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Abstract: We consider non-parametric density estimation in the frame-
work of local, both pure and approximate, differential privacy. In contrast
to centralized privacy scenarios with a trusted curator, in the local setup
anonymization must be guaranteed already on the individual data owners’
side and must therefore precede any data mining tasks. Thus, the published
anonymized data should be compatible with as many statistical procedures
as possible. We consider different mechanisms to establish pure and approx-
imate differential privacy, respectively. We obtain minimax type results over
Sobolev classes indexed by a smoothness parameter s > 1/2 for the mean
squared error at a fixed point. In particular, we show that appropriately
defined kernel density estimators can attain the optimal rate of convergence
if the bandwidth parameter is correctly specified. Notably, the optimal con-
vergence rate in terms of the sample size n is n−(2s−1)/(2s+1) under pure
differential privacy and thus deteriorated to the rate n−(2s−1)/(2s) which
holds both without privacy restrictions and under approximate differential
privacy. Since the optimal choice of the bandwidth parameter depends on
the smoothness s and is thus not accessible in practise, adaptive methods
for bandwidth selection are necessary and must, in the local privacy frame-
work, be performed based on the anonymized data only. We address this
problem by means of variants of Lepski’s method tailored to the privacy
setups at hand and obtain general oracle inequalities for private kernel den-
sity estimators. In the Sobolev case, the resulting adaptive estimators attain
the optimal rates of convergence at least up to logarithmic factors. On the
side, we discuss some critical issues related with the notion of approximate
differential privacy.
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1. Introduction

In the modern information era data are routinely collected in all areas of pri-
vate and public life. Although the availability of massive data sets is essential
to answer important scientific and societal questions, the individual data own-
ers (who may be individuals, households, research institutions, companies, . . . )
might refuse to share their, maybe sensitive, raw data with others. Even more,
in view of regularly reported data leaks, they may not even want to entrust their
data to a central curator who stores the data and publishes anonymized sum-
mary statistics. Finding ourselves in such a dilemma, the question whether and,
if yes, how data analytics can still be performed is of special importance. For
the evaluation of this question, several aspects have to be taken into account.

Firstly, in absence of a trusted curator, privacy of the data has to be achieved
already locally at the individual data owners’ level. The i-th data holder takes
its datum, say Xi, as the input of a privacy mechanism and creates an output
Zi that is considered sufficiently anonymized, for instance, in the sense of any of
the privacy definitions listed below. For the purpose of the present paper, a pri-
vacy mechanism is a Markov kernel Qi between measurable spaces (X,X ) and
(Z,Z ) generating Zi given Xi = x according to the distribution QZi|Xi=x. This
definition of local privacy is in contrast to the framework of centralized or global
privacy where the trusted curator can take the whole data set {X1, . . . , Xn}
to create an output Z. In this sense, the local privacy model can be seen as a
proper submodel of the global one because the trusted curator can also mimic
any conceivable procedure in the local model.

Secondly, for the quantification of privacy, different solutions have been pro-
posed so far (see [1], Section 2 for a comprehensive overview of existing privacy
definitions):

• In this paper, we will exclusively work in the framework of α-differential
privacy and its generalization (α, β)-differential privacy as defined in Defi-
nition 2.1 below. These two privacy definitions are also referred to as pure
and approximate differential privacy, respectively. Originally, these concepts
have been suggested for the anonymization of microdata tables in a global
privacy setup, more precisely in a framework where queries are answered
by a server that has direct access to the sensitive data [12, 14, 13]. In the
statistics community, working under privacy constraints has been popular-
ized in the past decade, amongst others, through the articles [25, 17] (in the
global setup) and [11] (in the local privacy setup). Another strict relaxation
of pure differential privacy is random differential privacy as introduced in
[16].

• An alternative quantification of privacy can be given as follows: Let ϕ be
a function from [0,∞] to R ∪ {+∞} with ϕ(1) = 0. Then, the associated
ϕ-divergence between two distributions P,Q is

Dϕ(P||Q) =

∫
ϕ

(
dP

dQ

)
dQ =

∫
ϕ

(
p

q

)
qdμ

where μ is a measure such that P,Q � μ and p, q denote the corresponding
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Radon-Nikodym densities. Then, the mechanism Q is called β-ϕ-divergence
private if

sup
x,x′∈X

Dϕ(Q(·|X = x)||Q(·|X = x′)) � β.

The intersection of these two concepts is non-empty: For instance, taking ϕ(x) =
|x − 1|/2, the ϕ-divergence Dϕ(P||Q) is the total variation distance, and the
resulting β-ϕ-divergence is equivalent to (0, β)-differential privacy.

Thirdly, the published data Z1, . . . , Zn should ideally be multi-purpose in the
sense that they can serve as input data for several types of analyses. Thus, when
the unmasked data are for instance a sample from an unknown probability dis-
tribution, the anonymized data should contain as much information as possible
about the whole distribution and not only about certain of its characteristics.
One main motivation for this work is to introduce novel methodology in the
framework of density estimation that aims to address also this issue by propos-
ing a local approximate (β > 0) differential private mechanism whose output
can be used for various types of analyses.

Roadmap of the article

Throughout the article, we consider the paradigmatic example of non-parametric
density estimation. For the sake of simplicity, we assume that each of n data
holders Di observes a size-one sample Xi from a (in this paper) univariate target
density f , but refuses to share this observation. In Section 2, we introduce several
mechanisms to estrange the datum Xi. The first approach is based on adding
appropriately scaled Laplace noise to a kernel density estimator at a single
fixed point t ∈ R. The idea of the second approach is to publish the original
datum Xi with a certain probability p and publishing another random value
with probability 1 − p (thus, the distribution of the Zi is the discrete mixture
of the target density and another distribution).

In Section 3, we consider estimation of the unknown density function under
approximate differential privacy from a minimax point of view. As the perfor-
mance measure to evaluate arbitrary estimators, we consider the mean squared
error at the fixed point t ∈ R. Via the Laplace perturbation approach, we attain
the convergence rate n−(2s−1)/(2s+1) in terms of n over Sobolev ellipsoids with
smoothness index s under (α, 0)-differential privacy which is slower than the
optimal rate n−(2s−1)/(2s) in the setup without privacy constraints. However,
this slower rate can be shown to be optimal for the case of pure differential
privacy when β = 0. In turn, the standard rate n−(2s−1)/(2s) from the setup
without privacy can be attained under (α, β)-differential for β > 0 by means of
the second, mixture approach to obtain privacy combined with suitable kernel
density estimators. As a consequence, the second approach attains the optimal
rate of convergence and furthermore does not hinge on a priori knowledge of the
point t that has to be chosen prior to the anonymization procedure. Hence, this
approach enables the statistician to apply a wider spectrum of inference proce-
dures. Investigating theoretical guarantees of such general procedures, however,
is outside the scope of this work and deferred to future research.
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As usual for kernel density estimators, the choice of the bandwidth param-
eter is crucial. In the considered minimax framework over Sobolev classes, the
optimal order of the bandwidth that leads to a rate optimal estimator depends
on the smoothness index s which is typically unknown. In Section 4, we apply a
Lepski scheme tailored to the privacy framework to overcome this problem and
obtain an adaptive choice of the bandwidth. In the case β > 0, there is no ad-
ditional problem since a standard approach via Lepski’s method can be applied
with the data Z1, . . . , Zn and one can conclude as in the case for known smooth-
ness. However, in the case β = 0, the considered privacy mechanism depends
already on the choice of the bandwidth that one actually wants to choose in an
adaptive way. In order to perform the Lepski scheme here, any data owner has
to publish the kernel density estimator not only for one single bandwidth but for
a finite set of potential bandwidths. Such a multiple output still guarantees the
desired privacy condition provided that the additive noise is multiplied with a
factor proportional to the number of potential bandwidths which is logarithmic
in the number of data sources in our case. Note that this issue specifically arises
in the local privacy setup since in the global framework the trusted curator
can apply the existing plethora of methods for bandwidth selection on the un-
masked data, and then only publish the resulting estimator with the adaptively
determined bandwidth in its anonymized form. We derive general oracle type
inequalities for the estimator resulting from the Lepski procedure adapted to
the privacy framework. For the specific example of Sobolev ellipsoids, the rates
of convergence are merely deteriorated by logarithmic factors with respect to
the case of a priori known smoothness.

2. Privacy mechanisms

2.1. Definition of approximate differential privacy

Let (X,X ) and (Z,Z ) be measurable spaces. A privacy mechanism is a Markov
kernel Q : X × Z → [0, 1] with the interpretation that, given original data
X = x, an anonymized output is randomly drawn from the probability measure
Q(·|X = x). In the non-interactive setup that we are going to consider, we work
under the following definition of approximate or (α, β)-differential privacy.

Definition 2.1. Let α � 0, β ∈ [0, 1]. We say that Z ∼ Q(· | X) is a local
(α, β)-differentially private view of X if for all x, x′ ∈ X, A ∈ Z the estimate

Q(A|X = x) � exp(α)Q(A|X = x′) + β (1)

holds true.

Let us emphasize that in Definition 2.1 the spaces (X,X ) and (Z,Z ) do not
necessarily need to coincide. In the literature, the case β = 0 is also referred
to as α-differential privacy or pure differential privacy. Evidently, the privacy
condition (1) becomes more restrictive for smaller values of the two parameters
α and β. Although Definition 2.1 smoothly bridges the cases β = 0 and β > 0,
the classical anonymization techniques used for β = 0 and β > 0 are essentially
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different: In the case β = 0, Laplace perturbation as well as randomization
techniques as considered in [11, 21] can be used. In the case β > 0, adding
appropriately scaled Gaussian noise has been suggested in [17]. However, as
proved in [18], appropriately scaled Laplace noise can also lead to approximately
differential private outputs (see Propositions 2.2 and 3.1 as well as Remark 3.2).
In the sequel, we discuss how to achieve approximate differential privacy in the
scenario of non-parametric density estimation at a fixed point.

2.2. Pure differential privacy by adding Laplace noise

Throughout, we exclusively consider the case that both the input and the output
of the privacy mechanism are univariate and real-valued, that is (X,X ) =
(Z,Z ) = (R,B(R)). First, we consider so-called Laplace perturbation which is
also used to derive an upper bound in Section 3. To introduce this mechanism,
let Yi = g(Xi) ∈ R a quantity derived from the Xi that should be masked.
Define the sensitivity of g as

Δ(g) = sup
x,x′∈X

|g(x)− g(x′)|.

Recall that the univariate Laplace distribution, denoted by L(b), is given by
the probability density function pb(x) = 1

2b exp(−|x|/b) (we include also the
case b = 0; then the Laplace distribution is, by convention, the Dirac measure
concentrated at 0). In particular, the variance of an L(b) distributed random
variable is 2b2. The following proposition establishes approximate differential
privacy by Laplace perturbation.

Proposition 2.2 (See [18], Example 5). Let α > 0, β ∈ [0, 1]. Then

Z = g(X) + bξ

with ξ ∼ L(1) for b � Δ(g)/(α − log(1 − β)) provides an (α, β)-differential
private view of g(X) (and of X as well).

A benefit of Proposition 2.2 in contrast to the often proposed perturbation
by Gaussian noise to establish approximate differential privacy is that it allows
to deal with the cases β = 0 and β > 0 by the same approach. Moreover, letting
the parameter β vary permits natural interpretations: If β = 0, the variance
of

√
2bξ corresponds to the one that is usually encountered in the case of pure

differential privacy. When β tends to one, the privacy constraint gets weaker and
the variance of the centred noise

√
2bξ tends to 0. In the extreme case β = 1

it is even allowed to publish g(X) directly. Let us however note that, with the
exception of the extreme cases when β = 1, we are not able to obtain optimal
convergence rates for β ∈ (0, 1) via this approach following the calculations in
the proof of Proposition 3.1 below. This is why we consider different strategies
for the anonymization in the case β ∈ (0, 1) in Subsection 2.3.

We now introduce kernel density estimators giving the main example that we
have in mind for the function g in Proposition 2.2.
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Example 2.3. Let X1, . . . , Xn i.i.d. according to an unknown probability den-
sity function f : R → R. Let t ∈ R be fixed. Then the i-th dataholder, who
observes Xi ∈ R, can compute

Kh(Xi − t) :=
1

h
K

(
Xi − t

h

)
for a bounded kernel functionK, that is,K : R → R is integrable and

∫
K(u)du =

1. The quantity Kh(Xi − t) will play the role of g(X) in Proposition 2.2.
By the triangle inequality Δ(Kh(· − t)) � 2‖K‖∞/h, and one can take any
b � 2‖K‖∞/(h(α − log(1 − β))) to obtain an approximate differential private
view Zi,h of Kh(Xi − t). Note that t ∈ R has to be fixed in advance before the
anonymization procedure.

2.3. Approximate differential privacy by random replacement

Although Proposition 2.2 provides us with a mechanism in order to achieve
(α, β)-differential privacy, we will see later on in Proposition 3.1 that this mech-
anism leads to a convergence rate proportional to n−(2s−1)/(2s+1) which is not
optimal for β ∈ (0, 1). In order to resolve this defect, we suggest another (quite
simple) mechanism by which even the standard optimal rate n−(2s−1)/(2s) is
attainable. For this mechanism, the data holders have to agree on an arbitrary
but fixed (α, 0)-differentially private mechanism which we denote with Q̃. Then,
any of the n data holders Di draws (independently of the others) a random
number Ui ∈ [0, 1] according to the uniform distribution on the unit interval,

and a random outcome Yi ∼ Q̃(·|X = Xi). We have the following result.

Proposition 2.4. The mechanism where the i-th data holder publishes Zi given
through

Zi =

{
Xi, if Ui � β,

Yi, if Ui > β,
(2)

guarantees (α, β)-differential privacy.

For β ∈ [0, 1], the mechanism in Proposition 2.4 publishes the original datum
with probability β, and the (α, 0)-private datum Yi with probability 1 − β. In

the special case of (0, β)-differential privacy, the mechanism Q̃(·|X = x) must

indeed be independent of x (this choice of Q̃ is then evidently also admissible
for (α, β)-differential privacy with α > 0). Of course, for α = 0 and β = 0,
the mechanism guarantees even perfect privacy but is completely useless for
further analyses. For β > 0, the mixture structure of the density of Zi allows
to estimate the density f with the usual rate of convergence that holds without
privacy restrictions (see Proposition 3.3). A delicate aspect of the conception of
(α, β)-differential privacy for β > 0 becomes evident via the admissible privacy
procedure (2): it does not exclude algorithms that publish the original datum
Xi with a strictly positive probability which will surely not be acceptable in
certain applications. Even worse, even procedures where an observer does not
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only observe the original datum but also knows that this is the case are not
excluded by the very concept of approximate differential privacy. This important
issue will be further discussed below.

2.4. A composition lemma for approximate differential privacy

For kernel density estimation, bandwidth selection is usually a delicate issue
and so it is in our local privacy setup. Whereas in the centralized setup existing
methods can be applied by the trusted curator on the unmasked data, this is
not possible in our local setup when working with the Laplace mechanism from
Example 2.3. Thus the data holders have to publish versions of the kernel den-
sity estimator for different bandwidths, and one has to adapt general strategies
from the non-private framework to the one with approximate local differential
private data. In order to do this under our privacy constraint it is necessary to
understand how multiple outputs influence the defining condition of approxi-
mate differential privacy. The following lemma provides a result of this flavour
and is known in the research literature on privacy for statistical databases. The
setup is the following: Given the unmasked datum X, the data owner does not
only want to publish Z1 = Z1(X) but also Z2 = Z2(X), i.e., the vector (Z1, Z2).
The following result tells us how α and β for the single components have to be
scaled in order to obtain (α, β)-differential privacy for multiple outputs.

Lemma 2.5 (Composition lemma for (α, β)-differential privacy). Let Zi, i =
1, 2 be (αi, βi)-differential private and conditionally (on X) independent views
of X, respectively. Then Z = (Z1, Z2) is an (α1+α2, β1+β2)-differential private
view of X.

Of course, Lemma 2.5 can be successively applied. For instance, if we want
to publish Zi,h from Example 2.3 for different h in a finite set H, then α and β
should be replaced with α′ = α/#H and β′ = β/#H, respectively, in order to
get differential privacy for Z = (Zi,h)h∈H.

3. Private minimax estimation

Minimax theory provides a standard framework to study convergence properties
of estimators in non-parametric statistics [24]. In this section, we apply this gen-
eral toolbox to the specific case of density estimation under privacy constraints.
For fixed t ∈ R and any estimator �̂ of the linear functional f(t) based on the
private views Z = {Z1, . . . , Zn}, we study its mean squared error

E[(�̂− f(t))2].

The guiding principle of minimax theory is to look for estimators that perform
best in a worst-case scenario. However, due to the privacy framework, we have
not only the freedom of choosing the estimator �̂ but also the privacy mechanism
Q that generates the private outputs. Hence, following [11], classical minimax
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theory has to be adapted and a natural quantity to consider is the private
minimax risk

inf
�̂∈σ(Z)
Q∈Qα,β

sup
f∈P

E[(�̂− f(t))2]

where P is some function class containing probability densities and the infimum
is taken over all local (α, β)-differential private Markov kernels Q ∈ Qα,β and
all estimators based on the local approximate differential private views Z of the
corresponding original sample X1, . . . , Xn. We specify the function class P by
so called Sobolev ellipsoids S(s, L) that we define for s > 1/2 and L > 0 by
means of

S(s, L) = {f : R → [0,∞) :

∫
f(x)dx = 1,

∫
|F [f ](ω)|2|ω|2sdω � 2πL2},

which, for s ∈ N
∗, is equivalent to the definition

S(s, L) = {f : R → [0,∞) :

∫
f(x)dx = 1,

∫
(f (s)(x))2dx � L2}.

In the first definition, F [f ] denotes the Fourier transform of the density f , in
the second one f (s) denotes the weak s-th derivative of f .

3.1. Upper bound

Upper bound for Laplace perturbation

We first derive an upper bound on the minimax risk by specializing both the
privacy mechanism Q ∈ Qα,β and the estimator of f(t). Concerning the privacy
mechanism, we first consider the mechanism mapping Xi to private views Zi,h

of Kh(Xi−t) from Example 2.3 for one single h > 0. More precisely, we consider
the Laplace mechanism given through

Zi,h(t) = Kh(Xi − t) +
2‖K‖∞

h(α− log(1− β))︸ ︷︷ ︸
=:Cαβ/(

√
2h)

ξi,h, ξi,h i.i.d. ∼ L(1). (3)

Given Z1,h, . . . , Zn,h as in (3), a natural estimator of f(t) is given by

f̂h(t) =
1

n

n∑
i=1

Zi,h(t). (4)

The following proposition provides a uniform upper risk bound for this esti-
mators over the Sobolev ellipsoids S(s, L) introduced above.

The proof of the results exploits the special choice of the kernel function as
the so-called sinc-kernel defined via

Ksinc(x) = sinc(x) =
sin(πx)

πx
. (5)
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Proposition 3.1. Consider the kernel density estimator f̂h(t) for some fixed
t ∈ R where the kernel used in the anonymization procedure (3) is the sinc-kernel
given in (5). Then, for any s > 1/2,

sup
f∈S(s,L)

E[(f̂h(t)− f(t))2] � C

[
h2s−1 +

1

nh
+

1

nh2

]
for some C = C(α, β, L, s, ‖f‖∞,Ksinc). In particular, setting h = h� with
h� � n−1/(2s+1), we obtain

sup
f∈S(s,L)

E[(f̂h�(t)− f(t))2] � n− 2s−1
2s+1 .

Since the noise added by the privacy mechanisms is centred, the bias term
in the proof of Proposition 3.1 remains unchanged in comparison to the stan-
dard setup without privacy constraints. However, the variance term changes
due to the additional Laplace noise, and the classical variance term 1/(nh) is
augmented by the additional term 1/(nh2) which is of higher order for h → 0.
Consequently, the optimal bandwidth is no longer of order n−1/(2s) as in the
standard setup but of the larger order n−1/(2s+1). However, consistency of f̂h
is already guaranteed if h → 0 and nh2 → ∞ simultaneously (in the standard
density estimation setup one only needs nh → ∞ in addition to h → 0).

Remark 3.2. Proposition 3.5 below shows that the rate obtained in Proposi-
tion 3.1 is optimal for β = 0. However, in the following we will show that the
upper bound on the rate of convergence in Proposition 3.1 is distinct from the
optimal rate of convergence for β > 0. In this latter regime, one can even achieve
the optimal rate of convergence from the non-privacy setup by appropriately
chosen privacy mechanisms.

Upper bound for random replacement mechanisms

For our first specialization of the general approach in (2) we assume that the
support of the Xi is bounded, say Xi ∈ [0, 1] without loss of generality. Then,
Proposition 2.2 shows that

Yi = Xi + 2ξi (6)

with ξi ∼ L(1) is a α-differential private view of Xi, and can be used as a
building block in the definition (2) of an (α, β)-differential private algorithm.

Let us denote with g the density of the random variable 2ξ. Then, the density
ϕ of Zi is (recall that Xi ∼ f)

ϕ = βf + (1− β)(f 	 g).

In terms of the Fourier transform this yields

F [f ] =
F [ϕ]

β + (1− β)F [g]
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which motivates to consider the kernel Kn defined via the Fourier transform

F [Kn](ω) = F [Ksinc](ω) · (β + (1− β)F [g](ω/h))
−1

(7)

with a bandwidth parameter h = hn → 0. Define the estimator f̂h(x) of f as

f̂h(x) =
1

nh

n∑
i=1

Kn

(
x− Zi

h

)
. (8)

We have the following result.

Proposition 3.3. Assume Xi ∈ [0, 1]. Consider the kernel density estimator

f̂h(t) from Equation (8) for some fixed t ∈ [0, 1] with the kernel Kn defined
through its Fourier transform (7). Then, for any s > 1/2,

sup
f∈S(s,L)

E[(f̂h(t)− f(t))2] � C

[
h2s−1 +

1

nβ2h

]
for some numerical constant C. In particular, setting h=h� with h��(nβ2)−1/(2s),
we obtain

sup
f∈S(s,L)

E[(f̂h�(t)− f(t))2] � (nβ2)−
2s−1
2s .

If Xi is not assumed to be bounded, the above Laplace mechanism is not
applicable to obtain differential privacy. In this case, the only obvious mechanism
to obtain (0, β)-differential privacy is to draw Yi according to some arbitrary
density g (on which the individual data holders have to agree) and then to
publish

Zi =

{
Xi, if Ui � β,

Yi, if Ui > β.
(9)

In this case, the density ϕ of Z is a mixture with components f and g, namely

ϕ = β · f + (1− β) · g. (10)

Then, the statistician can estimate the density ϕ via a usual kernel density
estimator, say ϕ̂h, and then estimate f via

f̂h(t) :=
1

β
ϕ̂h(t)−

1− β

β
g(t). (11)

This leads to the risk decomposition

E[(f̂h(t)− f(t))2] = E

[
(f̂h(t)−

1

β
ϕ(t)− 1− β

β
g(t))2

]
= β−2E[(ϕ̂h(t)− ϕ(t))2]. (12)

If the density g is at least as smooth as the unknown density f , then ϕ inherits
the smoothness s from f , and we obtain the following result (the easy proof of
which is left to the reader).
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Proposition 3.4. Consider the estimator f̂h(t) from Equation (11) where we
use the sinc-kernel in the definition of ϕ̂h and assume that the density g in (10)
and (11) belongs to S(s,R) for some large enough R. Then, for all s > 1

2 ,

sup
f∈S(s,L)

E[(f̂h(t)− f(t))2] � Cβ−2

[
h2s−1 +

1

nh

]
for some C = C(β, s, L,R). In particular, setting h = h� with h� � n−1/(2s),
we obtain

sup
f∈S(s,L)

E[(f̂h∗(t)− f(t))2] � β−2n− 2s−1
2s .

3.2. Lower bound

The following result states a lower bound over Sobolev ellipsoids in the case of
pure differential privacy (β = 0).

Proposition 3.5. Let α > 0 arbitrary. Then,

inf
�̂∈σ(Z)
Q∈Qα,0

sup
f∈S(s,L)

E[(�̂− f(t))2] � C(α)n− 2s−1
2s+1

where C(α) > 0 depends on the privacy parameter, and the infimum is taken

over all estimators �̂ based on private views Z1, . . . , Zn and privacy mechanisms
providing (α, 0)-differential privacy.

Remark 3.6. The lower bound of Proposition 3.5 still holds true when one
allows a slight amount of interaction between the data holders, namely when
the distribution of every Zi is determined by Xi and the previously masked
values Z1, . . . , Zi−1. The proof remains the same because the data processing
inequality (14) from [11] still holds true in this more general setup.

Proposition 3.5 shows that, regarding the privacy parameter α as an a priori
fixed constant, the estimators f̂h(t) from Proposition 3.1 attain the optimal rate
n−(2s−1)/(2s+1) in terms of n under pure local differential privacy.

Recall that without privacy restrictions the optimal rate over Sobolev ellip-
soids is n−(2s−1)/(2s) (as mentioned in [3], this rate can, other than by a reduction
scheme as used in our proof, be easily obtained via the theory developed in [10],
see also [22]).

Of course, lower bounds on the rate of convergence in the scenario without
privacy still hold true in the setup of differential privacy (since the privacy
restriction can be interpreted as restricting the set of admissible estimators).
Thus, for approximate differential privacy the rates of convergence derived in
Propositions 3.3 and 3.4 are optimal.

In this work, we consider the parameter α (and also β in the case of approxi-
mate differential privacy) as fixed and are interested in the behaviour of the rate
as a function of n only but remarks concerning α analogous to the ones made
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in [4] could be made (as in that paper, α and β could also be allowed to vary
with n). The optimal behaviour, however, of the rates in terms of the privacy
parameters α and β, especially if β > 0, remains an open issue which is outside
the scope of this paper.

Instead, we give in the following a heuristic which links (α, β)-differential
privacy to missing data problems. We have designed the privacy procedures
considered in Propositions 3.3 and 3.4 such that either the original value is
published with zero probability (Proposition 3.3) or that it is at least not evident
whether the original value has been published (provided that g in Proposition 3.4
is appropriately chosen, for instance assuming that g has the same support
as the original data). However, this (from a privacy point of view reasonable
assumption) is not enforced by the notion of (α, β)-differential privacy alone:
For example, the local mechanism that publishes

Zi =

{
Xi, if Ui � β,

∅, if Ui > β,
(13)

where ∅ denotes the empty set ensures (α, β)-differential privacy, the distribution
of the random variable Yi in (9) corresponding here to the trivial distribution on
the one point set {∅}. This mechanism, though, will certainly not be regarded
as a legitimate privacy mechanism in most applications since it does not only
reveal the true value with a positive probability but also tells the observer of
the ‘privatized’ data if this is the case or not. This problem might become even
more severe in multivariate setups where exact knowledge of one (maybe not
per se sensitive) value associated with a certain individual might help to identify
this individual and in addition reveals values associated with this person that
are considered as sensitive.

Concerning the (optimal) rate of convergence, the missing data problem (13)
is asymptotically equivalent to a standard nonparametric experiment where the
number of observations is now βn instead of n which would lead to a rate of

order (nβ)−
2s−1
2s over Sobolev spaces. Of course this rate is better than the one

we have obtained above in Proposition 3.3 which is in turn better than the
one from Proposition 3.4 (the latter fact being intuitive since in the setup of
Proposition 3.4 the random variable Yi does not contain any information on f
any more which still holds in Proposition 3.3).

Finally, we would like to mention that the mixture structure in Equation (10)
is well-known under the name of Huber’s contamination model in the theory on
robust statistics. In this contamination model, however, the nuissance compo-
nent g is itself unknown which leads to slower rates when the supremum in the
minimax formulation is also taken over a set of potential contamination dis-
tributions g [8]. In the framework of differential privacy, the data holders can
agree on a suitable choice of g which even allows to maintain the standard rate
of convergence that holds for unmasked observations.
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4. Adaptation to unknown smoothness

The estimators of the previous section are not completely satisfying since the
optimal choice h�

n of the bandwidth, as usually in non-parametric statistics, de-
pends on a priori knowledge of the smoothness of the unknown function f . Such
knowledge is usually not available in practise. At least, using the approach sug-
gested in Subsection 2.3 (with its specializations considered in Propositions 3.3
and 3.4) we relieved ourselves from the drawback of the Laplace method that
one can privatize only one functional of the form f(t) for one single t that has to
be fixed even before the anonymization. Note that this drawback is, for instance,
also present in the mechanisms suggested in [21]. From this point of view, (α, β)-
differential privacy with strictly positive β via one of these approaches should
be preferred.

The purpose of this section is to address the remaining issue of adapting to
the unknown smoothness of f . Note that the problem of adaptation has, to
the best of the author’s knowledge, only been addressed in the recent work [4]
so far, where the authors use wavelet estimators for density estimation on a
compact interval. The approach in that paper is thus conceptionally different
from the one presented in the sequel. In order to tackle this problem, we use a
variant of Lepski’s method (see [20] for a general account in the Gaussian white
noise model, and [7] for an application to a tomography problem whose concise
presentation has inspired our one).

Recall that in the case of global privacy (which is not considered here) the
trusted data curator can choose the bandwidth in an adaptive way using all the
data X1, . . . , Xn and, as a consequence, can build on the existing plethora of
methods and theoretical results for this standard case; hence bandwidth selec-
tion does not provide any additional difficulty for centralized privacy since only
the final output is anonymized. Nearly the same holds true for our approaches
to achieve (α, β)-differential privacy presented in Subsection 2.3. Here, slight
modifications of standard Lepski’s method yield completely data-driven estima-
tors that attain the optimal rates of convergence up to logarithmic factors. For
these cases, we will state results but omit the proofs since these are obtained
by adapting the one for the Laplace perturbation case (or standard results from
the literature). However, we study in detail the case of pure differential privacy
which is the one that differs most from the standard framework.

4.1. Adaptive estimation for Laplace perturbation

In order to apply Lepski’s method for the case of Laplace perturbation, the ob-
servations (3) must be available for different values of the bandwidth parameter
h, say h ∈ Hn. This can be realized using Lemma 2.5 provided that the privacy
parameters α and β are appropriately scaled. Thus, we can assume that Zi,h(t)
in (3) are accessible for any i ∈ �1, n� and h ∈ Hn if we replace α and β by
α′ = α/#Hn and β′ = β/#Hn, respectively. For any h ∈ Hn and t ∈ R, we
can then consider the estimator defined in (4). In our case, we define the set of
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potential bandwidths by a geometric grid,

Hn = {h ∈ [hn, hn] : h = a−jhn, j ∈ N}, (14)

where a > 1 is a fixed constant, hn is such that a log(hn
√
n)/

√
n � hn � 1, and

hn satisfies hn = (log(hn
√
n) ∨ 1)/

√
n. For h ∈ Hn and some M > 0, define

v2(h) =
M
∫
K2(u)du

nh
+

C2
α′β′

nh2

where Cα′β′ is defined as in Section 3. The proof of Proposition 3.1 shows that

Var(f̂h) � v2(h)

if ‖f‖∞ � M . Put λ(h) = max(1, (κ log(hn/h))
1/2) with κ being a sufficiently

large constant (an explicit value can be determined from the proof of Theo-
rem 4.3) and define

h∗
n = h∗

n(t, f) = max{h ∈ Hn : |fη(t)− f(t)| � v(h)λ(h)

2
for all η ∈ Hn, η � h} (15)

where fη := Ef̂η. If the set in the definition of h∗
n is empty, we set h∗

n = hn by
convention. However, in the proof of Proposition 4.1 we will show that this set is
non-empty for n large enough. The bandwidth h∗

n is an oracle in the sense that it
is not accessible by the statistician since it depends on the unknown parameter
f . The definition of h∗

n provides some kind of ideal criterion: The bandwidth h
is increased along the grid Hn as long as the bias term |fη(t)− f(t)| is bounded
by the ‘rate’ v(h)λ(h), a procedure that aims at mimicking the classical bias-

variance tradeoff. In order to state a risk bound for the pseudo estimator f̂h∗
n
,

we further define

rn(t, f) = inf
hn�h�1

[
sup

0�η�h
(fη(t)− f(t))2 +

M
∫
K2(u)du log(n)

nh
+

C2
α′β′ log(n)

nh2

]
.

Proposition 4.1. Consider the pseudo-estimator f̂h∗
n
defined via (4) and (15)

where α and β are replaced with α′ and β′, respectively. Assume that

lim
h→0

1

h

∫
K

(
x− t

h

)
f(x)dx = f(t). (16)

Choose hn = 1. Then, for n sufficiently large,

E[(f̂h∗
n
(t)− f(t))2] � 5

4
v2(h∗

n)λ
2(h∗

n) � C(a)rn(t, f)

uniformly for all f with ‖f‖∞ � M .

Remark 4.2. Assumption (16) is satisfied in many cases. For instance, if∫
|K(u)|du < ∞, then (16) is a special case of Bochner’s lemma (see [23],

Lemma 1.1). However, the sinc-kernel is not absolutely integrable and thus
Bochner’s lemma cannot be applied. In this case, one can alternatively assume
that f belongs at least to some Sobolev space S(s, L) for some s > 1/2. Then,
the analysis of the bias term as in the proof of Proposition 3.1 guarantees the
validity of (16).
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The pseudo estimator f̂h∗
n
is a stopover on our road to an adaptive estimator.

We now construct a genuine estimator of f that aims at mimicking this oracle.
For this, we first define

v2(h, η) =
M

n

∫
(Kh(u)−Kη(u))

2du+
C2

α′β′

nh2
+

C2
α′β′

nη2
.

Then, calculations similar to those in the proof of Proposition 3.1 show that

Var(f̂h − f̂η) � v2(h, η)

if ‖f‖∞ � M . For h, η ∈ Hn, put

ψ(h, η) = v(h)λ(h) + v(h, η)λ(η).

Then, we define an adaptive choice of the bandwidth parameter by

ĥn = max{h ∈ Hn : |f̂h(t)− f̂η(t)| � ψ(h, η) for all η � h, η ∈ Hn}. (17)

This choice of the bandwidth is well-defined since the maximum is taken over
a non-empty set. The definition of ĥn is characteristic for Lepski’s method [19],
and the motivation of this procedure is neatly described in [7], p. 67: One chooses

the largest bandwidth h such that the difference between the two estimators f̂h
and f̂η is not too large (in the sense of (17)) for all η � h. Evidently, the
motivation of this procedure is to mimick the trade-off between squared bias
and variance in a purely data-driven manner. Note also that (17) provides, as
well as the oracle version (15), a local choice of the bandwidth in the sense that

ĥn depends on t. Such a local criterion might result in a better adaptation to
spatial inhomogeneity of the target density than global selection rules.

Theorem 4.3. Consider the estimator f̂ĥn
defined via (4) and (17) where

Zi,h(t) for h ∈ Hn are defined via (3) with α and β replaced with α′ and β′,
respectively. Then, uniformly for all f with ‖f‖∞ � M ,

E[(f̂ĥn
(t)− f(t))2] � C(a)v2(h∗

n)λ
2(h∗

n).

As a consequence, taking hn = 1, we obtain

E[(f̂ĥn
(t)− f(t))2] � C(a)rn(t, f).

The following corollary is obtained by specializing Theorem 4.3 with the sinc-
kernel and hn = 1. Note that a logarithmic loss for adaptation is commonly
accepted and even known to be indispensable for pointwise estimation in the
non-private framework [2].

Corollary 4.4. Consider the estimator f̂ĥn
defined via (4) and (17) where

Zi,h(t) for h ∈ Hn are defined via (3) for the sinc-kernel with α and β replaced
with α′ and β′, respectively. Then,

sup
f∈S(s,L)
‖f‖∞�M

E[(f̂ĥn
(t)− f(t))2] � C(α′, β′,M,L)

(
n

logn

)− 2s−1
2s+1

.
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4.2. Adaptive estimation for approximate differential privacy

We now state the adaptation results for approximate differential privacy that
are obtained via Lepski’s method in analogy to the ones for pure differential
privacy. For this, we have to redefine some of the quantities from the previous
subsection. Taking Hn as defined in (14) with the exception that we now take
hn and hn satisfying log(hnn)/n � hn � 1 and hn = (log(hnn) ∨ 1)/n. We put
(defining λ(h) = max(1, (κ log(hn/h))

1/2) as above)

v2(h) =
M
∫
K2

n(u)du

nh
,

h∗
n = max{h ∈ Hn : |fη(t)− f(t)| � v(h)λ(h)

2
for all η ∈ Hn, η � h}

rn(t, f) = inf
hn�h�1

[
sup

0�η�h
(fη(t)− f(t))2 +

M
∫
K2

n(u)du log(n)

nh

]
,

v2(h, η) =
M

n

∫
(Kn,h(u)−Kn,η(u))

2du

ψ(h, η) = v(h)λ(h) + v(h, η)λ(η), and

ĥn = max{h ∈ Hn : |f̂h(t)− f̂η(t)| � ψ(h, η) for all η � h, η ∈ Hn}. (18)

With this redefinition, we obtain the following result.

Theorem 4.5. Assume Xi ∈ [0, 1]. Consider the estimator f̂ĥn
defined via (8)

and (18) with Zi defined in (2) and Yi as in (6). Then, uniformly for all f with
‖f‖∞ � M ,

E[(f̂ĥn
(t)− f(t))2] � v2(h∗

n)λ
2(h∗

n).

As a consequence, taking hn = 1, we obtain

E[(f̂ĥn
(t)− f(t))2] � rn(t, f).

Corollary 4.6. Consider the estimator f̂ĥn
defined via (8) and (18) where Zi(t)

is defined via (2) with Yi as in (6). Then,

sup
f∈S(s,L)
‖f‖∞�M

E[(f̂ĥn
(t)− f(t))2] � C(α, β,M,L)

(
n

logn

)− 2s−1
2s

.

For a priori not bounded Xi we can consider the estimation procedure con-
sidered in Propostion 3.4. In the definitions preceeding Theorem 4.5, we replace
the deconvolution-type kernel Kn by a general kernel in all of the quantities.

Theorem 4.7. Consider the estimator f̂ĥn
defined via (11) and (18) with Zi

defined in (2) and Yi ∼ g for some distribution g. Then, uniformly for all f
with ‖f‖∞ � M ,

E[(f̂ĥn
(t)− f(t))2] � λ2(h∗

n).
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As a consequence, taking hn = 1, we obtain

E[(f̂ĥn
(t)− f(t))2] � rn(t, f).

Corollary 4.8. Consider the estimator f̂ĥn
defined via (11) and (18) where

Zi(t) is defined via (2) with Yi ∼ g for some infinitely smooth distribution (that
is, g belongs to S(s, L) for some L and all s > 0; for instance, one can take g
as the density of a standard normal). Then,

sup
f∈S(s,L)
‖f‖∞�M

E[(f̂ĥn
(t)− f(t))2] � C(α, β,M,L)

(
n

logn

)− 2s−1
2s

.

5. Discussion

We have investigated the optimal rates of convergence for pointwise estimation
of a probability density over Sobolev classes for both pure and approximate
local differential privacy. We have found two regimes of convergence rates: for
approximate differential privacy the rate of convergence is of the same order

n− 2s−1
2s as in the case of non-private observations, whereas the rate is deteri-

orated to n− 2s−1
2s+1 for pure differential privacy. We have suggested approaches

to adaptive kernel density estimation via Lepski’s method in the framework of
local differential privacy for both setups. Although we have studied its theo-
retical properties in the prototypical example of univariate density estimation
only, our methodology should be transferable to the multivariate case. We also
conjecture that it might be possible to extend our results to the case of general
linear functionals (different from pointwise evaluation of the density function at
a fixed point) as investigated in [15] via Lepski’s method in a inverse problem
setup. Moreover, the optimal power of the logarithmic factor in the adaptive
rate of convergence deserves further investigation. We have also pointed out the
potentially misleading conception of (α, β)-differential privacy for the case of
strictly positive β since it does not rule out mechanisms where the original data
are published and the observer is even aware of this fact. This point certainly
deserves conceptional work in the future since approximate differential privacy
is receiving rather large interest in the computer science and official statistics
literature. Note that this point of criticism is not only valid for local privacy
but also in the (even more popular) setup of global privacy (see, for instance,
[6] for a rigorous defintion of privacy in this case): the mechanism that pub-
lishes a whole original database with positive probability β and the symbol ∅
with probablity 1− β guarantees (α, β)-differential privacy but is certainly not
admissible in practise when dealing with really sensitive data. Hence, a notion
that on the hand lessens the restrictive property of strict (α, 0)-differential pri-
vacy but on the other hand rules out non-acceptable procedures is desirable.
Finally, note that pointwise rates of convergence have in the non-privacy setup
also been studied for wavelet estimators [5]. Transferring such results to privacy
setups (using, for instance, the anonymization techniques suggested in [4]) and
investigating their properties provides another direction for future research.
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Appendix A: Proofs of Section 2

A.1. Proof of Proposition 2.2

Let A ∈ B(R) be arbitrary. It has to be shown that∫
A

1

2b
exp

(
−|z − g(x)|

b

)
dz � eα

∫
A

1

2b
exp

(
−|z − g(x′)|

b

)
dz + β

for any x, x′ ∈ X. By the triangle inequality this holds true if∫
A

1

2b
exp

(
−|z − g(x)|

b

)
dz � eα−

|g(x)−g(x′)|
b

∫
A

1

2b
exp

(
−|z − g(x)|

b

)
dz + β,

and the latter holds true as soon as 1 � exp (α−Δ(g)/b)+β which is equivalent
to b � Δ(g)/(α− log(1− β)).

A.2. Proof of Proposition 2.4

Let A ∈ B(R) be arbitrary. Then, the condition on approximate differential
privacy reads

β1{x}(A) + (1− β)Q̃(A | X = x) � eα(β1{x′}(A) + (1− β)Q̃(A | X = x′)) + β

for all x, x′ ∈ X. This is certainly satisfied if

β + (1− β)Q̃(A | X = x) � eα(1− β)Q̃(A | X = x′)) + β

which in turn holds true for any (α, 0)-differentially private mechanism Q̃.

A.3. Proof of Lemma 2.5

Let A ∈ Z1 ⊗ Z2 be a measurable set. Denote Az1 = {z2 ∈ Z2 : (z1, z2) ∈ A}
which is measurable. By Cavalieri’s principle and the independence assumption

PZ|X=x(A) =

∫
Z1

PZ2|X=x(Az1)P
Z1|X=x(dz1)

�
∫
Z1

(eα2PZ2|X=x′
(Az1) ∧ 1 + β2)P

Z1|X=x(dz1)

=

∫
Z1

(eα2PZ2|X=x′
(Az1) ∧ 1)PZ1|X=x(dz1) +

∫
Z1

β2P
Z1|X=x(dz1).

Now put Ω = {dPZ1|X=x/dPZ1|X=x′ � eα1} ⊆ Z1. Then PZ1|X=x(Ωc) � β1

since otherwise there would be a contradiction to approximate differential pri-
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vacy. Hence,

PZ|X=x(A) �
∫
Z1∩Ω

eα1+α2PZ2|X=x′
(Az1)P

Z1|X=x′
(dz1)

+

∫
Z1∩Ωc

PZ1|X=x(dz1) + β2

� eα1+α2PZ|X=x′
(A) +PZ1|X=x(Ωc) + β2

� eα1+α2PZ|X=x′
(A) + β1 + β2

which shows the claim assertion.

Appendix B: Proofs of Section 3

B.1. Proof of Proposition 3.1

The bias-variance decomposition for the estimator f̂h(t) is

E[(f̂h(t)− f(t))2] = (fh(t)− f(t))2 +E[(f̂h(t)− fh(t))
2]

where fh(t) = E[f̂h(t)]. We begin with the analysis of the bias. First recall that

f(t) =
1

2π

∫
e−itωF [f ](ω)dω,

and due to centredness of the error added by the privacy mechanism

fh(t) =

∫
1

h
Ksinc

(
u− t

h

)
f(u)du

=
1

2πh

∫
F
[
Ksinc

(
· − t

h

)]
(ω)F [f ](ω)dω

=
1

2π

∫
e−itωF [Ksinc] (hω)F [f ](ω)dω.

Thus, using that F [Ksinc] (·) = 1[−π,π](·), we obtain

(fh(t)− f(t))2 =
1

4π2

(∫
R

e−itω [1−F [Ksinc] (hω)]F [f ](ω)dω

)2

=
1

4π2

(∫
R

e−itω1{|ω|>1/h}F [f ](ω)dω

)2

� 1

4π2

∫
|F [f ](ω)|2|ω|2sdω ·

∫
1{|ω|>1/h}|ω|−2sdω

� 2πL2

4π2
· 2

2s− 1
h2s−1 = C(L, s)h2s−1.
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Let us now consider the variance. We denote

f̃h(t) =
1

nh

n∑
i=1

Ksinc

(
Xi − t

h

)
.

By denoting ξ ∼ L(1), we have

E[(f̂h(t)− fh(t))
2] = Var(f̃h) +

1

n
Var

(
Δ(Ksinc((t− ·)/h)/h)

α− log(1− β)
ξ

)
� ‖f‖∞

∫
K2

sinc(u)du

nh
+

8‖Ksinc‖2∞
nh2(α− log(1− β))2

� C(‖f‖∞,Ksinc, α, β)

[
1

nh
+

1

nh2

]
.

The statement of the proposition follows now by combining the obtained bounds
for squared bias and variance.

B.2. Proof of Proposition 3.3

By the very definition of the kernel Kn, we have with fh(t) := E[f̂h(t)]

fh(t) =

∫
1

h
Kn

(
u− t

h

)
ϕ(u)du

=
1

2πh

∫
F
[
Kn

(
· − t

h

)]
(ω)F [ϕ](ω)dω

=
1

2πh

∫
F
[
Kn

(
· − t

h

)]
(ω)F [f ](ω)(β + (1− β)F [g](ω))dω

=
1

2π

∫ F [Ksinc (·)] (hω)
β + (1− β)F [g](ω)

F [f ](ω)(β + (1− β)F [g](ω))dω

=
1

2π

∫
e−itωF [Ksinc] (hω)F [f ](ω)dω.

This is the same expression as in the proof of Proposition 3.1 and we obtain the
same bound for the squared bias as in this proposition (note that this bound
does not depend on β).

In order to study the variance, note that

Kn(t) =
1

2π

∫
e−itωF [Kn](ω)dω

=
1

2π

∫
e−itωF [Ksinc](ω) · (β + (1− β)F [g](ω/h))

−1
dω.

Hence, since F [g] � 0,∫
|Kn(t)|2dt =

1

2π

∫
|F [Kn](ω)|2dω � β−2.
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Using this estimate, we obtain the following bound for the variance term:

Var(f̂h) �
C(‖f‖∞)

nh
· β−2.

The proof of the proposition follows now by combining the bounds for bias and
variance.

B.3. Proof of Proposition 3.5

Let �̂, Q ∈ Qα be arbitrary as in the statement of the proposition. Define ψn > 0

via ψ2
n = n− 2s−1

2s+1 . Let f0,n, f1,n be two functions in S(s, L) (to be specified later
on) such that (f0,n(t)−f1,n(t))

2 � ψ2
n. Using a general reduction argument (see

[24], Section 2.2) it can be shown that

sup
f∈S(s,L)

ψ−2
n E[(�̂− f(t))2] � ψ−2

n sup
θ∈{0,1}

E[(�̂− fθ,n(t))
2]

� ψ−2
n inf

τ
max

θ∈{0,1}
Pθ(τ = 1− θ)

where the infimum is taken over all {0, 1}-valued test functions τ based on the
observations Z1, . . . , Zn and Pθ denotes the distribution of Z1, . . . , Zn if the true
density of X1, . . . , Xn is fθ,n. In view of [24], Theorem 2.2, Statement (iii), the
claim assertion follows if we can choose the functions f0,n and f1,n such that

(1) f0,n, f1,n ∈ S(s, L),

(2) (f0,n(t)− f1,n(t))
2 � ψ2

n, and

(3) KL(P0,P1) � C < ∞ for some C independent of n.

To construct such f0,n, f1,n we use ideas from Section 6 of [3] and refer to
this paper also for some of the computations. First, take a strictly positive
probability density f on R that is infinitely often continously differentiable.
Setting ‖f (s)‖22 = 1

2π

∫
R
|F [f ](ω)|2|ω|2sdω, we can further assume that ‖f (s)‖2 �

L. Then, for δ ∈ (0, 1/2), define the function f0,n by

f0,n(x) = f0(x) =

(
δ

2

) 1
s+1/2

f

(
x

(
δ

2

) 1
s+1/2

)
.

In order to define the second hypothesis f1,n we consider the auxiliary function

K̃s as introduced on p. 26 of [3] (its construction in that paper is borrowed

from [22]). In particular, note that K̃s is compactly supported and satisfies

‖K̃(s)
s ‖2 � 1 − δ/2 (thus K̃s ∈ S(s, 1)) and K̃s(0) � (1 − δ)C(s) > 0. Set

hn = (n(exp(α)− 1)2)−1/(2s+1), and put

gn,s(x) = cLh
s− 1

2
n K̃

(
x− t

hn

)
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for some constant c > 0. Defining γn,s =
∫
gn,s(x)dx < ∞, set

fn,1(x) = fn,0(x)(1− γn,s) + gn,s(x).

We now check conditions (1)–(3) from above.

Verification of (1): The proof follows step by step along the lines of the one
in [3] and we omit the details. We only record the fact that

γn,s = cLh
s+ 1

2
n

∫
K̃s(u)du = O(h

s+ 1
2

n )

which will be used below.

Verification of (2): We have

(fn,0(t)− fn,1(t))
2 = (fn,0(t)− (1− γn)f0,n(t)− g(t))2

= |γn,sf0,n(t)− g(t)|2

� ||g(t)| − |γn,sf0,n(t)||2.

Now, since gn(t) = Ch
s− 1

2
n and γn = O(h

s+ 1
2

n ), the last expression inside the

outer absolute values is greater than Ch
s− 1

2
n for sufficiently large n, say n � n0.

Hence for n � n0,

(fn,0(t)− fn,1(t))
2 � Ch2s−1

n = C(α)n− 2s−1
2s+1

which is the desired bound.

Verification of (3): By Equation (14) in [11] we have

KL(P0,P1) � 4n(exp(α)− 1)2TV2(PX1
0 ,PX1

1 ). (19)

Now

TV(PX1
0 ,PX1

1 ) =

∫
|fn,0(x)− fn,1(x)|dx

=

∫
R

|−γn,sfn,0(x) + gn(x)|dx

� γn,s

∫
|fn,0(x)|dx+

∫
R

|gn(x)|dx

� O(h
s+ 1

2
n ) + Ch

s− 1
2

n

∫
K̃

(
x− t

hn

)
dx

� O(h
s+ 1

2
n ) + C(n(exp(α)− 1)2)−

1
2

∫
K̃(u)du

� C(n(exp(α)− 1)2)−
1
2 .

for n sufficiently large. Thus, by (19), for n sufficiently large

KL(P0,P1) � Cn(exp(α)− 1)2TV2(PX1
0 ,PX1

1 ) � C.
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Appendix C: Proofs of Section 4

C.1. Proof of Proposition 4.1

Under Assumption (16), we have that sup0<η�h|fη(t)− f(t)|2 converges to zero
as h → 0. Let n � 3. By definition of v2(·), λ(·) and hn = log(

√
n)/

√
n (since

hn = 1),

v2(hn)λ
2(hn) �

M
∫
K2(u)du√

n log(
√
n)

+
C2

α′β′

log(
√
n)

· κ log(
√
n/ log(

√
n)),

hence lim infn→∞ v(hn)λ(hn) > 0, and the set in the definition of h∗
n is non-

empty provided that n is sufficiently large. Now, the bias-variance decomposition
of the pseudo estimator is

E[(f̂h∗
n
(t)− f(t))2] = (fh∗

n
(t)− f(t))2 +Varf (f̂h∗

n
)

� (fh∗
n
(t)− f(t))2 + v2(h∗

n)

� v2(h∗
n)λ

2(h∗
n)

4
+ v2(h∗

n)

� 5

4
v2(h∗

n)λ
2(h∗

n).

Let now h0 be the minimizer in the definition of rn(t, f). We distinguish the
cases h0 < ah∗

n and h0 � ah∗
n. First, if h0 < ah∗

n, then

rn(t, f) = sup
0�η�h0

(fη(x)− f(x))2 +
M
∫
K2(u)du log(n)

nh0
+

C2
α′β′ log(n)

nh2
0

� M
∫
K2(u)du log(n)

nh0
+

C2
α′β′ log(n)

nh2
0

� M
∫
K2(u)du log(n)

anh∗
n

+
C2

α′β′ log(n)

na2(h∗
n)

2

� C(a, κ)v2(h∗
n)λ

2(h∗
n).

If h0 � ah∗
n, then by the very definition of h∗

n we obtain

rn(t, f) � sup
0�η�h0

(fη(t)− f(t))2 � sup
0�η�ah∗

n

(fη(t)− f(t))2 >
v2(ah∗

n)λ
2(ah∗

n)

4
,

and thus rn(t, f) � v2(h∗
n)λ

2(h∗
n) also in this case.

C.2. Proof of Theorem 4.3

We consider the risk decomposition

E[(f̂ĥn
(t)−f(t))2] = E[(f̂ĥn

(t)−f(t))21{ĥn�h∗
n}
]+E[(f̂ĥn

(t)−f(t))21{ĥn<h∗
n}
],
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and study the two terms on the right-hand side separately.

Analysis of the first term (Case ĥn � h∗
n). Note that the quantities v(·), λ(·)

satisfy v(h) � v(h′) and λ(h) � λ(h′) for h′ � h. Thus, using the inequality
(a+ b)2 � 2a2 + 2b2, we have for h � h′ that

ψ(h′, h) = v(h′)λ(h′) + v(h′, h)λ(h)

� v(h)λ(h) + 2
√
2v(h)λ(h)

= (1 + 2
√
2)v(h)λ(h).

By the definition of ψ and ĥn, we obtain

|f̂ĥn
(t)− f̂h∗

n
(t)|1{ĥn�h∗

n}
� ψ(ĥn, h

∗
n)

� sup{ψ(η, h∗
n) : η ∈ Hn, η � h∗

n}
� (1 + 2

√
2)v(h∗

n)λ(h
∗
n).

Hence (recall that we denote fh(t) = E[f̂h(t)]),

E[(f̂ĥn
(t)− f(t))21{ĥn�h∗

n}
]

� 2E[(f̂ĥn
(t)− f̂h∗

n
(t))21{ĥn�h∗

n}
] + 2E[(f̂h∗

n
(t)− f(t))2]

= 2E[(f̂ĥn
(t)− f̂h∗

n
(t))21{ĥn�h∗

n}
] + 2E[(f̂h∗

n
(t)− fh∗

n
(t))2]

+ 2(fh∗
n
(t)− f(t))2

� v2(h∗
n)λ

2(h∗
n)

where we used the bound Var(f̂h∗
n
) � v2(h∗

n) for the term 2E[(f̂h∗
n
(t)−fh∗

n
(t))2]

and the definition of h∗
n to bound the term (fh∗

n
(t)− f(t))2.

Analysis of the second term (Case ĥn < h∗
n). For h, η ∈ Hn with η < h, set

Bn(t, h, η) = {|f̂h(t)− f̂η(t)| > ψ(h, η)}.

Let h in Hn. Then, by definition of ĥn,

{ĥn = a−1h} ⊆
⋃

η∈Hn

η<h

Bn(t, h, η),

and thus

{ĥn < h∗
n} =

⋃
h∈Hn

h<h∗
n

{ĥn = h}

⊆
⋃

h∈Hn

h<ah∗
n

{ĥn = a−1h}
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=
⋃

h∈Hn

h<ah∗
n

⋃
η∈Hn

η<h

Bn(t, h, η).

We obtain

E[(f̂ĥn
(t)− f(t))21{ĥn<h∗

n}
] �

∑
h∈Hn

h<ah∗
n

E[(f̂a−1h(t)− f(t))21{ĥn=a−1h}]

�
∑

h∈Hn

h<ah∗
n

∑
η∈Hn

η<h

E[(f̂a−1h(t)− f(t))21Bn(t,h,η)].

By definition of h∗
n, for all η, h ∈ Hn with η < h � h∗

n, it holds

|fη(t)− f(t)| � v(h∗
n)λ(h

∗
n)

2
� v(h)λ(h)

2
.

Now, for η < h � h∗
n,

Bn(t, h, η) = {|f̂h(t)− f̂η(t)| > ψ(h, η)}
= {|f̂h(t)− f̂η(t)− (fh(x)− fη(t)) + fh(t)

− fη(t)− f(t) + f(t)| > ψ(h, η)}

⊆
{
v(h)λ(h) +

∣∣∣∣∣ 1n
n∑

i=1

ζi

∣∣∣∣∣ > ψ(h, η)

}

⊆
{∣∣∣∣∣ 1n

n∑
i=1

ζi

∣∣∣∣∣ > v(h, η)λ(η)

}

where ζi = ζi,h,η = Zi,h(t) − Zi,η(t) − (fh(t) − fη(t)). Note that Eζi = 0 and
Var(ζi) � nv2(h, η). Now, by the Cauchy-Schwarz inequality,

E[(f̂ĥn
(t)− f(t))21{ĥn<h∗

n}
]

�
∑

h∈Hn

h<ah∗
n

∑
η∈Hn

η<h

E[(f̂a−1h(t)− f(t))21{| 1
n

∑n
i=1 ζi|>v(h,η)λ(η)}]

�
∑

h∈Hn

h<ah∗
n

∑
η∈Hn

η<h

(
E[(f̂a−1h(t)− f(t))4]

)1/2(
P

(∣∣∣∣ 1n
n∑

i=1

ζi

∣∣∣∣ > v(h, η)λ(η)

))1/2

.

For the first term in the sum, we have

E[(f̂a−1h(t)− f(t))4] = E[(f̂a−1h(t)− fa−1h(t) + fa−1h(t)− f(t))4]

� 8E[(f̂a−1h(t)− fa−1h(t))
4] + 8(fa−1h(t)− f(t))4.
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Putting ζ ′i = Zi,a−1h(t)− fa−1h(t), we have

E
[
(f̂a−1h(t)− fa−1h(t))

4
]
= E

⎡⎣( 1

n

n∑
i=1

ζ ′i

)4
⎤⎦ � E[(ζ ′i)

4]

n3
+

3(E[(ζ ′i)
2])2

n2
.

On the one hand,

E[(ζ ′i)
4] �

C4
α′β′

a−4h4
+

1

a−4h4
E

[(
K

(
X − t

a−1h

)
−E

[
K

(
X − t

a−1h

)])4
]

�
C4

α′β′

a−4h4
+

8

a−4h4
E

[(
K

(
X − t

a−1h

))4
]
+

8

a−4h4

(
E

[
K

(
X − t

a−1h

)])4

� 1

a−4h4
+

1

a−3h3
+ 1,

on the other hand

E[(ζ ′i)
2] �

C2
α′β′

a−2h2
+

1

a−1h
.

Hence,

E[(f̂a−1h(t)− fa−1h(t))
4] � Cv4(a−1h).

Moreover, for a−1h < h∗
n,

(fa−1h(t)− f(t))4 � v4(h∗
n)λ

4(h∗
n)

16

by the very definition of h∗
n. Thus, altogether,

E[(f̂a−1h(t)− f(t))4] � C(v4(a−1h) + v4(h∗
n)λ

4(h∗
n)),

and by the monotonicity of v(·) and λ(·), for η < h � h∗
n

E[(f̂a−1h(t)− f(t))4] � Cλ4(η)v4(a−1h).

Write ζi = ζ
(1)
i + ζ

(2)
i where ζ

(1)
i = Kh(Xi − t) −Kη(Xi − t) − (fh(t) − fη(t))

and ζ
(2)
i =

Cα′β′√
2h

ξi,h +
Cα′β′√

2η
ξi,η with ξi,h, ξi,η i.i.d.∼ L(1) for i = 1, . . . , n. We

have

P

(∣∣∣∣∣ 1n
n∑

i=1

ζi

∣∣∣∣∣ > v(h, η)λ(η)

)
� P

(∣∣∣∣∣ 1n
n∑

i=1

ζ
(1)
i

∣∣∣∣∣ > v(h, η)λ(η)

2

)

+P

(∣∣∣∣∣ 1n
n∑

i=1

ζ
(2)
i

∣∣∣∣∣ > v(h, η)λ(η)

2

)
.
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Consider P
(∣∣∣ 1n ∑n

i=1 ζ
(1)
i

∣∣∣ > v(h,η)λ(η)
2

)
first. By Bernstein’s inequality (see

Lemma D.1) with b = 4‖K‖∞/η,

P

(∣∣∣∣∣ 1n
n∑

i=1

ζ
(1)
i

∣∣∣∣∣ > v(h, η)λ(η)

2

)

� 2max

{
exp

(
−nv2(h, η)λ2(η)

4nv2(h, η)

)
, exp

(
−nv(h, η)λ(η)η

32‖K‖∞

)}
= 2max

{
exp

(
−λ2(η)

4

)
, exp

(
−nv(h, η)λ(η)η

32‖K‖∞

)}
.

Note that

v(h, η) � Cα′β′√
nη

.

For any h ∈ Hn and n large enough, it holds

√
n �

√
κ log(

√
n) �

√
κ log(hn

√
n) =

√
κ log(hn/(1/

√
n))) �

√
κ log(hn/h).

Thus

P

(∣∣∣∣∣ 1n
n∑

i=1

ζ
(1)
i

∣∣∣∣∣ > v(h, η)λ(η)

2

)

� 2max

{
exp

(
−λ2(η)

4

)
, exp

(
−Cα′β′

√
nλ(η)

32‖K‖∞

)}
� 2 exp

(
−κ

(
1

4
∧ Cα′β′

32‖K‖∞

)
log

(
hn

η

))
. (20)

Let us now consider the probability in terms of ζ
(2)
i . We decompose

P

(∣∣∣∣∣ 1n
n∑

i=1

ζ
(2)
i

∣∣∣∣∣ > v(h, η)λ(η)

2

)
� P

(∣∣∣∣∣ Cα′β′√
2nh

n∑
i=1

ξi,h

∣∣∣∣∣ > v(h, η)λ(η)

4

)

+P

(∣∣∣∣∣Cα′β′√
2nη

n∑
i=1

ξi,η

∣∣∣∣∣ > v(h, η)λ(η)

4

)
.

Consider only the first probability on the right-hand side, the bound for the
second one following analogously. By Bernstein’s inequality (see Lemma D.1,
take the version with control on the moments applied with t = v(h, η)λ(η)/4,
v2 = C2

α′β′/h2 and b = Cα′β′/h)

P

(∣∣∣∣∣ Cα′β′√
2nh

n∑
i=1

ξi,h

∣∣∣∣∣ > v(h, η)λ(η)

4

)

� 2max

{
exp

(
−nt2

4v2

)
, exp

(
−nt

4b

)}
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� 2max

{
exp

(
−λ2(η)

64

)
, exp

(
−
√
nλ(η)

16

)}
,

and hence by using
√
n � √

κ log(hn/η),

P

(∣∣∣∣∣ Cα′β′√
2nh

n∑
i=1

ξi,h

∣∣∣∣∣ > v(h, η)λ(η)

4

)
� 2 exp

(
− κ

64
log

(
hn

η

))
.

Finally, we obtain with κ′ = κ
64 ∧ κCα′β′

32‖K‖∞
that

P

(∣∣∣∣∣ 1n
n∑

i=1

ζ
(2)
i

∣∣∣∣∣ > v(h, η)λ(η)

2

)
� 4 exp

(
−κ′ log

(
hn

η

))
.

Now,

E[(f̂ĥn
(t)− f(t))21{ĥn<h∗

n}
] �

∑
h∈H

h<ah∗
n

∑
η∈H
η<h

λ2(η)v2(a−1h) exp

(
−κ′

2
log

(
hn

η

))
.

For sufficiently small γ > 01, we have

∑
η∈Hn

η<h

λ2(η) exp

(
−κ′

2
log

(
hn

η

))
�
(

h

hn

)κ′/2−γ ∑
η∈Hn

η<h

log

(
hn

η

)(
η

hn

)γ

�
(

h

hn

)κ′/2−γ ∞∑
j=0

ja−γj log(a)

�
(

h

hn

)κ′/2−γ

.

Recall that v2(h) � 1
nh + 1

nh2 . Thus,

E[(f̂ĥn
(t)− f(t))21{ĥn<h∗

n}
]

�
∑

h∈Hn

h<ah∗
n

(
h

hn

)κ′/2−γ

v2(a−1h)

� hn

n

∑
h∈H

h<ah∗
n

(
h

hn

)κ′/2−γ−1

+
h
2

n

nα2

∑
h∈H

h<ah∗
n

(
h

hn

)κ′/2−γ−2

.

The sums on the right-hand side converge and the bound for the case ĥn < h∗
n

is negligible with respect to the upper bound v2(h∗
n)λ

2(h∗
n).

1Our calculations show that γ > 0 has to satisfy also that κ′/2− γ − 2 > 0. Such a choice
is possible whenever κ′/2− 2 > 0 which holds for κ large enough.
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Appendix D: Bernstein inequality

The following version of the Bernstein inequality is taken from [9].

Lemma D.1. Let X1, . . . , Xn be i.i.d. random variables and put Sn =
∑n

i=1(Xi−
E[Xi]). Then, for any t > 0,

P(|Sn −E[Sn]| � nt) � 2 exp

(
− nt2

2v2 + 2bη

)
� 2max

{
exp

(
−nt2

4v2

)
, exp

(
−nt

4b

)}
where Var(X1) � v2 and |X1| � b (or E[|Xi|m] � m!

2 v2bm−2 for m � 2).
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