
(iii) Define the stochastic process {ηt, t < e} by ηt = exp(Xt). Then it satisfies the equation

ηt = 1 +
∫ t

0

ηsdβs +
∫ t

0

(
1
2

+ µ)ηsds+
∫ t

0

(
ϕ′

µ

ϕµ

)
(δηs)δ(ηs)2ds, t < e. (3.7)
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Moreover, {ηt, t < e} is defined implicitly in terms of an upward Bessel process {R(µ,δ↑)
1 (u), u =

0} starting from 1 as follows :

ηt = R
(µ,δ↑)
1 (

∫ t

0

(ηs)2ds), t < e ≡
∫ ∞

0

ds

(R(µ,δ↑)
1 (s))2

. (3.8)

Remark 3.2 For generalized (upward and downward) Bessel processes, we refer to Pitman-
Yor [11] and Watanabe [17].

Proof. The assertions of (i) and (ii) follows from the general discussion of explosive diffusions
on R (see, e.g., McKean [10], pp.66–67, and Feller [4]). In particular, we can check the Feller
test for explosion as follows. Letting b(x) be the drift coefficient given by

b(x) = µ+
(
ϕ′

µ

ϕµ

)
(δ exp(x)) · δ exp(x),

we see, after some elementary computations, that a scale function s(x) is given by

s(x) =
∫ ∞

0

exp(−2
∫ ξ

0

b(η)dη)dξ = Iµ(δ)2
∫ x

0

Iµ(δeξ)−2dξ.

The speed measure is then given by

m(dx) = 2Iµ(δ)−2Iµ(δ exp(x))2dx.

Noting that

Iµ(z) =
1√
2πz

ez · (1 + o(1)) as z → ∞ (3.9)

and

Iµ(z) =
zµ

2µΓ(1 + µ)
(1 + o(1)) as z → 0

(cf. Lebedev [8], p.136), it is easy to show that s(∞) < ∞ and s(−∞) = −∞. Moreover we
have

v(x) ≡
∫ x

0

(s(x) − s(y))m(dy) =
∫ δ exp(x)

δ

dξ

ξIµ(ξ)2

∫ ξ

δ

Iµ(η)2
dη

η

=
∫ δ exp(x)

δ

Iµ(η)2
dη

η

∫ δ exp(x)

η

dξ

ξIµ(ξ)2
.

Therefore, using (3.9) again, we obtain v(∞) <∞ and, consequently, P (e <∞) = 1.
Equation (3.7) follows from (3.5), using the Itô formula. The implicit representation (3.8)
follows from (3.7) by performing the time change

t 7→ At ≡
∫ t

0

(ηs)2ds, t < e.
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To develop the passage formulae from η to R(µ,δ↑)
1 , we note that, if {σu, u = 0} is the inverse

of At, t < e, then (ησu )2dσu = du. This, combined with (3.8), yields

σu =
∫ u

0

ds

(R(µ,δ↑)
1 (s))2

and one can define At so long as

t < σ∞ ≡
∫ ∞

0

(R(µ,δ↑)
1 (s))−2ds,

which is the explosion time e. �

We now come back to our original task, which is to extend further our exponential version of
Pitman’s theorem [9], that is, precisely to study the law of {Z(µ)

t , t < e} under Wµ,δ.

Theorem 3.4 Keeping the notations in Theorem 3.3, we define

Zt = exp(−Xt)
∫ t

0

exp(2Xs)ds ≡ 1
ηt

∫ t

0

(ηs)2ds, t < e.

Then one has the equality in law

{(Zt, t < e),Wµ,δ} (law)
= {(Z(µ)

t , t < L
(µ)
1/δ), P}.

Consequently, in the filtration {Z(µ)
t }, enlarged so that L(µ)

1/δ becomes a stopping time, the

stochastic process {Z(µ)
t , t 5 L

(µ)
1/δ} satisfies the equation

Zt =
∫ t

0

Zsdγs + (
1
2
− µ)

∫ t

0

Zsds+
∫ t

0

(
K1+µ

Kµ

) (
1
Zs

)
ds

−
∫ t

0

1
(IµKµ)(1/Zs)

1{Zs<1/δ}ds.

Proof. We provide two proofs. As a first proof, we project ∆µ,δ
t on Z(µ)

t under P and remark
that the right hand side of (3.6), where F (B(µ)

s , s 5 t) has been replaced by F (Z(µ)
s , s 5 t),

thus obtained coincides with
E[F (Z(µ)

s , s 5 t)1{L
(µ)
1/δ

>t}].

Then, applying the progressive enlargement formula (see, e.g., Yor [16], Chapter 12), we obtain
the assertion of the theorem.
Our second proof is deduced from (3.8), using time inversion. Indeed, there exists an upward
Bessel process R̂(µ,1↑)

δ (t) starting from δ such that

tR
(µ,δ↑)
1 (1/t) = R̂

(µ,1↑)
δ (t).

Therefore, setting

u =
∫ t

0

(ηs)2ds,

one has
1
Zt

= u−1R
(µ,δ↑)
1 (u) = R̂

(µ,1↑)
δ (

∫ e

t

(Zs)−2ds), t < e ≡ L
(µ)
1/δ.
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4 Concluding Remarks

In order to reinforce the parallel between the discussions in Sections 2 and 3, we now remark
that, for δ, γ > 0, the stochastic process

∆µ,δ,γ
t =

ϕν(δe(µ)
t )

ϕν(δ)
(e(µ)

t )k exp(−δ
2

2
A

(µ)
t ) exp(−γ

2t

2
)

=
Iν(δe(µ)

t )
Iν(δ)

(e(µ)
t )k−ν exp(−δ

2

2
A

(µ)
t ) exp(−γ

2

2
t)

is a (B(µ)
t )-local martingale, if we take ν =

√
γ2 + µ2 and k = ν − µ. This may be deduced

from the Cameron-Martin relationship between the processes {e(µ)
t } and {e(ν)

t } and the fact,
which we already derived in Section 3, that {∆ν,δ

t , t = 0} is a (B(ν)
t )-local martingale.

The local martingale property of {∆µ,δ,γ
t } can also be shown in the following way. Let us set

Mt = f(e(µ)
t ) exp(−δ

2

2
A

(µ)
t ) exp(−γ

2

2
t)

and look for a function f such that {Mt} is a (B(µ)
t )-local martingale with M0 = 1. Then it is

easy to show from Itô’s formula that f should satisfy

f ′′(x) +
1 + 2µ
x

f ′(x) − (δ2 +
γ2

x2
)f(x) = 0 and f(1) = 1. (4.1)

This is Bessel’s equation. Hence, one obtains that f is a linear combination of x−µIν(δx) and
x−µKν(δx), where ν =

√
µ2 + γ2.

As an extension of Proposition 3.2, we obtain, using the same type of arguments as above,

E[∆µ,δ,ν
t |Z(µ)

t , Z
(µ)
t = z] = P (L(ν)

1/δ = t|Z(ν)
t , Z

(ν)
t = z)

Kν(1/z)
Kµ(1/z)

exp(−γ
2t

2
). (4.2)

Thus, comparing (4.2) with formula (2.1), we see that (4.2) exhibits some dependency on δ,
whereas there is no dependency on α in (2.1) ; this difference is due to the following facts.
(i) {Dα,0

t ≡ (1 +α|Bt|) exp(−αLt), t = 0} is a true martingale ; indeed, it projects on {Rt} as
a true martingale, which must be of the form h(Rt). However, the only such martingales (for
the BES(3) process or, more generally, transient diffusions) are constant, hence the projection
of {Dα,0

t } is equal to 1.
(ii) {∆µ,δ

t , t = 0} is already a strict local martingale, hence the previous arguments are not
applicable. On the other hand, we may consider the true martingale

∆µ,0,γ
t ≡ (e(µ)

t )ν−µ exp(−γ
2t

2
), t = 0,

and its projection on (Z(µ)
t ) is

Kν(1/Z(µ)
t )

Kµ(1/Z(µ)
t )

exp(−γ
2t

2
), ν =

√
γ2 + µ2.
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Grossissements de filtrations : exemples et applications, Ed. by, Th. Jeulin and M. Yor,
Lecture Notes Math., 1118, 172–196, 1985.

[16] M. Yor, Some Aspects of Brownian Motion, Part II : Some Recent Martingale Problems,
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