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A simple observation on random matrices
with continuous diagonal entries
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Abstract

Let T' be an n X n random matrix, such that each diagonal entry T; ; is a continuous
random variable, independent from all the other entries of 7. Then for every n x n
matrix A and every t > 0

IP[| det(A + T/ < t] < 2bnt,

where b > 0 is a uniform upper bound on the densities of T; ;.
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1 introduction

In this note we are interested in the following question: Given an nxn random matrix
T, what is the probability that T is invertible, or at least “close” to being invertible? One
natural way to measure this property is to estimate the following small ball probability

p [S,L(T) < t},

where s,(T) is the smallest singular value of T,

1
sn(T def inf ||Txz|; = ———.
@) lzll2=1 17z [

In the case when the entries of T" are i.i.d random variables with appropriate moment
assumption, the problem was studied in [3, 11, 12, 15, 17]. We also refer the reader
to the survey [10]. In particular, in [12] it is shown that if the entries of T are i.i.d
subgaussian random variables, then

P[sn(T) < t} < CVnt+ e, (1.1)

where ¢, C depend on the moments of the entries.

Several cases of dependent entries have also been studied. A bound similar to (1.1)
for the case when the rows are independent log-concave random vectors was obtained
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in [1, 2]. Another case of dependent entries is when the matrix is symmetric, which was
studied in [5, 6, 7, 8, 9, 19]. In particular, in [5] it is shown that if the above diagonal
entries of T' are continuous and satisfy certain regularity conditions, namely that the
entries are i.i.d subgaussian and satisfy certain smoothness conditions, then

IP[S,L(T) < t] < Cy/nt.

The regularity assumptions were completely removed in [6] at the cost of a n3/2 (The
result in [6] still assumes bounded density and independence of the entries in the non-
symmetric part). On the other hand, in the discrete case, the result of [19] shows that if
T is, say, symmetric whose above diagonal entries are i.i.d Bernoulli random variables,
then

P [sn(T) = O} <e™,

where c is an absolute constant.

A more general case is the so called Smooth Analysis of random matrices, where
now we replace the matrix 7' by A+ T, where A being an arbitrary deterministic matrix.
The first result in this direction can be found in [13], where it is shown that if 7" is a
random matrix with i.i.d standard normal entries, then

Pls,(A+T) < t} < Cy/nt. (1.2)

Further development in this direction can be found in [18], where estimates similar
to (1.2) are given in the case when T is a Bernoulli random matrix, and in [6, 8, 9],
where T is symmetric.

An alternative way to measure the invertibility of a random matrix 7 is to estimate
det(T"), which was studied in [4, 14, 16] (when the entries are discrete distributions).
Here we show that if the diagonal entries are independent continuous random variables,
we can easily get a small ball estimate for det(A + T'), where A being an arbitrary
deterministic matrix.

Theorem 1.1. Let T be an n x n random matrix, such that each diagonal entry T; ; is
a continuous random variable, independent from all the other entries of T. Then for
everyn X n matrix A and everyt > 0

]P[| det(A+T)[/™ < t| < 2bnt,

where b > 0 is a uniform upper bound on the densities of T;; ;.

We remark that the proof works if we replace the determinant by the permanent of
the matrix (see [4] for the difference between the notions).

Now, we use Theorem 1.1 to get a small ball estimate on the norm and smallest
singular value of a random matrix.

Corollary 1.2. Let T be a random matrix as in Theorem 1.1. Then

P[||T|| < t} < (2bt)", (1.3)

and
JP[sn(T) < t} < (2b) 7T (E||T||) 3T ¢t (1.4)
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Corollary 1.2 can be applied to the case when the random matrix 7' is symmetric,
under very weak assumptions on the distributions and the moments of the entries and
under no independence assumptions on the above diagonal entries.

Finally, in Section 3 we show that in the case of 2 x 2 matrices, we use an ad-hoc
argument to obtain a better bound than the one obtained in Theorem 1.1. We do not
know what is the right order when the dimension is higher.

2 Proof of Theorem 1.1

Before we give the proof of Theorem 1.1, we fix some notation. First,let M = A+ T,
and let M), be the matrix M after erasing the last n — k rows and last n — k columns.
Also, let O, be the o-algebra generated by the entries of M;, except My .

Proof of Theorem 1.1. We have
| det(My)] = [ Mk det(Mi—1) + fi
where f; is measurable with respect to ;. We also have
P [\ det(My)| < ek}
< P[\ det(My)] < e A | det(My_1)| > EH] 4P [\ det(My_1)| < g,H]
Now,

P[| det(My)| < ex A | det(Tp_1| > ek_l}

=E|P “Mk,k det(Mp_1) + ful < Ek’Qk} . ﬂ{det(Mk_1)>€k—1}]
< sup P {IMM+7| <k } <op—t,
YER Ek—1 Ek—1

where the last inequality follows from the fact for a continuous random variable X we
always have

SupIP[|X+7| gt} < bt 2.1)
yeR

where b > 0 is an upper bound on the density of X.
Thus, we get

€k

]P[| det(My)] < sk} <2b + IP[| det(My—1)| < 514:71}7

Ek—1

Also, note that

(2.1)
P {| det(My)| < 51} —P {|TL1 + A < gl} < 2be,.

Therefore,
n
€
P[| det(M,)| < gn} <ole+ Y E .
2 Ek—1
Choosing ¢; = ¢/, the result follows. O
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Corollary 1.2 now follows immediately.

Proof of Corollary 1.2. Let s1(T) > -+ > s,(T) be the singular values of T. We have

si(T) =Tl = sup [Tafz= sup  (Ta,y) > max [T;;].
lzlla=1 llzllz=llyll2=1 lsisn
Thus, by (2.1),

P[si1(T) < t] <P max T3] < ¢] < (20t)",

which proves (1.3).
To prove (1.4), note that
| det(T)| = HSi(T) < sl(T)"*lsn(T) <\ T s (T). (2.2)
i=1
Thus,
P[su(T) < t] < P[sn(T) <t AITI| < 8] +P[IT] > 5] 23)

For the first term, we have by (2.2) and Theorem 1.1,

IP[sn(T) <tA|T|| < 5} < ]P[det(T) < 5"—14 < 2B ¢/,

Also,
E|7|
< ——. .
IP[IITII > 6} <=5 (2.4)

Thus, by (2.3) and (2.4),

n— E T

IP[sn(T) < t] < o T 4 ”ﬂ

Optimizing over § gives (1.4). O

3 The case of 2 x 2 matrices

As discussed in the introduction, we show that for 2 x 2 matrices the small ball
estimate on the determinant obtained in Theorem 1.1 is not sharp. To do that, we use
the well known fact that if X and Y are continuous random variables with joint density
function fx y(:,-) then X - Y has a density function which is given by

o z\ dw
fxv(z)= / Ixy (U% *) T
—o0 w/ |wl
where fx, fy are the density functions of X, Y, respectively.

We thus have the following.

Proposition 3.1. Assume that X and Y are independent continuous random variables,
with fx <b, fy <b. Then fx.y, the density function of X -Y satisfies

2b+ 2% log(|2])] |+ < 1,

Ixy(E) s {Qb 2] > 1.
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Proof. Assume first that |z| < 1. Write

fxv(z / fXY ) o]
dw z\ dw z\ dw
— ,— ) —+ ,— | — + ,— ) —. (3.1
/|w<zfX’Y (w “’) |w] /|z|<|w<1fX’Y (w W) |wl /w|>1fX’Y (w w) |w] G-

Since X and Y are independent, fx y(z,y) = fx(z) - fy(y). We estimate each term
of (3.1) separately.

d d d
/wSIZI fx(w) - fy (i> ﬁ < b/|w|§z Iy (%) WU] = b/y>1f (y )|—;| <b (3.2)
dw dw
/z<w|<1fX(w) (%) Tl = b2/||<|w<1 ] = 2 Hos(l2D)] (3.3)
d
/wsz (w) - fy( ) |:)U| <b/|w>1fx( )ﬁ <b. (3.4)

Plugging (3.2), (3.3) and (3.4) into (3.1), the result follows for |z| < 1.
Now, if |z| > 1, then write

Ixvy(z / fXY ) 0]

- /|w|gz ftw) Iy ( ) izul +/w|2|z Fx(w)- fy (%) %~ (3.5)

For the first term, we have

z\ dw dy
. — ) — < b/ < b. (3.6)
/|w<zfX(w) Iy (w> |w] \y|zlf rly )\yl
And, for the second, by (3.4)
z\ dw dw
. Z) =< 3.7
/|w>z|fX(w) Iy (w) ol _/w|>1f (w) - fY( >| |_ (3.7)
Plugging (3.6) and (3.7) into (3.5), the result follows. O

Using Proposition 3.1, we immediately obtain the following:
Corollary 3.2. Let X and Y be independent continuous random variables. Then for
everyt € (0,1) and every v € R,
]P[\X Y 4] < t] < 4bt + 4b%(1 + |log t]),

where b > 0 is a uniform upper bound on their densities.

Proof. Note that the function

g9(2) = (20 + 2b°|log(|2[)]) Tjz1<1y + 201121513
satisfies g(|#1]) < g(|#2|) whenever |z1| > |z2|. Thus, we have forevery vy € R, t € (0,1),

ot t
/ g(2)dz g/ g(2)dz :/ (2 + 2%  log(|21)]) d= = dbt + 46%¢(1 + | log ]).
~ —t

—t —t
Thus, by Proposition 3.1 we have

v+t
P[X-y <] < / g(2)dz < 4bt + 401 + |log £]).

y—t
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We also obtain the following corollary.

Corollary 3.3. Let T = {T;;}i j<2 be a random matrix such that Ty ; and T, are
continuous random variables, each independent of all the other entries of T'. Then for
everyt € (0,1)

P {| det(T)|/2 < t} < 4bt% + 4622 (1 + 2| log ),
where b > 0 is a uniform upper bound on the densities of T} 1, T5 5.
Proof. We have,

]P |:| det(T)| S t:| = IP[|T171 . T2’2 — T1’2 . T211| S t:|

=E|P [|T1,1 Tho—Tio-Toa| < t'Tl,Q’TQ,l}

< supIP[|T1,1 “Tho+7] < t]
yeR

< 4bt + 4b*t(1 + | log t|),

where in the last inequality we used Corollary 3.2. Replacing ¢ by ¢2, the result follows.
O
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