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Abstract

Let T be an n × n random matrix, such that each diagonal entry Ti,i is a continuous
random variable, independent from all the other entries of T . Then for every n × n

matrix A and every t ≥ 0

P
[
| det(A+ T )|1/n ≤ t

]
≤ 2bnt,

where b > 0 is a uniform upper bound on the densities of Ti,i.
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1 introduction

In this note we are interested in the following question: Given an n×n random matrix
T , what is the probability that T is invertible, or at least “close” to being invertible? One
natural way to measure this property is to estimate the following small ball probability

P
[
sn(T ) ≤ t

]
,

where sn(T ) is the smallest singular value of T ,

sn(T )
def
= inf
‖x‖2=1

‖Tx‖2 =
1

‖T−1‖
.

In the case when the entries of T are i.i.d random variables with appropriate moment
assumption, the problem was studied in [3, 11, 12, 15, 17]. We also refer the reader
to the survey [10]. In particular, in [12] it is shown that if the entries of T are i.i.d
subgaussian random variables, then

P
[
sn(T ) ≤ t

]
≤ C
√
nt+ e−cn, (1.1)

where c, C depend on the moments of the entries.

Several cases of dependent entries have also been studied. A bound similar to (1.1)
for the case when the rows are independent log-concave random vectors was obtained
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in [1, 2]. Another case of dependent entries is when the matrix is symmetric, which was
studied in [5, 6, 7, 8, 9, 19]. In particular, in [5] it is shown that if the above diagonal
entries of T are continuous and satisfy certain regularity conditions, namely that the
entries are i.i.d subgaussian and satisfy certain smoothness conditions, then

P
[
sn(T ) ≤ t

]
≤ C
√
nt.

The regularity assumptions were completely removed in [6] at the cost of a n3/2 (The
result in [6] still assumes bounded density and independence of the entries in the non-
symmetric part). On the other hand, in the discrete case, the result of [19] shows that if
T is, say, symmetric whose above diagonal entries are i.i.d Bernoulli random variables,
then

P
[
sn(T ) = 0

]
≤ e−n

c

,

where c is an absolute constant.

A more general case is the so called Smooth Analysis of random matrices, where
now we replace the matrix T by A+T , where A being an arbitrary deterministic matrix.
The first result in this direction can be found in [13], where it is shown that if T is a
random matrix with i.i.d standard normal entries, then

P
[
sn(A+ T ) ≤ t

]
≤ C
√
nt. (1.2)

Further development in this direction can be found in [18], where estimates similar
to (1.2) are given in the case when T is a Bernoulli random matrix, and in [6, 8, 9],
where T is symmetric.

An alternative way to measure the invertibility of a random matrix T is to estimate
det(T ), which was studied in [4, 14, 16] (when the entries are discrete distributions).
Here we show that if the diagonal entries are independent continuous random variables,
we can easily get a small ball estimate for det(A + T ), where A being an arbitrary
deterministic matrix.

Theorem 1.1. Let T be an n × n random matrix, such that each diagonal entry Ti,i is
a continuous random variable, independent from all the other entries of T . Then for
every n× n matrix A and every t ≥ 0

P
[
|det(A+ T )|1/n ≤ t

]
≤ 2bnt,

where b > 0 is a uniform upper bound on the densities of Ti,i.

We remark that the proof works if we replace the determinant by the permanent of
the matrix (see [4] for the difference between the notions).

Now, we use Theorem 1.1 to get a small ball estimate on the norm and smallest
singular value of a random matrix.

Corollary 1.2. Let T be a random matrix as in Theorem 1.1. Then

P
[
‖T‖ ≤ t

]
≤ (2bt)n, (1.3)

and

P
[
sn(T ) ≤ t

]
≤ (2b)

n
2n−1 (E‖T‖)

n−1
2n−1 t

1
2n−1 . (1.4)

ECP 18 (2013), paper 53.
Page 2/7

ecp.ejpecp.org

http://dx.doi.org/10.1214/ECP.v18-2633
http://ecp.ejpecp.org/


A simple observation on random matrices with continuous diagonal entries

Corollary 1.2 can be applied to the case when the random matrix T is symmetric,
under very weak assumptions on the distributions and the moments of the entries and
under no independence assumptions on the above diagonal entries.

Finally, in Section 3 we show that in the case of 2 × 2 matrices, we use an ad-hoc
argument to obtain a better bound than the one obtained in Theorem 1.1. We do not
know what is the right order when the dimension is higher.

2 Proof of Theorem 1.1

Before we give the proof of Theorem 1.1, we fix some notation. First, let M = A+T ,
and let Mk be the matrix M after erasing the last n − k rows and last n − k columns.
Also, let Ωk be the σ-algebra generated by the entries of Mk except Mk,k.

Proof of Theorem 1.1. We have

|det(Mk)| =
∣∣∣Mk,k det(Mk−1) + fk

∣∣∣,
where fk is measurable with respect to Ωk. We also have

P
[
|det(Mk)| ≤ εk

]
≤ P

[
|det(Mk)| ≤ εk ∧ | det(Mk−1)| ≥ εk−1

]
+ P

[
|det(Mk−1)| ≤ εk−1

]
.

Now,

P
[
|det(Mk)| ≤ εk ∧ | det(Tk−1| ≥ εk−1

]
= E

[
P
[
|Mk,k det(Mk−1) + fk| ≤ εk

∣∣∣Ωk] · 1{| det(Mk−1)|≥εk−1}

]

≤ sup
γ∈R

P

[
|Mk,k + γ| ≤ εk

εk−1

]
≤ 2b

εk
εk−1

,

where the last inequality follows from the fact for a continuous random variable X we
always have

sup
γ∈R

P
[
|X + γ| ≤ t

]
≤ 2bt, (2.1)

where b > 0 is an upper bound on the density of X.

Thus, we get

P
[
|det(Mk)| ≤ εk

]
≤ 2b

εk
εk−1

+ P
[
|det(Mk−1)| ≤ εk−1

]
,

Also, note that

P
[
|det(M1)| ≤ ε1

]
= P

[
|T1,1 +A1,1| ≤ ε1

] (2.1)
≤ 2bε1.

Therefore,

P
[
|det(Mn)| ≤ εn

]
≤ 2b

[
ε1 +

n∑
k=2

εk
εk−1

]
.

Choosing εj = tj , the result follows.

ECP 18 (2013), paper 53.
Page 3/7

ecp.ejpecp.org

http://dx.doi.org/10.1214/ECP.v18-2633
http://ecp.ejpecp.org/


A simple observation on random matrices with continuous diagonal entries

Corollary 1.2 now follows immediately.

Proof of Corollary 1.2. Let s1(T ) ≥ · · · ≥ sn(T ) be the singular values of T . We have

s1(T ) = ‖T‖ = sup
‖x‖2=1

‖Tx‖2 = sup
‖x‖2=‖y‖2=1

〈Tx, y〉 ≥ max
1≤i≤n

|Ti,i|.

Thus, by (2.1),

P
[
s1(T ) ≤ t

]
≤ P

[
max
1≤i≤n

|Ti,i| ≤ t
]
≤ (2bt)n,

which proves (1.3).

To prove (1.4), note that

|det(T )| =
n∏
i=1

si(T ) ≤ s1(T )n−1sn(T ) ≤ ‖T‖n−1sn(T ). (2.2)

Thus,

P
[
sn(T ) ≤ t

]
≤ P

[
sn(T ) ≤ t ∧ ‖T‖ ≤ β

]
+ P

[
‖T‖ > β

]
(2.3)

For the first term, we have by (2.2) and Theorem 1.1,

P
[
sn(T ) ≤ t ∧ ‖T‖ ≤ β

]
≤ P

[
det(T ) ≤ βn−1t

]
≤ 2bβ

n−1
n t1/n.

Also,

P
[
‖T‖ > β

]
≤ E‖T‖

β
. (2.4)

Thus, by (2.3) and (2.4),

P
[
sn(T ) ≤ t

]
≤ 2bβ

n−1
n t1/n +

E‖T‖
β

.

Optimizing over β gives (1.4).

3 The case of 2× 2 matrices

As discussed in the introduction, we show that for 2 × 2 matrices the small ball
estimate on the determinant obtained in Theorem 1.1 is not sharp. To do that, we use
the well known fact that if X and Y are continuous random variables with joint density
function fX,Y (·, ·) then X · Y has a density function which is given by

fX·Y (z) =

∫ ∞
−∞

fX,Y

(
w,

z

w

) dw
|w|

,

where fX , fY are the density functions of X, Y , respectively.

We thus have the following.

Proposition 3.1. Assume that X and Y are independent continuous random variables,
with fX ≤ b, fY ≤ b. Then fX·Y , the density function of X · Y satisfies

fX·Y (z) ≤

{
2b+ 2b2| log(|z|)| |z| ≤ 1,

2b |z| ≥ 1.
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Proof. Assume first that |z| ≤ 1. Write

fX·Y (z) =

∫ ∞
−∞

fX,Y

(
w,

z

w

) dw
|w|

=

∫
|w|≤|z|

fX,Y

(
w,

z

w

) dw
|w|

+

∫
|z|≤|w|≤1

fX,Y

(
w,

z

w

) dw
|w|

+

∫
|w|≥1

fX,Y

(
w,

z

w

) dw
|w|

. (3.1)

Since X and Y are independent, fX,Y (x, y) = fX(x) · fY (y). We estimate each term
of (3.1) separately.∫

|w|≤|z|
fX(w) · fY

( z
w

) dw
|w|
≤ b

∫
|w|≤|z|

fY

( z
w

) dw
|w|

= b

∫
|y|≥1

fY (y)
dy

|y|
≤ b (3.2)∫

|z|≤|w|≤1
fX(w) · fY

( z
w

) dw
|w|
≤ b2

∫
|z|≤|w|≤1

dw

|w|
= 2b2| log(|z|)| (3.3)∫

|w|≥1
fX(w) · fY

( z
w

) dw
|w|
≤ b

∫
|w|≥1

fX(w)
dw

|w|
≤ b. (3.4)

Plugging (3.2), (3.3) and (3.4) into (3.1), the result follows for |z| ≤ 1.

Now, if |z| ≥ 1, then write

fX·Y (z) =

∫ ∞
−∞

fX,Y

(
w,

z

w

) dw
|w|

=

∫
|w|≤|z|

fX(w) · fY
( z
w

) dw
|w|

+

∫
|w|≥|z|

fX(w) · fY
( z
w

) dw
|w|

. (3.5)

For the first term, we have∫
|w|≤|z|

fX(w) · fY
( z
w

) dw
|w|
≤ b

∫
|y|≥1

fY (y)
dy

|y|
≤ b. (3.6)

And, for the second, by (3.4)∫
|w|≥|z|

fX(w) · fY
( z
w

) dw
|w|
≤
∫
|w|≥1

fX(w) · fY
( z
w

) dw
|w|
≤ b. (3.7)

Plugging (3.6) and (3.7) into (3.5), the result follows.

Using Proposition 3.1, we immediately obtain the following:

Corollary 3.2. Let X and Y be independent continuous random variables. Then for
every t ∈ (0, 1) and every γ ∈ R,

P
[
|X · Y + γ| < t

]
≤ 4bt+ 4b2t(1 + | log t|),

where b > 0 is a uniform upper bound on their densities.

Proof. Note that the function

g(z) =
(
2b+ 2b2| log(|z|)|

)
1{|z|≤1} + 2b1{|z|>1}

satisfies g(|z1|) ≤ g(|z2|) whenever |z1| ≥ |z2|. Thus, we have for every γ ∈ R, t ∈ (0, 1),∫ γ+t

γ−t
g(z)dz ≤

∫ t

−t
g(z)dz =

∫ t

−t

(
2b+ 2b2| log(|z|)|

)
dz = 4bt+ 4b2t(1 + | log t|).

Thus, by Proposition 3.1 we have

P
[
|X · Y − γ| < t

]
≤
∫ γ+t

γ−t
g(z)dz ≤ 4bt+ 4b2t(1 + | log t|).
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We also obtain the following corollary.

Corollary 3.3. Let T = {Ti,j}i,j≤2 be a random matrix such that T1,1 and T2,2 are
continuous random variables, each independent of all the other entries of T . Then for
every t ∈ (0, 1)

P
[
|det(T )|1/2 ≤ t

]
≤ 4bt2 + 4b2t2(1 + 2| log t|),

where b > 0 is a uniform upper bound on the densities of T1,1, T2,2.

Proof. We have,

P
[
|det(T )| ≤ t

]
= P

[
|T1,1 · T2,2 − T1,2 · T2,1| ≤ t

]
= E

[
P
[
|T1,1 · T2,2 − T1,2 · T2,1| ≤ t

∣∣∣T1,2, T2,1]]
≤ sup
γ∈R

P
[
|T1,1 · T2,2 + γ| < t

]
≤ 4bt+ 4b2t(1 + | log t|),

where in the last inequality we used Corollary 3.2. Replacing t by t2, the result follows.
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