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On maximizing the speed of a
random walk in fixed environments
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Abstract

We consider a random walk in a fixed Z environment composed of two point types:

g-drifts (in which the probabiliy to move to the right is ¢, and 1 — g to the left) and

1

p-drifts, where 5 < ¢ < p. We study the expected hitting time of a random walk at

N given the number of p-drifts in the interval [1, N — 1], and find that this time is
minimized asymptotically by equally spaced p-drifts.

Keywords: Random Walk; Speed; Environment.
AMS MSC 2010: 60G50.
Submitted to ECP on November 10, 2012, final version accepted on May 13, 2013.

1 Introduction

Procaccia and Rosenthal [1] studied the maximal speed of a nearest neighbor ran-
dom walk in a fixed Z environment, consisting of points from two types. The first type
gives equal probability of moving left or right, and the second type, whose density is
bounded by A, gives probability p to move to the right and 1 — p to the left, where
p > % In the finite case, the placement of a given number of p-drifts on an interval
which minimizes the expected crossing time is calculated. They ask about extending
their results to environments on Z composed of two point types: ¢-drifts and p-drifts,
for % < q < p < 1. The goal of our work is to do so for the finite environment. See [1]
for background and further related work.

Consider a nearest neighbor random walk on 0,1,..., N denoted by {Xn}:;o:0 with
reflection at the origin. We denote the transition law by w : {0,1,..., N} — [0,1]. More

formally this means that for all i € {0,1,..., N}:

P(Xpi1 =i+ 11X, =i) = w(i)
PXpi1=i—1X,=14) = l-w(i).

The reflection at the origin means that w (0) = 1.
First, we prove the following proposition concerning the expected hitting time at the
vertex N, in a similar way to some results in [2]:
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On maximizing the speed of a random walk in fixed environments

Proposition 1.1. For a walk with transition law w starting at any point 0 < z < N, the
hitting time Ty = min {n > 0|X,, = N} satisfies:

N-1 i i
EL(Tn)=N-z+2> > []re

i=z j=1k=j

where p; = 1wl " and E* (Ty) stands for the expected hitting time in the environ-

w(1)

ment w starting from the vertex x. In particular:

7 7

N-1
ES(Tn)=N+2>" 3 ] ew
i=1 j=1k=j

The last proposition gives the following corollary:

Corollary 1.2. The expected hitting time from 0 to N is symmetric under reflection of
the environment, i.e., taking the environment ' : {0,1,..., N} — [0, 1] defined by:

) {w(N—z’) 1<i<N
W' (i) =

0 1 =0
gives Eg, (TN) = Eg (TN)

Next we turn to the case of an environment consisting of two types of vertices, g¢-
drifts (a vertex 7 for which w (i) = ¢) and p-drifts (a vertex i for which w (i) = p), for

some 3 < ¢<p<1 ForasetL C{l,...,N} of size k = |L| we define the environment
wip, as:
1 z=0
VO<z< Nwp(z)=<p €L
q ¢ LU{0}

In [1], the exact formula for EY (Ty) was calculated for all choices of L and ¢ = 3,
and for sufficiently large N (while keeping the drift density % constant) it is approx-
imately minimized by equaly spaced p-drifts. In this paper we extend this result for
q > % For given N and k, we define an environment w,(y ) in which the p-drifts are
equally spaced (up to integer effects):

covm = { | 271 r i)

and prove the following theorem:

Theorem 1.3. For every ¢ > 0 there exists ng such that for every N > ng and every set

LCA{l,...,N}:
EBL (TN) > Ega(N,k) (TN) _c
N b
where k = |L|.
Finally, we consider the set of environments w115 for a € N, and calculate
Eg (Tak+1)
klim % . In these calculations, as well as in the proof of Theorem 1.3, it
—00 .

is convinient to use the notation o = %q and S = 1%”.
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Proposition 1.4. Leta € IN. Then:

0 a a
lim Ewc(ak+1,k) (Tak+1) —14 % ) (a 1 — qa? + (Cl — 1)06 + 6 (1 -« )2 ) )

k—oc0 ak +1 (1-— a)Q (1— a)2 (1— Bas—1)

2 Proof of the main theorem

Proof of Proposition 1.1 . Let us define v, = EZ (Tx) for 0 <z < N. By conditioning on
the first step:

1. UNZO
2. ’U():U1+1
3. vy =w(@)vp41 + (L —w(x))vym1+1 1<z <N-1.

To solve these equations, define a, = v, —v,—1 for1 <z < N)and b, = vpq1 — Vp—1
(for1<z<N-1). ThenVz e {1,...,N —1}:

bx = a;+ A1
a; = w(x)b,+1
ay = —1.
r—1xz—1
Thus a,, satisfies the relation a,1 = pza,—p,—1, whose solutionisa, = -2 > [] pr—

j=1 k=j
1, and thus:

Vg = Z (Vic1 —vi) +oN
= Z (—ai)—l—vN
= N—x+2iZHpk.

i=z j=1k=j
Finally, for x = 0:
N-1 i i
~v+2 Y [
i=1 j=1 k=5
since for ¢+ = 0 the inner sum is empty. O

Definition 2.1. For N € N denote:

N-1 1

b2

In order to estimate Sy, we compare it to a similar sum on a circle. We glue the
vertices 0 and N — 1, and then sum over subintervals of the circle Zy_, rather then
summing over subinterval of the segment [1, N — 1].

Hpk

i=1 j=1k=j

ﬁ“MZ
HMZ
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More formally, extend p such that pr, = px—n+1 for k > N (also setting pyn to be equal
p1). Then consider the following sum:

2

—1N-1y

~ +d—
Sy = H

1 1

2

Y
Il

<.
Il

Note that both Sy and §N depend on the environment wy, so when necessary we
shall use the explicit notations S% and S%.

Proposition 2.2. There exists a constant C = C («) such that for every environment
wr,:

‘§N - SN‘ <C(a).

Proof. Sincea:ﬂ,ﬁz%,and%<q<p§1,0§ﬁ<a<1,weget:

N-1 N-1 j+d-1

‘gN—SN‘ = H Pk

d=1 j=N—d+1 k=j
N-1
< Y et
d=1
< Z da® = C(a)
d=1
O
Definition 2.3. Let nz(-d) be the number of p-drifts in the interval [i,i + d — 1], i.e., ngd) =

[ii+d—1NL|.

N—1
Since every drift appears in d intervals of length d, > nf;d) = dk, where k = |L|. In
i=1
addition,

N-1N-1 3 (@)
Sy = ( o
«
d=1 i=1
N-1
= 0d,
d=1

N—-1 nf )
where oy = > (g) ~ad,
i=1
In the following claim we fix d, and see under which conditions o4 is minimal. After

fixing d, o depends only on the vector n(® = (ngd) ng\?) 1)

Definition 2.4. We say that a vectorn = (ny,...,ny_1) € NV~ is almost constant if
there exists a € N such that n; € {a,a+ 1} forevery1 <i < N — 1.
N-1
Claim 2.5. Consider o, (n) for n € NV~1, under the restriction . n; = dk, and let
i=1
m € NV~ be an almost constant vector. Then m minimizes oy, i.e., for everyn € INV—1

N—1
such that Y n; =dk, 04 (m) < o4 (n).
i=1
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Proof. For convenience, we omit d from the notation, and always assume that the do-

N-1
main of o is the set of vectors in INV—! that satisfy the restriction Y. n; = dk.
i=1
We will first show that o (n) achieves its minimum for some almost constant vector
n. Secondly, we show that the value of ¢ on all almost constant vectors is the same, and

this will complete the proof.
N-1
Let M C INV—! be the set of vectors satisfying Z n; = dk that minimize ¢, and

assume by contradlctlon that M doesn’t contain an almost constant vector. Choose
m € M such that 21:1 (my;)” is minimal. m is not almost constant, so there exist i, j
for which m; — m; > 2, since if the difference between the maximal component of m
and its minimal component were less than 2, it would be almost constant. Consider the
vector m':

my Z#Zm]
my=<my—1 l=i
m+1 =]

N-1
m’ satisfies the restriction > n; = dk, and o (m) > o (m’):
=1

o(m)—o@m) = 3 (ﬁ)m w3 (g)’”g o

t=1

S CICINORSON
( ;

vV
o

where the inequality follows from the fact that 0 < 2 = < 1land m; <m; — 1 from the
assumption. Due to the minimality of o (m), o (m’) must also be minimal. But:

N—-1 N—-1 )
= (m)” + (my)* — (m)* — (m)
=1 =1

2 2

(ma)? + (my)” — (m; — 1)* = (m; + 1)°
= 2(mi—mj)—2

> 2

which contradicts the minimality of Zf\; ;1 (ml)2. Therefore M must contain an al-
most constant vector.

Next, consider a general almost constant vector n. Set a = min{n; : 1 <I < N —1}
the minimal component of n. No component of n is greater then a + 1, therefore n; €
{a,a + 1}. Defining mo to be the number of a’s in n and m; = N — 1 — myg to be the
number of ¢ + 1’s, we get:
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N-1
de = ) n
=1
= moa+m(a+1)

(mo+m1)a+m1
= (N—-1)a+m.

Since m; < N — 1, there is a unique solution to the last equation for natural a, m;.
Hence, all almost constant vectors (satisfying the restriction) are the same up to re-
N-1 n;
ordering, and since o (n) = ) (g) -a?, it doesn’t depend on the order of the compo-
=1

nents in n, and o takes on the same (minimal) value for all almost constant vectors. O

Claim 2.6. For every choice of N and k, consider the following placement L (N, k) of k

drifts on the circle Zin_1:
N-1]\*
LNE) = HJ} |
k i=1

9) js almost constant for all d.

Then, the vector n'

Proof. We calculate the number of drifts in the interval [z, 2 + d — 1]. The index iy of the
first drift inside the interval is the smallest 1 < i5 < N — 1 which satisfies:

. N-1 S
10 7]{; = X.

That is, the smallest index satisfying iy > « - ", which implies:

. k
0= |T 7N—1 .

The index i; of the last drift inside the interval is the greatest index satisfying:

{“Nk_lJ < xz+d-1

This is the greatest index satisfying i - % < x +d, and therefore:

iy = ’V(J;—l—d)Nkl—‘ —1.
The number of drifts inside this interval therefore satisfies:
i1—ip+1 = [(z—l—d)]vk_l“ - [I]Vk—l—‘
k k
> (:z:+d)‘N_1 T -1
dk

T

ih—ig+1 < (x+d)o%+l—x~%
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Consequently, for non-integer N 7 the number of drifts takes on only the two values

{ﬂJ , { dk —‘ In the case where 1\}’”‘ is an integer we simply have:

N—-1 N—-1
ih—ig+1 = {(:Hd)'kw _ [ka

dk

N-1

Since this number is exactly n_g,;d), this proves that n(® is an almost constant vector.

O
Claim 2.7. §f, achieves its minimum on the configuration L = L (N, k).
_ N-1
Proof. Sy = > 04, and by claims 2.5 and 2.6 each o, is minimized by this configura-
d=1
N=L g
tion (since n, =~ = dk must hold), therefore the sum is also minimized. O

=1

Proof of Theorem 1.3. From Proposition 2.2, 0 < §N — Sy < C. Choose ng = % Then
for N > ng:

E, (Tn) N + 25k
N

SL
= 142
+N

Sk
> 1+2WN—5

GEW.R)

v

142 —€

S]L\"[(N7k)

Y

1+2

— &

0
EW[l(N,k) (TN)
N

where the first inequality follows from S N — Sy < %EN , the second from Claim 2.7,
and the last from 0 < §N—SN. O
§Qk+1
ak+1 °
the circle, and we will calculate it by considering the sums over intervals containing
any given number of p-drifts.

First, consider the intervals that do not contain any p-drift. In the gap between two
p-drifts, there are a — 7 intervals of length i, for every 1 <i < a — 1. Therefore, the sum
for all k£ gaps:

Proof of Proposition 1.4. We evaluate klim §ak+1 is a sum over the intervals of
—> 00

a—1
so = k- Z a—1)
i=1
a®t —aa? +(a—1)a
(1-a)
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Next, we consider the intervals that contain 0 < n < k p-drifts. Fixing n, there are
k choices of p-drifts for such an interval. For each of them, let » be the number of g¢-
drifts to the right of the rightmost p-drift, and s the number of ¢-drifts to the left of the
leftmost p-drift. Then, summing over all possible values of r and s, and multiplying by &
for the k different choices:

a—la—1
sy, = k- Bna(afl)(nfl) . Z Z ot
r=0 s=0
1—a%)°
— kﬁna(a—l)(n—l) . ( -« )
(1-a)
S (—a)? 1-(fa= )"
Z sn = kf 2 1 a—1
—_ (1-a) - Pa

For the intervals that contain all p-drifts, we first consider the intervals which do
not cover the entire circle. For each of the k£ gaps between two adjacent p-drifts, we
caculate the sum of the intervals that do not contain all points of that gap, but contain
all other points of the circle. Define r and s as before, and notice that since they both
count g-drifts in the same gap, and not all a — 1 ¢-drifts in the gap are contained in the
interval, r + s < a — 2 must hold. Therefore:

r=0 s=0
a—1
_ kBEale—DGk-D) | (aa—@—a)ag +1
(1—a)

The last interval is the entire circle, and since it contributes to the sum S,; 1 an
amount smaller than 1, we do not have to take it into account when calculating the
limit.

Putting everything together:

k—1
~ So + Sp + S
Sak+1 o 1 1 0 ngl " k
——— = — lim
k—oo ak + 1 a k—oo k
1 ot —ga?+(a—1)a 1—a%)?
1 @-o, __ pO-oy’ ]
a (1-a) (1-a)* (1 Ba=1)
and since klim mfk%ﬁ"’““l = 0 from Proposition 2.2, the proof is complete. O
—00

3 Further questions

1. Show that the optimal environment also minimizes the variance of the hitting time.

2. Can this result be extended to a random walk on Z with a given density of drifts
(asin [1])?

3. Can similar results be found for other graphs? For example, Z, x Zy, or a binary
tree.
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