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Abstract: A new form of the discrepancy principle for Poisson inverse
problems with compact operators is proposed and discussed in relation to
various other proposals. It is shown that filter-induced spectral regulariza-
tion with a priori chosen smoothing parameter produces estimators that
are rate-minimax under source conditions on the estimated function. With
the discrepancy principle used for a posteriori choice of the smoothing pa-
rameter, the filter-induced solutions are consistent (in probability), but the
convergence rates under source conditions are suboptimal, at least in the
finitely smoothing case, which often happens when discrepancy principles
are used in stochastic inverse problems. Finite sample performance of the
proposed procedure applied to a stereological problem of Spektor, Lord and
Willis is illustrated with a simulation experiment.
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1. Introduction

Let Πng be a Poisson process on a measure space (Y ,BY , μY ) with an integrable
intensity function ng w.r.t. to μY . The parameter n ∈ N is known. It quantifies
the “experiment size”, and will asymptotically tend to infinity. The function g
is unknown. Additionally, we assume that

g = Kf, (1)

with some operator K. The Poisson inverse problem consists in estimating f ,
given observed the Poisson process Πng. In applications, nf is usually itself an
intensity function of an unobservable Poisson process on possibly another mea-
sure space, say (X ,BX , μX), and K is related to a data distortion mechanism
that maps the points of the unobservable process on X to the points of the
observable process Πng on Y . Plethora of practical problems fit into this gen-
eral scheme including, e.g., restoration of medical images, image deblurring in
microscopy and astronomy, and some stereological problems.
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In this article, we assume that K is a linear and compact operator from
L2(X ,BX , μX) to L2(Y ,BY , μY ) of the form

(Kf)(y) =

∫
K(x, y)f(x) dμX(x). (2)

Compactness of K is ensured, e.g., if the kernel K is square-integrable, or if
X = Y is a compact subset of R

k, μX is the Lebesgue measure and K is
weakly singular. For simplicity, we also assume that K is injective. The goal is
to estimate f under the L2 loss. It is well-known that, in this setup, K−1 is
unbounded as an operator on ImK and, in effect, some sort of regularization
is necessary. For a general introduction to Poisson processes and the related
inverse problems, we refer to [25, 18, 20].

A good introduction to regularization techniques and related problems in a
non-stochastic setup is given, e.g., in [14]. A general treatment of minimax con-
vergence rates of so-called filter-induced estimators under various noise models
can be found in [4]. Typically, optimal values of regularization parameters de-
pend on the, generally a priori unknown, regularity of the estimated function.
Therefore, in all cases, data-driven procedures of choosing the value of the reg-
ularization parameter, preferably leading to adaptive estimators, are of central
interest. Adaptivity is meant here as the ability to attain the same (prefer-
ably minimax) convergence rates as those achieved in cases with a priori known
smoothness. Adaptivity issues for inverse problems were studied mainly under
Gaussian white noise assumptions. For a recent review see, e.g., [5] and [6],
where, in particular, limits for the performance of stopping criteria based on
residuals are obtained for a discretized Gaussian white noise model and vari-
ous spectral filter estimators. In [15, 16], a discrepancy principle is studied in
a general stochastic inverse problem setup with unknown error distribution,
under the assumption that repeated, independent, noisy measurements of the
left-hand side of equation (1) are available. In the present article, we focus on
the Poissonian noise, not satisfactorily covered in [15], but we borrow several
ideas from that article.

Poisson inverse problems were studied in some generality in, e.g., [29, 30, 1,
17]. Rate minimax solutions of such problems with L2 risk were found mainly
on case-by-case basis (e.g., [8, 13, 32]). Adaptive thresholded wavelet solutions
under the L2 risk, rate-minimax over some Besov balls (up to a log factor) were
found for a stereological Spektor-Lord-Willis problem in [10, 11]. In [12], a gen-
eral Goldenshluger-Lepski oracle-inequality approach was adopted to the same
problem and adaptivity of a specific kernel-based estimator was proved over a
scale of restricted Sobolev spaces. More general adaptive thresholded wavelet
solution was constructed in [1], but only for the Kullback-Leibler (KL) risk. A
variant of the Lepski balancing principle suitable for Poisson inverse problems
was also studied in [17] in connection with penalized maximum likelihood esti-
mators. In a recent article [19], a circular deconvolution was studied for Poisson
data with weighted L2 risk, an adaptive solution based on model selection was
constructed, and many additional references on Poisson inverse problems were
given.



A new discrepancy principle for Poisson inverse problems 2031

An alternative approach to the problem of data-driven choice of regulariza-
tion parameters was proposed in [34] (see also [2]). A version of the Morozov
discrepancy principle suitable for discretized Poisson inverse problems was con-
structed there, based on matching the KL divergence to its expectation. Exis-
tence and uniqueness of the resulting penalized maximum likelihood estimators
were proved in [3]. This was further refined in [26] by proving consistency and
convergence rates of the KL risk under some source conditions. However, as the
KL distance primarily measures the closeness of the distributions and our main
interest is in function rather than distribution estimation, we prefer to work
with the L2 loss.

In this article, we propose a new version of the discrepancy principle for Pois-
son inverse problems that, when compared to [3, 26], is applicable to a broader
class of estimators (i.e., not just penalized maximum likelihood estimators),
leads to consistent (in probability) filter-induced estimators with explicit and
close to optimal rates of convergence under L2 distance, and does not require
any discretization, which may be of importance, because it is known that dis-
cretization effects are not always negligible and may affect the convergence rates
([29, 30]).

2. The new discrepancy principle

A nice feature of Poisson inverse problems is that the noise level depends on the
signal and may thus be estimated from data. Efficient,

√
n-consistent estimation

of the noise level is possible in the pre-conditioned model

q := K∗g = K∗Kf (3)

and our version of the Morozov discrepancy principle will be formulated in terms
of q, its estimator q̂n and the noise level δ2n := E‖q̂n− q‖2. The adjoint operator
has the form (K∗g)(x) =

∫
K(x, y)g(y) dμY (y) and the observable process can

be represented as so-called mixed empirical process (cf., [25, p. 17])

Πng =

Nn∑
j=1

δYj , (4)

where Nn is Poisson distributed with mean n
∫
g dμY , δa is the Dirac measure

concentrated at a, and Yj , j = 1, 2, . . . form an i.i.d. sample from a density
proportional to g, independent of Nn. Assume that K is non-negative, which is
satisfied in all typical applications. Then, by Campbell’s theorem (cf., e.g., [18,
Sec. 3.2]),

E

∫
K(x, y) dΠng(y) = E

Nn∑
j=1

K(x, Yj) = n

∫
K(x, y)g(y) dμY (y) = n(K∗g)(x),

which means that

q̂n(x) := n−1
Nn∑
j=1

K(x, Yj) (5)
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is an unbiased estimator of q(x). Moreover, if
∫
K(x, y)g(y) dμY (y) is finite,

then, again by Campbell’s theorem,

Var q̂n(x) = n−2 Var

∫
K(x, y) dΠng(y) = n−1

∫
K2(x, y)g(y) dμY (y)

and

E‖q̂n−q‖2 =

∫
Var q̂n(x) dμX(x) = n−1

∫
w(y)g(y) dμY (y) = n−2

E

Nn∑
j=1

w(Yj),

with

w(y) :=

∫
K2(x, y) dμX(x), (6)

which means that the noise level

δ2n := E‖q̂n − q‖2 = n−1

∫
K2(x, y)g(y) dμX(x) dμY (y) (7)

may be unbiasedly estimated with

δ̂2n := n−2
Nn∑
j=1

w(Yj). (8)

Let f̂α be an estimator of f with a regularization parameter α. We propose to
select α as an approximate solution of the following discrepancy principle (DP)
equation

‖K∗Kf̂α − q̂n‖2 = τ δ̂2n (9)

with q̂n and δ̂2n defined in (5)-(8) and with some fixed positive τ . This is a natural
reformulation for the pre-conditioned model of the general Morozov discrepancy
principle, as described, e.g., in [14].

In general, the DP equation (9) does not have to have a solution and, even
if the solution exists, it does not have to be unique. If the left-hand side of (9)
equals zero for α = 0, as it will be the case (in the limit) for filter-induced
regularizations studied later in this article, we set, for definiteness,

αn := sup
{
α : ‖K∗Kf̂α − q̂n‖2 < τδ̂2n

}
, (10)

and refer to (αn)n∈N as the DP sequence of regularization parameters.
A similar idea of building the DP equation for the pre-conditioned model

was studied in [7] for inverse problems with Gaussian white noise error. In that
case, it proved necessary to use a weighted version of the discrepancy in order
to achieve optimal rates of convergence of DP-based solutions with a priori
known smoothness. A posteriori rates, both in [7] and in our Poissonian case
are, however, suboptimal (and, in fact, identical, as will be seen later).

The idea proposed in [7] was further developed (including some lower bounds)
in [28], to allow for using residuals less smoothed than in [7], which proved
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essential for adaptation over some range of Sobolev-type ellipsoids. A version
of DP based on smoothed residuals was also recently developed in [9] for non-
parametric estimation of a regression function within the framework of learning
algorithms embedded in a reproducing kernel Hilbert space. Again, smoothing
the residuals proved essential for adaptation, especially over ranges of faster
rates.

3. Filter-induced regularizations and estimators with a priori
smoothing

Theoretical properties of the discrepancy principle proposed in the previous
section will be studied for the family of estimators induced by spectral filters. In
this section, we begin, however, with studying the properties of those estimators
with a priori chosen smoothing level. Recall that, for an operator K ∈ L(F ,G)
(space of linear, bounded maps from F to G), the family of operators {Rα ∈
L(G,F), α > 0} is called regularization of K−1 with α → 0, if Rαg → K−1g
for all g ∈ ImK, when α → 0. For Hilbert spaces F and G, and for compact
operator K, filter-induced regularizations can be conveniently defined in terms of
the singular value decomposition SVD: there exist a sequence σ1 ≥ σ2 ≥ · · · > 0
of singular values, finite or converging to zero, and corresponding sequences (vi)i
and (ui)i of orthonormal right and left singular vectors such that Span(vi)i =
Ker⊥ K, Span(ui)i = ImK and, for all i, Kvi = σiui and K∗ui = σivi. Then,

K−1g =
∑
i

σ−1
i 〈g, ui〉 vi.

Here and in what follows 〈·, ·〉 denotes the inner product in respective Hilbert
spaces.

Definition 1. A family {Fα, α > 0} of bounded functions (0, σ2
1 ] → R is called

a regularizing filter, if Fα(λ) → 1/λ for all λ, as α → 0 and Fα(λ) ≤ CR/λ for
all α and λ, with some constant CR.

It is easily seen that

Rαg = Fα(K∗K)K∗g :=
∑
i

Fα(σ
2
i )σi 〈g, ui〉 vi

is then, indeed, a regularization of K−1. The family of filter-induced regular-
izations includes, e.g., the k-times iterated Tikhonov regularization (Fα(λ) =
((λ+α)k −αk)/(λ(λ+α)k)), the truncated SVD (Fα(λ) = 1/λ · I(λ ≥ α)) and

the Landweber iteration (F1/k(λ) = β
∑k−1

j=0 (1 − βλ)j , with β ∈ (0, σ−2
1 )) (cf.,

e.g., [4]).
In order to control the variance of the estimators, we will usually consider

so-called bounded filters.

Definition 2. The filter {Fα, α > 0} is called a bounded filter, if there exists
a positive constant CF such that |Fα(λ)| ≤ CF /α for all λ ∈ (0, ‖K‖2] and all
α > 0.
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Since, in our setup, q̂n estimates q = K∗g, it seems natural to define f̂α :=
Fα(K∗K)q̂n. Notice, however, that Fα(K∗K) is an operator in L2(X ,BX , μX)
but, in general, q̂n does not have to be in L2(X ,BX , μX). Nevertheless, even in

that case f̂α may be well defined as an element of L2(X ,BX , μX) with

f̂α = Fα(K∗K)q̂n :=
∑
i

Fα(σ
2
i ) 〈q̂n, vi〉 vi, (11)

where

〈q̂n, vi〉 := n−1
Nn∑
j=1

〈K(·, Yj), vi〉 = σi/n

Nn∑
j=1

ui(Yj) = σi/n

∫
ui dΠng, (12)

if ‖Fα(K∗K)q̂n‖2 =
∑

i F
2
α(σ

2
i ) 〈q̂n, vi〉

2
< ∞, which holds true with probability

one, if

E‖Fα(K∗K)(q̂n − q)‖2 =
∑
i

F 2
α(σ

2
i )Var 〈q̂n, vi〉 (13)

= n−1
∑
i

σ2
i F

2
α(σ

2
i )
〈
u2
i , g

〉
< ∞.

The second equality in (13) holds true because of (12) and the Campbell’s
theorem. Under condition (13), we thus take (11) and (12) as the definition of
the estimator.

Convergence rates of this estimator will be studied for smoothness classes
defined via so-called source condition (cf., e.g., [4])

f ∈ Fν,ρ :=
{
f = (K∗K)ν/2s : ‖s‖ ≤ ρ

}
, (14)

with some positive ν and ρ. For finitely smoothing K with σi � i−b, this is
equivalent to

f ∈ Ebν,R :=

{
f :

∑
i

i2bν 〈f, vi〉2 ≤ R2

}
,

with someR, and one may expect minimax L2 convergence rates n−2bν/(2bν+2b+1)

(cf. [23, 4]).
Recall, that the qualification of the filter {Fα, α > 0} is the maximal ν0 such

that for any ν ∈ (0, ν0] there exists a constant Cν > 0 such that

sup
λ∈(0,‖K‖2]

λν/2 |λFα(λ)− 1| ≤ Cνα
ν/2.

The following theorem shows that, in the finitely smoothing case, filter-
induced estimators with a priori regularization attain the expected convergence
rates uniformly over subsets of Fν,ρ defined by an additional boundedness con-
dition on ‖Kf‖∞. Typically, the rates are minimax over Fν,ρ (cf. [23, 4]). In
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many cases, however, the rates remain minimax over subsets of Fν,ρ with suffi-
ciently large upper bound for ‖Kf‖∞. This is easily seen, for example, for the
stereological Spektor-Lord-Willis problem, studied in [13, 32], where the finite
subsets of Fν,ρ, used in the direct construction of lower bounds for the risk, have
an obvious uniform upper bound for ‖Kf‖∞.

Theorem 1. Let {Fα, α > 0} be a regularizing filter with qualification ν0 and
let the singular values of an injective, compact operator K satisfy σi � i−b. Let
f ∈ Fν,ρ with ν ≤ ν0, and ‖Kf‖∞ ≤ M < ∞. If either b > 1/2 and the filter is
bounded, or b ≤ 1/2 and Fα(λ) = 0 for λ ≤ α, then

E‖f̂α(n) − f‖2 ≤ Cn− 2bν
2bν+2b+1 ,

if α(n) � n−2b/(2bν+2b+1), with C = C(ν, ρ, CF , Cν ,K,M).

Although, as shortly discussed below, filter-induced estimators, at least for
the Hilbert-Schmidt case with b > 1/2, may also be constructed and analysed
by either embedding our problem in the general noise model considered in [4],
or using the white noise model results in [7], we nevertheless decided to provide
(see, Appendix) a direct proof of Theorem 1, because it also covers the case
b ≤ 1/2.

To see the connection with the general noise model, let (Ω,F ,P) be the basic
probability space and write our model of observations in the form analogous to
formula (2.11) in [4]

Y = g + n−1/2ε,

where Y := n−1Πng is a Hilbert space process, i.e., a bounded, linear operator
L2(Y ,BY , μY ) → L2(Ω,F ,P) defined with

φ → 〈Y, φ〉 := n−1
Nn∑
j=1

φ(Yj) = n−1

∫
φ dΠng,

and ε :=
√
n(Y − g) is the scaled Wiener-Ito integral (cf. [20]), also understood

as a Hilbert space process with the action

φ → 〈ε, φ〉 :=
√
n (〈Y, φ〉 − 〈g, φ〉) .

Then

〈K∗Y, φ〉 = 〈Y,Kφ〉 = n−1
Nn∑
j=1

(Kφ)(Yj) = n−1
Nn∑
j=1

∫
K(x, Yj)φ(x) dμX(x)

=

〈
n−1

Nn∑
j=1

K(·, Yj), φ

〉
,

which means that

(K∗Y )(·) = n−1
Nn∑
j=1

K(·, Yj) = q̂n(·),
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and K∗Y is thus a random element in L2(X ,BX , μX) for square-integrable K.
Further,

K∗ε =
√
n(K∗Y −K∗g) =

√
n(q̂n − q)

and E ‖K∗ε‖2 = nE ‖q̂n − q‖2 < ∞ for the Hilbert-Schmidt case and under
assumptions of Theorem 1 (cf. (7)). It follows directly from, e.g., Lemma 12.2
in [20] that the covariance operator of ε is the “multiplication by g” operator
Mg : φ → Mgφ := gφ and its norm is ‖Mg‖ = ‖g‖∞ ≤ M under the assumptions
of Theorem 1. Also,

Var〈K∗ε, vs〉 = nVar〈q̂n, vs〉 ≤ σ2
sM =: ρ(s),

so that condition (2.14) and the whole Assumption 1 in [4] are satisfied and the

general theory applies. In particular, f̂α = Fα(K∗K)K∗Y ,

E‖f̂α − Ef̂α‖2 = E‖Fα(K∗K)K∗n−1/2ε‖2 ≤ Mn−1
∑
s

F 2
α(σ

2
s)σ

2
s

and the last expression is the special case of the upper bound in formula (3.5) in
[4], obtained as the integral w.r.t. the counting measure on N. The rates for the
finitely smoothing Hilbert-Schmidt case with b > 1/2 thus follow from Section
5.3 in [4].

The white noise model results from [7] can also be used in our problem,
because our basic bias-variance decomposition (see the proof of Theorem 1)

E‖f̂α − f‖2 ≤ ‖Fα(K∗K)q − f‖2 +Mn−1Tr
(
F 2
α(K∗K)K∗K

)
is formally identical to analogous formula (11) in [7] and the whole rate calcu-
lation in [7] applies. In particular, not only the rates given in Theorem 1 follow
(for b > 1/2), but one also covers the infinitely smoothing case with a weaker
source condition traditionally studied with such operators, which is summarized
for completeness in the following theorem.

Theorem 2. Let {Fα, α > 0} be a bounded regularizing filter that satisfies the
following qualification condition: there exist positive constants r and γ such that
for all α > 0 and with ψ(t) := (− log t)−r

sup
0<λ≤‖K‖2

ψ(λ) |λFα(λ)− 1| ≤ γψ(α),

and let the singular values of an injective, compact operator K satisfy σi �
exp[−ci], with some positive c. If f = ψ(K∗K)s, with some ‖s‖ ≤ ρ is such that
‖Kf‖∞ ≤ M < ∞ and α(n) are chosen to satisfy α(n)/(− logα(n))2r+1 � n−1,
then

E‖f̂α(n) − f‖2 ≤ C/(logn)r,

with C depending only on the filter and operator and on the function class
parameters.
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Finally, the polynomial case with b > 1/2 can also be viewed in relation
to recent results in [15], because q̂n can be thought of as an arithmetic mean
of n independent copies of

∫
K(·, y) dΠg(y). If ‖g‖∞ ≤ M , one has E ‖q̂n −

q‖2 = O(n−1), and one could try to directly use Theorem 2 in [15] to our
preconditioned model (3), or Af = q, with A := K∗K. This would, however,
mean that one uses regularization R0

α := Fα(A2)A and the estimator

f̂0
α = R0

αq̂n =
∑
i

Fα(σ
4
i )σ

2
i 〈q̂n, vi〉vi,

with the source condition f = (A2)r/2s = (K∗K)rs. Theorem 2 in [15] would

then give for f̂0
α the convergence rate n−r/(r+1), which would correspond to

n−ν/(ν+2) under our source condition f = (K∗K)ν/2s. Our Theorem 1 gives for
our estimator

f̂α = Rαq̂n =
∑
i

Fα(σ
2
i )〈q̂n, vi〉vi

the rate n−2bν/(2bν+2b+1), which is strictly better for b > 1/2. Note that E‖q̂n−
q‖2 < ∞ is necessary for the applicability of Theorem 2 in [15], and that this
condition is roughly the same as b > 1/2.

4. Consistency and rates of convergence with discrepancy principle

Analysis of the properties of filter-induced estimators with regularization pa-
rameters selected with our version of the discrepancy principle will use both
some classic techniques, described, e.g., in [14], and some new ideas proposed
recently in [15]. As discussed in the latter article, consistency with L2 risk can-
not generally be expected, if plain discrepancy principle is used. Intuitively,
this is because it can happen, although with diminishing probability, that the
true noise level gets significantly underestimated, which may lead to huge L2

loss and, in effect, to L2 risk not converging to zero. We illustrate that with
a counterexample that is an adaptation of a similar example from [15] to our
Poissonian setup. On the other hand, L2-consistency can usually be guaranteed,
although possibly with very slow rates, by adding to the DP-procedure a so-
called “emergency stop” (cf., e.g., [15]). We, however, do not follow the latter
idea and only prove convergence to zero in probability of the L2 loss, i.e., weak
consistency, and obtain corresponding convergence rates, both in close parallel
to the development in [15].

4.1. Counterexample for convergence of L2 risk

Let X = Y = N and let μX = μY be the counting measure on 2N. With the
canonical basis (vi)i∈N in �2(N), define a diagonal operator K : �2(N) → �2(N)
with Kvi = 10−ivi, i ∈ N. Equivalently, in terms of equation (2) and with f =
(f1, f2, ...) ∈ �2(N) and g = (g1, g2, . . . ) = Kf , we have gj =

∑∞
i=1 K(i, j)fi =

10−jfj , j ∈ N, with K(i, j) = 10−jδi,j , where δi,j stands for the Kronecker
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delta. We observe a Poisson process Πng on N or, equivalently, the independent
Poissonian counts, say (Zi)i∈N, with means ngi, where Zi is the number of points
Yj in the representation (4) of Πng that are equal to i. Then, obviously, the quan-
tities defined in Section 2 take the form q = (10−igi)i∈N, q̂n = n−1(10−iZi)i∈N,

w = (10−2i)i∈N and δ̂2n = n−2
∑∞

i=1 10
−2iZi. Consider the truncated SVD esti-

mator
f̂α = Fα(K∗K)q̂n = n−1

(
10iZiI(10

−2i ≥ α)
)
i∈N

.

It is more natural to parametrize this estimator directly with the number, say
k, of retained components and write

f̂k = n−1
(
10iZiI(i ≤ k)

)
i∈N

.

Denote with (kn)n∈N the corresponding DP sequence, i.e.

kn := min
{
k : ‖K∗Kf̂k − q̂n‖ < τδ̂2n

}
. (15)

Consequently, with τ = 1, the inequality in (15) can be written as

∞∑
i=1

(
10−2i(f̂k)i − n−110−iZi

)2
< n−2

∞∑
i=1

10−2iZi,

or, equivalently, as ∑
i>k

10−2iZ2
i <

∞∑
i=1

10−2iZi. (16)

Define Ωn := {Z1 = · · · = Zn = 0, Zn+1 > 0} and note that on Ωn one
necessarily has kn ≥ n+1. (Otherwise, the effective ranges of summation would
be i ≥ n+ 1 on both sides of (16) and the inequality could not be fulfilled.)

Set f := (c/i)i∈N, with c = 9 log 5. Then, g = (c/(i10i))i∈N and, for n large
enough,

P(Ωn) =
(
1− exp

[
−nfn+110

−(n+1)
]) n∏

i=1

exp
[
−nfi10

−i
]

≥ nc

2(n+ 1)10n+1
exp[−nc/9] ≥ nc

2(n+ 1)10n+15n
.

On Ωn one has

‖f̂kn − f‖2 ≥
((

f̂kn

)
n+1

− fn+1

)2

=

(
1

n
10n+1Zn+1 −

c

n+ 1

)2

≥ 102(n+1)

2n2
,

for n large enough and, finally,

E‖f̂kn − f‖2 ≥ E‖f̂kn − f‖2I(Ωn) ≥
102(n+1)

2n2

nc

2(n+ 1)10n+15n
→ ∞,

as n → ∞. Large error on Ωn is not compensated by the small probability of
Ωn, and f̂kn is not L2-consistent.

It should be noted that, due to exponentially decreasing P(Ωn), this con-
struction only applies to exponentially smoothing operators K.
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4.2. Convergence in probability of L2 loss

The discrepancy principle defined in Section 2 is meaningful, if the noise level
is finite, which is guaranteed by the following assumption (cf. formula (7)):

Assumption 1:
∫
K2(x, y)g(y) dμX(x) dμY (y) < ∞.

For the results in this section, we also need the filter to be left-continuous.
This condition is clearly satisfied, e.g., for k-times iterated Tikhonov regular-
ization, truncated SVD and Landweber iteration.

Assumption 2: For any fixed λ ∈ (0, ‖K‖2] and for α > 0, the function α →
Fα(λ) is left-continuous.

One immediate consequence of this assumption is that the left-hand side of
the DP equation (9), which can be written as

‖K∗Kf̂α − q̂n‖2 =
∑
i

(
Fα(σ

2
i )σ

2
i − 1

)2 〈q̂n, vi〉2,
is left-continuous in α. As it also equals zero for α = 0 (in the limit), a DP
sequence of regularization parameters is well defined with formula (10) and it

satisfies the inequality ‖K∗Kf̂αn − q̂n‖2 ≤ τ δ̂2n. The following theorem applies,
e.g., to truncated SVD and Landweber regularization, which are of infinite quali-
fication, and, with k > 1, to the k-times iterated Tikhonov regularization, which
is of qualification 2k.

Theorem 3. Let {Fα, α > 0} be a bounded regularizing filter with qualifi-
cation ν0 > 2. Let (αn)n∈N be a DP sequence, as defined in (10), and let

f̂αn = Fαn(K∗K)q̂n be the estimator of f in the model (1) with an injective,

Hilbert-Schmidt operator K. If Assumptions 1 and 2 hold true, then f̂αn → f
in probability, as n → ∞. If additionally f ∈ Fν,ρ with ν + 2 ≤ ν0, then

‖f̂αn − f‖2 = OP (n
−ν/(ν+2)).

In the finitely smoothing case, the obtained rates of convergence are subop-
timal, when compared to estimators with a priori regularization in Theorem 1.
However, in the limit, as b ↘ 1/2 in Theorem 1, i.e., on the boundary of the
set of cases handled by both theorems, the two rates coincide. On the other
extreme, as b → ∞, the rates in Theorem 1 approach n−ν/(ν+1), while those in
Theorem 3 remain constant.

It should be noted that the rate n−ν/(ν+2) is the same (up to a log factor) as
that obtained in [7] for DP in the pre-conditioned model with Gaussian white
noise (cf. Remark 10 and Corollary 2, together with Example 3, with somewhat
different notation). This suboptimal rate also matches the lower bound obtained
in [28] for discretized Gaussian white noise model and truncated SVD, with DP
based on smoothed residuals (Proposition 4.2, with 2β = 2bν, p = b > 1/2 and
α = 1, which corresponds to our version of DP for a pre-conditioned model).
Although the results in [28] do not directly apply to our Poissonian setup,
Proposition 4.2 (case αp < 1/2) may suggest that adaptation could possibly
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be achieved also in our Poissonian setup, with DP based on less smoothed
residuals. This may be a subject of further research.

Although stopping criteria based on cross validation, Lepski balancing prin-
ciple or penalized risk estimation may allow for better adaptation (cf., e.g., [12]
for the Poissonian case and the discussion of the idealized Gaussian white noise
case in [5]), their computational cost may be prohibitive (cf., e.g., [12]). On the
other hand, using DP is usually computationally much cheaper, because not all
possible models have to be used in the optimization process, but its adaptation
ability is often limited.

5. Simulation results

Finite sample behaviour of the proposed parameter selection rule was verified
in the Spektor-Lord-Willis (SLW) stereological problem of unfolding the distri-
bution of the radii of balls, randomly placed in an opaque medium, from an
observed linear section through the medium. Early versions of the problem were
described in [27] and [22] as models of some measurements in material sciences.
The following formulation of the SLW problem as a Poisson inverse problem was
taken from [31] and [13]. Assume that the balls’ radii distribution is supported
in [0, 1] and the balls’ centers form a homogeneous Poisson process in R

3 with
the expected number of c points per unit volume. With Lebesgue measures μX

and μY , if the balls’ radii distribution has a density ρ, then the observed radii
of the line segments (intersections of the balls with the linear probe) form a
Poisson process on [0, 1] with intensity function ng(u), where n is the “size of
the experiment” related to the total length of the observed linear probe and

g(y) = 2y

∫ 1

y

f(x)dμX(x) =: (Kf) (y),

with f(x) = cρ(x). The goal is to unfold f from the observed linear sections.
With K : L2([0, 1], μX) → L2([0, 1], μY ), K is a compact Hilbert-Schmidt opera-
tor, its inverse is unbounded and the SLW problem is ill-posed in the Hadamard
sense. Clearly, K is of the form (2), with the kernel

K(x, y) = 2yI{x≥y}(x, y).

In order to work with a simpler form of the SVD of K, the following modified
formulation of the SLW problem was used in the simulation study. Instead of
considering the operator K as an operator from L2([0, 1], μX) to L2([0, 1], μY ),
we change the dominating measures, both in the data space and in the solution
space, and consider the folding operator K as an operator from L2([0, 1], μ̃X) to
L2([0, 1], μ̃Y ) with dμ̃X(x) = xdμX(x) and dμ̃Y (y) = ydμY (y). The functions g
and f are then replaced with l(y) = g(y)/y and h(x) = f(x)/x and the operator
becomes

l(y) = (Kh) (y) = 2

∫ 1

y

h(x)dμ̃X(x). (17)

The SVD of this operator was found in [13].
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In this case, the estimators δ̂n and q̂n take the following simple form:

δ̂2n =
2

n2

N∑
i=1

(
1− Y 2

i

)
and q̂n(x) =

2

n
# {i : Yi < x} ,

where #A stands for the cardinality of the set A.
The simulations were conducted in the Python environment, version 3.7 and

the code is available in [24]. Selected results for the following four functions
(taken from [13, 11, 12]):

• Beta(4, 2):
f(x) = 20x3(1− x)I[0,1](x),

• Swapped Minerbo-Levy A (SMLA):
f(x) = 4x2I[0,0.5](x) + [2− 4(1− x)2]I[0.5,1](x),

• Swapped Minerbo-Levy B (SMLB):
f(x) = 1.241(2x− x2)−3/2 exp

(
1.21[1− (2x− x2)−1]

)
I[0,1](x),

• Bimodal:
f(x) = 28125

512 x2(0.8− x)2I[0,0.8](x) +
9375
8 (0.6− x)2(1− x)2I[0.6,1](x)

will be presented. We set c = 1, so that all functions are probability densities.
For a given density f of the spheres’ radii and the experiment size n, artificial
data samples were generated with the following algorithm. First, a number ñ was
generated from the Poisson distribution with expectation n, using the method
poisson from the package numpy.random. Then, ñ pairs (R,D) of independent
random variables were generated: the ball radius R from the density f , with
the acceptance-rejection method and the distance D from the ball center to the
linear probe from the density d(x) = 2xI[0,1], using the method beta from the
package numpy.random. Pairs with D > R (the probe then misses the ball) were

dropped, otherwise Y =
(
R2 −D2

)1/2
was being taken as the observed value.

The mean numbers of the observed Y data points were 47.7%, 54.2%, 41.4%,
and 35.4% of n, respectively for the functions Beta(4, 2), SMLA, SMLB and
Bimodal.

For each function and each experiment size, 10 artificial data samples were
generated and the estimators f̂n were constructed as f̂n(x) = xĥn(x), where ĥn

was the estimator of the function h in the problem (17). Three main regulariza-
tion methods were used:

• Landweber iterative procedure,
• 2-times iterated Tikhonov procedure,
• truncated singular value decomposition (TSVD).

For each estimation procedure, values of τ between 1 and 3 with step 0.1
were tested. The best results were obtained with τ set to 1.1, 1.4 and 1.0 for,
respectively, Landweber, TSVD and 2-times iterated Tikhonov procedure and
the relaxation parameter (β) for Landweber procedure set to 1.97, and those
values were used in all results presented below. Large values of τ , above 1.5
for Landweber and Tikhonov procedure and above 2 for TSVD procedure, led
to visible deterioration of the results. Varying the values of τ in the range of
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smaller values had only a minor impact on the obtained results. For the relax-
ation parameter of the Landweber procedure, values 2-, 4- and 8-times smaller
than that finally selected were also tested. With all other parameters fixed, the
results did not change significantly, but smaller values led to a materially longer
computation time. A maximal number of iterations of the Landweber algorithm
has been restricted to 1000 as a safety measure against occasional “pathological”
data.

For each data sample and for each estimation procedure, the best possible
regularization parameter was found, i.e. that minimizing the (numerically com-

puted) L2 distance between f̂n and the true f . The best and worst cases (out
of 10 data samples) are presented for the first two regularization methods in
the left panels of Figures 1–8. The right panels of those figures illustrate the
performance of the discrepancy principle versus the oracle, able to produce for
each given data the best possible solutions. Estimators based on TSVD usually
tend to select too few components and perform somewhat worse.

The SMLB and Bimodal functions are much more difficult to estimate in
the SLW problem than “easy” functions Beta(4, 2) and SMLA, which can ad-
equately be approximated with only a few low-rank singular functions of the
SLW operator. The SMLB function is characterized by rapid local changes and
needs essentially larger sample sizes than the “easy” functions. The same is true
for Bimodal, because of relatively close local maxima separated by a shallow
minimum. Clear improvement of the performance of estimators is seen, when n
increases from 2 000 to 10 000 and to 1 000 000. The DP-based procedure seems
to work reasonably well, the errors of the obtained estimators being close to
those of the best possible solutions. The simulation results are also comparable
with those presented in [13, 11, 12].

The simulation study was also performed for the standard 1-time iterated
Tikhonov procedure, the qualification ν0 of which equals 2. This procedure does
not fulfill the assumptions of Theorem 3 and was included in simulations to check
the effect of the violated condition. In almost all cases, the results indicate a
substantial increase in estimation errors in comparison to the other procedures,
which may suggest that the assumption on the qualification of the filter to be
strictly larger than 2 may indeed be necessary in Theorem 3. Some exemplary
outcomes are shown in Figure 9 for τ = 1 and sample size 1 000 000.

In all simulations, the performance of various DP-based procedures was as-
sessed from the point of view of a potential user, who wants to apply them to
his/her specific and fixed data set. Because of that, errors (rather than risks) are
presented in the right-hand panels of Figures 1–8 and compared to the minimal
errors that can be achieved with the regularization parameter chosen optimally
for the given sample by an oracle that knows and uses both the true signal
and the sample. This also allows for comparisons with other similar results for
Poisson inverse problems, published earlier in [13, 11, 12]. Our approach is in
contrast with some simulation results for Gaussian problems, published, e.g., in
[6, 5, 28, 33], and aimed more at illustrating theoretical adaptivity properties
of the procedures. In that case, it is more natural to compare with oracle risks
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Fig 1. Worst (dotted) and best (dashed) reconstruction (out of 10 data samples) of Beta(4, 2)
intensity function (solid line) based on the Landweber procedure for the experiment size, from
top: n = 2000, n = 104, n = 106. On the right-hand side, the scatter plots of L2 errors of
the DP solutions versus those of the best possible solutions.

(rather than sample-wise minimal errors) and to show the dependence of the
risk on the sample size.

6. Summary and conclusions

In this paper, a novel approach to data-driven choice of regularization param-
eters in Poisson inverse problems is proposed. This specialized version of the
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Fig 2. Same as in Fig. 1, but for the SMLA function.

Morozov discrepancy principle leads to weakly consistent filter-induced estima-
tors with explicit rates of convergence of the L2 loss under source conditions on
the estimated function.

As the reference case, properties of filter-induced estimators with a priori reg-
ularization in Poisson inverse problems are summarized. In the finitely smooth-
ing case, minimax rates of convergence are attained over subsets of smoothness
classes defined via source conditions and an additional boundedness condition
on the image function. In order to also cover the non-Hilbert-Schmidt case, we
provide a direct proof of Theorem 1, even if the case of operators with poly-
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Fig 3. Same as in Fig. 1, but for the SMLB function.

nomially decaying singular values with exponent b > 1/2 is covered by Section
5.3 in [4]. The case of trace class operators may also be handled similarly to
how the white noise model is treated in [7], which not only reproduces the rates
in the finitely smoothing case with b > 1/2, but also covers in Theorem 2 the
infinitely smoothing case with a weaker source condition traditionally studied
with such operators.

The Morozov principle is used after pre-conditioning the initial model (1),
which allows for construction of an unbiased and

√
n-consistent estimator of the

noise level. As it often happens for discrepancy principle in stochastic inverse
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Fig 4. Same as in Fig. 1, but for the Bimodal function.

problems, the resulting estimators are not strictly adaptative in the sense defined
in Section 1. In the finitely smoothing case, the rate of convergence with a
posteriori regularization coincides with the respective rate of convergence with a
priori regularization only on the boundary of the cases handled by both methods
and they differ in other cases. The results for a posteriori regularization are
valid only for the filter-induced estimators with qualification strictly larger than
2. This covers, in particular, truncated SVD, Landweber and k-times iterated
Tikhonov regularization with k > 1, but excludes the standard (1-time iterated)
Tikhonov regularization. Poor behaviour of the estimation procedure in the
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Fig 5. Worst (dotted) and best (dashed) reconstruction (out of 10 data samples) of Beta(4, 2)
intensity function (solid line) based on the 2-times iterated Tikhonov procedure for the exper-
iment size, from top: n = 2000, n = 104, n = 106. On the right-hand side the scatter plots
of L2 error of the discrepancy principle solutions versus those of the best possible solutions.

latter case is clearly seen in simulations.

Our theory covers DP-estimators only in problems with Hilbert-Schmidt op-
erators, which excludes, for example, a well-known and important Wicksell’s
problem of stereology. Whether the presented methodology can be modified
to also cover non-Hilbert-Schmidt cases, needs further investigation. It should
be noted here that a version of DP applicable to compact but not necessarily
Hilbert-Schmidt operators has been studied recently in [16] for discretized in-
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Fig 6. Same as in Fig. 5, but for the SMLA function.

verse problems with independently repeated measuremenents in each channel
and with unknown error distribution. However, as measurements in white noise
are assumed in [16], the results do not seem to satisfactorily cover our Poissonian
setup (cf. a related discussion in the last paragraph of our Sec. 3).

Another idea worth investigating is using our version of the Morozov principle
with a weighted norm, pretty much in the same spirit as in [7]. Introductory
simulation experiments suggest that this may significantly improve the quality
of estimation, at least in finite samples.
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Fig 7. Same as in Fig. 5, but for the SMLB function.

7. Proofs

In all proofs, Id stands for the identity operator. For brevity, we also define
Sα := K∗KFα(K∗K)− Id .

The following lemma collects various technical results on regularizing filters.
In the proof, we adopt to the current setup standard techniques used, e.g., in
many places in [14]. Recall that q = K∗Kf .
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Fig 8. Same as in Fig. 5, but for the Bimodal function.

Lemma 1. Let {Fα, α > 0} be a regularizing filter with qualification ν0 and let
f ∈ Fν,ρ with ν ≤ ν0. Then, with some constant C,

1. ‖Fα(K∗K)q − f‖ ≤ Cνρα
ν/2,

2. ‖Fα(K∗K)q − f‖ ≤ C‖Sαq‖
ν

ν+2 ρ
2

ν+2 .

If additionally ν + 2 ≤ ν0, then

3. ‖Sαq‖ ≤ Cν+2ρα
ν+2
2 .
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Fig 9. Worst (dotted) and best (dashed) reconstruction (out of 10 data samples) of Beta(4, 2)
(upper), SMLA (middle) and SMLB (lower) intensity function (solid line) for sample size
n = 1 000 000 obtained with 1-time iterated Tikhonov procedure. On the right-hand side
the comparison of empirical distributions (based on 100 data samples) of L2 errors for all
considered methods (Tukey’s style: median, quartiles, minimal and maximal non-outliers and,
as individual points, outliers more than 1.5 ∗ interquartile range away from the box).

Proof. For the first statement, write

‖Fα(K∗K)q − f‖ = ‖(Fα(K∗K)K∗K − Id)(K∗K)ν/2 s‖
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=

[∑
i

(
Fα(σ

2
i )σ

2
i − 1

)2
σν
i 〈s, vi〉

2

]1/2

≤ sup
λ∈(0,σ2

1 ]

∣∣∣(λFα(λ)− 1)λν/2
∣∣∣ · ‖s‖ ≤ Cνα

ν/2ρ.

For the second statement, set ξ =
∑

i

(
Fα(σ

2
i )σ

2
i − 1

)
σ−ν
i 〈f, vi〉vi. Then,

(K∗K)
ν/2

ξ = Fα(K∗K)q − f.

The interpolation inequality ((2.49) in [14]) gives

‖Fα(K∗K)q − f‖ = ‖ (K∗K)
ν/2

ξ‖ ≤ ‖ (K∗K)
ν+2
2 ξ‖ ν

ν+2 ‖ξ‖ 2
ν+2

= ‖K∗KFα(K∗K)q − q‖ ν
ν+2 ‖ξ‖ 2

ν+2 .

Moreover,

‖ξ‖ =

(∑
i

(
Fα(σ

2
i )σ

2
i − 1

)2
σ−2ν
i 〈f, vi〉2

)1/2

≤ C

(∑
i

σ−2ν
i 〈f, vi〉2

)1/2

≤ Cρ,

with some C > 0, because Fα(σ
2
i )σ

2
i ≤ CR for all i. Combining both inequalities

proves the second statement.
For the third statement, write

‖Sαq‖ =

(∑
i

σ4
i

(
Fα(σ

2
i )σ

2
i − 1

)2 〈f, vi〉2
)1/2

=

(∑
i

σ
2(ν+2)
i

(
Fα(σ

2
i )σ

2
i − 1

)2
σ−2ν
i 〈f, vi〉2

)1/2

≤ sup
λ∈(0,‖K‖2]

λ
ν+2
2 |λFα(λ)− 1|

(∑
i

σ−2ν
i 〈f, vi〉2

)1/2

≤ Cν+2α
ν+2
2 ρ.

Without regularity assumption on f , we have

Lemma 2. Let {Fα, α > 0} be a regularizing filter with qualification ν0 > 2 that
satisfies Assumption 2. Then, for any fixed f , there exists a function g : R+ →
R

+ such that g(α) → +∞ as α → 0 and limα→0 ‖Sαg(α)q‖α−1 = 0.

Proof. We proceed as in the proof of Proposition 1 in [15] and first prove that
limα→0 ‖Sαq‖α−1 = 0. Let ε > 0 and fix L such that C2

2

∑∞
i=L+1〈f, vi〉2 < ε.

Then

‖Sαq‖2α−2 = α−2
∑
i

(
Fα(σ

2
i )σ

2
i − 1

)2
σ4
i 〈f, vi〉2
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≤ α−2
L∑

i=1

(
Fα(σ

2
i )σ

2
i − 1

)2
σ2ν0
i σ4−2ν0

i 〈f, vi〉2

+ α−2
∞∑

i=L+1

(
Fα(σ

2
i )σ

2
i − 1

)2
σ4
i 〈f, vi〉2

≤ α−2 sup
λ∈(0,‖K‖2]

(λν0/2|Fα(λ)λ− 1|)2‖f‖2σ2(2−ν0)
L

+ α−2 sup
λ∈(0,‖K‖2]

(λ|Fα(λ)λ− 1|)2
∞∑

i=L+1

〈f, vi〉2

≤ C2
ν0
‖f‖2σ2(2−ν0)

L αν0−2 + C2
2

∞∑
i=L+1

〈f, vi〉2 < 2ε

for α sufficiently small, which proves that limα→0 ‖Sαq‖α−1 = 0. Further, define

g(α) := sup
{
t > 0 : ‖Sαtq‖/α ≤ t−1

}
and note that, for any positive t and for α small enough, ‖Sαtq‖/α ≤ t−1,
because ‖Sαtq‖/α → 0, as α → 0. This implies that g(α) → ∞, as α → 0 and
completes the proof, because ‖Sαtq‖ is left-continuous in t due to Assumption
2, and we thus have ‖Sαg(α)q‖/α ≤ 1/g(α) → 0, as α → 0.

7.1. Proof of Theorem 1

The proof goes along standard lines of writing the risk as the sum of variance
and squared bias components, and separating low and high frequency terms in
the variance component. Since EFα(K∗K)(q̂n − q) = 0, one has

E‖f̂α − f‖2 = E‖Fα(K∗K)(q̂n − q)‖2 + ‖Fα(K∗K)q − f‖2

≤ E‖Fα(K∗K)(q̂n − q)‖2 + C2
νρ

2αν ,

because of Lemma 1. For the variance term, we obtain

E‖Fα(K∗K)(q̂n − q)‖2 =
∑
i≥1

F 2
α(σ

2
i )E 〈q̂n − q, vi〉2 =

∑
i≥1

F 2
α(σ

2
i )Var 〈q̂n, vi〉

= n−1
∑
i≥1

σ2
i F

2
α(σ

2
i )
〈
u2
i , g

〉
≤ Mn−1

∑
i≥1

σ2
i F

2
α(σ

2
i ),

because of (13), and because ‖g‖∞ ≤ M . Consider first the case b > 1/2.
Separating high (σ2

i ≤ α) and low (σ2
i > α) frequency terms, and using the

definition of the bounded filter, we obtain

E‖Fα(K∗K)(q̂n − q)‖2 ≤ M

n

⎡
⎣C2

F

α2

∑
σ2
i≤α

σ2
i + C2

R

∑
σ2
i>α

1

σ2
i

⎤
⎦ .
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The condition σ2
i ≤ α implies that i ≥ L := Bα−1/(2b), with some constant B,

and σ2
i > α implies that i < U := Dα−1/(2b) with some constant D. Conse-

quently,

E‖Fα(K∗K)(q̂n − q)‖2 ≤ C

n

(
α−2

∫ ∞

L

(x+ 1)−2b dx+

∫ U

0

x2b dx

)

= Cn−1α− 2b+1
2b ,

with a constant C = C(CR, CF ,K,M). Summing that with the bias term and
substituting α = α(n) � n−2b/(2bν+2b+1), which balances the orders of magni-
tude of the two terms, gives the conclusion. For the case b ≤ 1/2, the high-
frequency terms are equal to zero for low-pass filters satisfying Fα(λ) = 0 for
λ ≤ α, the upper bound for the variance term has the same order of magnitude,
and the conclusion follows in the same way.

7.2. Proof of Theorem 3

We use notation introduced in Section 2 and adapt the ideas from the proofs

of Theorems 3 and 4 in [15] to the Poissonian case. Let Π
(i)
g , i = 1, . . . , n, be

independent copies of a Poisson process Πg with intensity function g. Then

Πng
d
=
∑n

i=1 Π
(i)
g , because of the superposition theorem for Poisson processes

(Th. 3.3 in [20]). Under Assumption 1, we thus have by the law of large numbers

nδ̂2n =
1

n

Nn∑
j=1

w(Yj) =
1

n

∫
w(y) dΠng

d
=

1

n

n∑
i=1

∫
w(y) dΠ(i)

g
P−→ E

∫
w(y) dΠg

(18)

=

∫
K2(x, y)g(y) dμX(x) dμY (y) =: γ2

g < ∞,

which implies that nδ̂2n
P−→ γ2

g because convergence in distribution to a constant
is equivalent to convergence in probability to that constant.

For further use, define Δ2
n := ‖q̂n−q‖2 and note that, by the CLT for random

elements in Hilbert spaces (Th. 13.25 in [21]),

√
n (q̂n − q) =

√
n

(
1

n

∫
K(·, y) dΠng(y)− Eq̂n

)

d
=

√
n

(
1

n

n∑
i=1

∫
K(·, y) dΠ(i)

g − q

)
=

√
n

(
1

n

n∑
i=1

(Zi − EZi)

)
d−→ W,

where Zi are independent copies of Z :=
∫
K(·, y) dΠg(y) – a random element

in L2(X ,BX , μX), because K(·, ·) is square integrable as the kernel of a Hilbert-
Schmidt operator. Obviously, EZ = K∗g = q, by the Campbell’s theorem. Also,

E‖Z‖2 =

∫ [
VarZ(x) + E

2Z(x)
]
dμX(x) = γ2

g + ‖q‖2 < ∞
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and W is a Gaussian random element in L2(X ,BX , μX). This implies that

nΔ2
n

d−→ ‖W‖2 (19)

by continuous mapping theorem and, by Slutsky lemma,

Δ2
n/δ̂

2
n

d−→ ‖W‖2/γ2
g . (20)

We start the proof from the second assertion of Theorem 3. Define

Ωn =

{
|
√
nδ̂n − γg| <

γg
2
, ‖Scn(q̂n − q)‖ <

√
τγg

4
√
n

}
,

with some cn → 0. Set ε :=
√
τγg/4 and observe that, by Chebyshev’s inequality,

P

(
‖Scn(q̂n − q)‖ ≥ ε√

n

)
≤ nE‖Scn(q̂n − q)‖2

ε2

=
1

ε2

∑
i

(
Fcn(σ

2
i )σ

2
i − 1

)2
σ2
i 〈u2

i , g〉 → 0,

as n → ∞ because, using the expansion K(x, y) =
∑

i σiui(y)vi(x), one easily
obtains

∑
i σ

2
i 〈u2

i , g〉 =
∫
K2(x, y)g(y) dμX(x) dμY (y) < ∞ by Assumption 1

and, obviously, Fcn(σ
2
i )σ

2
i → 1 for all i. This and (18) imply that P(Ωn) → 1, as

n → ∞. Using Lemma 1 and setting cn = [
√
τγg/(4ρCν+2

√
n)]

2
ν+2 , one obtains

‖Scn q̂n‖I(Ωn) ≤ ‖Scnq‖I(Ωn) + ‖Scn(q̂n − q)‖I(Ωn)

≤ Cν+2 ρ c
ν+2
2

n I(Ωn) +

√
τγg

4
√
n
I(Ωn) <

√
τ δ̂nI(Ωn),

so αnI(Ωn) ≥ cnI(Ωn) ≥
( √

τδ̂n
6ρCν+2

) 2
ν+2

I(Ωn). Further,

‖Fαn(K∗K)q̂n − f‖ ≤ ‖Fαn(K∗K)q − f‖+ ‖Fαn(K∗K)(q̂n − q)‖

and, by Lemma 1 and equation (10) and because ‖Sαn‖ ≤ 1 + CR,

‖Fαn(K∗K)q − f‖ ≤ C‖Sαnq‖
ν

ν+2 ρ
2

ν+2 ≤ Cρ
2

ν+2 (‖Sαn q̂n‖+ ‖Sαn(q̂n − q)‖)
ν

ν+2

≤ Cρ
2

ν+2

(√
τ δ̂n + (1 + CR)Δn

) ν
ν+2

.

Moreover, on the set Ωn,

‖Fαn(K∗K)(q̂n − q)‖ ≤ CF

αn
Δn ≤ CF

(
6ρCν+2√

τ

) 2
ν+2

δ̂
− 2

ν+2
n Δn

and, combining everything,
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‖Fαn(K∗K)q̂n−f‖

≤Cρ
2

ν+2

(√
τ δ̂n+(1+CR)Δn

) ν
ν+2

+CF

(
6ρCν+2√

τ

) 2
ν+2

δ̂
− 2

ν+2
n Δn

≤Dmax

{
δ̂

ν
ν+2
n ,Δ

ν
ν+2
n

(
Δn

δ̂n

) 2
ν+2

}
,

with some constant D, which completes the proof of the second assertion of
Theorem 3, because of (18), (19) and (20), and because P(Ωn) → 1.

It is elementary to see that if f has a finite expansion in terms of the singular
elements vi, then it satisfies the source condition with any positive ν, hence
‖f̂αn − f‖2 = OP (n

−ν/(ν+2)) and, consequently, f̂αn is consistent. To complete
the proof of the consistency part of Theorem 3, it is thus sufficient to consider
f with infinite expansions. Since 〈q, vi〉 = σ2

i 〈f, vi〉, q then also has an infinite
expansion. Let us fix ε′ > 0 and select L such that 〈q, vL〉 �= 0 and (σ2

LFα(σ
2
L)−

1)2 > 1/2 for all α ≥ ε′. This is possible because, for such α, |Fα(σ
2
L)| ≤ CF /α ≤

CF /ε
′ and σi → 0, as i → ∞. Define

Ω1
n =

{
γg/2 ≤

√
n δ̂n ≤ 2γg, 〈q̂n, vL〉2 ≥ 〈q, vL〉2/2

}
and note that P(Ω1

n) → 1 because of (18) and because, by the law of large

numbers, 〈q̂n, vL〉 P−→ 〈q, vL〉. Then, for n ≥ 64τ2γ2
g/〈q, vL〉2 and for all α ≥ ε′,

one has

‖Sαq̂n‖I(Ω1
n) ≥

[
(σ2

LFα(σ
2
L)− 1)2〈q̂n, vL〉2

]1/2
I(Ω1

n)

≥
√

〈q, vL〉2
4

≥ 4τγg√
n

≥ 2τ δ̂nI(Ω
1
n).

This means that on Ω1
n we have αn ≤ ε′, because of (10). Consequently, αn

P−→
0.

Consider the set Ωn ∩ Ω1
n with cn = min{n−1/2g(n−1/2), n−1/4}, where

g(u) is defined in Lemma 2, note that cn → 0 and cn
√
n → ∞. Recall that

P(Ωn) → 1 and P(Ω1
n) → 1, so P(Ωn ∩ Ω1

n) → 1. On the set Ωn ∩ Ω1
n, one has

for large n,

‖Scn q̂n‖ ≤ ‖Scnq‖+ ‖Scn(q̂n − q)‖ ≤
√
τγg

4
√
n

+

√
τγg

4
√
n

≤
√
τ δ̂n,

utilizing Lemma 2, and this means that, on the set Ωn ∩ Ω1
n, one has αn ≥ cn.

Having control on the size of the DP sequence, one can write

‖f̂αn − f‖ ≤ ‖(Fαn(K∗K)− (K∗K)−1)q‖+ ‖Fαn(K∗K)(q̂n − q)‖.

Both terms tend to zero in probability: the first one because αn
P−→ 0, and the

second one because it can, on Ωn ∩ Ω1
n, be bounded as follows

‖Fαn(K∗K)(q̂n − q)‖ ≤ CF

αn
√
n
‖
√
n(q̂n − q)‖ ≤ CF

αn
√
n
OP (1).

This completes the proof of Theorem 3.
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