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Abstract: To quantify uncertainty around point estimates of conditional
objects such as conditional means or variances, parameter uncertainty has
to be taken into account. Attempts to incorporate parameter uncertainty
are typically based on the unrealistic assumption of observing two inde-
pendent processes, where one is used for parameter estimation, and the
other for conditioning upon. Such unrealistic foundation raises the question
whether these intervals are theoretically justified in a realistic setting. This
paper presents an asymptotic justification for this type of intervals that
does not require such an unrealistic assumption, but relies on a sample-
split approach instead. By showing that our sample-split intervals coincide
asymptotically with the standard intervals, we provide a novel, and realis-
tic, justification for confidence intervals of conditional objects. The analysis
is carried out for a rich class of time series models. We also present the re-
sults of a simulation study to evaluate the performance of the sample-split
approach. The results indicate that also in practice sample-split intervals
might be more appropriate than the standard intervals.
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1. Introduction

One of the open questions in time series is how to quantify uncertainty around
point estimates of conditional objects such as conditional means or conditional
variances. A fundamental issue arises in the construction of confidence intervals
that ought to capture the parameter estimation uncertainty contained in these
objects. This fundamental issue stems from the fact that on one hand one must
condition on the sample as the past informs about the present, yet on the other
hand one must allow the data up to now to be treated as random to account for
estimation uncertainty. The issue is well-recognized in the literature, however in
practice confidence intervals are commonly constructed by treating the sample
simultaneously as fixed and random. Frequently, such approach is motivated by
presuming to have two independent processes. Assuming two independent pro-
cesses with the same stochastic structure, using one for conditioning and one
for the estimation of the parameters, bypasses the issue. It is a mathematically
convenient assumption as in such case the uncertainty quantification reduces to
an ordinary inferential problem. However, practitioners rarely have a replicate,
independent of the original series, at hand with the exception of perhaps some
experimental settings. As such, the intervals commonly constructed by practi-
tioners lack a satisfactory theoretical justification. Therefore it is the objective
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of the present paper to develop a realistic justification for such confidence inter-
vals around point estimates of conditional objects, and to study the statistical
properties of the proposed justification through a simulation study.

In the literature the fundamental issue described above is encountered in
various ways. In the specific case of a first-order autoregressive (AR) process
with Gaussian innovations, [40] investigates the statistical dependence between
the ordinary least squares (OLS) estimator and the endogenous variable con-
ditioned upon. He obtains an Edgeworth-type expansion for the distribution of
the conditional mean and, further, studies forecasting, where the fundamental
issue equally arises.1 [33, p. 95] explicitly states a two-independent-processes
assumption in connection with vector AR models. He postulates that such as-
sumption is asymptotically equivalent to using only data not conditioned upon
for estimation. Other studies investigate parameter uncertainty by using resam-
pling methods, that typically mimic a distribution in which the sample, or at
least a subsample, is treated as fixed and random at the same time (cf. [37],
[37], [38], [35], [35], [36]). Aware of this paradox, [29] points out that condi-
tioning on observing specific in-sample values affects the parameter estimator,
but the effect is often erroneously disregarded. Deviating from the various boot-
strap approaches, [23] examines parameter uncertainty in interval forecasts in
a classical statistical framework. Similar to a general regression framework, he
conditions on an arbitrary fixed out-of-sample value to avoid the issue. However,
conditioning on arbitrary fixed out-of-sample values appears incompatible with
the usual setup of dynamics in which we condition on the final value(s) of the
sample. Acknowledging the issue while avoiding the two independent processes
argument bears careful statements as in [19] who write in view of this issue
“the delta method ... suggests” (p. 162). Similarly, [39] notices that although
such intervals “have been discussed in the econometrics literature, the particular
assumptions that underlie them are not fully recognized” (p. 389).

This paper provides a novel, and realistic, justification for commonly con-
structed confidence intervals around point estimates of conditional objects. Our
solution is based on a simple sample-split approach and a weak dependence con-
dition, which allows to partition our sample into two asymptotically independent
subsamples. For a rich class of time series models we construct asymptotically
valid sample-split intervals, without relying on the assumption of observing two
independent processes, and show that these intervals coincide asymptotically
with the intervals commonly constructed by practitioners. As will be argued
below, an appropriate concept to study conditional confidence intervals is merg-
ing, a concept that generalizes weak convergence. To the best of our knowledge,
except for [3] and [32] who looked at this concept independently of [4], this pa-
per is the only one to study merging in the context of conditional distributions.
Moreover, our paper seems to be the first to employ merging of conditional dis-
tributions in time series. By employing this concept we avoid unnatural assump-
tions such as observing XT = x (in dynamic models), losing the time index T ,
and instead explicitly acknowledge that the conditional objects vary over time.

1For prediction intervals some solutions have been discussed. We refer to Section 5.
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The rest of the paper is organized as follows. Section 2 specifies the general
setup and describes the argument of two independent processes as well as our
sample-split approach. In Section 3 we establish merging among the proposed
and the two-independent-processes estimator in probability under mild condi-
tions. Further, we construct asymptotically valid sample-split intervals and show
that these coincide asymptotically with the standard intervals. A simulation-
based comparison of the performance of sample-split intervals and standard
intervals in finite samples is provided in Section 4. The extension to prediction
is discussed in Section 5. Section 6 concludes. The main proofs are collected
in Appendix A, while Appendix B provides additional proofs of intermediate
results.

2. General setup

2.1. The general prediction function

Let {Xt} be a real-valued stochastic process defined on the probability space
(Ω,F ,P). θ denotes a generic parameter vector of length r ∈ N and θ0 the true
value, unknown to the researcher.2 Let Θ ⊆ Rr be the corresponding parameter
space.

Our general setup involves inference on an object that we call the prediction
function, which is a function of both the process {Xt} and of the parameter θ.
It represents the random object of interest, and will typically express quantities
such as a conditional mean or conditional variance (without conditioning on a
specific value) as a function of the sample.

Definition 1. The prediction function ψ : R∞ × Θ → R is depending both on
the parameter θ and the entire history of the process {Xt}, such that we can
write the prediction of the quantity at time T + 1, using data up to time T , as

ψT+1 := ψ(XT , XT−1, . . . ; θ). (2.1)

With this setup we can describe most of the possible applications of interest.
We now provide three examples to illustrate the prediction function.

Example 1. Suppose the time series {Xt} follows an AR(1) process given by

Xt = βXt−1 + εt , (2.2)

where |β| < 1 and {εt} are independent and identically distributed (i.i.d.) with
E[εt] = 0. The conditional mean of XT+1 given XT is given by

μT+1 := E[XT+1|XT ] = βXT . (2.3)

Using the prediction function we can then write μT+1 = ψ(XT , XT−1, . . . ; θ) =
βXT with θ = β.

2Generally, in particular throughout Section 2, we do not distinguish between θ and θ0 if
there is no cause for confusion. In Section 3 we explicitly use θ0 to avoid confusion.
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A more precarious example, due to its large popularity, is the conditional vari-
ance in a generalized autoregressive conditional heteroskedasticity (GARCH)
model [18, 9]. Whereas in the previous AR(1) case it suffices to condition on the
terminal observation, the subsequent Example 2 is more extreme as the entire
sample contains information about the object of interest.

Example 2. Suppose {Xt} follows a GARCH(1, 1) process given by Xt = σtεt
with

σ2
t = ω + αX2

t−1 + βσ2
t−1 , (2.4)

where ω > 0, α ≥ 0, 1 > β ≥ 0 and {εt} are i.i.d. with E[εt] = 0 and E[ε2t ] = 1.
The model’s recursive structure implies

σ2
T+1 =

ω

1− β
+ α

∞∑
k=0

βkX2
T−k. (2.5)

It follows directly from (2.5) that

σ2
T+1 = ψ(XT , XT−1, . . . ; θ) =

ω

1− β
+ α

∞∑
k=0

βkX2
T−k,

with θ = (ω, α, β)′, and Θ ⊂ (0,∞)× [0,∞)× [0, 1).

The next example shows that for a large class of models the prediction func-
tion can be written in the form of Definition 1.

Example 3. Following [10], consider a Markov chain of the form

St = ϕ(St−1, Xt; θ), t = 1, 2, . . . (2.6)

where ϕ is some map ϕ : Ra × R × Θ → Ra. Whereas Xt is observable by the
researcher at time t, St may be unobservable or only partially observable. The
object of interest ψT+1 is typically a function of the state of the Markov chain
ST , such that ψT+1 = π(ST ; θ) for some function π(·). Through the recursion
in (2.6), this is in turn a function of the past of XT , such that we may write

ψT+1 = π(ST ; θ) = ψT+1(XT , XT−1, . . . ; θ).

Many stochastic processes are in fact Markov processes, including ARMA and
GARCH models, several GARCH extensions such as Zaköıan’s (1994) threshold
GARCH, and the set of observation driven models considered by [8]. For further
details we refer to [4] and [5].

Note that in many cases, such as the GARCH(1,1) of Example 2, the pre-
diction function actually depends on the infinite past of the series. In order to
express (an approximation of) the prediction function in terms of observable
variables only, we would need to replace Xt by st for all t < 1, where {st} is
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a sequence of (arbitrary) constants to which we refer as starting or initial val-
ues. For a fixed T , we accordingly define an approximate prediction function
ψs
T+1 : RT ×Θ → R that is only a function of observable variables as

ψs
T+1(X1:T ; θ) := ψ(XT , XT−1, . . . , X1, s0, s−1, . . . ; θ), (2.7)

where X1:T = (X1, . . . , XT )
′. Note that, given the varying input of the left-hand

side in (2.7), we now actually have a sequence of (varying) functions for T ∈ N.

In many cases the values far in the past are negligible for a wide range of
values for {st}. Consequently, ψs

T+1 will be close to ψT+1. This property can be
shown to hold for many different processes including the ones in the examples.
We formalize the exact condition we need regarding the negligibility of the
starting values in Assumption 1.b.

Although the prediction function typically represents a conditional object,
we have not conditioned on anything yet in the definition. We therefore now
extend the analysis by formally conditioning on observing a particular sample.
Let x1:T = (x1, . . . , xT )

′ denote a specific sample path of X1:T . Throughout
the paper, we will discriminate between random variables and their realized
counterparts by writing the former in capital and the latter in lowercase letters
to avoid ambiguity.

As we will consider sample splitting later on, we define notation that also
allows for conditioning on only a subsample. For that purpose, let t1 : t2 denote
the (sub-)period from t1 up to t2, and correspondingly Xt1:t2 = (Xt1 , . . . , Xt2)

′

for any integers 1 ≤ t1 ≤ t2 ≤ T , with a corresponding definition for the observed
subsample xt1:t2 . Furthermore, let Xc

t1:T
= (c1, . . . , ct1−1, Xt1 , . . . , XT )

′ denote
the vector where all non-considered subsamples are replaced by a sequence of
constants {ct}, in a similar way as we did for the starting values. We can now
formally define the conditional prediction function.

Definition 2. The prediction function conditional on observing Xt1:T = xt1:T

is defined as

ψT+1|t1:T := ψs
T+1(x

c
t1:T ; θ). (2.8)

Note that we phrase the conditional prediction function directly in terms
of the approximate prediction function ψs

T+1 rather than the true prediction
function. We take this “shortcut” because we cannot observe x0, x−1, . . ., so
we cannot condition on those values anyway. Therefore, the “true” conditional
object (which we might represent as ψT+1|−∞:T ), is, from an applied point of
view, only the theoretical benchmark.

Example 1. (continued) For the conditional mean of an AR(1) process, con-
ditioning only on the terminal observation XT = xT suffices; that is, for any
t1 ≥ 1 and any sequence {ct}, we have that

ψT+1|t1:T = ψs
T+1(x

c
t1:T ; θ) = βxT = ψs

T+1(x
c
T :T ; θ) = ψT+1|T . (2.9)

Example 2. (continued) For objects such as the conditional variance for the
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GARCH(1,1), the conditioning set and the sequence {ct} make a difference, as

ψT+1|t1:T = ψs
T+1(x

c
t1:T ; θ) =

ω

1− β
+ α

T−t1∑
k=0

βkx2
T−k

+ αβT−t1

t1−1∑
k=1

βkc2t1−k + αβT
∞∑
k=0

βks2−k,

(2.10)

which differs depending on the choice of t1. However, as will be shown later,
with an appropriate choice of t1, our Assumption 1.b on the negligibility of the
initial condition, also implies that the difference between ψT+1|t1:T and ψT+1|1:T
becomes negligible asymptotically.

Before introducing estimators for θ let us discuss the objects we want to
construct inference for. In principle there are two unknown objects one could de-
velop statistical intervals for: ψs

T+1(X1:T ; θ) (or slightly more generally
ψs
T+1(X

c
t1:T

; θ)) and ψs
T+1(x

c
t1:T

; θ). For a GARCH(1,1), for instance, the first
would read as

ψs
T+1(X1:T ; θ) =

ω

1− β
+ α

T−1∑
k=0

βkX2
T−k + αβT

∞∑
k=0

βks2−k

whereas the second with t1 = 1 reads as

ψs
T+1(x1:T ; θ) =

ω

1− β
+ α

T−1∑
k=0

βkx2
T−k + αβT

∞∑
k=0

βks2−k

or more generally, if t1 is not taken to be equal to one, as in (2.10). While
statistical intervals for both objects can be constructed we focus here on condi-
tional inference, i.e. on intervals for ψT+1|t1:T = ψs

T+1(x
c
t1:T

; θ). In a time series
context intervals for ψT+1|t1:T are motivated by the relevance property of [25]
which postulates that intervals should relate to what actually happened during
the sample period opposed to what might have happened. Indeed, intervals for
ψT+1|t1:T can theoretically be shown to be considerably shorter than the inter-
vals for their unconditional counterparts. While the unconditional objects might
lead to a conceptually easier analysis, our focus on the conditional objects is
therefore not only theoretically but also empirically relevant.

2.1.1. Estimating the prediction function

As θ is unobserved, we need to estimate it. We assume that the estimator is
based on a subsample 1 : TE (with 1 ≤ TE ≤ T ) of the process {XE

t } which
is potentially a different sample than {Xt} that arises in the prediction func-
tion. The estimator of θ based on XE

1:TE
= (XE

1 , . . . , XE
TE

)′ will be denoted by

θ̂(XE
1:TE

). The introduction of {XE
t } serves three purposes: first, using a dif-

ferent process allows us to formulate the two-independent-processes argument
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where XE
t = Yt, with {Yt} independent of {Xt}, TE = T and an interval is con-

structed for ψT+1|1:T . Second, it will allow us to discuss the standard approach
where XE

t = Xt, TE = T , and an interval is constructed for ψT+1|1:T . Please
note already here that this means that the same variables that arise in the pre-
diction function are also used for estimating θ. Third, it allows us to define the
sample splitting approach which we study here. In this approach XE

t = Xt and
an interval is constructed for ψT+1|TP :T with TE < TP (with 1 < TP ≤ T )
such that in contrast to the standard approach different subsamples are used
for prediction and estimation.

Before we illustrate why the standard approach is problematic for construct-
ing and evaluating conditional intervals, we need to define the final building
block of prediction function estimation: the conditional prediction function es-
timator.

Definition 3. Let 1 ≤ TP ≤ T . Define the prediction function estimator con-
ditional on observing XTP :T = xTP :T as

ψ̂T+1|TP :T := ψ̂T+1(xTP :T ,X
E
1:TE

) = ψs
T+1(xTP :T , θ̂(X

E
1:TE

)). (2.11)

Note that in the above definition we do not condition on the sample XE
1:TE

=

xE
1:TE

that is used to estimate θ. The reason for not conditioning on XE
1:TE

=

xE
1:TE

is that the goal is to preserve the randomness in the second argument

of ψs
T+1, i.e. in θ̂(XE

1:TE
), and consequently in ψ̂T+1|TP :T . Hence, if this goal

is achieved we can use the (non-degenerate) conditional (on XTP :T = xTP :T )

distribution of ψ̂T+1|TP :T to construct confidence intervals for ψT+1|TP :T . Having
this said let us have a closer look at the standard approach. As mentioned
above in the standard approach one has XE

t = Xt, TP = 1 and TE = T .

Hence, denoting by ψ̂STA
T+1|1:T the “standard” estimator of the prediction function

conditional on observing X1:T = x1:T , it becomes

ψ̂STA
T+1|1:T := ψ̂T+1(x1:T ,x1:T ) = ψs

T+1(x1:T , θ̂(x1:T )). (2.12)

Notice that there is no capital X in (2.12) because there is only one sample
and one typically conditions on all values of this sample. Hence, (2.12) is non-
random and thus does not have a distribution that could be used to construct
intervals. Instead, to still be able to construct a “standard-looking” interval in
practice, researchers typically implicitly rely on the (approximate) quantiles of
the estimator

ψ̂STA∗
T+1|1:T := ψ̂T+1(x1:T ,X1:T ) = ψs

T+1(x1:T ; θ̂(X1:T )). (2.13)

It is well understood in the literature that considering the sample as random and
non-random at the same time as in (2.13) does not provide a fully satisfactory
justification of the intervals used in practice. For the readers not so familiar
with the problem just discussed we provide two examples that both illustrate
the problem arising from (2.13). The examples illustrate that the severity of the
problem may vary; ranging from only complicating the analysis (Example 1) to
making the analysis impossible (Example 2).
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Example 1. (continued) For the AR(1), we know from (2.9) that ψT+1|1:T =

ψs
T+1(x1:T , θ) = βxT . Estimating β by OLS, say β̂(X1:T ), the estimator in (2.13)

becomes

ψ̂STA∗
T+1|1:T = ψT+1(x1:T ; θ̂(X1:T )) = ψs

T+1(x1:T , β̂(X1:T )) = β̂(X1:T )xT . (2.14)

Note the discrepancy in treating the terminal observation as random in the
estimation sample, yet fixed for the prediction sample. To construct an interval
for βxT , one uses

√
T
(
β̂(X1:T )− β

) d→ N(0, σ2
β) (2.15)

with σ2
β = 1 − β2 (cf. [22, p. 215]) and that one can estimate the variance of

this normal distribution by σ̂2
β(X1:T ) = 1− β̂(X1:T )

2. Then an interval for βxT

is typically constructed the following way:

β̂(X1:T )xT ± Φ−1(γ/2) xT σ̂β(X1:T )/
√
T , (2.16)

where Φ−1 denotes the standard normal quantile function. However, the interval
in (2.16) is hard to interpret as the terminal observation is treated simultane-
ously as fixed and random. In essence, researchers typically approximate the
distribution of

√
T (β̂(X1:T ) − β)xT instead of the conditional distribution of√

T (β̂(X1:T )− β)XT given XT = xT . The approximation of the latter appears
rather cumbersome because even the rather simple condition XT = xT has an
influence on the whole series X1:T ; see, for instance, the discussion [29]. Despite
the challenge, [40] obtains such approximation based on Edgeworth expansions

in the case of εt
iid∼ N

(
0, σ2

ε

)
.

Example 2. (continued) For the conditional variance of the GARCH(1,1), the
standard estimator of the prediction function conditional on X1:T = x1:T , is
given by

σ̂2 STA
T+1|1:T = ψs

T+1

(
x1:T ; θ̂(x1:T )

)
=

ω̂(x1:T )

1− β̂(x1:T )
+ α̂(x1:T )

T−1∑
k=0

β̂(x1:T )
kx2

T−k

+ α̂(x1:T )β̂(x1:T )
T

∞∑
k=0

β̂(x1:T )
ks2−k ,

(2.17)

where θ̂(x1:T ) =
(
ω̂(x1:T ), α̂(x1:T ), β̂(x1:T )

)′
is some estimate for θ depending

on x1:T . Clearly, (2.17) illustrates for the GARCH(1,1) the above mentioned
problem that the standard estimator is not random (after conditioning). For the
GARCH(1,1) the estimator in (2.13) whose quantiles are used for an interval
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reads as

σ̂2 STA∗
T+1 = ψT+1

(
x1:T ; θ̂(X1:T )

)
=

ω̂(X1:T )

1− β̂(X1:T )
+ α̂(X1:T )

T−1∑
k=0

β̂(X1:T )
kx2

T−k

+ α̂(X1:T )β̂(X1:T )
T

∞∑
k=0

β̂(X1:T )
ks2−k .

(2.18)

This quantity exemplifies for the GARCH(1,1) that the complete sample is
regarded as random and non-random at the same time. While for the AR(1)
this complicated the analysis, yet not made it impossible, the dependence on the
complete sample here makes it difficult to use this quantity to make meaningful
probabilistic statements.

2.2. Argument of two independent processes

The argument of two independent processes can at least be traced back to
[1], who studies the prediction of AR time series. It reoccurs in [31, p. 394]:
“...the series used for estimation of parameters and the series used for prediction
are generated from two independent processes which have the same stochastic
structure.” The same argument also appears in [33, p. 95] and in [17]. Let {Yt} be
a process independent of {Xt} defined on the same probability space (Ω,F ,P)
with {Yt} having the same stochastic structure as {Xt}. In addition to the
sample X1:T of the process {Xt}, suppose there is a sample Y1:T = (Y1, . . . , YT )

′

of the process {Yt} that we use as estimation sample, that isXE
1:T = Y1:T . In this

situation we denote the conditional prediction function estimator of Definition 3
by ψ̂2IP

T+1|1:T and it equals

ψ̂2IP
T+1|1:T := ψ̂T+1(x1:T ,Y1:T ) = ψs

T+1(x1:T ; θ̂(Y1:T )). (2.19)

Notice that (2.19) does not have the same shortcoming as (2.13) because even if

we consider x1:T to be known we can nevertheless consider θ̂(Y1:T ) to be random
and can hence use its distribution to construct intervals. Throughout this paper,
we call (2.19), the 2IP (two independent processes) estimator. Then, a condi-
tional interval I2IPγ (x1:T ,Y1:T ) can be based on the (approximate) quantiles of

ψ̂2IP
T+1|1:T . It satisfies

P

[
I2IPγ (x1:T ,Y1:T ) � ψT+1|1:T

∣∣∣X1:T = x1:T

]
=
(≈)

1− γ, (2.20)

with the approximate sign indicating asymptotic equivalence. Note that the in-
dependence implies that the distribution of Y1:T in (2.20) does not depend on
the realization x1:T , yet the statement does depend on x1:T because the interval
depends on it (for the AR(1) this can be directly seen from (2.16) when replacing
X1:T by Y1:T ). Although the 2IP approach is statistically sound, it assumes two
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independent processes with the same stochastic structure. [40] points out that
the assumption “is quite unrealistic in practical situations” (p. 241). Indeed,
it is difficult to imagine this assumption to be satisfied in any real-life appli-
cation beyond experimental settings. Moreover, as only one sample realization
is available, to compute the estimate of the interval I2IPγ (x1:T ,Y1:T ) it is fre-
quently suggested to take Y1:T = x1:T , violating the independence assumption.
Thus, the 2IP approach appears to be a rather questionable justification for the
usual interval, and as such, in this paper we provide an alternative, realistic,
justification of (asymptotically equivalent) intervals based on sample splitting.

2.3. Sample-split estimation

An intuitive motivation for the sample-split approach is the successive decline
of the influence of past observations present in a substantial class of time series
models. This property permits to split our sample into two (asymptotically)
independent subsamples. Consider the end point of the estimation sample, TE ,
and the starting point of the prediction sample, TP satisfying 1 < TE < TP ≤ T ,
such that the two samples are non-overlapping. In this situation we denote the
conditional prediction function estimator of Definition 3 by ψ̂SPL

T+1|TP :T and it is
given by

ψ̂SPL
T+1|TP :T := ψ̂T+1(x

c
TP :T ,X1:TE

) = ψs
T+1(x

c
TP :T ; θ̂(X1:TE

)). (2.21)

Throughout the paper, we call (2.21) the SPL estimator (due to SPLitting).
Similar to the two sample approach, we can consider the first argument of ψs

T+1

in (2.21) as given and the second argument as random since the subsamples are
non-overlapping. A conditional interval ISPL

γ (xTP :T ,X1:TE
) can be constructed

such that

P

[
ISPL
γ (xTP :T ,X1:TE

) � ψT+1|TP :T

∣∣∣XTP :T = xTP :T

]
=
(≈)

1− γ . (2.22)

This statement does make sense as there is still randomness in θ̂(X1:TE
) since

X1:TE
is not conditioned upon, yet the last T − TP + 1 values of {Xt}Tt=1 are

fixed such that their randomness is not taken into account. Similar to (2.20),
the statement in (2.22) does depend on xTP :T and in contrast to x1:T in (2.20)
the realization xTP :T may influence the distribution of X1:TE

. However, as said
at the beginning of this subsection the idea of the sample split approach is that
this dependence will vanish asymptotically.

Remark 1. In Section 3 we will discuss how TE and TP should be chosen from an
asymptotic perspective to ensure that our regularity conditions are fulfilled. As
we only consider sample splitting as a theoretical approach to validate commonly
constructed conditional confidence intervals, these asymptotic guidelines are
sufficient for our purposes and we do not have to consider how to choose TE and
TP in practice. Of course, one could use the sample-split approach in practice to
construct confidence intervals; we present some simulation results in Section 4
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which indicate that the split-approach may lead to better intervals in practice.
Of course, there is a trade-off between obtaining less dependence between the
two subsamples and estimation precision. For the Gaussian AR(1) setting, [40]
derives asymptotic expansions for the case where, in our notation, TE = T − l
and TP = T for some l ≥ 0, showing that even in this simple case there is
indeed a trade-off as described above and the optimal choice of l is unclear.
An interesting extension of our analysis, in particular in view of the results of
Section 4, would therefore be to investigate the optimal choices of TE and TP

to achieve the most accurate confidence intervals in small samples. However,
determining the optimal choice is likely to require other tools than used here.
This is therefore outside the scope of the current paper.

3. Asymptotic justification

In this section, we connect the sample-split procedure of Section 2.3 with the
two-independent-samples approach of Section 2.2. First, in Section 3.1, we show
that the notion of weak convergence is inadequate to study asymptotic close-
ness for objects that vary over time and discuss the concept of merging. Then,
in Section 3.2 we link the 2IP and the SPL estimator by proving that their
conditional distributions merge in probability (Theorem 1). Thereafter, in Sec-
tion 3.3, we construct asymptotically valid intervals (Theorem 2) and show that
the sample-split intervals coincide asymptotically with the intervals commonly
constructed by practitioners (Theorem 3). Last, in Section 3.4, we state intervals
of reduced form and simplified theoretical results under asymptotic normality
of the parameter estimator.

3.1. Merging

To illustrate the inappropriateness of weak convergence in the context consid-
ered here, we revisit Example 1 for the 2IP approach and the SPL approach,
which shows that studying asymptotic closeness between conditional distribu-
tions is often complicated by the absence of a limiting distribution.

Example 1. (continued) For the 2IP approach (2.15) implies that
√
T
(
β̂(Y1:T )−

β
) d→ N(0, σ2

β) and it entails that
√
T (β̂(Y1:T ) − β)x converges weakly to

N(0, σ2
βx

2) for any fixed x �= 0. Further, the result suggests that the conditional

distribution of
√
T (β̂(Y1:T )− β)XT given XT = xT , which is just the distribu-

tion of
√
T (β̂(Y1:T )−β)xT , is asymptotically close to N(0, σ2

βx
2
T ). Similarly, for

the SPL-approach with TE/T → 1 we have
√
T
(
β̂(X1:TE

)−β
) d→ N(0, σ2

β) which
suggests as well (if the gap between TE and T is large enough which will be for-

mally specified below) that the conditional distribution of
√
TE(β̂(X1:TE

)−β)XT

given XT = xT is also close to N(0, σ2
βx

2
T ). For both approaches the approxi-

mating distribution N(0, σ2
βx

2
T ) varies with T through the terminal realization
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xT . Note that the concept of weak convergence is not applicable in this con-
text to characterize this asymptotic closeness, as it requires a (fixed) limiting
distribution, which is absent here.

Next, we discuss what closeness means in the absence of a limiting distribu-
tion. To do so, first recall that weak convergence of a sequence of cdfs {FT } on
Rk with k ∈ N, i.e. FT (x) → F (x) for all continuity points of F , can alterna-
tively be defined by dBL(FT , F ) → 0. Here dBL denotes the bounded Lipschitz
metric defined by

dBL(F,G) = sup

{∣∣∣∣ ∫ fd(F −G)

∣∣∣∣ : ||f ||BL ≤ 1

}
, (3.1)

where for any real-valued function f on Rk one puts ||f ||BL = supx
∣∣f(x)∣∣ +

supx �=y
|f(x)−f(y)|

||x−y|| , with || · || denoting the Euclidean norm, i.e. ||A|| =
√
tr(A′A)

for any vector or matrix A. We will employ the bounded Lipschitz metric in Def-
inition 4 below to define merging for sequences of distribution functions. Our
definition follows [16] who uses the bounded Lipschitz metric with probability
measures replacing the distribution functions in Equation (3.1) to define merg-
ing for sequences of probability measures on separable metric spaces. Because we
are working on the real line we prefer to define merging for distribution func-
tions instead of probability measures. Before giving the definition of merging
for distribution functions it is worth mentioning that [16] shows that defining
merging with respect to the bounded Lipschitz metric is equivalent to defining
merging with respect to the Lévy-Prokhorov metric; for discussions on further
possibilities to define merging see [13] and [14].

Definition 4 (Merging). Two sequences of cdfs {FT } and {GT } are said to
merge if and only if dBL(FT , GT ) → 0 as T → ∞.

Note that weak convergence can be seen as a special case of merging with
GT = G for all T ∈ N.

While merging is appropriate to capture the asymptotic closeness of the con-
ditional distribution of

√
T (β̂(Y1:T )−β)XT and N(0, σ2

βx
2
T ) for a given sample

XT = xT , we now extend the concept in a way that allows us to deal with
asymptotic closeness when we do not condition on a particular sample. The
necessity of this definition can again be exemplified by the AR(1), which also
illustrates how we will deal the dependence of the statements in (2.20) and in
(2.22) on the sample that we mentioned below these equations. For instance, in
Example 1 as described at the beginning of this section, the goal would be to for-
malize a statement like ‘when T is large, the probability of all xT such that the
distribution of

√
T (β̂(X1:T )− β)xT merges with that of

√
TE(β̂(X1:TE

)− β)xT

is approximately equal to one’. We now first introduce the conditional distribu-
tions of the 2IP and the SPL estimator in the general case and then give the
definition capturing what we just illustrated for the AR(1).

Let mT and mTE
be two sequences of normalizing constants with mT ,mTE

→
∞ (e.g.mT =

√
T andmTE

=
√
TE). For any t1 ≥ 1, we define the sub σ-algebra

It1:T = σ(Xt : t1 ≤ t ≤ T ). We denote the conditional cdfs of the 2IP and SPL
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estimator by

F 2IP
T (τ |I1:T ) :=P

[
mT

(
ψ̂T+1(X1:T ,Y1:T )− ψT+1

)
≤ τ

∣∣I1:T ] (3.2)

FSPL
T (τ |ITP :T ) :=P

[
mTE

(
ψ̂T+1(XTP :T ,X1:TE

)− ψT+1

)
≤ τ

∣∣ITP :T

]
, (3.3)

respectively, so that by specifying an event of I1:T and ITP :T , we see that (3.2)
and (3.3) are just the centered and scaled distributions of (2.19) and (2.21),
respectively. Please note that (3.3) actually also depends on c, see (2.21), but
since our assumptions will ensure that this dependence vanishes asymptotically
we prefer to suppress the dependence on c here.

Remark 2. Although not explicitly mentioned above we consider (3.2) and (3.3)
to be regular conditional cdfs, which indicates that we assume that
F 2IP
T (·|I1:T )(ω) and FSPL

T (·|ITp:T )(ω) are cdfs for every ω ∈ Ω; for the exact
definition and the existence see [16, Section 10.2].

We can now define merging in probability (we do so without explicitly using
the conditional cdfs of the 2IP and the SPL approach).

Definition 5 (Merging in Probability). Two sequences of conditional cdfs {FT }
and {GT } are said to merge in probability if and only if dBL(FT , GT )

p→ 0 as

T → ∞, where “
p→” denotes “convergence in probability”.

Remark 3. As alluded to in the introduction [3] also consider merging and merg-
ing in probability. In contrast to Definitions 4 and 5, respectively, they use the
set of bounded continuous functions on the real line to define merging and also
to define merging in probability; see their Definitions 1 and 2, respectively. The
connection between this approach to define merging and the Lévy-Prokhorov
metric is considered in [14].

3.2. Merging of 2IP and SPL in probability

Here, we give conditions such that the conditional cdfs of the 2IP and SPL
estimator merge. Clearly, the conditional confidence intervals are functions of
these distributions so that their merging is a building block for the study of
the conditional confidence intervals based on them. The conditions we give are
divided into three parts. Roughly speaking, the first part (general assumptions)
makes sure that the function we want to predict is well behaved and that we
can estimate the parameter it depends on. The second part (two independent
processes) and third part (SPL estimator) guarantee that these assumptions are
met by the 2IP and the SPL method. To write the conditions in compact form
we employ the usual stochastic order symbols Op and op. We assume that θ0
belongs to the interior of Θ, i.e. θ0 ∈ Θ̊, and we denote the set of all bounded,
real-valued Lipschitz functions on Rr by BL =

{
h : Rr → R : ||h||BL < ∞

}
.

We start with the general assumptions.

Assumption 1 (General Assumptions).

a (Estimator) mT

(
θ̂(X1:T )− θ0

) d→ G∞ as T → ∞ for some cdf G∞ : Rr →
[0, 1];
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b (Differentiability) ψ( · ; θ) is continuous on Θ and twice differentiable on Θ̊;

c (Gradient)
∣∣∣∣∣∣∂ψ(XT ,XT−1,...;θ0)

∂θ

∣∣∣∣∣∣ = Op(1);

d (Hessian) supθ∈V (θ0)

∣∣∣∣∣∣∂2ψ(XT ,XT−1,...;θ)
∂θ∂θ′

∣∣∣∣∣∣ = Op(1) for some open neigh-

borhood V (θ0) around θ0;
e (Initial Condition) Given sequences {st} and {ct}, we have

mT

(
ψs
T+1(X

c
t1:T ; θ0)− ψ(XT , XT−1, . . . ; θ0)

)
= op(1),∣∣∣∣∣∣∣∣∂ψs

T+1(X
c
t1:T

; θ0)

∂θ
− ∂ψ(XT , XT−1, . . . ; θ0)

∂θ

∣∣∣∣∣∣∣∣ = op(1),

sup
θ∈V (θ0)

∣∣∣∣∣∣∣∣∂2ψs
T+1(X

c
t1:T

; θ)

∂θ∂θ′
− ∂2ψ(XT , XT−1, . . . ; θ)

∂θ∂θ′

∣∣∣∣∣∣∣∣ = op(1)

for any t1 ≥ 1 such that (T − t1)/lT → ∞ as T → ∞ and for some
model-specific lT with lT → ∞.

Assumption 1.a implies the existence of a limiting distribution for the pa-
rameter estimator. The differentiability assumption in 1.b plus the bounded-
ness Assumptions 1.c ensure that the scaled prediction function estimators can
accurately be approximated by a Taylor expansion; see Lemma 1 for details.
Assumption 1.e with t1 = 1 ensures the negligibility of the starting values when
using the full-sample for prediction, while taking t1 = TP ensures that this ex-
tends to the case where additionally X1, . . . , XTP−1 are replaced by constants,
i.e. where only the subsample (XTP

, . . . , XT ) is used for prediction. This as-
sumption implicitly limits the choice of TP ; as replacing past values of Xt for
t < TP by arbitrary constants should have a negligible effect, T − TP needs to
increase faster than some lower bound lT . For models exhibiting an exponential
decay in memory, it typically suffices to take lT = log T (see e.g. [6, Eq. (4.6)]).

For the 2IP estimator, we additionally need the two-independent-processes
assumption, which is formalized in Assumption 2.

Assumption 2 (Two Independent Processes).

a (Existence) {Yt} is a process defined on (Ω,F ,P), distributed as {Xt};
b (Independence) {Yt} is independent of {Xt}.

For the SPL estimator we replace the two-independent-processes assumption
by a stationarity and a weak dependence condition, which allows to split our
sample into two (asymptotically) independent and identical subsamples. In ad-
dition we need an assumption on TP and TE as functions of T , that is TE(T )
and TP (T ).

Assumption 3 (SPL Estimator).

a (Rates) The functions TP : N → N and TE : N → N satisfy TE(T ) < TP (T )

for all T , while T−TP (T )
lT

→ ∞ and mTE(T )/mT → 1 as T → ∞;
b (Strict Stationarity) {Xt} is a strictly stationary process;
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c (Weak Dependence) {Xt} satisfies for each h ∈ BL∫
h d

(
GSPL

TE
(·|ITP :T )−GSPL

TE

)
p→ 0 as T → ∞,

where GSPL
TE

denotes the unconditional cdf of mTE

(
θ̂(X1:TE

) − θ0
)
and

GSPL
TE

(·|ITP :T ) the corresponding conditional cdf given ITP :T .

The subsample size assumption in 3.a ensures that the number of observa-
tions used for conditioning is increasing, which along with the negligibility of
the initial conditions implies that the truncation of the prediction function is
negligible. Furthermore, the sample size used for estimation should increase fast
enough that the respective scaling of the 2IP and SPL estimators, mT and
mTE

respectively, are asymptotically identical. If mT increases no faster than a
polynomial rate, which is generally the case, it is sufficient that TE/T → 1 for
mTE

/mT → 1 to hold.
The stationarity assumption in 3.b can actually be relaxed; what matters

is that the conditions in Assumption 1 are still true if only a subsample is

considered. In particular, we need that mTE

(
θ̂(X1:TE

) − θ0
) d→ G∞, which –

along with the assumptions on gradient and Hessian – is certainly satisfied
under stationarity. However, in general the assumption will be far too strict;
here we use it simply to have a clear, interpretable assumption rather than a list
of high-level assumptions that are difficult to interpret. The weak dependence
condition in 3.c is met by numerous Markov processes. Intuitively, (X1, . . . , XTE

)
and (XTP

, . . . , XT ) approach independence as their temporal distance TP − TE

increases. We illustrate a particular case in the Remark 4.

Remark 4. Suppose {Xt} is strong mixing (cf. [15]) and let α denote the strong
mixing coefficient. For h ∈ BL and for all ε > 0, Markov’s and Ibragimov’s
inequality (cf. [21, Theorem A.5]) imply

P

[∣∣∣∣ ∫ h d
(
GSPL

TE
(·|ITP :T )−GSPL

TE

)∣∣∣∣ ≥ ε

]
≤ 1

ε
E

∣∣∣∣ ∫ h d
(
GSPL

TE
(·|ITP :T )−GSPL

TE

)∣∣∣∣
=

1

ε
Cov

[
h
(
mTE

(
θ̂(X1:TE

)− θ0
))

, sign
{∫

h d
(
GSPL

TE
(·|ITP :T )−GSPL

TE

)}]
≤ 4||h||BL

ε
α(TP − TE) .

Taking TP − TE → ∞ such that α(TP − TE) → 0 verifies Assumption 3.c.

Assumptions 1 to 3 are met by the AR and GARCH processes considered in
Examples 1 and 2 (with 1.e holding for bounded sequences). A detailed verifica-
tion of each assumption under mild conditions is provided in [6]. We state the
following theorem.

Theorem 1 (Merging of 2IP and SPL). Under Assumptions 1 to 3, F 2IP
T (·|I1:T )

and FSPL
T (·|ITP :T ) merge in probability.
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Having established asymptotic closeness between the conditional cdfs
F 2IP
T (·|I1:T ) and FSPL

T (·|ITP :T ), we now turn to the construction of asymp-
totic intervals.

3.3. Interval construction

Henceforth, for any cdf F we write F−1 to denote its generalized inverse given
by F−1(u) = inf

{
τ ∈ R : F (τ) ≥ u

}
. A confidence interval for ψT+1 based on

quantiles of (3.2) or (3.3) is typically infeasible as these cumulative distribution
functions are unknown for finite T . Here, they are infeasible because roughly
they are the distribution functions of some weights which induce merging mul-
tiplied by mT

(
θ̂(X1:T ) − θ0

)
and mTE

(
θ̂(X1:TE

) − θ0
)
, respectively, where, in

general, the distributions of mT

(
θ̂(X1:T ) − θ0

)
and mTE

(
θ̂(X1:TE

) − θ0
)
are

unknown in finite samples. Since these are the only unknown distributions an
asymptotic approximation can be based on G∞ with merging induced by the
non-convergent weights. In general, we also need to estimateG∞; see Examples 4
and 5 below for common approaches. We denote estimators of (3.2) and (3.3)

resulting from this approximation by F̂ 2IP
T (·) and F̂SPL

T (·), respectively. In Sec-
tion 3.4, we provide explicit expressions when G∞ is multivariate normal. For
the general construction, we refer to relations (A.6) and (A.7) in Appendix A
and the explanations preceding these relations. Based on the 2IP approach, we
consider an interval of the form

I2IPγ (x1:T ,Y1:T )

=

[
ψ̂T+1(x1:T ,Y1:T )−

F̂ 2IP
T

−1

(1− γ2)

mT
, ψ̂T+1(x1:T ,Y1:T )−

F̂ 2IP
T

−1

(γ1)

mT

]
(2.19)
=

[
ψ̂2IP
T+1|1:T − F̂ 2IP

T

−1

(1− γ2)

mT
, ψ̂2IP

T+1|1:T − F̂ 2IP
T

−1

(γ1)

mT

]
, (3.4)

where γ1, γ2 ∈ [0, 1) satisfy γ = γ1 + γ2. We typically take γ1 = γ2 = γ/2 such
that the interval is equal-tailed. Similarly, we construct the following sample
split interval:

ISPL
γ (xc

TP :T ,X1:TE
)

=

[
ψ̂T+1(x

c
TP :T ,X1:TE

)− F̂SPL
T

−1

(1− γ2)

mTE

, ψ̂T+1(x
c
TP :T ,X1:TE

)− F̂SPL
T

−1

(γ1)

mTE

]
(2.21)
=

[
ψ̂SPL
T+1|TP :T − F̂SPL

T

−1

(1− γ2)

mTE

, ψ̂SPL
T+1|TP :T − F̂SPL

T

−1

(γ1)

mTE

]
. (3.5)

To achieve correct coverage, we need that F̂ 2IP
T (·) and F 2IP

T (·|I1:T ) merge in
probability and likewise for SPL. A sufficient condition for this in our setting is
that we can consistently estimate the asymptotic distribution of the parameter



2534 E. Beutner et al.

estimator, G∞, by an appropriate estimator. This is formulated in Assumption 4
below.

Assumption 4 (CDF Estimator). Let ĜT (·) denote a random (r-dimensional)

cdf as a function of X1:T , used to estimate G∞. Then
∫
h dĜT (·)

p→
∫
h dG∞

as T → ∞ for all h ∈ BL.

Although we did not explicitly specify in Assumption 4 the dependence of
ĜT on X1:T , it should be understood to hold for any subsample of X1:T whose
size goes to infinity. The verification of Assumption 4 is a standard step in
asymptotic analysis. The two examples below provide common methods for
verifying Assumption 4.

Example 4. Suppose that G∞ belongs to some parametric family {Gθ,ξ|θ ∈
Θ, ξ ∈ Ξ}. Then, given some consistent estimators θ̂(X1:T ) and ξ̂(X1:T ) for
θ0 and ξ0 respectively, it follows from the continuous mapping theorem that
ĜT = Gθ̂(X1:T ),ξ̂(X1:T ) satisfies Assumption 4 if Gθ,ξ is continuous in θ and ξ.

Example 5. If ĜT is based on a consistent bootstrap procedure for G∞ then
Assumption 4 clearly holds.

The following theorem states the intervals’ asymptotic validity.

Theorem 2 (Asymptotic Coverage).

1. (a) Under Assumption 1, 2 and 4, F 2IP
T (·|I1:T ) and F̂ 2IP

T (·) merge in
probability.

(b) If in addition F̂ 2IP
T (·) is stochastically uniformly equicontinuous, then

P

[
I2IPγ (x1:T ,Y1:T ) � ψT+1

∣∣∣I1:T ] p→ 1− γ . (3.6)

2. (a) Under Assumption 1, 3 and 4, FSPL
T (·|ITP :T ) and F̂SPL

T (·) merge in
probability.

(b) If in addition F̂SPL
T (·) is stochastically uniformly equicontinuous,

then

P

[
ISPL
γ (xc

TP :T ,X1:TE
) � ψT+1

∣∣∣ITP :T

]
p→ 1− γ . (3.7)

However, the standard approach, motivated by I2IPγ as in (3.6), computes

an interval of the form ISTA
γ (x1:T ,x1:T ) = I2IPγ (x1:T ,x1:T ) as only one sam-

ple realization is available. This, of course, strongly violates the independence
assumption of {Xt} and {Yt}. Specifically, replacing Y1:T by X1:T in equa-
tion (3.4), leads to

ISTA∗
γ (x1:T ,X1:T )

=

[
ψ̂T+1(x1:T ,X1:T )−

F̂STA
T

−1

(1− γ2)

mT
, ψ̂T+1(x1:T ,X1:T )−

F̂STA
T

−1

(γ1)

mT

]
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(2.13)
=

[
ψ̂STA∗
T+1|1:T − F̂STA

T

−1

(1− γ2)

mT
, ψ̂STA∗

T+1|1:T − F̂STA
T

−1

(γ1)

mT

]
, (3.8)

where F̂STA
T (·) is defined in relation (A.8) in Appendix A and the text pre-

ceding it. Whereas it is difficult to justify a conditional confidence interval like
ISTA
γ (x1:T ,X1:T ) directly due to the lack of randomness, we can provide a justifi-
cation by characterizing how closely the interval resembles the SPL interval. We
establish the asymptotic equivalence, defined in terms of location and (scaled)
length, between the two intervals in the following theorem. Note that, as our
characterization of equivalence is probabilistic, we need to introduce the “doubly
random” versions of the STA and SPL estimators, where the sample we condi-
tion on is considered random. These estimators are denoted as ψ̂T+1(X1:T ,X1:T )

and ψ̂T+1(X
c
TP :T ,X1:TE

) respectively.

Theorem 3 (Asymptotic Equivalence Confidence Intervals).

1. (Location) If Assumptions 1–3 hold, then

ψ̂T+1(X1:T ,X1:T )− ψ̂T+1(X
c
TP :T ,X1:TE

)
p→ 0.

2. (Length) Under the assumptions of Theorem 1 and 2 and F̂SPL
T

−1

(·) being
stochastically pointwise continuous at u = γ1, 1− γ2, we have

F̂STA
T

−1

(u)− F̂SPL
T

−1

(u)
p→ 0 . (3.9)

The first implication states that the locations of the two intervals coincide
asymptotically. The second statement establishes asymptotic closeness of the se-
lected quantiles such that the scaled lengths of the intervals in (3.5) and (3.8) co-
incide asymptotically; recall that mT /mTE

converges to 1. As such, our sample-
split interval coincides asymptotically with the standard interval, meaning that
the standard interval can be substituted for an (asymptotically) equivalent in-
terval which has a formal justification in terms of conditional coverage. As such,
this provides a justification for the intervals commonly constructed in practice
without having to rely on the two-independent-processes assumption.

3.4. Interval construction under normality

In this subsection we present intervals of reduced form and simplified theoretical
results under asymptotic normality of the parameter estimator.

Assumption 5 (Normality). Let G∞ be the cdf of the N(0,Υ0) distribution
with Υ0 = Υ(θ0, ξ0) and assume there exist Υ̂(X1:T ) converging in probability
to Υ0.

Usually, the covariance estimator is obtained by inserting consistent esti-
mators for θ0 and ξ0 into Υ0. Following the plug-in principle, we estimate
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F 2IP
T (·|I1:T ) by a normal distribution with expected value 0 and variance

υ̂2IP
T =

∂ψT+1(x1:T ; θ̂(Y1:T ))

∂θ′
Υ̂(Y1:T )

∂ψT+1(x1:T ; θ̂(Y1:T ))

∂θ

such that F̂ 2IP
T (·) = Φ

(
· /

√
υ̂2IP
T

)
. Then, the interval in (3.4) simplifies to

I2IPγ (x1:T ,Y1:T )

=

[
ψ̂2IP
T+1|1:T −

√
υ̂2IP
T Φ−1(1− γ2)

mT
, ψ̂2IP

T+1|1:T −

√
υ̂2IP
T Φ−1(γ1)

mT

]
.

(3.10)

Similarly, for the sample-split approach we consider F̂SPL
T (·) = Φ

(
· /

√
υ̂SPL
T

)
with υ̂SPL

T =
∂ψT+1(x

c
TP :T ;θ̂(X1:TE

))

∂θ′ Υ̂(X1:TE
)
∂ψT+1(x

c
TP :T ;θ̂(X1:TE

))

∂θ′ such that (3.5)
reduces to

ISPL
γ (xTP :T ,X1:TE

)

=

[
ψ̂SPL
T+1|TP :T −

√
υ̂SPL
T Φ−1(1− γ2)

mTE

, ψ̂SPL
T+1|TP :T −

√
υ̂SPL
T Φ−1(γ1)

mTE

]
.
(3.11)

In Appendix B we show that if the variance estimator is bounded away from

zero in probability, e.g. 1/υ̂2IP
T = Op(1), then F̂ 2IP

T (·) is stochastically uniform
equicontinuous. Therefore, the asymptotic validity of both intervals can be de-
duced from Theorem 2.

Corollary 1 (Asymptotic Coverage under Normality).

1. (a) Under Assumption 1, 2 and 5, F 2IP
T (·|I1:T ) and Φ

(
· /

√
υ̂2IP
T

)
merge

in probability.

(b) If in addition 1/υ̂2IP
T = Op(1), then

P

[
I2IPγ (x1:T ,Y1:T ) � ψT+1

∣∣∣I1:T ] p→ 1− γ.

2. (a) Under Assumption 1, 3 and 5, FSPL
T (·|ITP :T ) and Φ

(
· /

√
υ̂SPL
T

)
merge in probability.

(b) If in addition 1/υ̂SPL
T = Op(1), then

P

[
ISPL
γ (xc

TP :T ,X1:TE
) � ψT+1

∣∣∣ITP :T

]
p→ 1− γ.

Bounding the variance estimator away from zero in probability to establish
that the conditional coverage probability converges to 1 − γ in probability has
intuitive appeal: as υ̂2IP

T approaches zero, N
(
0, υ̂2IP

T

)
becomes degenerate while

the interval in (3.10) collapses (similar for SPL).
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Table 1

AR models considered in the simulation study

DGP β1 β2 β3 β4 β5 β6 β7 β8

A 0.90 0.00 0.00 0.00 0.00 0.00 0.00 0.00
B 0.20 −0.50 0.40 0.40 0.00 0.00 0.00 0.00
C 1.20 −0.96 0.77 −0.61 0.49 −0.39 0.31 −0.25
D 0.80 −0.64 0.51 −0.41 0.33 −0.26 0.21 −0.17

For the standard interval, replacing Y1:T by X1:T in (3.10) leads to

ISTA∗
γ (x1:T ,X1:T )

=

[
ψ̂STA∗
T+1|TP :T −

√
υ̂STA
T Φ−1(1− γ2)

mT
, ψ̂STA∗

T+1|TP :T −

√
υ̂STA
T Φ−1(γ1)

mT

]
(3.12)

with υ̂STA
T = ∂ψT+1(x1:T ;θ̂(X1:T ))

∂θ′ Υ̂(Xn)
∂ψT+1(x1:T ;θ̂(X1:T ))

∂θ . In Appendix B we
prove that υ̂SPL

T is bounded in probability, which in turn implies that the quan-

tile function F̂SPL
T

−1

(·) =
√

υ̂SPL
T Φ−1(·) is stochastically pointwise equicon-

tinuous at any u ∈ R. Hence, Theorem 3 applies. Whereas the first statement
of the theorem remains unaffected, its second statement reads as follows under
normality.

Corollary 2 (Length under Normality). Under the assumptions of Theorem 1

and Corollary 1, we have
√
υ̂STA
T Φ−1(u)−

√
υ̂SPL
T Φ−1(u)

p→ 0 for u = γ1, 1−γ2.

4. Simulation-based evaluation of sample-split intervals

In this section we consider the actual implementation of the sample-split inter-
vals in practice, by comparing their performance to the standard interval (based
on the 2IP justification) in a Monte Carlo simulation study.

4.1. Conditional coverage

We first investigate conditional coverage. We consider the DGP

xt = μt + εt, μt =

p∑
j=1

βjxt−j , t = 1, . . . , T, (4.1)

where we take T = 50, 75, 100, 150, 200. For the AR parameters we consider
a large set of models, most which are taken from Ng and Perron [34]. Several
of these models are truncated AR approximations to ARMA(1,1) models, see
Section 3 in [34]. We consider a selection of those models here as given in Table 1
(full results are available on request).
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Let β̂(x1:TE
) = (β̂1(x1:TE

), . . . , β̂p(x1:TE
))′ denote the least squares estimate

of (4.1) based on the sample x1:TE
. We then consider

μ̂T+1 =

p∑
j=1

β̂j(X1:TE
)xT−j+1 = x′

Tp:T β̂(x1:TE
)

giving rise to the confidence interval

CT+1 =

⎡⎣μ̂T+1 −

√
x′
TP :T Υ̂(x1:TE

)xTP :TΦ
−1(1− γ/2)

√
TE

, (4.2)

μ̂T+1 −

√
x′
TP :T Υ̂(x1:TE

)xTP :TΦ
−1(γ/2)

√
TE

⎤⎦ , (4.3)

where Υ̂(x1:TE
) is the standard covariance matrix estimate of the least squares

estimator.
Given the finite autoregressive order, we always take TP = T − p+1, but we

vary TE . For the standard interval we take TE = T , while for the sample split in-
tervals we vary TE as TE = T −p−x

√
T/50 for a grid of values x = 0, 2, . . . , 20.

This setup allows us to evaluate the trade-off between using more observations
for estimation (TE) and creating a large enough gap between estimation and
conditioning samples (TP − TE). We increase the gap for larger sample sizes
by multiplying x with

√
T/50, where the factor 50 is simply chosen such that√

T/50 = 1 for our smallest sample size T = 50. The
√
T factor incorporates

that with increasing sample size one automatically has more observations avail-
able for estimation, and thus the gap TP − TE can be widened at reduced cost.
While the square root is not guided by theory, we consider it as it implies a
compromise between using the additional observations for either estimation or
increasing the gap. Moreover, as we consider a grid of values for x anyway, the
results are informative for more general choices as well.

To simulate conditional coverage, we simulate (4.1) backwards, fixing the final
p observations by drawing them from the stationary distribution once, and then
keeping these values over all 10,000 simulations. As we take εt ∼ i.i.d.N(0, 1),
backwards simulation yields the same process as standard forward simulation.
To investigate the sensitivity to the values of final p observations, we repeat the
simulations 10 times, thus in total considering 10×10,000 simulations per DGP.
We take γ = 0.05.

Figure 1 reports the mean coverage, averaged over the 10 sets of simulations.
On the horizontal axis we report the different intervals. The standard interval is
denoted as STA while the SPL methods for the grid of x are denoted as SPLx.
Overall we can see that for low order AR models, as expected the standard
method performs well. The split method becomes less accurate when increasing
Tp−TE , presumably because using fewer observations decreases the accuracy of
the asymptotic Gaussian approximation. Indeed, the deterioration in coverage
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is mostly visible for the small sample sizes. However, for AR models of higher
order, where the “overlap” between estimation and prediction samples becomes
larger, the SPL intervals outperform the standard interval. The performance is
still sensitive to the split point, with small x the preferred choice, in particular
for small sample sizes.

Figure 2 goes into more detail about the role of the observations conditioned
on by displaying the median as well as minimum and maximum coverage over
the 10 sets of simulated conditioned observations. While in general the patterns
agree with the graphs for the mean coverage, these figures uncover some inter-
esting insights. We see that in particular for higher order DGPs, the conditional
coverage of the standard interval can be off by quite a large amount, dropping
to as far as 0.4 for DGP D. While this only happens for an occasional value
of xTP :T , this is a remarkable result in the light of conditional coverage. In ad-
dition, the SPL intervals do not suffer from the same flaw for any value of x,
making them considerably more reliable.

Finally, we investigate the average length of the intervals in Figures 3.3 As
would be expected, the smaller TE , the wider the interval. The increase is rather
moderate however. Moreover, there are a few instances where SPL with x = 0
actually gives shorter intervals than the standard interval.

Concluding, we find that the sample split intervals are more reliable than the
standard interval, in particular when conditional coverage is concerned, provided
TE is kept large (such that TP − TE is small). As moreover the split intervals
are not much wider than the standard intervals, if at all, their use in practice is
recommended.

4.2. Overall coverage

In this section we report results obtained from simulating (4.1) forwards to
estimate

P(CT+1 � μT+1) =

∫
P(CT+1 � μT+1|Xt = xT , . . . , XT−p+1 = xT−p+1)

× fXT ,...,XT−p+1(xT , . . . , xp) dxT . . . dxT−p+1,

where μT+1 and CT+1 are as in (4.1) and (4.2), respectively, and fXT ,...,XT−p+1

denotes the joint density of XT , . . . , XT−p+1. When estimating this quantity we
are not bound to consider normally distributed errors as in the previous section.
Therefore, in our simulations we used gamma distributed errors shifted such that
their expectations equal zero. Additionally, to see if the results are sensitive to
the distribution of the error terms we ran some simulations with errors that
follow a mixture distribution. Moreover, to make sure that the results are not
driven by the estimation method we estimated the parameters for the results of
this section by MLE. All results are based on 100,000 simulations and the level

3Medians, minima and maxima show the same patterns as the means, and are therefore
not shown here.
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always equals 95%. As in the previous subsection we always took TP = T−p+1.
For an AR(1) the coverage is even in small samples for both STA and sample-
split close to the level with a mild dependency on the AR parameter; see Table 2
in Appendix C. On average, for T = 50 as well as TE = 40 and TE = 45 the
STA intervals perform slightly better with the advantage of STA being smaller
for TE = 45. These conclusions also hold for AR(2) processes; see Table 3 in
Appendix C. The picture changes already for an AR(4). For all combinations of
T and TE with T − TE ranging between 5, 10 and 15 the sample-split intervals
perform better. Clearly, their advantage gets smaller as T − TE increases; see
Table 4 in Appendix C. The same pattern but with a larger numerical advantage
in terms of coverage for SPL intervals is observed in Tables 5 and 6 (also in
Appendix C) for the AR(8) processes from Table 1. Presumably, the better
performance of the SPL intervals for the AR(4) and the AR(8) processes is a
result of multiplying the estimators of the AR coefficients which depend on the
entire sample by the most recent observations which may move the true finite
sample distribution away from the approximating normal distribution of the AR
coefficient estimators. This is not the case for the sample split approach so that
the normal approximation may work better although we use a smaller sample
to estimate.

5. Prediction intervals

The preceding sections have focused purely on the construction of conditional
confidence intervals to account for parameter uncertainty. Regarding prediction,
a second source of uncertainty arises, that corresponds to the model’s innova-
tion process. In this setting, parameter estimation is typically disregarded in
textbooks as the stochastic fluctuation stemming from the estimation proce-
dure is generally dominated by the stochastic fluctuation of the innovations.
Although the resulting prediction intervals may be asymptotically valid, they
are typically characterized by under-coverage in finite samples. In response, [35]
introduce the concept of asymptotic pertinence to evaluate distribution approx-
imations that account for the two sources of randomness, innovation and pa-
rameter estimation uncertainty, according to their general orders of magnitude.
Whereas [30] and [41] study properties of the unconditional law of the forecast
error, we focus on its conditional distribution to conform with the relevance
property of [25]. The fundamental issue also arises when considering prediction
if one attempts to account for parameter uncertainty. To illustrate this point,
we revisit the introductory examples and write ∗ to denote the convolution
operator.4

Example 1. (continued) Prediction intervals for the AR are often constructed
around the point estimate for the conditional mean. The conditional distribution

4For independent variables X and Y with X ∼ FX , Y ∼ FY and Z = X + Y ∼ FZ , we
write FZ = FX ∗ FY to denote FZ(z) =

∫ z
−∞ FX(z − y)dFY (y).
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of the forecast error decomposes into

P
[
XT+1 − β̂(X1:T )XT ≤ ·|XT = xT

]
= P

[
βXT − β̂(X1:T )XT ≤ ·|XT = xT

]
∗ P

[
εT+1 ≤ ·

]
, (5.1)

corresponding to estimation and innovation uncertainty, respectively. As argued
above, an approximation of P

[
βXT − β̂(X1:T )XT ≤ ·|XT = xT

]
appears rather

cumbersome. In the special case of εt
iid∼ N

(
0, σ2

ε

)
, [40, Theorem 3] gives an

approximation for (5.1) based on Edgeworth expansions.

Example 2. (continued) Suppose we are interested in providing a prediction
interval for X2

T+1 in the GARCH(1,1). Conditioning on X1:T = x1:T , a natural
estimate of X2

T+1 is σ̂2 STA
T+1|1:T as defined in (2.17), since σ2

T+1|1:T is its expected
value given information up to time T . As

P
[
X2

T+1 − σ̂2 STA∗
T+1 ≤ ·|X1:T = x1:T

]
=P

[
σ2
T+1 − σ̂2 STA∗

T+1 ≤ ·|X1:T = x1:T

]
∗ P

[
σ2
T+1|1:T (ε

2
T+1 − 1) ≤ ·

]
, (5.2)

where σ̂2 STA∗
T+1 is defined in (2.18), the desired prediction interval, say JSTA

γ ,
leads to a sensible probabilistic statement due to variability in ε2T+1:

P

[
X2

T+1 ∈ JSTA
γ (X1:T ,X1:T )

∣∣∣X1:T = x1:T

]
=
(≈)

1− γ . (5.3)

However, it cannot incorporate parameter uncertainty either, since the con-
ditional distribution P

[
σ2
T+1 − σ̂2 STA∗

T+1 ≤ ·|X1:T = x1:T

]
= P

[
σ2
T+1|1:T −

σ̂2 STA
T+1|1:T ≤ ·

]
is degenerate.

In his textbook [39] resorts to a Bayesian-akin approach to avoid the funda-
mental issue in forecasting. He argues that θ, although “fixed at the estimation
stage ... is viewed best as a random variable at the forecasting stage” (p. 389).
Consequently, he assigns some posterior distribution to θ motivated by an unin-
formed prior. Treating θ not fixed but random, the fundamental issue does not
arise, however combining a frequentist view with a Bayesian method does not
seem to be coherent.

[2] require the existence of a transitive statistic U = U(X1:T ) of fixed low
dimension to establish conditional independence between the sample X1:T and
their considered future random variable given U = u. [43], [44], [45]), [25], [26],
[27], and [28]) extend their approach and derive improved prediction intervals.
Although these methods absorb an additional O(T−1) term in the associated
conditional coverage probability, there are several drawbacks associated with
them: the innovation distribution needs typically be specified (e.g. Gaussian),
the results apply only to a limited set of estimators (e.g. maximum likelihood)
and their framework can only incorporate finite autoregressive components (e.g.
AR(p)).

Assuming two independent processes with the same stochastic structure, us-
ing one for prediction and one for the estimation of the parameters, alleviates
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the fundamental issue faced in the continued Examples 1 and 2. As the con-
ditional distributions of the 2IP and SPL estimators merge in probability by
Theorem 1, the 2IP assumption can be avoided by following a sample-split ap-
proach as described in Section 2.3.

6. Conclusion

In the paper at hand, we study the construction of confidence intervals for con-
ditional objects such as conditional means or conditional variances, focusing on
the conceptual issue that arises in the process of taking parameter uncertainty
into account. It stems from the fact that on one hand one must condition on
the sample as the past informs about the present and future, yet on the other
hand one must allow the data up to now to be treated as random to account
for estimation uncertainty. Assuming two independent processes with the same
stochastic structure, where one is used for conditioning and one for the esti-
mation of the parameters, bypasses this issue, but the assumption itself can
generally not be justified in applications. To avoid this assumption, we propose
a solution based on a simple sample-split approach, that requires a much more
realistic weak dependence condition instead. To acknowledge that the condi-
tional quantities vary over time, we employ a merging concept generalizing the
notion of weak convergence. The conditional distributions of the sample-split es-
timator and the estimator based on the two-independent-processes assumption
are shown to merge in probability under mild conditions. The corresponding
sample-split intervals are shown to coincide asymptotically with the intervals
commonly constructed by practitioners, which provides a novel and theoret-
ically satisfactory justification for commonly constructed confidence intervals
for conditional objects, applicable to a wide class of time series models, in-
cluding ARMA and GARCH-type models. Next to the theoretical justification
sample-split intervals provide for the commonly used intervals, the simulation
results in Section 4 suggest that sample-split intervals can also be superior in
finite samples.

One limitation to our approach is that we restrict ourselves to univariate
time series and objects of interests. At the expense of more involved notation
this could be readily extended to multivariate time series and objects of inter-
ests. A second, and more restrictive, limitation is our weak dependence assump-
tion needed to achieve asymptotic independence between the two subsamples,
which for instance rules out application to integrated processes. Given the fun-
damental role of this assumption in our setup, it appears difficult to generalize
this. However, this also casts further doubt on the two-independent-processes
assumption as validation for confidence intervals constructed for such persis-
tent processes. A case-by-case treatment, as for instance done by [20] for near
unit root processes and [41] for explosive processes, appears to be necessary
in such cases, and standard confidence intervals should be treated with cau-
tion.
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Appendix A: Main asymptotic results

We only present the proofs of the leading results here. The proofs of the lemmas
and corollaries can be found in Appendix B. Before going to the proofs, we first
introduce the following auxiliary metrics that will be encountered in the proofs.
For arbitrary cdfs F and G on R, the Kolmogorov and Lévy metric are

dK(F,G) = sup
τ∈R

∣∣F (τ)−G(τ)
∣∣

dL(F,G) = inf
{
ξ > 0 : G(τ − ξ)− ξ ≤ F (τ) ≤ G(τ + ξ) + ξ ∀τ ∈ R

}
.
(A.1)

Moreover, let Z∞ ∼ G∞ (with G∞ given in Assumption 1.a) be defined on some

probability space (Ω̆, F̆ , P̆) and define the product measure P̄ = P × P̆ on the
space Ω × Ω̆ with σ-field, generated by the measurable rectangles A × Ă with
A ∈ F and Ă ∈ F̆ (cf. [7, Theorem 18.2]). Notice that Z∞ is independent of
{Xt} and {Yt} by construction.

In the proofs we often consider the “doubly random” versions of estimators
and intervals, where the first function argument, the sample to condition on,
is considered random. Instead, we account for the conditioning in the prob-
ability statements. This notation is more convenient for proving the results,
as we need them to hold for “all sequences x1:T occurring with high proba-
bility”, which is much easier to quantify by treating these sequences as ran-
dom. Therefore we use notations such as the unconditional estimators ψ̂2IP

T+1 =

ψ̂T+1(X1:T ,Y1:T ) and ψ̂SPL
T+1 = ψ̂T+1(X

c
TP :T ,X1:TE

), as well as their correspond-

ing intervals I2IP (X1:T ,Y1:T ) and ISPL(Xc
TP :T ,X1:TE

); also see (3.2)–(3.3) and
the remarks above Theorem 3.

A.1. Lemmas

Lemma 1. Let

R2IP
T := mT

(
ψ̂T+1(X1:T ,Y1:T )− ψT+1

)
− ∂ψs

T+1(X1:T , θ0)

∂θ′
mT

(
θ̂(Y1:T )− θ0

)
(A.2)

RSPL
T := mTE

(
ψ̂T+1(X

c
TP :T ,X1:TE )− ψT+1

)
−

∂ψs
T+1(X

c
TP :T ; θ0)

∂θ′
mTE

(
θ̂(X1:TE )− θ0

)
. (A.3)

1. If Assumptions 1.a, 1.b, 1.d, 1.e and 2.a hold, then R2IP
T is op(1);

2. if Assumptions 1.a, 1.b, 1.d, 1.e and 3.a hold, then RSPL
T is op(1).

Lemma 2. Let GSPL
TE

(·|ITP :T ) be as given in Assumption 3.c and denote the

conditional cdf of Z2IP
T := mT

(
θ̂(Y1:T )− θ0

)
given I1:T by G2IP

T (·|I1:T ).

1. Under Assumptions 1.a and 2,
∫
h dG2IP

T (·|I1:T )
p→

∫
h dG∞ ∀h ∈ BL;

2. Under Assumptions 1.a and 3,
∫
h dGSPL

TE
(·|ITP :T )

p→
∫
h dG∞ ∀h ∈ BL.
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Lemma 3. Let {GT } be a sequence of cdfs and G be a (non-random) cdf on

(Rr, || · ||). If
∫
hdGT

p→
∫
hdG for all h ∈ BL, then suph∈H

∣∣ ∫ hd(GT −G)
∣∣ p→

0, where H =
{
h : Rr → R : ||h||BL ≤ 1

}
.

Lemma 4. Assume that the Rr-valued random variable wT is Op(1) and IT -
measurable. Further, suppose the real-valued random variable RT is op(1) and

the Rr-valued random variable ZT satisfies P̄[ZT ≤ ·|IT ]
p→ G∞. Then, the two

sequences of conditional cdfs P̄[w′
TZT +RT ≤ ·|IT ] and P̄[w′

TZ∞ ≤ ·|IT ] merge
in probability.

Lemma 5. Let ε > 0 and F and G be cdfs on R with G(τ − ε) − ε ≤ F (τ) ≤
G(τ + ε) + ε for all τ ∈ R. Then F−1(u− ε)− ε ≤ G−1(u) ≤ F−1(u+ ε) + ε for
all u ∈ (ε, 1− ε).

Lemma 6. Suppose {FT } and {GT } are sequences of conditional cdfs with

dL(FT , GT )
p→ 0 as T → ∞. Further, assume that GT is stochastically uniformly

equicontinuous: for every ε, η > 0, there exist δ = δ(ε, η) > 0 and T̄ = T̄ (ε, η)
such that P

[
sup
τ∈R

sup
τ ′∈R:|τ−τ ′|<δ

|GT (τ
′) − GT (τ)| > ε

]
< η for all T ≥ T̄ . Then,

dK(FT , GT )
p→ 0.

Lemma 7. If the sequences of conditional cdfs {FT } and {GT } merge in prob-
ability and GT is stochastically uniformly equicontinuous, then P

[
G−1

T (γ1) ≤
MT ≤ G−1

T (1− γ2)
∣∣IT ] p→ 1− γ1 − γ2 whenever 0 ≤ γ1 ≤ 1− γ2 ≤ 1, where the

random variable MT given the σ-algebra IT has the cdf FT .

Lemma 8. Suppose {FT } and {GT } are sequences of conditional cdfs with

dL(FT , GT )
p→ 0 as T → ∞. Further, assume that G−1

T is stochastically point-
wise equicontinuous at u ∈ (0, 1): for all ε, η > 0, there exist δ = δ(ε, η, u) > 0

and T̄ = T̄ (ε, η, u) such that P

[
sup

|u−v|<δ

∣∣G−1
T (v) − G−1

T (u)
∣∣ > ε

]
< η for all

T ≥ T̄ . Then
∣∣F−1

T (u)−G−1
T (u)

∣∣ p→ 0.

A.2. Proofs of theorems

Proof of Theorem 1. According to our Definition 5 we need to show that

dBL

(
F 2IP
T (·|I1:T ), FSPL

T (·|ITP :T )
)

P→ 0.

In order to so, we now first introduce some auxiliary conditional distribution

functions. Let w2IP
T equal the transpose of

∂ψs
T+1(X1:T ;θ0)

∂θ and wSPL
T the trans-

pose of
∂ψs

T+1(X
c
TP :T ;θ0)

∂θ and set with Z∞ as defined just below Equation (A.1)

F 2IP
∞,T (τ |I1:T ) :=P̄

[
w2IP

T Z∞ ≤ τ
∣∣I1:T ] (A.4)

FSPL
∞,T (τ |ITP :T ) :=P̄

[
wSPL

T Z∞ ≤ τ
∣∣ITP :T

]
, (A.5)
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the conditional cdfs of w2IP
T Z∞ given I1:T and wSPL

T Z∞ given ITP :T , respec-
tively. Note that (A.4) and (A.5) can be considered to be the ‘conditional

merging limits’ of w2IP
T mT (θ̂(X1:T ) − θ0) and wSPL

T mTE
(θ̂(X1:TE

) − θ0) given

I1:T and ITP :T respectively, because the distributions of mT (θ̂(X1:T )− θ0) and

mTE
(θ̂(X1:TE

) − θ0) will converge to the distribution of Z∞ which has the cu-
mulative distribution function G∞. On the other hand, w2IP

T and wSPL
T do not

converge. We therefore indexed the ‘merging limits’ in (A.4) and (A.5) by ∞
and T where the former subscript should remind the reader of the fixed compo-
nent, i.e. Z∞, of the ‘merging limit’ and the latter subscript of the components
that do not converge at all. The triangle inequality implies

dBL

(
F 2IP
T (·|I1:T ), FSPL

T (·|ITP :T )
)
≤ dBL

(
F 2IP
T (·|I1:T ), F 2IP

∞,T (·|I1:T )
)

︸ ︷︷ ︸
I

+ dBL

(
F 2IP
∞,T (·|I1:T ), FSPL

∞,T (·|ITP :T )
)

︸ ︷︷ ︸
II

+ dBL

(
FSPL
∞,T (·|ITP :T ), F

SPL
T (·|ITP :T

)
︸ ︷︷ ︸

III

.

We now prove that I, II and III converge to zero in probability. To do so we
will make use of the auxiliary lemmas given above. More precisely, for each term
we will verify that the assumptions of Lemma 4 hold which will either be seen
to be a consequence of our assumptions or can be proven to hold by showing
that the conditions of Lemma 1 and Lemma 2 are met.

We start with I and note that mT

(
ψ̂2IP
T+1−ψT+1

)
= w2IP

T Z2IP
T +R2IP

T , where

Z2IP
T = mT

(
θ̂(Y1:T ) − θ0

)
and where R2IP

T was defined in (A.2). The weight
w2IP

T is I1:T measurable and Op(1) by Assumptions 1.c and 1.e, R2IP
T is op(1)

by Lemma 1 and
∫
h dG2IP

T (·|I1:T )
p→

∫
h dG∞ for each h ∈ BL by Lemma 2.

Replacing ZT , RT , wT and IT in Lemma 4 by Z2IP
T , R2IP

T , w2IP
T and I1:T

implies that F 2IP
T (τ |I1:T ) = P̄[w2IP

T Z2IP
T +R2IP

T ≤ τ |I1:T ] and F 2IP
∞,T (τ |I1:T ) =

P̄[w2IP
T Z∞ ≤ τ |I1:T ] merge in probability, i.e. I

p→ 0.
Consider II and rewrite wSPL

T Z∞ = w2IP
T Z∞ + (wSPL

T − w2IP
T )Z∞. The

weight w2IP
T is I1:T measurable and Op(1) by Assumptions 1.c and 1.e, (wSPL

T −
w2IP

T )Z∞ = op(1)Op(1) = op(1) by Assumption 1.e and
∫
h dP̄[Z∞ ≤ ·|I1:T ] =∫

h dG∞ for each h ∈ BL. Replacing ZT , RT , wT and IT in Lemma 4 by Z∞,
(wSPL

T − w2IP
T )Z∞, w2IP

T and I1:T implies that F 2IP
∞,T (τ |I1:T ) = P̄[w2IP

T Z∞ ≤
τ |I1:T ] and FSPL

∞,T (τ |ITp:T ) = P̄[wSPL
T Z∞ ≤ τ |I1:T ] merge in probability, i.e.

II
p→ 0.
Consider III and note that mTE

(
ψ̂SPL
T+1 − ψT+1

)
= wSPL

T ZSPL
T + RSPL

T +

SSPL
T , where ZSPL

T = mTE

(
θ̂(X1:TE

) − θ0
)
, and RSPL

T is as defined in (A.3).
The weight wSPL

T is ITP :T measurable and Op(1) by Assumptions 1.c and 1.e,

RSPL
T is op(1) by Lemma 1 and

∫
hdGSPL

TE
(·|ITP :T )

p→
∫
hdG∞ for each h ∈ BL

by Lemma 2. Replacing ZT , RT , wT and IT in Lemma 4 by ZSPL
T , RSPL

T ,
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wSPL
T and ITP :T implies that FSPL

T (τ |ITP :T ) = P̄[wSPL
T ZSPL

T +RSPL
T +SSPL

T ≤
τ |ITP :T ] and FSPL

∞,T (τ |ITP :T ) = P̄[wSPL
T Z∞ ≤ τ |ITP :T ] merge in probability, i.e.

III
p→ 0.

Proof of Theorem 2. Consider statement 1(a). This time according to our Def-
inition 5 we have to show that

dBL

(
F 2IP
T (·|I1:T ), F̂ 2IP

T (·)
)

P→ 0.

For this, as mentioned a few lines above Equation (3.4), we now first specify

F̂ 2IP
T (·). For this specification it is convenient to introduce the random variable

Ẑ2IP
T whose distribution given the sample approximates the (unknown) distri-

bution of Z2IP
T in the proof of Theorem 1. That is, Ẑ2IP

T follows the mixture

distribution ĜT (·) as a function of Y1:T such that given Y1:T the conditional

distribution of the random variable Ẑ2IP
T is ĜT (·). With the help of Ẑ2IP

T we
now let

F̂ 2IP
T (·) be the conditional cdf of ŵ2IP

T Ẑ2IP
T given H1:T (A.6)

where ŵ2IP
T equals the transpose of

∂ψs
T (X1:T ;θ̂(Y1:T ))

∂θ and H1:T =
σ
(
X1, . . . , XT , Y1, . . . , YT

)
. Then

dBL

(
F 2IP
T (·|I1:T ), F̂ 2IP

T (·)
)
≤dBL

(
F 2IP
T (·|I1:T ), F 2IP

∞,T (·|I1:T )
)

+ dBL

(
F 2IP
∞,T (·|I1:T ), F̂ 2IP

T (·)
)

by the triangle inequality, where F 2IP
∞,T (·|I1:T ) is defined in equation (A.4). In the

proof of Theorem 1, we have shown that F 2IP
T (·|I1:T ) and F 2IP

∞,T (·|I1:T ) merge

in probability under Assumptions 1 and 2. It suffices to prove that F 2IP
∞,T (·|I1:T )

and F̂ 2IP
T (·) merge in probability which will again be shown by verifying the

assumptions of Lemma 4. Write ŵ2IP
T Ẑ2IP

T = w2IP
T Ẑ2IP

T + R̂2IP
T with R̂2IP

T =

(ŵ2IP
T −w2IP

T )Ẑ2IP
T . First, we show R̂2IP

T = op(1). Take an arbitrary ε > 0. We
obtain

P

[∣∣R̂2IP
T

∣∣ ≥ ε
]
≤ P

[∣∣∣∣∣∣∣∣∂2ψs
T+1(X1:T ; θ̇T )

∂θ∂θ′

∣∣∣∣∣∣∣∣∣∣∣∣∣∣θ̂(Y1:T )− θ0

∣∣∣∣∣∣ ∣∣∣∣Ẑ2IP
T

∣∣∣∣ ≥ ε

]

≤ P

[∣∣∣∣∣∣∣∣∂2ψs
T+1(X1:T ; θ̇T )

∂θ∂θ′

∣∣∣∣∣∣∣∣ ∣∣∣∣∣∣θ̂(Y1:T )− θ0

∣∣∣∣∣∣ ∣∣∣∣Ẑ2IP
T

∣∣∣∣ ≥ ε
⋂

θ̇T ∈ V (θ0)

]
+ P

[
θ̇T /∈ V (θ0)

]
≤ P

[
sup

θ∈V (θ0)

∣∣∣∣∣∣∣∣∂2ψs
T+1(X1:T ; θ)

∂θ∂θ′

∣∣∣∣∣∣∣∣ ∣∣∣∣∣∣θ̂(Y1:T )− θ0

∣∣∣∣∣∣ ∣∣∣∣Ẑ2IP
T

∣∣∣∣ ≥ ε

]
+ P

[
θ̇T /∈ V (θ0)

]
,
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where θ̇T lies between θ̂(Y1:T ) and θ0. The first term vanishes as

sup
θ∈V (θ0)

∣∣∣∣∣∣∂2ψT+1(X1:T ;θ)
∂θ∂θ′

∣∣∣∣∣∣ = Op(1) by Assumptions 1.d and 1.e,
∣∣∣∣θ̂(Y1:T )−θ0

∣∣∣∣ =
Op(m

−1
T ) by Assumptions 1.a and 2.a and

∣∣∣∣Ẑ2IP
T

∣∣∣∣ = Op(1) as Ẑ2IP
T ∼ ĜT (·)

and
∫
h dĜT

p→
∫
h dG∞ for all h ∈ BL by Assumptions 2.a and 4. Further,

as θ̂(Y1:T )
p→ θ0 ∈ V (θ0) and V (θ0) is open, we have P

[
θ̇T /∈ V (θ0)

]
→ 0 and

R̂2IP
T = op(1) follows. Moreover, w2IP

T is HT -measurable and Op(1) by Assump-

tions 1.c and 1.e and
∫
h dP̄

[
Ẑ2IP
T ≤ ·|H1:T

]
=

∫
h dĜT

p→
∫
h dG∞ for each

h ∈ BL. Replacing ZT , RT , wT and IT in Lemma 4 by Ẑ2IP
T , R̂2IP

T , w2IP
T and

HT implies that F̂ 2IP
T (·) = P̄[w2IP

T Ẑ2IP
T + R̂2IP

T ≤ ·|H1:T ] and P̄[w2IP
T Z∞ ≤

·|H1:T ] = F 2IP
∞,T (·|I1:T ) merge in probability.

Consider statement 1(b). As F 2IP
T (·|I1:T ) and F̂ 2IP

T (·) merge in probability

and F̂ 2IP
T (·) is assumed to be stochastically uniformly continuous, Lemma 7

applies. Replacing FT , GT , MT and IT by F 2IP
T (·|I1:T ), F̂ 2IP

T (·), mT

(
ψ̂2IP
T+1 −

ψT+1

)
and I1:T , respectively, it follows that

P

[
I2IPγ (X1:T ,Y1:T ) � ψT+1

∣∣∣I1:T ]
= P

[
F̂ 2IP
T

−1

(γ1) ≤ mT

(
ψ̂2IP
T+1 − ψT+1

)
≤ F̂ 2IP

T

−1

(1− γ2)
∣∣∣I1:T ] p→ 1− γ .

Claim 2(a) is similarly proven as 1(a). For the same reasons as in the proof of
part 1(a) we begin by constructing the split analogue of ẐIP

T . Let ẐSPL
T follow

the mixture distribution ĜT (·) as a function of X1:TE
such that given X1:TE

the

conditional distribution of the random variable ẐSPL
T is ĜT (·). Further, let

F̂SPL
T (·) be the conditional cdf of ŵSPL

T ẐSPL
T given I1:T (A.7)

where ŵSPL
T equals the transpose of

∂ψs
T (Xc

TP :T ;θ̂(X1:TE
))

∂θ . Then

dBL

(
FSPL
T (·|ITP :T ), F̂SPL

T (·)
)

≤ dBL

(
FSPL
T (·|ITP :T ), F

SPL
∞,T (·|ITP :T )

)
+ dBL

(
FSPL
∞,T (·|ITP :T ), F̂SPL

T (·)
)
,

where FSPL
∞,T (·|ITP :T ) is defined in equation (A.5). In the proof of Theorem 1,

we have shown that FSPL
T (·|ITP :T ) and FSPL

∞,T (·|ITP :T ) merge in probability

under Assumptions 1 and 3. It suffices to show that FSPL
∞,T (·|ITP :T ) and F̂SPL

T (·)
merge in probability. Once more we use Lemma 4 for this. Write ŵSPL

T ẐSPL
T =

wSPL
T ẐSPL

T +R̂SPL
T with R̂SPL

T = (ŵSPL
T −wSPL

T )ẐSPL
T . First, we show R̂SPL

T =
op(1). Take an arbitrary ε > 0. We obtain

P

[∣∣R̂SPL
T

∣∣ ≥ ε
]
≤ P

[∣∣∣∣∣∣∣∣∂2ψs
T+1(X

c
TP :T ; θ̈T )

∂θ∂θ′

∣∣∣∣∣∣∣∣ ∣∣∣∣∣∣θ̂(X1:TE
)− θ0

∣∣∣∣∣∣ ∣∣∣∣ẐSPL
T

∣∣∣∣ ≥ ε

]
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≤ P

[∣∣∣∣∣∣∣∣∂2ψs
T+1(X

c
TP :T ; θ̈T )

∂θ∂θ′

∣∣∣∣∣∣∣∣ ∣∣∣∣∣∣θ̂(X1:TE
)− θ0

∣∣∣∣∣∣ ∣∣∣∣ẐSPL
T

∣∣∣∣ ≥ ε
⋂

θ̈T ∈ V (θ0)

]
+ P

[
θ̈T /∈ V (θ0)

]
≤ P

[
sup

θ∈V (θ0)

∣∣∣∣∣∣∣∣∂2ψs
T+1(X

c
TP :T ; θ)

∂θ∂θ′

∣∣∣∣∣∣∣∣ ∣∣∣∣∣∣θ̂(X1:TE
)− θ0

∣∣∣∣∣∣ ∣∣∣∣ẐSPL
T

∣∣∣∣ ≥ ε

]
+ P

[
θ̈T /∈ V (θ0)

]
,

where θ̈T lies between θ̂(X1:TE
) and θ0. The first term vanishes as

sup
θ∈V (θ0)

∣∣∣∣∣∣∂2ψs
T+1(X

c
TP :T ; θ)

∂θ∂θ′

∣∣∣∣∣∣ = Op(1)

by Assumptions 1.d and 1.e and
∣∣∣∣θ̂(X1:TE

) − θ0
∣∣∣∣ = Op(m

−1
TE

) by Assump-

tions 1.a and 3.a,
∣∣∣∣ẐSPL

T

∣∣∣∣ = Op(1) as Ẑ
SPL
T ∼ ĜT (·) and

∫
h dĜT

p→
∫
h dG∞

for all h ∈ BL by Assumptions 3.a, 3.b and 4. Further, as θ̂(X1:TE
)

p→ θ0 ∈
V (θ0) and V (θ0) is open, we have P

[
θ̈T /∈ V (θ0)

]
→ 0 and R̂SPL

T = op(1) fol-
lows. Moreover, wSPL

T is I1:T -measurable and Op(1) by Assumptions 1.c and 1.e

and
∫
h dP̄

[
ẐSPL
T ≤ ·|I1:T

]
=

∫
h dĜT (·)

p→
∫
h dG∞ for each h ∈ BL. Replac-

ing ZT , RT , wT and IT in Lemma 4 by ẐSPL
T , R̂SPL

T , wSPL
T and I1:T implies

that F̂SPL
T (·) = P̄

[
wSPL

T ẐSPL
T + R̂SPL

T ≤ ·
∣∣I1:T ] and P̄[wSPL

T Z∞ ≤ ·|I1:T ] =
FSPL
∞,T (·|ITp:T ) merge in probability.
The proof of statement 2(b) is similar to the proof of claim 1(b). Because

FSPL
T (·|ITP :T ) and F̂SPL

T (·) merge in probability and F̂SPL
T (·) is assumed to be

stochastically uniformly continuous, Lemma 7 applies. Replacing FT , GT , MT

and IT by FSPL
T (·|ITP :T ), F̂SPL

T (·), mTE

(
ψ̂SPL
T+1 −ψT+1

)
and ITP :T , respectively,

it follows that

P

[
ISPL
γ (XTP :T ,X1:TE

) � ψT+1

∣∣∣ITP :T

]
= P

[
F̂SPL
T

−1

(γ1) ≤ mTE

(
ψ̂SPL
T+1 − ψn+1

)
≤ F̂SPL

T

−1

(1− γ2)
∣∣∣ITP :T

]
p→ 1− γ .

Proof of Theorem 3. Consider the first statement and expand

ψ̂T+1(X1:T ,X1:T )− ψ̂T+1(X
c
TP :T ,X1:TE

)

=
(
ψ̂T+1(X1:T ,X1:T )− ψT+1

)
−

(
ψ̂T+1(X

c
TP :T ,X1:TE

)− ψT+1

)
.

We show that both terms are op(1). Using (A.3), we have

ψ̂T+1(X
c
TP :T ,X1:TE

)− ψT+1 =
∂ψs

T+1(X
c
TP :T ; θ0)

∂θ′
(
θ̂(X1:TE

)− θ0
)
+m−1

T RSPL
T ,
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where
∂ψs

T+1(X
c
TP :T ;θ0)

∂θ′ = Op(1) by Assumptions 1.c and 1.e and θ̂(X1:TE
) −

θ0 = op(1) by Assumptions 1.a, 3.a and 3.b. Together with RSPL
T = op(1) by

Lemma 1 and m−1
T = o(1), it implies that ψ̂T+1(X

c
TP :T ,X1:TE

)−ψT+1 = op(1).
In addition, replacing Y1:T by X1:T in equation (A.2), we get

ψ̂T+1(X1:T ,X1:T )− ψT+1 =
∂ψs

T+1(X1:T , θ0)

∂θ′
(
θ̂(X1:T )− θ0

)
+m−1

T RSTA
T ,

where RSTA
T is obtained by replacing Y1:T by X1:T in R2IP

T . Note that we have∣∣∣∣∣∣∂ψs
T+1(X1:T ,θ0)

∂θ

∣∣∣∣∣∣ = Op(1) by Assumptions 1.c and 1.e and θ̂(X1:T )−θ0 = op(1)

by Assumption 1.a. Since R2IP
T = op(1) has been shown in Lemma 1 without

using Assumption 2.b, we have RSTA
T = op(1). Together with m−1

T = o(1), it

follows that ψ̂T+1(X1:T ,X1:T )− ψT+1 = op(1) completing the claim.
To prove the second statement we want to apply Lemma 8. The stochastic

continuity assumption of this lemma holds by the assumptions imposed in The-
orem 3. It therefore only remains to show that the first assumption of Lemma 8

holds, i.e. F̂STA
T (·) and F̂SPL

T (·) merge in probability. To show the latter, similar

to the proof of Theorem 2 we let ẐSTA
T follow the mixture distribution ĜT (·)

as a function of X1:T such that given X1:T the conditional cdf of the random
variable ẐSTA

T is ĜT (·). Further, let

F̂STA
T (·) be the conditional cdf of ŵSTA

T ẐSTA
T given I1:T (A.8)

where ŵSTA
T equals the transpose of

∂ψs
T (X1:T ;θ̂(X1:T ))

∂θ . Now we show that F̂STA
T (·)

and F̂SPL
T (·), defined in (A.7), merge in probability. The triangle inequality im-

plies

dBL

(
F̂SPL
T (·), F̂STA

T (·)
)
≤ dBL

(
F̂SPL
T (·), FSPL

T (·|ITP :T )
)

+ dBL

(
FSPL
T (·|ITP :T ), F

2IP
T (·|I1:T )

)
+ dBL

(
F 2IP
T (·|I1:T ), F̂STA

T (·)
)
,

where the first two terms on the right hand side converge in probability to
zero by Theorem 2.2(a) and Theorem 1, respectively. We are left to show that

F 2IP
T (·|I1:T ) and F̂STA

T (·) merge in probability. The triangle inequality implies
that

dBL

(
F 2IP
T (·|I1:T ), F̂STA

T (·)
)
≤dBL

(
F 2IP
T (·|I1:T ), F 2IP

∞,T (·|I1:T )
)

+ dBL

(
F 2IP
∞,T (·|I1:T ), F̂STA

T (·)
)
,

where F 2IP
∞,T (·|I1:T ) is defined in equation (A.4). In the proof of Theorem 1,

we have shown that F 2IP
T (·|I1:T ) and F 2IP

∞,T (·|I1:T ) merge in probability un-

der Assumptions 1 and 2. It suffices to show that F 2IP
∞,T (·|I1:T ) and F̂STA

T (·)
merge in probability. Once more we use Lemma 4 for this. Write ŵSTA

T ẐSTA
T =
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w2IP
T ẐSTA

T + R̂STA
T with R̂STA

T = (ŵSTA
T − w2IP

T )ẐSTA
T (note that, in contrast

to ŵSTA
T , there is no need to introduce wSTA

T as it equals w2IP
T ). First, we show

R̂STA
T = op(1). Take an arbitrary ε > 0. We obtain

P

[∣∣R̂STA
T

∣∣ ≥ ε
]
≤ P

[∣∣∣∣∣∣∣∣∂2ψs
T+1(X1:T ;

...
θ T )

∂θ∂θ′

∣∣∣∣∣∣∣∣ ∣∣∣∣∣∣θ̂(X1:T )− θ0

∣∣∣∣∣∣ ∣∣∣∣ẐSTA
T

∣∣∣∣ ≥ ε

]

≤ P

[∣∣∣∣∣∣∣∣∂2ψs
T+1(X1:T ;

...
θ T )

∂θ∂θ′

∣∣∣∣∣∣∣∣ ∣∣∣∣∣∣θ̂(X1:T )− θ0

∣∣∣∣∣∣ ∣∣∣∣ẐSTA
T

∣∣∣∣ ≥ ε
⋂ ...

θ T ∈ V (θ0)

]
+ P

[...
θ T /∈ V (θ0)

]
≤ P

[
sup

θ∈V (θ0)

∣∣∣∣∣∣∣∣∂2ψs
T+1(X1:T ; θ)

∂θ∂θ′

∣∣∣∣∣∣∣∣ ∣∣∣∣∣∣θ̂(X1:T )− θ0

∣∣∣∣∣∣ ∣∣∣∣ẐSTA
T

∣∣∣∣ ≥ ε

]
+ P

[...
θ T /∈ V (θ0)

]
,

where
...
θ T lies between θ̂(X1:T ) and θ0. The first term vanishes because we have

that sup
θ∈V (θ0)

∣∣∣∣∣∣∂2ψs
T+1(X1:T ;θ)

∂θ∂θ′

∣∣∣∣∣∣ is Op(1) by Assumptions 1.d and 1.e,
∣∣∣∣θ̂(X1:T )−

θ0
∣∣∣∣ = Op(m

−1
T ) by Assumption 1.a and

∣∣∣∣ẐSTA
T

∣∣∣∣ = Op(1) as Ẑ
STA
T ∼ ĜT (·)

p→
G∞ by Assumption 4. Further, as θ̂(X1:T )

p→ θ0 ∈ V (θ0) and V (θ0) is open, we
have P

[...
θ T /∈ V (θ0)

]
→ 0 and R̂STA

T = op(1) follows. Moreover, w2IP
T is I1:T -

measurable and Op(1) by Assumptions 1.c and 1.e and
∫
hdP̄

[
ẐSTA
T ≤ ·|I1:T

]
=∫

h dĜT (·)
p→

∫
h dG∞ for each h ∈ BL. Replacing ZT , RT , wT and IT in

Lemma 4 by ẐSTA
T , R̂STA

T , w2IP
T and I1:T implies that F̂STA

T (·) = P̄[w2IP
T ẐSTA

T +

R̂STA
T ≤ ·|I1:T ] and P̄[w2IP

T Z∞ ≤ ·|I1:T ] = F 2IP
∞,T (·|I1:T ) merge in probability.

Thus, F̂SPL
T (·) and F̂STA

T (·) merge in probability. As mentioned earlier in the

proof under the assumption that F̂SPL
T (·) is stochastically pointwise continuous

at γ1 and 1 − γ2, assertion (3.9) follows by Lemma 8, which completes the
proof.

Appendix B: Additional proofs

B.1. Proofs of lemmas

Proof of Lemma 1. Consider (i). By Assumption 1.b one can write R2IP
T as

follows:

R2IP
T =mT

(
ψs
T+1(X1:T ; θ0)− ψT+1(XT , XT−1, . . . ; θ0)

)︸ ︷︷ ︸
=R2IP

1,T

+
(
θ̂(Y1:T )− θ0

)′ ∂2ψs
T+1(X1:T ; θ̇T )

∂θ∂θ′
mT

(
θ̂(Y1:T )− θ0

)
︸ ︷︷ ︸

=R2IP
2,T

,
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where θ̇T lies between θ0 and θ̂(Y1:T ). By Assumption 1.e, R2IP
1,T is op(1); hence

we are left to show that R2IP
2,T = op(1). Take an arbitrary ε > 0. We obtain

P

[∣∣R2IP
2,T

∣∣ ≥ ε
]
≤ P

[∣∣∣∣∣∣∣∣∂2ψs
T+1(X1:T ; θ̇T )

∂θ∂θ′

∣∣∣∣∣∣∣∣mT

∣∣∣∣∣∣θ̂(Y1:T )− θ0

∣∣∣∣∣∣2 ≥ ε

]

≤ P

[∣∣∣∣∣∣∣∣∂2ψs
T+1(X1:T ; θ̇T )

∂θ∂θ′

∣∣∣∣∣∣∣∣mT

∣∣∣∣∣∣θ̂(Y1:T )− θ0

∣∣∣∣∣∣2 ≥ ε
⋂

θ̇T ∈ V (θ0)

]
+ P

[
θ̇T /∈ V (θ0)

]
≤ P

[
sup

θ∈V (θ0)

∣∣∣∣∣∣∣∣∂2ψs
T+1(X1:T ; θ)

∂θ∂θ′

∣∣∣∣∣∣∣∣mT

∣∣∣∣∣∣θ̂(Y1:T )− θ0

∣∣∣∣∣∣2 ≥ ε

]
+ P

[
θ̇T /∈ V (θ0)

]
.

The first term vanishes since supθ∈V (θ0)

∣∣∣∣∣∣∂2ψs
T+1(X1:T ;θ)

∂θ∂θ′

∣∣∣∣∣∣ = Op(1) by Assump-

tions 1.d and 1.e and mT

∣∣∣∣θ̂(Y1:T ) − θ0
∣∣∣∣2 = Op(m

−1
T ) by Assumptions 1.a

and 2.a. Further, as θ̂(Y1:T )
p→ θ0 ∈ V (θ0) and V (θ0) is open, we have

P
[
θ̇T /∈ V (θ0)

]
→ 0 and R2IP

2,T = op(1) follows.

The proof of (ii) is analogous; by Assumption 1.b one can express RSPL
T as

follows:

RSPL
T =mTE

(
ψs
T+1(X

c
TP :T ; θ0)− ψT+1(XT , XT−1, . . . ; θ0)

)︸ ︷︷ ︸
=RSPL

1,T

+
(
θ̂(X1:TE

)− θ0
)′ ∂2ψs

T+1(X
c
TP :T ; θ̈T )

∂θ∂θ′
mTE

(
θ̂(X1:TE

)− θ0
)

︸ ︷︷ ︸
=RSPL

2,T

with RSPL
1,T = op(1) by Assumption 1.e and θ̈T lying between θ0 and θ̂(X1:TE

).
For an arbitrary ε > 0, we obtain

P

[∣∣RSPL
2,T

∣∣ ≥ ε
]
≤ P

[∣∣∣∣∣∣∣∣∂2ψs
T+1(X

c
TP :T ; θ̈T )

∂θ∂θ′

∣∣∣∣∣∣∣∣mTE

∣∣∣∣∣∣θ̂(X1:TE
)− θ0

∣∣∣∣∣∣2 ≥ ε

]

≤ P

[∣∣∣∣∣∣∣∣∂2ψs
T+1(X

c
TP :T ; θ̈T )

∂θ∂θ′

∣∣∣∣∣∣∣∣mTE

∣∣∣∣∣∣θ̂(X1:TE
)− θ0

∣∣∣∣∣∣2 ≥ ε
⋂

θ̈T ∈ V (θ0)

]
+ P

[
θ̈T /∈ V (θ0)

]
≤ P

[
sup

θ∈V (θ0)

∣∣∣∣∣∣∣∣∂2ψs
T+1(X

c
TP :T ; θ)

∂θ∂θ′

∣∣∣∣∣∣∣∣mTE

∣∣∣∣∣∣θ̂(X1:TE
)− θ0

∣∣∣∣∣∣2 ≥ ε

]
+ P

[
θ̈T /∈ V (θ0)

]
.

The first term vanishes as sup
θ∈V (θ0)

∣∣∣∣∣∣∂2ψs
T+1(X

c
TP :T ;θ)

∂θ∂θ′

∣∣∣∣∣∣=Op(1) by Assumptions 1.d
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and 1.e and mTE

∣∣∣∣θ̂(X1:TE
)−θ0

∣∣∣∣2 = Op(m
−1
TE

) by Assumptions 1.a and 3.a. Fur-

ther, as θ̂(X1:TE
)

p→ θ0 ∈ V (θ0) and V (θ0) is open, we have P
[
θ̈T /∈ V (θ0)

]
→ 0

and RSPL
2,T = op(1) follows.

Proof of Lemma 2. Consider (i) and let G2IP
T denote the unconditional distri-

bution of mT

(
θ̂(Y1:T )− θ0

)
. By Assumption 2.b, we have for each h ∈ BL∫

h dG2IP
T (·|I1:T ) =

∫
h dG2IP

T →
∫

h dG∞,

where the last assertion comes from Assumptions 1.a and 2.a and Portmanteau’s
Lemma (cf. [42, Lemma 2.2]). Consider (ii); for each h ∈ BL we obtain∫

h d
(
GSPL

TE
(·|ITP :T )−G∞

)
=

∫
h d

(
GSPL

TE
−G∞

)
︸ ︷︷ ︸

I

+

∫
h d

(
GSPL

TE
(·|ITP :T )−GSPL

TE

)
︸ ︷︷ ︸

II

,

where I → 0 by Assumptions 1.a, 3.a and 3.b and Portmanteau’s Lemma and

II
p→ 0 by Assumption 3.c.

Proof of Lemma 3. For r = 1 Lemma 3 appears as Lemma 2 of the supplemental
material to [11]. Extending their result to r > 1 we closely follow the proof of
[16, Theorem 11.3.3] and write QT and Q to denote the probability measures
corresponding to GT and G, respectively. Let ε > 0 and take a compact set K ⊂
Rr such that Q(K) > 1− ε. The set of functions h ∈ H , restricted to K, form a
compact set of functions for the supremum norm by the Arzela-Ascoli theorem
(cf. [16, Theorem 2.4.7]). Thus for some finite J = J(ε) there are h1, . . . , hJ ∈ H
such that for any h ∈ H , there is a j ≤ J with supy∈K

∣∣h(y)− hj(y)
∣∣ < ε. Let

Kε = {y ∈ Rr : ||x−y|| < ε for some x ∈ K}. One has supx∈Kε

∣∣h(x)−hj(x)
∣∣ <

3ε, since if y ∈ K and ||x− y|| < ε, then∣∣h(x)− hj(x)
∣∣ ≤∣∣h(x)− h(y)

∣∣+ ∣∣h(y)− hj(y)
∣∣+ ∣∣hj(y)− hj(x)

∣∣
≤||h||BL||x− y||+ ε+ ||hj ||BL||x− y|| < 3ε .

Let g(x) = max{0, 1− ||x−K||/ε}, where ||x−K|| = inf{||x− y|| : y ∈ K} for
all x ∈ Rr. Then g ∈ BL and I{x ∈ K} ≤ g ≤ I{x ∈ Kε}, where I{·} denotes
the indicator function. It follows that

QT (R
r \Kε) = 1−QT (K

ε) ≤ 1−
∫

g dQT
p→ 1−

∫
g dQ ≤ 1−Q(K) < ε

or equivalently P
[
QT (R

r \Kε) ≥ ε
]
→ 0. Thus, for each h ∈ H and hj as above

sup
h∈H

∣∣∣∣ ∫ h d(QT −Q)

∣∣∣∣ ≤ sup
h∈H

∫ ∣∣h− hj

∣∣ d(QT +Q) +

∣∣∣∣ ∫ hj d(QT −Q)

∣∣∣∣
≤2(QT +Q)(Rr \Kε) + 6ε+ max

1≤j≤J

∣∣∣∣ ∫ hj d(QT −Q)

∣∣∣∣
≤8ε+ 2QT (R

r \Kε) + max
1≤j≤J

∣∣∣∣ ∫ hj d(QT −Q)

∣∣∣∣ .
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Hence,

P

[
sup
h∈H

∣∣∣∣ ∫ h d(QT −Q)

∣∣∣∣ ≥ 11ε

]
≤ P

[
2QT (R

r \Kε) + max
1≤j≤J

∣∣∣∣ ∫ hj d(QT −Q)

∣∣∣∣ ≥ 3ε

]
≤ P

[
QT (R

r \Kε) ≥ ε

]
+ P

[
max
1≤j≤J

∣∣∣∣ ∫ hj d(QT −Q)

∣∣∣∣ ≥ ε

]
≤ P

[
QT (R

r \Kε) ≥ ε

]
+

J∑
j=1

P

[∣∣∣∣ ∫ hj d(QT −Q)

∣∣∣∣ ≥ ε

]
,

where the last two terms are converging to 0 for finite J noting that
∫
hj d(QT −

Q) =
∫
hjd(GT−G)

p→ 0. Observing that sup
h∈H

∣∣∫ hd(QT−Q)
∣∣= sup

h∈H

∣∣∫ hd(GT−

G)
∣∣ completes the proof.

Proof of Lemma 4. This lemma is related to Lemma 8 in [3] where the quantity
corresponding to P̄[w′

TZ∞ ≤ ·|IT ] is non-random. Set F =
{
f : R → R :

||f ||BL ≤ 1
}
. The triangle inequality implies

sup
f∈F

∣∣∣∣∫ [
f(w′

TZT +RT )− f(w′
TZ∞)

]
dP̄[·|IT ]

∣∣∣∣
≤ sup

f∈F

∣∣∣∣∫ [
f(w′

TZT +RT

)
− f

(
w′

TZT )
]
dP̄[·|IT ]

∣∣∣∣︸ ︷︷ ︸
=I

+ sup
f∈F

∣∣∣∣∫ [
f(w′

TZT )− f(w′
TZ∞)

]
dP̄[·|IT ]

∣∣∣∣︸ ︷︷ ︸
=II

.

We show that I
p→ 0 and II

p→ 0. Let ε > 0; as ||f ||BL ≤ 1 for all f ∈ F we
obtain

I ≤ sup
f∈F

∫ ∣∣∣f(w′
TZT +RT )− f(w′

TZT )
∣∣∣d P[·|IT ]

= sup
f∈F

∫
|RT |≤ε

∣∣f(w′
TZT +RT )− f(w′

TZT )
∣∣d P̄[·|IT ]

+ sup
f∈F

∫
|RT |>ε

∣∣f(w′
TZT +RT )− f(w′

TZT )
∣∣d P̄[·|IT ]

≤ sup
f∈F

∫
|RT |≤ε

||f ||BL

∣∣w′
TZT +RT − w′

TZT

∣∣d P̄[·|IT ]
+ sup

f∈F

∫
|RT |>ε

(
|f(w′

TZT +RT )|+ |f(w′
TZT )|

)
d P̄[·|IT ]
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≤ sup
f∈F

||f ||BL

∫
|RT |≤ε

|RT | d P[·|IT ] + 2 sup
f∈F

||f ||BL

∫
|RT |>ε

d P̄[·|IT ]

≤
∫

|RT |≤ε

ε d P̄[·|IT ] + 2 P̄
[
|RT | > ε

∣∣IT ] ≤ ε+ 2 P̄
[
|RT | > ε

∣∣IT ] .
In line with [46, Theorem 3.3], employing Markov’s inequality we have

P̄
[
I ≥ 2ε

]
≤ P̄

[
P̄
[
|RT | > ε

∣∣IT ] ≥ ε/2
]
≤ 2

ε
P̄
[
|RT | > ε

]
→ 0

as RT = op(1) and hence I = op(1). Consider II and let K ≥ 1. We obtain

P̄
[
II ≥ ε

]
≤ P̄

[
||wT || ≥ K

]
+ P̄

[
II ≥ ε ∩ ||wT || ≤ K

]
.

As ||wT || = Op(1) the first term can be made arbitrarily small by choosing K
large. For such K, consider the second term and note that

P̄

[
II ≥ ε ∩ ||wT || ≤ K

]
= P̄

[
sup
f∈F

∣∣∣ ∫ [
f(w′

TZT )− f(w′
TZ∞)

]
d P̄[·|IT ]

∣∣∣ ≥ ε ∩ ||wT || ≤ K

]
≤ P̄

[
sup
g∈G

∣∣∣ ∫ [
g(ZT )− g(Z∞)

]
d P̄[·|IT ]

∣∣∣ ≥ ε ∩ ||wT || ≤ K

]
≤ P̄

[
sup
g∈G

∣∣∣ ∫ [
g(ZT )− g(Z∞)

]
d P̄[·|IT ]

∣∣∣ ≥ ε

]
= P̄

[
sup
g∈G

∣∣∣ ∫ g d
(
P[ZT ≤ ·|IT ]−G∞

)∣∣∣ ≥ ε

]
,

where G =
{
g : Rr → R

∣∣ g(x) = f(w′x), for some f ∈ F and some w ∈
Rr with ||w|| ≤ K

}
. We have that || · ||BL is uniformly bounded for G since for

every g ∈ G

||g||BL =sup
x

∣∣f(w′x)
∣∣+ sup

x �=y

∣∣f(w′x)− f(w′y)
∣∣

|w′x− w′y|
|w′x− w′y|
||x− y||

≤ sup
x

∣∣f(w′x)
∣∣+ sup

x �=y

∣∣f(w′x)− f(w′y)
∣∣

|w′x− w′y| ||w|| ≤ ||f ||BL K ≤ K .

Thus, ||g/K||BL ≤ 1 and it follows by P̄[ZT ≤ ·|IT ]
p→ G∞ and Lemma 3 that

P̄

[
II ≥ ε ∩ ||wT || ≤ K

]
≤P̄

[
sup
g∈G

∣∣∣ ∫ g

K
d
(
P[ZT ≤ ·|IT ]−G∞

)∣∣∣ ≥ ε

K

]
≤P̄

[
sup
h∈H

∣∣∣ ∫ h d
(
P[ZT ≤ ·|IT ]−G∞

)∣∣∣ ≥ ε

K

]
→ 0 ,

where H is defined in Lemma 3. Thus, II is op(1), which completes the proof.
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Proof of Lemma 5. Take ε > 0 and let F and G be cdfs on R with G(τ−ε)−ε ≤
F (τ) ≤ G(τ + ε) + ε for all τ ∈ R. Fixing u ∈ (ε, 1− ε), we obtain

inf
{
τ ∈ R : F (τ) ≥ u+ ε

}
+ ε (B.1)

≥ inf
{
τ ∈ R : G(τ + ε) + ε ≥ u+ ε

}
+ ε

= inf
{
τ ∈ R : G(τ + ε) ≥ u

}
+ ε

= inf
{
τ + ε, τ ∈ R : G(τ + ε) ≥ u

}
= inf

{
τ ∈ R : G(τ) ≥ u

}
(B.2)

= inf
{
τ + ε, τ ∈ R : G(τ) ≥ u

}
− ε

= inf
{
τ ∈ R : G(τ − ε) ≥ u

}
− ε

= inf
{
τ ∈ R : G(τ − ε)− ε ≥ u− ε

}
− ε

≥ inf
{
τ ∈ R : F (τ) ≥ u− ε

}
− ε . (B.3)

Identifying (B.1), (B.2) and (B.3) as F−1(u+ ε)+ ε, G−1(u) and F−1(u− ε)− ε,
respectively, completes the proof.

Proof of Lemma 6. Let ε, η > 0. As GT is stochastically uniformly equicontinu-

ous, there exists a δ > 0 and an T̄1 ∈ N such that P
[
sup
τ∈R

sup
τ ′∈R:|τ−τ ′|<δ

∣∣GT (τ
′)−

GT (τ)
∣∣ > ε

]
< η for all T ≥ T̄1. Take κ = min(δ/2, ε). As dL(FT , GT )

p→ 0 as

T → ∞, there exists an T̄2 such that P
[
dL(FT , GT ) > κ

]
< η for all T ≥ T̄2.

Let T̄ = max(T̄1, T̄2).

P

[
sup
τ∈R

∣∣FT (τ)−GT (τ)
∣∣ > 2ε

]
≤ P

[
sup
τ∈R

∣∣FT (τ)−GT (τ)
∣∣ > 2ε ∩ dL(FT , GT ) ≤ κ

]
+ P

[
dL(FT , GT ) > κ

]
≤ P

[
κ + sup

τ∈R

∣∣GT (τ ± κ)−GT (τ)
∣∣ > 2ε

]
+ P

[
dL(FT , GT ) > κ

]
≤ P

[
sup
τ∈R

sup
τ ′∈R:|τ−τ ′|<δ

∣∣GT (τ
′)−GT (τ)

∣∣ > ε

]
+ P

[
dL(FT , GT ) > κ

]
< 2η

for all T ≥ T̄ . Since the choice of ε and η was arbitrary, the desired result
follows.

Proof of Lemma 7. Since FT and GT merge in probability and dL ≤ 2d
1/2
BL (cf.

[24, p. 36]; [16, Theorem 11.3.3]), we have dL(FT , GT )
p→ 0. Let u ∈ (0, 1) and

take ε > 0 sufficiently small satisfying u ∈ (ε, 1 − ε). P
[
dL(FT , GT ) > ε

∣∣IT ] is

op(1) since for every δ > 0 the Markov inequality implies P

[
P
[
dL(FT , GT ) >

ε
∣∣IT ] ≥ δ

]
≤ 1

δP
[
dL(FT , GT ) > ε

]
→ 0. Employing Lemma 5 we derive the

following bounds:

P
[
MT ≤ G−1

T (u)
∣∣IT ]
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≤ P
[
MT ≤ G−1

T (u) ∩ dL(FT , GT ) ≤ ε
∣∣IT ]+ P

[
dL(FT , GT ) > ε

∣∣IT ]
≤ P

[
MT ≤ F−1

T (u+ ε) + ε ∩ dL(FT , GT ) ≤ ε
∣∣IT ]+ op(1)

≤ P
[
MT ≤ F−1

T (u+ ε) + ε
∣∣IT ]+ op(1)

= FT

(
F−1
T (u+ ε) + ε

)
+ op(1) = UT

P
[
MT < G−1

T (u)
∣∣IT ]

≥ P
[
MT < G−1

T (u) ∩ dL(FT , GT ) ≤ ε
∣∣IT ]

≥ P
[
MT < F−1

T (u− ε)− ε ∩ dL(FT , GT ) ≤ ε
∣∣IT ]

≥ P
[
MT < F−1

T (u− ε)− ε
∣∣IT ]− P

[
dL(FT , GT ) > ε

∣∣IT ]
= FT

(
F−1
T (u− ε)− ε−

)
− op(1) = LT ,

where FT (·−) denotes the left limit of FT (·). We show that LT and UT converge
in probability to u. Regarding the lower bound LT we have∣∣∣FT

(
F−1
T (u− ε)− ε−

)
− u

∣∣∣
≤

∣∣∣FT

(
F−1
T (u− ε)− ε−

)
− FT

(
F−1
T (u− ε)−

)∣∣∣
+

∣∣∣FT

(
F−1
T (u− ε)−

)
− (u− ε)

∣∣∣+ ε

≤ sup
τ∈R

∣∣∣FT (τ − ε−)− FT (τ−)
∣∣∣+ ∣∣∣FT

(
F−1
T (u− ε)−

)
− (u− ε)

∣∣∣+ ε

≤ sup
τ∈R

∣∣∣FT (τ − ε−)− FT (τ−)
∣∣∣+ sup

τ∈R

∣∣∣FT (τ)− FT (τ−)
∣∣∣+ ε

≤ 4dK(FT , GT ) + sup
τ∈R

∣∣∣GT (τ − ε−)−GT (τ−)
∣∣∣+ sup

τ∈R

∣∣∣GT (τ)−GT (τ−)
∣∣∣+ ε ,

where the third inequality is due to [12, p. 217]. As dL(FT , GT )
p→ 0 and GT

is stochastically uniformly equicontinuous, Lemma 6 implies dK(FT , GT )
p→ 0.

Further, sup
τ∈R

∣∣GT

(
τ−ε−

)
−GT

(
τ−

)∣∣ = op(1) and sup
τ∈R

∣∣GT (τ)−GT (τ−)
∣∣ = op(1)

by stochastic uniform equicontinuity completing LT
p→ u. Regarding the upper

bound UT we have∣∣∣FT

(
F−1
T (u+ ε) + ε

)
− u

∣∣∣ ≤ ∣∣∣FT

(
F−1
T (u+ ε) + ε

)
− FT

(
F−1
T (u+ ε)

)∣∣∣
+

∣∣∣FT

(
F−1
T (u+ ε)

)
− FT

(
F−1
T (u+ ε)−

)∣∣∣
+

∣∣∣FT

(
F−1
T (u+ ε)−

)
− (u+ ε)

∣∣∣+ ε

≤ sup
τ∈R

∣∣∣FT (τ + ε)− FT (τ)
∣∣∣+ 2 sup

τ∈R

∣∣∣FT (τ)− FT (τ−)
∣∣∣+ ε

≤ 6dK(FT , GT ) + sup
τ∈R

∣∣∣GT (τ + ε)−GT (τ)
∣∣∣+ 2 sup

τ∈R

∣∣∣GT (τ)−GT (τ−)
∣∣∣+ ε ,
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where all terms on the right hand side are op(1) such that UT
p→ u. We obtain

LT (u)︸ ︷︷ ︸
p→u

≤ P
[
MT < G−1

T (u)
∣∣IT ] ≤ P

[
MT ≤ G−1

T (u)
∣∣IT ] ≤ UT (u)︸ ︷︷ ︸

p→u

,

which implies that P
[
MT < G−1

T (u)
∣∣IT ] and P

[
MT ≤ G−1

T (u)
∣∣IT ] converge in

probability to u for arbitrary u ∈ (0, 1); in particular γ1 and 1 − γ2. It follows
that

P
[
G−1

T (γ1) ≤ MT ≤ G−1
T (1− γ2)

∣∣IT ]
= P

[
MT ≤ G−1

T (1− γ2)
∣∣IT ]− P

[
MT < G−1

T (γ1)
∣∣IT ] p→ 1− γ2 − γ1 .

Proof of Lemma 8. Let ε, η > 0 and set ε̄ = min{ε, u, 1 − u}/2. Since G−1
T

is pointwise equicontinuous at u, there exist a δ > 0 and an T̄1 such that
P
[

sup
|u−v|<δ

∣∣G−1
T (v)−G−1

T (u)
∣∣ > ε̄

]
< η for all T ≥ T̄1. Take κ = min{δ/2, ε̄}. As

dL(FT , GT )
p→ 0 as T → ∞, there exists an T̄2 such that P

[
dL(FT , GT ) > κ

]
< η

for all T ≥ T̄2.

P

[∣∣F−1
T (u)−G−1

T (u)
∣∣ > 2ε

]
≤ P

[∣∣F−1
T (u)−G−1

T (u)
∣∣ > 2ε̄

]
≤ P

[∣∣F−1
T (u)−G−1

T (u)
∣∣ > 2ε̄ ∩ dL(FT , GT ) ≤ κ

]
+ P

[
dL(FT , GT ) > κ

]
≤ P

[
κ +

∣∣G−1
T (u± κ)−G−1

T (u)
∣∣ > 2ε̄

]
+ P

[
dL(FT , GT ) > κ

]
≤ P

[
sup

|u−v|<δ

∣∣G−1
T (v)−G−1

T (u)
∣∣ > ε̄

]
+ P

[
dL(FT , GT ) > κ

]
< 2η

for all T ≥ T̄ = max(T̄1, T̄2), where the third inequality follows from Lemma 5
and u ∈ (ε̄, 1− ε̄) ⊆ (κ, 1−κ). As ε and η were arbitrarily chosen, this completes
the proof.

B.2. Proofs of corollaries

Proof of Corollary 1. Statement 1(a) follows immediately from Theorem 2.1(a)

and F̂ 2IP
T (·) equals to Φ

(
· /

√
υ̂2IP
T

)
. Regarding claim 1(b), it is sufficient to

show that 1/υ̂2IP
T = Op(1) implies that Φ

(
·/
√
υ̂2IP
T

)
is stochastically uniformly

equicontinuous by Theorem 2.1(b). Since 1/υ̂2IP
T = Op(1) by assumption, we

have for all κ > 0, there exist K = K(κ) and T̄ = T̄ (κ) such that P
[
1/υ̂2IP

T >

K
]
< κ for all T > T̄ . Let φ denote the standard normal density. Taking

δ = ε
φ(0)

√
K
, we obtain

P

[
sup
τ∈R

sup
τ ′:|τ−τ ′|<δ

∣∣Φ(
τ ′/

√
υ̂2IP
T

)
− Φ

(
τ/

√
υ̂2IP
T

)∣∣ > ε
]

≤P

[
φ(0)δ/

√
υ̂2IP
T > ε

]
= P

[
1/υ̂2IP

T > K
]
< κ
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for all T > T̄ such that the stochastic uniform equicontinuity condition holds.

Statement 2(a) follows from Theorem 2.2(a) and F̂SPL
T (·) equals to Φ

(
·

/
√
υ̂SPL
T

)
. Claim 2(b) is proven analogously to the claim of 1(b) replacing υ̂2IP

T

with υ̂SPL
T .

Proof of Corollary 2. In the proof of Theorem 3 we have shown that F̂SPL
T (·)

and F̂STA
T (·) merge in probability, which simplify to Φ

(
· /

√
υ̂SPL
T

)
and Φ

(
·

/
√
υ̂STA
T

)
, respectively, under Assumption 5.

It remains to show that F̂SPL
T

−1

(u) =
√

υ̂SPL
T Φ−1(u) is stochastically point-

wise equicontinuous at u = γ1, 1 − γ2. First, we show that υ̂SPL
T = Op(1).

The triangle inequality implies υ̂SPL
T ≤ υSPL

T +
∣∣υ̂SPL

T − υSPL
T

∣∣, where υSPL
T =

∂ψs
T+1(X

c
TP :T ;θ0)

∂θ′ Υ0
∂ψs

T+1(X
c
TP :T ;θ0)

∂θ is Op(1) by Assumptions 1.c and 1.e. More-
over, for an arbitrary ε > 0, we have

P

[∣∣∣∣∣∣∣∣∂ψs
T+1(X

c
TP :T ; θ0)

∂θ
−

∂ψs
T+1(X

c
TP :T ; θ̂(X1:TE

)

∂θ

∣∣∣∣∣∣∣∣ ≥ ε

]

≤P

[∣∣∣∣∣∣∣∣∂2ψs
T+1(X

c
TP :T ; θ̃T )

∂θ∂θ′

∣∣∣∣∣∣∣∣ ∣∣∣∣∣∣θ̂(X1:TE
)− θ0

∣∣∣∣∣∣ ≥ ε
⋂

θ̃T ∈ V (θ0)

]
+ P

[
θ̃T /∈ V (θ0)

]
≤P

[
sup

θ∈V (θ0)

∣∣∣∣∣∣∣∣∂2ψs
T+1(X

c
TP :T ; θ)

∂θ∂θ′

∣∣∣∣∣∣∣∣ ∣∣∣∣∣∣θ̂(X1:TE
)− θ0

∣∣∣∣∣∣ ≥ ε

]
+ P

[
θ̃T /∈ V (θ0)

]
,

where θ̃T lies between θ̂(X1:TE
) and θ0. The first term vanishes as

sup
θ∈V (θ0)

∣∣∣∣∣∣∂2ψs
T+1(X

c
TP :T ;θ)

∂θ∂θ′

∣∣∣∣∣∣ = Op(1) by Assumptions 1.d and 1.e and
∣∣∣∣θ̂(X1:TE

)−

θ0
∣∣∣∣ = Op(m

−1
T ) by Assumptions 1.a and 2.a. Further, since θ̂(X1:TE

)
p→ θ0 ∈

V (θ0) and V (θ0) is open, we have P
[
θ̃T /∈ V (θ0)

]
→ 0 and

∣∣∣∣∣∣∂ψT+1(XTP :T ;θ0)

∂θ −
∂ψT+1(XTP :T ;θ̂(X1:TE

)

∂θ

∣∣∣∣∣∣ = op(1) follows. Together with Υ̂(X1:TE
)

p→ Υ0, it im-

plies
∣∣υ̂SPL

T − υSPL
T

∣∣ = op(1) and hence υ̂SPL
T = Op(1). Next, we show that the

stochastic pointwise equicontinuity condition is satisfied. For K > 0, we get

P
[√

υ̂SPL
T sup

v:|u−v|<δ

∣∣Φ−1(u)− Φ−1(v)
∣∣ > ε

]
≤P

[√
K sup

v:|u−v|<δ

∣∣Φ−1(u)− Φ−1(v)
∣∣ > ε

]
+ P

[
υ̂SPL
T > K

]
.

K can be chosen such that the last term is arbitrary small for large T as υ̂SPL
T =

Op(1). Given K, the first term is 0 by the choice of δ and continuity of Φ−1.
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Appendix C: Graphs and tables

Fig 1. Mean coverage

Fig 2. Median (solid), minimum and maximum (dashed) coverage
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Fig 3. Mean interval length

Table 2

Coverage probability of STA and SPL for an AR(β1) process. DGP 1 refers to gamma
distributed errors with shape 10 and scale 20 and shifted such that they have expectation
zero. DGP 2 refers to a mixture distribution of this gamma distribution with a normal

distribution with standard deviation equal to 10 and the weight of both distributions equals
0.5. Please note that there are small numerical differences for STA for T = 50, TE = 45
and T = 50, TE = 40, respectively. This is because when changing TE we recalculated STA
although T was kept fixed. We did so to compare STA and SPL based on the same sample.

AR(1)

DGP 1 DGP 2
T = 50, TE = 40 T=50, TE = 45 T = 50, TE = 40 T = 50, TE = 45

β1 STA SPL STA SPL STA SPL STA SPL
0.1 94.8 94.7 94.5 94.4 95.2 95.1 94.4 99.4
0.2 94.9 94.8 94.6 94.6 95.3 95.1 94.5 94.3
0.3 94.7 94.5 94.7 94.7 95.0 95.0 94.4 94.4
0.4 94.7 94.7 94.4 94.4 95.0 95.0 94.4 94.4
0.5 94.7 94.5 94.7 94.7 95.0 95.0 94.7 4.6
0.6 94.7 94.5 94.6 94.8 95.0 94.8 94.8 94.7
0.7 94.5 94.4 94.8 94.7 94.7 94.5 94.9 94.8
0.8 94.1 94.0 94.9 94.8 94.5 94.3 94.9 94.9
0.9 93.5 93.2 94.7 94.5 93.8 93.6 94.6 94.6
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Table 3

Coverage probability of STA and SPL for an AR(2) process with β1 = β2. DGP 1 and
DGP 2 are as in Table 2. Small numerical differences between STA intervals for fixed T are

as in Table 1 due to recalculating.

AR(2)

DGP 1 DGP 2
T = 50, TE = 40 T=50, TE = 45 T=50, TE = 40 T=50, TE = 45

β1 = β2 STA SPL STA SPL STA SPL STA SPL
0.1 94.3 94.2 93.9 93.9 94.6 94.8 93.7 93.8
0.15 94.3 94.2 93.9 94.0 94.8 94.8 93.8 94.0
0.2 94.2 94.1 93.8 94.0 94.8 94.8 94.0 94.0
0.25 94.2 94.1 94.0 94.0 94.7 94.5 94.0 94.0
0.3 94.2 94.0 94.1 94.0 94.4 94.4 94.0 94.0
0.35 94.2 93.7 94.1 94.0 94.4 94.2 94.0 94.0
0.4 94.1 93.7 94.2 94.0 94.3 93.9 94.0 93.8
0.45 93.6 92.9 94.1 93.6 93.7 93.0 94.2 93.7

Table 4

Coverage probability of STA and SPL for the AR(4) process in row B of Table 1. DGP 1
and DGP 2 are again as in Table 2. Small numerical differences between STA intervals for

fixed T are as in Table 1 due to recalculating.

AR(4)

DGP 1 DGP 2
STA SPL STA SPL

TE = 45, T = 50 92.8 93.2 92.7 93.2
TE = 55, T = 60 93.3 93.7 93.2 93.5
TE = 65, T = 70 93.6 93.8 93.7 93.9
TE = 75, T = 80 93.7 94.0 93.6 93.9
TE = 85, T = 90 94.0 94.2 93.9 94.2

TE = 40, T = 50 92.9 93.2 92.7 93.0
TE = 50, T = 60 93.3 93.6 93.3 93.5
TE = 60, T = 70 93.6 94.0 93.6 93.9
TE = 70, T = 80 93.8 94.0 93.8 94.1
TE = 80, T = 90 93.9 94.2 93.8 94.1

TE = 40, T = 55 93.0 93.1 93.1 93.0
TE = 50, T = 65 93.5 93.5 93.4 93.4
TE = 60, T = 75 93.6 93.8 93.7 93.9
TE = 70, T = 85 93.9 94.0 93.8 94.0
TE = 80, T = 95 94.0 94.1 93.9 94.2
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Table 5

Coverage probability of STA and SPL for the AR(8) process in row C of Table 1. DGP 1
and DGP 2 are again as in Table 2. Small numerical differences between STA intervals for

fixed T are as in Table 1 due to recalculating.

AR(8), C

DGP 1 DGP 2
STA SPL STA SPL

TE = 40, T = 50 89.8 91.1 90.2 91.2
TE = 50, T = 60 90.8 92.1 91.3 92.5
TE = 60, T = 70 91.5 92.8 91.9 92.9
TE = 70, T = 80 92.1 93.2 92.4 93.5
TE = 80, T = 90 92.6 93.6 92.7 93.5

TE = 40, T = 55 90.4 91.2 90.3 91.1
TE = 50, T = 65 91.1 92.3 91.1 92.2
TE = 60, T = 75 91.9 92.9 91.9 92.8
TE = 70, T = 85 92.3 93.2 92.3 93.4
TE = 80, T = 95 92.8 93.6 92.5 93.5

Table 6

Coverage probability of STA and SPL for the AR(8) process in row D of Table 1. DGP 1
and DGP 2 are again as in Table 2. Small numerical differences between STA intervals for

fixed T are as in Table 1 due to recalculating.

AR(8), D

DGP 1 DGP 2
STA SPL STA SPL

TE = 40, T = 50 89.6 91.3 89.5 91.3
TE = 50, T = 60 90.9 92.4 90.6 92.1
TE = 60, T = 70 91.5 92.8 91.5 92.9
TE = 70, T = 80 92.0 93.4 92.0 93.1
TE = 80, T = 90 92.6 93.7 92.5 93.5

TE = 40, T = 55 90.2 91.2 90.2 91.2
TE = 50, T = 65 91.4 92.4 91.0 92.2
TE = 60, T = 75 91.8 92.9 91.7 92.8
TE = 70, T = 85 92.2 93.2 92.2 93.2
TE = 80, T = 95 92.7 93.5 92.6 93.6

Acknowledgments

The authors’ work was supported by the Netherlands Organization for Scientific
Research (NWO), grant number: 406-15-020.

References

[1] Akaike, H. (1969). Fitting autoregressive models for prediction. Annals of
the Institute of Statistical Mathematics 21 (1), 243–247. MR0246476

[2] Barndorff-Nielsen, O. E. and D. R. Cox (1996). Prediction and asymptotics.
Bernoulli 2 (4), 319–340. MR1440272

https://www.ams.org/mathscinet-getitem?mr=0246476
https://www.ams.org/mathscinet-getitem?mr=1440272


Justification conditional confidence intervals 2563

[3] Belyaev, Y. and S. Sjöstedt-De Luna (2000). Weakly approaching sequences
of random distributions. Journal of Applied Probability 37 (3), 807–822.
MR1782455

[4] Beutner, E., A. Heinemann, and S. Smeekes (2017a). A justification of con-
ditional confidence intervals. GSBE Research Memorandum RM/17/023,
Maastricht University.

[5] Beutner, E., A. Heinemann, and S. Smeekes (2017b). Technical report
on “a justification of conditional confidence intervals”. Technical report,
Maastricht University, http://researchers-sbe.unimaas.nl/stephansmeekes/
research/.

[6] Beutner, E., A. Heinemann, and S. Smeekes (2019). A general
framework for prediction in time series models. Working paper,
Maastricht University, http://researchers-sbe.unimaas.nl/stephansmeekes/
research/.

[7] Billingsley, P. (1986). Probability and Measure. New York: John Wiley &
Sons. MR0830424

[8] Blasques, F., S. J. Koopman, K. 	Lasak, and A. Lucas (2016). In-sample con-
fidence bands and out-of-sample forecast bands for time-varying parameters
in observation-driven models. International Journal of Forecasting 32 (3),
875–887. MR2518405

[9] Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedas-
ticity. Journal of Econometrics 31 (3), 307–327. MR0853051

[10] Boussama, F., F. Fuchs, and R. Stelzer (2011). Stationarity and geometric
ergodicity of BEKK multivariate GARCH models. Stochastic Processes and
Their Applications 121 (10), 2331–2360. MR2822779

[11] Castillo, I. and J. Rousseau (2015). A Bernstein–von Mises theorem for
smooth functionals in semiparametric models. Annals of Statistics 43 (6),
2353–2383. MR3405597

[12] Cavaliere, G., I. Georgiev, and A. M. R. Taylor (2013). Wild bootstrap of
the sample mean in the infinite variance case. Econometric Reviews 32 (2),
204–219. MR2988925

[13] D’Aristotile, A., P. Diaconis, and D. Freedman (1988). On merging of prob-
abilities. Sankhyā: The Indian Journal of Statistics, Series A 50 (3), 363–
380. MR1065549

[14] Davydov, Y. and V. Rotar (2009). On asymptotic proximity of distribu-
tions. Journal of Theoretical Probability 22 (1), 82–98. MR2472006

[15] Doukhan, P. (1994). Mixing: Properties and Examples. New York: Springer.
MR1312160

[16] Dudley, R. M. (2002). Real Analysis and Probability. Cambridge: Cam-
bridge University Press. MR1932358

[17] Dufour, J.-M. and A. Taamouti (2010). Short and long run causality
measures: theory and inference. Journal of Econometrics 154 (1), 42–58.
MR2558950

[18] Engle, R. F. (1982). Autoregressive conditional heteroscedasticity with es-
timates of the variance of United Kingdom inflation. Econometrica 50 (4),
987–1007. MR0666121

https://www.ams.org/mathscinet-getitem?mr=1782455
http://researchers-sbe.unimaas.nl/stephansmeekes/research/
http://researchers-sbe.unimaas.nl/stephansmeekes/research/
http://researchers-sbe.unimaas.nl/stephansmeekes/research/
http://researchers-sbe.unimaas.nl/stephansmeekes/research/
https://www.ams.org/mathscinet-getitem?mr=0830424
https://www.ams.org/mathscinet-getitem?mr=2518405
https://www.ams.org/mathscinet-getitem?mr=0853051
https://www.ams.org/mathscinet-getitem?mr=2822779
https://www.ams.org/mathscinet-getitem?mr=3405597
https://www.ams.org/mathscinet-getitem?mr=2988925
https://www.ams.org/mathscinet-getitem?mr=1065549
https://www.ams.org/mathscinet-getitem?mr=2472006
https://www.ams.org/mathscinet-getitem?mr=1312160
https://www.ams.org/mathscinet-getitem?mr=1932358
https://www.ams.org/mathscinet-getitem?mr=2558950
https://www.ams.org/mathscinet-getitem?mr=0666121


2564 E. Beutner et al.
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