Electron. Commun. Probab. 18 (2013), no. 40, 1-9.

DOI: 10.1214/ECP.v18-2431

ISSN: 1083-589X

ELECTRONIC COMMUNICATIONS in PROBABILITY

On maximizing the speed of a random walk in fixed environments

Amichai Lampert* Assaf Shapira[†]

Abstract

We consider a random walk in a fixed $\mathbb Z$ environment composed of two point types: q-drifts (in which the probabiliy to move to the right is q, and 1-q to the left) and p-drifts, where $\frac{1}{2} < q < p$. We study the expected hitting time of a random walk at N given the number of p-drifts in the interval [1, N-1], and find that this time is minimized asymptotically by equally spaced p-drifts.

Keywords: Random Walk; Speed; Environment.

AMS MSC 2010: 60G50.

Submitted to ECP on November 10, 2012, final version accepted on May 13, 2013.

1 Introduction

Procaccia and Rosenthal [1] studied the maximal speed of a nearest neighbor random walk in a fixed $\mathbb Z$ environment, consisting of points from two types. The first type gives equal probability of moving left or right, and the second type, whose density is bounded by λ , gives probability p to move to the right and 1-p to the left, where $p>\frac{1}{2}$. In the finite case, the placement of a given number of p-drifts on an interval which minimizes the expected crossing time is calculated. They ask about extending their results to environments on $\mathbb Z$ composed of two point types: q-drifts and p-drifts, for $\frac{1}{2} < q < p \le 1$. The goal of our work is to do so for the finite environment. See [1] for background and further related work.

Consider a nearest neighbor random walk on 0,1,...,N denoted by $\{X_n\}_{n=0}^{\infty}$ with reflection at the origin. We denote the transition law by $\omega:\{0,1,...,N\}\to[0,1]$. More formally this means that for all $i\in\{0,1,...,N\}$:

$$P(X_{n+1} = i + 1 | X_n = i) = \omega(i)$$

 $P(X_{n+1} = i - 1 | X_n = i) = 1 - \omega(i)$.

The reflection at the origin means that $\omega\left(0\right)=1.$

First, we prove the following proposition concerning the expected hitting time at the vertex N, in a similar way to some results in [2]:

^{*}E-mail: amichai.lam@gmail.com

[†]Technion, Haifa, Israel. E-mail: assafs@tx.technion.ac.il

Proposition 1.1. For a walk with transition law ω starting at any point $0 \le x \le N$, the hitting time $T_N = \min \{n \ge 0 | X_n = N\}$ satisfies:

$$E_{\omega}^{x}(T_{N}) = N - x + 2 \sum_{i=x}^{N-1} \sum_{j=1}^{i} \prod_{k=j}^{i} \rho_{k},$$

where $\rho_i = \frac{1-\omega(i)}{\omega(i)}$, and $E_{\omega}^x(T_N)$ stands for the expected hitting time in the environment ω starting from the vertex x. In particular:

$$E_{\omega}^{0}(T_{N}) = N + 2 \sum_{i=1}^{N-1} \sum_{j=1}^{i} \prod_{k=j}^{i} \rho_{k}.$$

The last proposition gives the following corollary:

Corollary 1.2. The expected hitting time from 0 to N is symmetric under reflection of the environment, i.e., taking the environment ω' : $\{0,1,...,N\} \rightarrow [0,1]$ defined by:

$$\omega'(i) = \begin{cases} \omega(N-i) & 1 \le i \le N \\ 0 & i = 0 \end{cases}$$

gives $E_{\omega'}^0(T_N) = E_{\omega}^0(T_N)$.

Next we turn to the case of an environment consisting of two types of vertices, q-drifts (a vertex i for which $\omega(i) = q$) and p-drifts (a vertex i for which $\omega(i) = p$), for some $\frac{1}{2} < q < p \le 1$. For a set $L \subseteq \{1, \ldots, N\}$ of size k = |L| we define the environment ω_L as:

$$\forall 0 \le x \le N \,\omega_L \,(x) = \begin{cases} 1 & x = 0 \\ p & x \in L \\ q & x \notin L \cup \{0\} \end{cases}.$$

In [1], the exact formula for $E^0_\omega(T_N)$ was calculated for all choices of L and $q=\frac{1}{2}$, and for sufficiently large N (while keeping the drift density $\frac{k}{N}$ constant) it is approximately minimized by equaly spaced p-drifts. In this paper we extend this result for $q>\frac{1}{2}$. For given N and k, we define an environment $\omega_{\mathcal{L}(N,k)}$ in which the p-drifts are equally spaced (up to integer effects):

$$\mathcal{L}\left(N,k\right) = \left\{ \left| i \cdot \frac{N-1}{k} \right|, 1 \le i \le k \right\}$$

and prove the following theorem:

Theorem 1.3. For every $\varepsilon > 0$ there exists n_0 such that for every $N > n_0$ and every set $L \subseteq \{1, \ldots, N\}$:

$$\frac{E_{\omega_L}^0(T_N)}{N} > \frac{E_{\omega_{\mathcal{L}(N,k)}}^0(T_N)}{N} - \varepsilon,$$

where k = |L|.

Finally, we consider the set of environments $\omega_{\mathcal{L}(ak+1,k)}$ for $a\in\mathbb{N}$, and calculate $\lim_{k\to\infty}\frac{E^0_{\omega_{\mathcal{L}(ak+1,k)}}(T_{ak+1})}{ak+1}$. In these calculations, as well as in the proof of Theorem 1.3, it is convinient to use the notation $\alpha=\frac{1-q}{q}$ and $\beta=\frac{1-p}{p}$.

Proposition 1.4. Let $a \in \mathbb{N}$. Then:

$$\lim_{k \to \infty} \frac{E_{\omega_{\mathcal{L}(ak+1,k)}}^{0}\left(T_{ak+1}\right)}{ak+1} = 1 + \frac{2}{a} \cdot \left(\frac{\alpha^{a+1} - a\alpha^{2} + (a-1)\alpha}{\left(1 - \alpha\right)^{2}} + \frac{\beta\left(1 - \alpha^{a}\right)^{2}}{\left(1 - \alpha\right)^{2}\left(1 - \beta\alpha^{a-1}\right)}\right).$$

2 Proof of the main theorem

Proof of Proposition 1.1. Let us define $v_x = E_\omega^x(T_N)$ for $0 \le x \le N$. By conditioning on the first step:

- 1. $v_N = 0$
- 2. $v_0 = v_1 + 1$
- 3. $v_x = \omega(x)v_{x+1} + (1 \omega(x))v_{x-1} + 1$ $1 \le x \le N 1$.

To solve these equations, define $a_x = v_x - v_{x-1}$ (for $1 \le x \le N$) and $b_x = v_{x+1} - v_{x-1}$ (for $1 \le x \le N - 1$). Then $\forall x \in \{1, \dots, N-1\}$:

$$b_x = a_x + a_{x+1}$$

$$a_x = \omega(x)b_x + 1$$

$$a_1 = -1.$$

Thus a_x satisfies the relation $a_{x+1} = \rho_x a_x - \rho_x - 1$, whose solution is $a_x = -2 \sum_{j=1}^{x-1} \prod_{k=j}^{x-1} \rho_k - 1$, and thus:

$$v_x = \sum_{i=x+1}^{N} (v_{i-1} - v_i) + v_N$$

$$= \sum_{i=x+1}^{N} (-a_i) + v_N$$

$$= N - x + 2 \sum_{i=x}^{N-1} \sum_{j=1}^{i} \prod_{k=j}^{i} \rho_k.$$

Finally, for x = 0:

$$v_0 = N + 2 \sum_{i=1}^{N-1} \sum_{j=1}^{i} \prod_{k=j}^{i} \rho_k,$$

since for i = 0 the inner sum is empty.

Definition 2.1. For $N \in \mathbb{N}$ denote:

$$S_N = \sum_{i=1}^{N-1} \sum_{j=1}^{i} \prod_{k=i}^{i} \rho_k = \sum_{d=1}^{N-1} \sum_{j=1}^{N-d} \prod_{k=i}^{j+d-1} \rho_k.$$

In order to estimate S_N , we compare it to a similar sum on a circle. We glue the vertices 0 and N-1, and then sum over subintervals of the circle \mathbb{Z}_{N-1} , rather then summing over subinterval of the segment [1, N-1].

More formally, extend ρ such that $\rho_k = \rho_{k-N+1}$ for $k \ge N$ (also setting ρ_N to be equal ρ_1). Then consider the following sum:

$$\widetilde{S}_N = \sum_{d=1}^{N-1} \sum_{j=1}^{N-1} \prod_{k=j}^{j+d-1} \rho_k.$$

Note that both S_N and \widetilde{S}_N depend on the environment ω_L , so when necessary we shall use the explicit notations S_N^L and \widetilde{S}_N^L .

Proposition 2.2. There exists a constant $C = C(\alpha)$ such that for every environment ω_L :

$$\left|\widetilde{S}_N - S_N\right| \le C\left(\alpha\right).$$

Proof. Since $\alpha = \frac{1-q}{q}, \ \beta = \frac{1-p}{p}$, and $\frac{1}{2} < q < p \le 1$, $0 \le \beta < \alpha < 1$, we get:

$$\left| \widetilde{S}_N - S_N \right| = \sum_{d=1}^{N-1} \sum_{j=N-d+1}^{N-1} \prod_{k=j}^{j+d-1} \rho_k$$

$$\leq \sum_{d=1}^{N-1} d\alpha^d$$

$$\leq \sum_{d=1}^{\infty} d\alpha^d = C(\alpha).$$

Definition 2.3. Let $n_i^{(d)}$ be the number of p-drifts in the interval [i,i+d-1], i.e., $n_i^{(d)}=|[i,i+d-1]\cap L|$.

Since every drift appears in d intervals of length d, $\sum\limits_{i=1}^{N-1}n_i^{(d)}=dk$, where k=|L|. In addition,

$$\widetilde{S}_{N} = \sum_{d=1}^{N-1} \sum_{i=1}^{N-1} \left(\frac{\beta}{\alpha}\right)^{n_{i}^{(d)}} \cdot \alpha^{d}$$

$$= \sum_{d=1}^{N-1} \sigma_{d},$$

where
$$\sigma_d = \sum_{i=1}^{N-1} \left(\frac{\beta}{\alpha}\right)^{n_i^{(d)}} \cdot \alpha^d$$
.

In the following claim we fix d, and see under which conditions σ_d is minimal. After fixing d, σ depends only on the vector $\mathbf{n}^{(d)} = \left(n_1^{(d)},...,n_{N-1}^{(d)}\right)$.

Definition 2.4. We say that a vector $\mathbf{n} = (n_1, ..., n_{N-1}) \in \mathbb{N}^{N-1}$ is almost constant if there exists $a \in \mathbb{N}$ such that $n_i \in \{a, a+1\}$ for every $1 \le i \le N-1$.

Claim 2.5. Consider $\sigma_d(\mathbf{n})$ for $\mathbf{n} \in \mathbb{N}^{N-1}$, under the restriction $\sum\limits_{i=1}^{N-1} n_i = dk$, and let $\mathbf{m} \in \mathbb{N}^{N-1}$ be an almost constant vector. Then \mathbf{m} minimizes σ_d , i.e., for every $\mathbf{n} \in \mathbb{N}^{N-1}$ such that $\sum\limits_{i=1}^{N-1} n_i = dk$, $\sigma_d(\mathbf{m}) \leq \sigma_d(\mathbf{n})$.

Proof. For convenience, we omit d from the notation, and always assume that the domain of σ is the set of vectors in \mathbb{N}^{N-1} that satisfy the restriction $\sum_{i=1}^{N-1} n_i = dk$.

We will first show that $\sigma(\mathbf{n})$ achieves its minimum for some almost constant vector \mathbf{n} . Secondly, we show that the value of σ on all almost constant vectors is the same, and this will complete the proof.

Let $M\subseteq\mathbb{N}^{N-1}$ be the set of vectors satisfying $\sum\limits_{l=1}^{N-1}n_l=dk$ that minimize σ , and assume by contradiction that M doesn't contain an almost constant vector. Choose $\mathbf{m}\in M$ such that $\sum_{l=1}^{N-1}\left(m_l\right)^2$ is minimal. \mathbf{m} is not almost constant, so there exist i,j for which $m_i-m_j\geq 2$, since if the difference between the maximal component of \mathbf{m} and its minimal component were less than 2, it would be almost constant. Consider the vector \mathbf{m}' :

$$m'_{l} = \begin{cases} m_{l} & l \neq i, j \\ m_{l} - 1 & l = i \\ m_{l} + 1 & l = j \end{cases}.$$

 \mathbf{m}' satisfies the restriction $\sum\limits_{l=1}^{N-1}n_{l}=dk$, and $\sigma\left(\mathbf{m}\right)\geq\sigma\left(\mathbf{m}'\right)$:

$$\sigma(\mathbf{m}) - \sigma(\mathbf{m}') = \sum_{t=1}^{N-1} \left(\frac{\beta}{\alpha}\right)^{m_t} \cdot \alpha^d - \sum_{t=1}^{N-1} \left(\frac{\beta}{\alpha}\right)^{m'_t} \cdot \alpha^d$$

$$= \alpha^d \left(\left(\frac{\beta}{\alpha}\right)^{m_i} + \left(\frac{\beta}{\alpha}\right)^{m_j} - \left(\frac{\beta}{\alpha}\right)^{m_i-1} - \left(\frac{\beta}{\alpha}\right)^{m_j+1}\right)$$

$$= \alpha^d \left(1 - \frac{\beta}{\alpha}\right) \left(\left(\frac{\beta}{\alpha}\right)^{m_j} - \left(\frac{\beta}{\alpha}\right)^{m_i-1}\right)$$

$$> 0.$$

where the inequality follows from the fact that $0 \leq \frac{\beta}{\alpha} < 1$ and $m_j < m_i - 1$ from the assumption. Due to the minimality of $\sigma(\mathbf{m})$, $\sigma(\mathbf{m}')$ must also be minimal. But:

$$\sum_{l=1}^{N-1} (m_l)^2 - \sum_{l=1}^{N-1} (m'_l)^2 = (m_i)^2 + (m_j)^2 - (m'_i)^2 - (m'_j)^2$$

$$= (m_i)^2 + (m_j)^2 - (m_i - 1)^2 - (m_j + 1)^2$$

$$= 2(m_i - m_j) - 2$$

$$\geq 2,$$

which contradicts the minimality of $\sum_{l=1}^{N-1} (m_l)^2$. Therefore M must contain an almost constant vector

Next, consider a general almost constant vector \mathbf{n} . Set $a=\min\{n_l:1\leq l\leq N-1\}$ the minimal component of \mathbf{n} . No component of \mathbf{n} is greater then a+1, therefore $n_l\in\{a,a+1\}$. Defining m_0 to be the number of a's in \mathbf{n} and $m_1=N-1-m_0$ to be the number of a+1's, we get:

On maximizing the speed of a random walk in fixed environments

$$dk = \sum_{l=1}^{N-1} n_l$$

$$= m_0 a + m_1 (a+1)$$

$$= (m_0 + m_1) a + m_1$$

$$= (N-1) a + m_1.$$

Since $m_1 < N-1$, there is a unique solution to the last equation for natural a, m_1 . Hence, all almost constant vectors (satisfying the restriction) are the same up to reordering, and since $\sigma(\mathbf{n}) = \sum_{i=1}^{N-1} \left(\frac{\beta}{\alpha}\right)^{n_i} \cdot \alpha^d$, it doesn't depend on the order of the components in \mathbf{n} , and σ takes on the same (minimal) value for all almost constant vectors. \square

Claim 2.6. For every choice of N and k, consider the following placement $\mathcal{L}(N,k)$ of k drifts on the circle \mathbb{Z}_{N-1} :

$$\mathcal{L}(N,k) = \left\{ \left[i \cdot \frac{N-1}{k} \right] \right\}_{i=1}^{k}.$$

Then, the vector $\mathbf{n}^{(d)}$ is almost constant for all d.

Proof. We calculate the number of drifts in the interval [x, x+d-1]. The index i_0 of the first drift inside the interval is the smallest $1 \le i_0 \le N-1$ which satisfies:

$$\left| i_0 \cdot \frac{N-1}{k} \right| \ge x.$$

That is, the smallest index satisfying $i_0 \ge x \cdot \frac{k}{N-1}$, which implies:

$$i_0 = \left\lceil x \cdot \frac{k}{N-1} \right\rceil.$$

The index i_1 of the last drift inside the interval is the greatest index satisfying:

$$\left| i_1 \cdot \frac{N-1}{k} \right| \le x + d - 1.$$

This is the greatest index satisfying $i_1 \cdot \frac{N-1}{L} < x+d$, and therefore:

$$i_1 = \left[(x+d) \cdot \frac{k}{N-1} \right] - 1.$$

The number of drifts inside this interval therefore satisfies:

$$i_{1} - i_{0} + 1 = \left[(x+d) \cdot \frac{k}{N-1} \right] - \left[x \cdot \frac{k}{N-1} \right]$$

$$\geq (x+d) \cdot \frac{k}{N-1} - x \cdot \frac{k}{N-1} - 1$$

$$= \frac{dk}{N-1} - 1$$

$$i_{1} - i_{0} + 1 \leq (x+d) \cdot \frac{k}{N-1} + 1 - x \cdot \frac{k}{N-1}$$

$$= \frac{dk}{N-1} + 1.$$

Consequently, for non-integer $\frac{dk}{N-1}$ the number of drifts takes on only the two values $\left|\frac{dk}{N-1}\right|$, $\left\lceil\frac{dk}{N-1}\right\rceil$. In the case where $\frac{dk}{N-1}$ is an integer we simply have:

$$i_1 - i_0 + 1 = \left[(x+d) \cdot \frac{k}{N-1} \right] - \left[x \cdot \frac{k}{N-1} \right]$$

= $\frac{dk}{N-1}$.

Since this number is exactly $n_x^{(d)}$, this proves that $\mathbf{n}^{(d)}$ is an almost constant vector.

Claim 2.7. \widetilde{S}_{N}^{L} achieves its minimum on the configuration $L=\mathcal{L}\left(N,k\right)$.

Proof. $\widetilde{S}_N = \sum_{d=1}^{N-1} \sigma_d$, and by claims 2.5 and 2.6 each σ_d is minimized by this configuration (since $\sum_{i=1}^{N-1} n_i^{(d)} = dk$ must hold), therefore the sum is also minimized.

Proof of Theorem 1.3. From Proposition 2.2, $0 < \widetilde{S}_N - S_N < C$. Choose $n_0 = \frac{2C}{\varepsilon}$. Then for $N > n_0$:

$$\begin{split} \frac{E^0_{\omega_L}\left(T_N\right)}{N} &= \frac{N+2S^L_N}{N} \\ &= 1+2\frac{S^L_N}{N} \\ &> 1+2\frac{\widetilde{S}^L_N}{N} - \varepsilon \\ &\geq 1+2\frac{\widetilde{S}^L_N(N,k)}{N} - \varepsilon \\ &\geq 1+2\frac{S^L_N(N,k)}{N} - \varepsilon \\ &\geq \frac{E^0_{\omega_{\mathcal{L}(N,k)}}\left(T_N\right)}{N} - \varepsilon. \end{split}$$

where the first inequality follows from $\widetilde{S}_N-S_N<\frac{1}{2}\varepsilon N$, the second from Claim 2.7, and the last from $0<\widetilde{S}_N-S_N$.

Proof of Proposition 1.4. We evaluate $\lim_{k\to\infty} \frac{\widetilde{S}_{ak+1}}{ak+1}$. \widetilde{S}_{ak+1} is a sum over the intervals of the circle, and we will calculate it by considering the sums over intervals containing any given number of p-drifts.

First, consider the intervals that do not contain any p-drift. In the gap between two p-drifts, there are a-i intervals of length i, for every $1 \le i \le a-1$. Therefore, the sum for all k gaps:

$$s_0 = k \cdot \sum_{i=1}^{a-1} (a-i) \alpha^i$$

= $k \frac{\alpha^{a+1} - a\alpha^2 + (a-1) \alpha}{(1-\alpha)^2}$.

Next, we consider the intervals that contain 0 < n < k p-drifts. Fixing n, there are k choices of p-drifts for such an interval. For each of them, let r be the number of q-drifts to the right of the rightmost p-drift, and s the number of q-drifts to the left of the leftmost p-drift. Then, summing over all possible values of r and s, and multiplying by k for the k different choices:

$$s_n = k \cdot \beta^n \alpha^{(a-1)(n-1)} \cdot \sum_{r=0}^{a-1} \sum_{s=0}^{a-1} \alpha^{r+s}$$

$$= k \beta^n \alpha^{(a-1)(n-1)} \cdot \frac{(1-\alpha^a)^2}{(1-\alpha)^2}$$

$$\sum_{n=1}^{k-1} s_n = k \beta \frac{(1-\alpha^a)^2}{(1-\alpha)^2} \cdot \frac{1-(\beta \alpha^{a-1})^{k-1}}{1-\beta \alpha^{a-1}}.$$

For the intervals that contain all p-drifts, we first consider the intervals which do not cover the entire circle. For each of the k gaps between two adjacent p-drifts, we caculate the sum of the intervals that do not contain all points of that gap, but contain all other points of the circle. Define r and s as before, and notice that since they both count q-drifts in the same gap, and not all a-1 q-drifts in the gap are contained in the interval, r+s< a-2 must hold. Therefore:

$$s_k = k \cdot \beta^k \alpha^{(a-1)(k-1)} \sum_{r=0}^{a-2} \sum_{s=0}^{a-r-2} \alpha^{r+s}$$
$$= k \beta^k \alpha^{(a-1)(k-1)} \cdot \frac{(a\alpha - \alpha - a) \alpha^{a-1} + 1}{(1 - \alpha)^2}.$$

The last interval is the entire circle, and since it contributes to the sum S_{ak+1} an amount smaller than 1, we do not have to take it into account when calculating the limit.

Putting everything together:

$$\lim_{k \to \infty} \frac{\widetilde{S}_{ak+1}}{ak+1} = \frac{1}{a} \lim_{k \to \infty} \frac{s_0 + \sum_{n=1}^{k-1} s_n + s_k}{k}$$

$$= \frac{1}{a} \cdot \left[\frac{\alpha^{a+1} - a\alpha^2 + (a-1)\alpha}{(1-\alpha)^2} + \frac{\beta (1-\alpha^a)^2}{(1-\beta \alpha^{a-1})} + 0 \right],$$

and since $\lim_{k\to\infty}\frac{\widetilde{S}_{ak+1}-S_{ak+1}}{ak+1}=0$ from Proposition 2.2, the proof is complete.

3 Further questions

- 1. Show that the optimal environment also minimizes the variance of the hitting time.
- 2. Can this result be extended to a random walk on \mathbb{Z} with a given density of drifts (as in [1])?
- 3. Can similar results be found for other graphs? For example, $\mathbb{Z}_2 \times \mathbb{Z}_N$, or a binary tree.

References

- [1] E.B. Procaccia and R. Rosenthal, *The need for speed: maximizing the speed of random walk in fixed environments*, Electronic Journal of Probability **17** (2012), 1–19. MR-2892326
- [2] O. Zeitouni, Part ii: Random walks in random environment, Lectures on probability theory and statistics (2004). MR-2071631

Acknowledgments. We thank Eviatar Procaccia and Itai Benjamini for introducing us to this problem and for many useful discussions.