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Abstract: In a regular full exponential family, the maximum likelihood es-
timator (MLE) need not exist in the traditional sense. However, the MLE
may exist in the completion of the exponential family. Existing algorithms
for finding the MLE in the completion solve many linear programs; they are
slow in small problems and too slow for large problems. We provide new,
fast, and scalable methodology for finding the MLE in the completion of the
exponential family. This methodology is based on conventional maximum
likelihood computations which come close, in a sense, to finding the MLE
in the completion of the exponential family. These conventional computa-
tions construct a likelihood maximizing sequence of canonical parameter
values which goes uphill on the likelihood function until they meet a con-
vergence criteria. Nonexistence of the MLE in this context results from a
degeneracy of the canonical statistic of the exponential family, the canon-
ical statistic is on the boundary of its support. There is a correspondance
between this boundary and the null eigenvectors of the Fisher information
matrix. Convergence of Fisher information along a likelihood maximizing
sequence follows from cumulant generating function (CGF) convergence
along a likelihood maximizing sequence, conditions for which are given.
This allows for the construction of necessarily one-sided confidence inter-
vals for mean value parameters when the MLE exists in the completion.
We demonstrate our methodology on three examples in the main text and
three additional examples in an accompanying technical report. We show
that when the MLE exists in the completion of the exponential family, our
methodology provides statistical inference that is much faster than existing
techniques.
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1. Introduction

In a regular full discrete exponential family, the MLE for the canonical param-
eter does not exist when the observed value of the canonical statistic lies on the
boundary of its convex support [4, Theorem 9.13], but the MLE does exist in a
completion of the exponential family. Completions for exponential families have
been described by Barndorff-Nielsen [4, pp. 154–156], Brown [7, pp. 191–201],
Csiszár and Matúš [11, 12], and Geyer [18, unpublished PhD thesis, Chapter 4].
The completion that we discuss here will consist of the limit of densities under
the the topology of pointwise convergence. The properties of this closure are
similar to those in Geyer [18, Chapter 4] with conditions similar to those in [7].
The issue of when the MLE exists in the conventional sense and what to do
when it does not is very important because of the wide use of generalized linear
models (GLMs) for discrete data and log-linear models for categorical data.

Nonexistence of the MLE in these contexts is a widely studied problem. Ad-
vances have been made in establishing necessary and sufficient conditions for
existence of the MLE [27, 2, 3, 36, 38, 16, 17], the development of an extended
or generalized MLE when the traditional MLE does not exist through convex
cores of measures [9, 10, 11, 12] and through geometric properties of exponential
families and log-linear models [4, 7, 18, 40, 21, 17, 31, 41]. The issue of nonex-
istence also arises in exponential families for spatial lattice processes [19, 24],
spatial point processes [23, 20], aster models [25], aster models with dependency
groups [15], and random graphs [29, 30, 32, 37]. In every application of these
(with the exception of aster models), existing statistical software gives com-
pletely invalid results when the MLE does not exist in the traditional sense,
and such software either does not check for this problem or does weak checks
that can emit both false positives and false negatives. Moreover, even if these
checks correctly detect the nonexistence of the MLE, conventional software im-
plements no valid inferential method in this setting. Authoritative textbooks [1,
Section 6.5] discuss the issue but provide no solutions.

Geyer [21] developed methodology for constructing hypothesis tests and con-
fidence intervals when the MLE in an exponential family does not exist in the
traditional sense. The algorithm in Geyer [21], implemented in the rcdd R pack-
age [26], are based on doing many linear programs. This algorithm does at most
n linear programs, where n is the number of cases of a GLM or the number of
cells in a contingency table, in order to determine the existence of the MLE in
the traditional sense. Each of these linear programs has p variables, where p is
the number of parameters of the model, and up to n inequality constraints. Since
linear programming can take time exponential in n when pivoting algorithms
are used, and since such algorithms are necessary in computational geometry to
get correct answers despite inaccuracy of computer arithmetic (see the warnings
about the need to use rational arithmetic in the documentation for R package
rcdd), these algorithms can be very slow. Typically, they take several minutes of
computer time for toy problems and can take longer than users are willing to wait
for real applications. Previous theoretical discussions [4, 7, 11, 12, 17, 31, 41]
of these issues do not provide algorithms, use the notions of faces of convex
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sets or convex core of measure, are specific to particular discrete exponential
families, or are all much harder to compute than the algorithm of Geyer [21].
Therefore they provide no explicit direction toward efficient computing. Thus a
valid appropriate solution to this issue that is efficiently computable would be
very important.

In this paper, we develop methodology for constructing hypothesis tests and
confidence intervals when the MLE is in the completion. The MLE in the com-
pletion is not only a limit of distributions in the original family but also a
distribution in the original family conditioned on the affine hull of a face of
the effective domain of the log likelihood supremum function [18, Theorem 4.3].
Valid statistical inference when the MLE does not exist in the conventional
sense requires knowledge of this affine hull. This affine hull is a support of the
canonical statistic under the MLE distribution in the completion. Hence it is
a translate of the null space of the Fisher information matrix, which is the
variance-covariance matrix of the canonical statistic for an exponential family.
This affine hull must contain the mean vector of the canonical statistic under
the MLE distribution. Hence knowing the mean vector and variance-covariance
matrix of the canonical statistic under the MLE distribution allows us to con-
duct valid statistical inference, and the MLE will give us good approximations
of these quantities. We will estimate the correct affine hull from the null space of
the estimated Fisher information matrix. In this paper, we make the following
contributions:

• We provide a computationally efficient solution that has its origins with
conventional maximum likelihood computations and avoids the compu-
tationally slow linear programming algorithms in [21]. Our computations
come close, in a sense, to finding the MLE in the completion of the ex-
ponential family. Informally our approach is to first consider a likelihood
maximizing sequence of canonical parameter estimates that goes uphill
on the likelihood function until a convergence criteria is satisfied. At this
point, canonical parameter estimates are still infinitely far away from the
MLE in the completion, but mean value parameter estimates are close to
the MLE in the completion, and the corresponding probability distribu-
tions are close in total variation norm to the MLE probability distribution
in the completion.

• We show that probability distributions evaluated along a likelihood max-
imizing sequence of canonical parameter vectors are close in the sense of
moment generating function convergence (Theorems 6 and 7 below) and
consequently moments of all orders are also close. Specifically, under the
conditions needed for the closure in [7], Theorem 7 restores the convergence
of moments that were a consequence of the original [4] theory which was
appropriate for logistic and multinomial regression. The conditions of [7]
hold for infinite state space models such as Poisson regression and other
interesting exponential family models. Our convergence of moments re-
sults follow from a dominated convergence argument for generalized affine
functions (limits of affine functions), a convex geometry argument for gen-
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eralized affine functions, and a Painlevé-Kuratowski set convergence argu-
ment which implies that null spaces of the Fisher matrix evaluated along
likelihood maximizing sequence of canonical parameter vectors converge.

• We develop the theoretical foundations of generalized affine functions
which are the pointwise limits of sequences affine functions. Densities of
exponential families are affine functions in the data. Thus, generalized
affine functions represent limiting densities along sequences of canonical
parameter vectors. This theory is relevant for the closure of exponential
family under study and it is essential for the convergence of moments along
likelihood maximizing sequences results mentioned in the preceding bullet
point.

In a recent paper, Candes and Sur [8] studied phase transitions for logistic
regression models with Gaussian covariates. They showed that one may be able
to determine whether or not the MLE is likely to exist before an analysis is
conducted. The configuration of n and p in their setting is such that n/p → κ
where κ < 1. Our methodology has the potential to provide useful and compu-
tationally inexpensive statistical inferences in this specific setting, even when
phase transition arguments say that the MLE is unlikely to exist apriori. This
alleviates the concern made in Section 1.2 of [8] that the geometric characteri-
zation of exponential families does not tell us when we can expect an MLE to
exist and when we cannot.

Our methodology is implemented in the R package glmdr [22]. We demon-
strate the performance of our methodology on several extensive didactic exam-
ples. These include complete separation in logistic regression and Poisson regres-
sion. Computational efficiency of our methodology is illustrated in Section 5.3.
Quasi-complete separation examples in logistic regression and Bradley-Terry
models are investigated in [14]. Detailed R code corresponding to these exam-
ples is also provided in [14].

2. Motivating example

Consider the case of complete separation in the logistic regression model as a
motivating example. When perfect separation occurs, the canonical statistic is
observed to be on the boundary of its convex support. Suppose that we have
one predictor vector x having values 10, 20, 30, 40, 60, 70, 80, 90, and suppose
the components of the response vector y are 0, 0, 0, 0, 1, 1, 1, 1. Then the simple
logistic regression model that has linear predictor η = β0 + β1x exhibits failure
of the MLE to exist in the traditional sense. This example is the same as that
of Agresti [1, Section 6.5.1].

For an exponential family, the submodel canonical statistic is MT y, where
M is the model matrix. The left panel of Figure 1 shows the observed value of
the canonical statistic vector and the support (all possible values) of this vector.
As is obvious from the figure, the observed value of the canonical statistic is on
the boundary of the convex support, in which case the MLE does not exist in
the traditional sense. In this example, the MLE in the completion corresponds
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Fig 1. Left panel: Observed value and support of the submodel canonical statistic vector
MT y for the example of Section 2. Solid dot is the observed value of this statistic. Right
panel: One-sided 95% confidence intervals for saturated model mean value parameters. Bars
are the intervals; μ(x) is the probability of observing response value one when the predictor
value is x. Solid dots are the observed data.

to a completely degenerate distribution. This MLE distribution says no data
other than what was observed could have been observed. But the sample is not
the population and estimates are not parameters. Therefore, this degeneracy is
not a problem. To illustrate the uncertainty of estimation, we show confidence
intervals (necessarily one-sided) for the saturated model mean value parame-
ters. These one-sided confidence intervals are obtained from functionality in the
accompanying glmdr package.

The right panel of Figure 1 shows that, as would be expected from so little
data, the confidence intervals are very wide. The MLE in the completion says
the probability of observing a response equal to one jumps from zero to one
somewhere between 40 and 60. The confidence intervals show that we are fairly
sure that this probability goes from near zero at x = 10 to near one at x = 90
but we are very unsure where jumps are if there are any. We discuss how these
intervals are constructed in Section 4.3. The idea is to first find all canonical
parameter values such that the probability of observing the realized degenerate
data is greater than some testing level α. We then map those canonical parame-
ter values to the mean value parameterization. The degeneracy follows from the
estimated Fisher information matrix (for the saturated model canonical param-
eter vector, also called the linear predictor) at the MLE being singular which it
is within the accuracy of computer arithmetic. In this motivating example, the
Fisher information matrix is the zero matrix. In this case the MLE of all the
saturated model mean value parameters agree with the observed data; they are
on the boundary of the set of possible values, either zero or one.

In other examples, such as examples 5.2 and 5.3 below, the MLE distribution
is only partially but not completely degenerate. This follows from the estimated
Fisher information matrix being singular (to within the accuracy of computer
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arithmetic) but not the zero matrix. The MLE distribution constrains some
components of the response vector to be equal to their observed values, but not
all of them. The remaining unconstrained components can be estimated using
traditional methods. This is explained in Sections 4.2.

The methodology that we develop is applicable for any discrete regular full
exponential family where the MLE does not exist in the traditional sense. We
redo Example 2.3 of [21] in Section 5.2 using the methodology developed here,
and we find that our methodology produces the inferences in that paper in a
fraction of the time. We also provide an analysis on a big data set (too large for
the methods of Geyer [21] to run in an acceptable amount of time) to show the
(relative) quickness of our implementation.

3. Standard exponential families

Let λ be a positive Borel measure on a finite-dimensional vector space E. The
log Laplace transform of λ is the function c : E∗ → R defined by

c(θ) = log

∫
e〈x,θ〉 λ(dx), θ ∈ E∗, (1)

where E∗ is the dual space of E, where 〈 · , · 〉 is the canonical bilinear form
placing E and E∗ in duality, and where R is the extended real number sys-
tem, which adds the values −∞ and +∞ to the real numbers with the obvious
extensions to the arithmetic and topology [34, Section 1.E].

If one prefers, one can take E = E∗ = R
p for some p, and define

〈x, θ〉 =
p∑

i=1

xiθi, x ∈ R
p and θ ∈ R

p,

but the coordinate-free view of vector spaces offers more generality and more
elegance. Also, as we are about to see, if E is the sample space of a standard
exponential family, then a subset of E∗ is the canonical parameter space, and
the distinction between E and E∗ helps remind us that we should not consider
these two spaces to be the same space.

A log Laplace transform is a lower semicontinuous convex function that
nowhere takes the value −∞ (the value +∞ is allowed and occurs where the
integral in (1) does not exist) [18, Theorem 2.1]. The effective domain of an
extended-real-valued convex function c on E∗ is

dom c = { θ ∈ E∗ : c(θ) < +∞}.

For every θ ∈ dom c, the function fθ : E → R defined by

fθ(x) = e〈x,θ〉−c(θ), x ∈ E, (2)

is a probability density with respect to λ. The set F = { fθ : θ ∈ Θ }, where
Θ is any nonempty subset of dom c, is called a standard exponential family of
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densities with respect to λ. This family is full if Θ = dom c. We also say F is the
standard exponential family generated by λ having canonical parameter space
Θ, and λ is the generating measure of F . The log likelihood of this family having
densities (2) is

lx(θ) = 〈x, θ〉 − c(θ). (3)

A general exponential family [18, Chapter 1] is a family of probability dis-
tributions having a sufficient statistic X taking values in a finite-dimensional
vector space E that induces a family of distributions on E that have a standard
exponential family of densities with respect to some generating measure. Re-
duction by sufficiency loses no statistical information, so the theory of standard
exponential families tells us everything about general exponential families [18,
Section 1.2].

In the context of general exponential families X is called the canonical statis-
tic and θ the canonical parameter (the terms natural statistic and natural pa-
rameter are also used). The set Θ is the canonical parameter space of the family,
the set dom c is the canonical parameter space of the full family having the same
generating measure. A full exponential family is said to be regular if its canonical
parameter space dom c is an open subset of E∗.

4. Calculating the MLE in the completion

We first define the completion of the exponential family.

Definition 1. Let θn, n = 1, . . ., be a sequence of canonical parameter vectors
for a standard exponential family having log likelihood (3). Let hn(x) = lx(θn),
and suppose that hn(x) → h(x) pointwise as n → ∞ where limits −∞ and +∞
are allowed. The limiting functions h form the closure of the exponential family.

In the above definition hn is a sequence of affine functions and the limiting
function h is a generalized affine function. Generalized affine functions and their
properties are defined and discussed in Section 6.1.

4.1. Assumptions

So far everything has been for general exponential families. Our implementation
requires that the conditions of Brown [7] hold, and those conditions hold for lo-
gistic and log-linear models for categorical data analysis. Now, we restrict our
attention to discrete GLMs. This, in effect, includes log-linear models for con-
tingency tables because we can always assume Poisson sampling, which makes
them equivalent to multinomial sampling [1, Section 8.6.7; 21, Section 3.17].

The conditions of Brown that are required for our theory to hold are from
Brown [7, pp. 193–197]. These conditions are:

(i) The support of the exponential family is a countable set X.
(ii) The exponential family is regular.
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(iii) Every x ∈ X is contained in the relative interior of an exposed face F of
the convex support K.

(iv) The convex support of the measure λ|F equals F , where λ is the generating
measure for the exponential family and λ|F is the restriction of λ to the
exposed face F .

We let θn be a likelihood maximizing sequence of canonical parameter vectors,
that is,

lx(θn) → sup
θ∈Θ

lx(θ), as n → ∞, (4)

where the log likelihood l is given by (3), Θ is the canonical parameter space
of the family, and supθ∈Θ lx(θ) < ∞. Define hn(x) = lx(θn) as in Definition 1.
The limiting density eh corresponds to the MLE distribution in the completion.
The mathematical properties of generalized affine functions and this completion
construction are studied in Section 6.

4.2. The form of the MLE in the completion

Suppose we know the affine support of the MLE distribution in the completion.
This is the smallest affine set (translate of a vector subspace) that contains the
canonical statistic with probability one. Denote the affine support by A. Since
the observed value of the canonical statistic is contained in A with probability
one, and the canonical statistic for a GLM is MTY , where M is the model
matrix, Y is the response vector, and y its observed value, we have A = MT y+V
for some vector space V .

Then the limiting conditional model (LCM) in which the MLE in the com-
pletion is found is the original model (OM) conditioned on the event

MT (Y − y) ∈ V, almost surely

[18, Theorem 4.3]. Suppose we characterize V as the subspace where a finite set
of linear equalities are satisfied

V = {w ∈ R
p : 〈w, ηi〉 = 0, i = 1, . . . , j }.

Then the LCM is the OM conditioned on the event

〈MT (Y − y), ηi〉 = 〈Y − y,Mηi〉 = 0, i = 1, . . . , j.

From this we see that the vectors η1, . . . , ηj span the null space of the Fisher
information matrix for the LCM. We collect this in the definition below.

Definition 2. Let Y be the n-dimensional vector with iid entries from a discrete
regular full exponential family. Let M ∈ R

n×p be a known model matrix and let
j ≤ p be the dimension of the null space of Fisher information. Then the limiting
conditional model (LCM) is the original model conditioned on the event

〈MT (Y − y), ηi〉 = 〈Y − y,Mηi〉 = 0, i = 1, . . . , j, (5)

where y is the observed value of the response vector Y and η1, . . . , ηj spans the
null space of the Fisher information matrix.
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The event (5) fixes some components of the response vector at their observed
values and leaves the rest entirely unconstrained. Those components, that are
entirely unconstrained are those for which the corresponding components ofMηi
is zero (or, taking account of the inexactness of computer arithmetic, nearly zero)
for all i = 1, . . . , j.

Our theory states that the null space of the Fisher information matrix for
the LCM is well approximated by the Fisher information matrix for the OM at
parameter values that are close to maximizing the likelihood, see Section 6.4.
The vector subspace spanned by the vectors η1, . . . , ηj is called the constancy
space of the LCM [21].

4.3. Calculating one-sided confidence intervals for mean value
parameters

We provide a new method for calculating these one-sided confidence intervals
that has not been previously published, but whose concept is found in Geyer
[21] in the penultimate paragraph of Section 3.16.2. Let I denote the index set
of the components of the response vector on which we condition the OM to get
the LCM, and let YI and yI denote these components considered as a random
vector and as an observed value, respectively. Let θ = Mβ denote the saturated
model canonical parameter (usually called “linear predictor” in GLM theory)
with β being the submodel canonical parameter vector. Then endpoints for a
100(1− α)% confidence interval for a scalar parameter g(β) are

min
γ∈Γlim

prβ̂+γ(YI=yI)≥α

g(β̂ + γ) and max
γ∈Γlim

prβ̂+γ(YI=yI)≥α

g(β̂ + γ) (6)

where β̂ is an MLE of the submodel canonical parameter vector in the LCM
and Γlim is the null space of the Fisher information matrix. At least one of (6)
is at the end of the range of this parameter (otherwise we can use conventional
two-sided intervals). Steps for obtaining inferences are outlined in Algorithm 1.
Note that confidence intervals computed from this procedure are not as we
understand them in classical statistics, and are a prescription for a confidence
interval routine that is otherwise inappropriate when the canonical statistic is
observed to be on the boundary of its support.

For logistic and binomial regression, let p = logit−1(θ) denote the mean value
parameter vector (here logit−1 operates componentwise). Then, prβ(YI = yI) =∏

i∈I p
yi

i (1 − pi)
ni−yi where the ni are the binomial sample sizes. In logistic

regression we have ni = 1 for all i, but in binomial regression we have ni ≥ 1
for all i. We could take the confidence interval problem to be

maximize pk, subject to
∏
i∈I

pyi

i (1− pi)
ni−yi ≥ α, (7)

where p is taken to be the function of γ described above, and this can be done
for any k ∈ I. The optimization problem in (7) will be more computational
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Algorithm 1 Inference when canonical statistical is on the boundary of its
support

1. Declare tolerance ε.
2. Fit GLM model and obtain estimated Fisher information matrix.
3. Perform eigenvalue decomposition of estimated Fisher information matrix and assign null
eigenvectors as those whose eigenvalues are less than ε.
4. Obtain the LCM using estimates of the null eigenvectors computed in the previous step,
as in (5). Determine I, the index set of the components of the response vector on which we
condition the OM to get the LCM.
5. Obtain inference for mean value parameters in the LCM corresponding to the components
of Mηi which are 0 for all i = 1, . . . , j.
6. Obtain estimate of β̂ from the LCM.
7. Obtain one-sided estimates of the mean value parameters as in (6).

stable written as

maximize θk

subject to
∑
i∈I

[
yi log(pi) + (ni − yi) log(1− pi)

]
≥ log(α), (8)

since log can be used to avoid overflow and underflow. More details are included
in Section F.1 of the Appendix.

For Poisson sampling, let μ = exp(θ) denote the mean value parameter (here
exp operates componentwise like the R function of the same name does), then
prβ(YI = yI) = exp

(
−
∑

i∈I μi

)
. We take the confidence interval problem to be

maximize μk, subject to −
∑
i∈I

μi ≥ log(α) (9)

where μ is taken to be the function of γ described in (6). The optimization
in (9) can be done for any k ∈ I. The inference function in the R package
glmdr determines one-sided confidence intervals for mean value parameters cor-
responding to response values yI for logistic and binomial regression as in (8)
and Poisson regression as in (9). Computational details are given in Section F.2
of the Appendix.

5. Examples

5.1. Complete separation example

We return to the motivating example of Section 2. Here we see that the Fisher
information matrix has only null eigenvectors. Thus the LCM is completely de-
generate at the one point set containing only the observed value of the canonical
statistic of this exponential family. One-sided confidence intervals for mean value
parameters (success probability considered as a function of the predictor x) are
computed as in Section 4.3. The right panel of Figure 1 in Section 2 displays
these one-sided intervals.
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This example is reproduced in Section F of the Appendix in [14]. The func-
tionality in glmdr was used to calculate the one-sided confidence intervals for
mean value parameters (inference function) and determine that the LCM is
completely degenerate (glmdr function).

5.2. Example in Section 2.3 of [21]

This example consists of a 2×2×· · ·×2 contingency table with seven dimensions
hence 27 = 128 cells. These data now have a permanent location[13]. There is
one response variable y that gives the cell counts and seven categorical predictors
v1, . . ., v7 that specify the cells of the contingency table. We fit a generalized
linear regression model where y is taken to be Poisson distributed. We consider
a model with all three-way interactions included but no higher-order terms.
The software in the glmdr package reproduces the original analysis, as seen
throughout the Appendix in [14]. The inference function computed the one-
sided confidence intervals for mean value parameters that are on the boundary
of their support, in this case equal to zero. The results are depicted in Table 1,
this table is the same as Table 2 in Geyer [21] and it is reproduced in Section J
of the Appendix in [14].

Table 1

One-sided confidence intervals for cells with MLE equal to zero.

v1 v2 v3 v4 v5 v6 v7 lower upper
0 0 0 0 0 0 0 0 0.28631
0 0 0 1 0 0 0 0 0.14083
1 1 0 0 1 0 0 0 0.21997
1 1 0 1 1 0 0 0 0.42096
0 0 0 0 0 1 0 0 0.08946
0 0 0 1 0 1 0 0 0.09377
1 1 0 0 1 1 0 0 0.19302
1 1 0 1 1 1 0 0 0.28870
0 0 0 0 0 0 1 0 0.10631
0 0 0 1 0 0 1 0 0.11415
1 1 0 0 1 0 1 0 0.09129
1 1 0 1 1 0 1 0 0.26461
0 0 0 0 0 1 1 0 0.06669
0 0 0 1 0 1 1 0 0.15478
1 1 0 0 1 1 1 0 0.14097
1 1 0 1 1 1 1 0 0.32392

The only material difference between our implementation and the linear pro-
gramming in [21] is computational time. Our implementation provided one-sided
confidence intervals for those responses that are on the boundary of their sup-
port in 1.253 seconds, while the functions in the rcdd package take 4.84 seconds
of computer time. This is a big difference for a relatively small amount of data.
Inference for the MLE in the LCM are included in Section K of the Appendix
in [14].
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5.3. Big data example

This example uses the other dataset at [13]. It shows our methods are much
faster than the linear programming method of [21]. The functionality in the
glmdr determined the LCM and computed one-sided confidence intervals for
mean value parameters that are on the boundary of their support in about
a minute. The same task using the rcdd package took 3 days, 4 hours, 0 min-
utes, and 40.937 seconds. (This was on oak.stat.umn.edu, which is an Intel(R)
Core(TM) i7-6700 CPU @ 3.40GHz.) Both methods yielded the same conclu-
sions.

This dataset consists of five categorical variables with four levels each and
a response variable y that is Poisson distributed. A model with all four-way
interaction terms is fit to this data. It may seem that the four way interaction
model is too large (1024 data points vs 781 parameters) but χ2 tests select this
model over simpler models, see Table 2.

Table 2

Model comparisons for Example 2. The model m1 is the main-effects only model, m2 is the
model with all two way interactions, m3 is the model with all three way interactions, and

m4 is the model with all four way interactions.

null model alternative model df Deviance Pr(> χ2)
m1 m4 765 904.8 0.00034
m2 m4 675 799.2 0.00066
m3 m4 405 534.4 0.00002

One-sided 95% confidence intervals for mean valued parameters whose MLE
is equal to zero are displayed in Table 3. The full table is included in Section
K.5 of the Appendix in [14]. Some of the intervals in Table 3 are relatively wide,
this represents non-trivial uncertainty about the observed MLE being zero. This
example is completely reproduced in Section K of the Appendix in [14].

6. Mathematical details

In this Section we provide the mathematical justification for our inferential pro-
cedure. We develop the theory of generalized affine functions [18] and then show

Table 3

One-sided 95% confidence intervals for 6 out of 82 mean valued parameters whose MLE is
equal to zero.

X1 X2 X3 X4 X5 lower bound upper bound
a a b a a 0 0.1695
a b b a a 0 0.1354
a c b a a 0 0.2292
a d b a a 0 2.4616
d d c a a 0 0.0002
a c d a a 0 0.0133
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that this theory, combined with conditions for the exponential family closure of
Brown [7], facilitates the convergence of moments of all orders along a sequence
of maximum likelihood iterates. We close this Section by establishing that our
mathematical technique can estimate the correct null space of the Fisher in-
formation matrix, and this allows for valid statistical inference when the MLE
does not exist in the conventional sense.

6.1. Generalized affine functions

6.1.1. Characterization on affine spaces

Exponential families defined on affine spaces instead of vector spaces are in
many ways more elegant [18, Sections 1.4 and 1.5 and Chapter 4]. To start, a
family of densities with respect to a positive Borel measure on an affine space is a
standard exponential family if the log densities are affine functions. We complete
the exponential family by taking pointwise limits of densities, allowing +∞ and
−∞ as limits [18, Chapter 4].

We call these limits generalized affine functions. Real-valued affine functions
on an affine space are functions that are are both convex and concave. General-
ized affine functions on an affine space are extended-real-valued functions that
are are both concave and convex [18, Chapter 4]. (For a definition of extended-
real-valued convex functions see Rockafellar [33, Chapter 4].)

We thus have two characterizations of generalized affine functions: functions
that are both convex and concave and functions that are limits of sequences of
affine functions. Further characterizations will be given below.

Let hn denote a sequence of affine functions that are log densities in a stan-
dard exponential family with respect to λ, that is,

∫
ehn dλ = 1 for all n. Since

ehn → eh pointwise if and only if hn → h pointwise, the idea of completing an
exponential family naturally leads to the study of generalized affine functions.

If h : E → R is a generalized affine function, we use the notation

h−1(R) = {x ∈ E : h(x) ∈ R }
h−1(∞) = {x ∈ E : h(x) = ∞}

h−1(−∞) = {x ∈ E : h(x) = −∞}

Theorem 1. An extended-real-valued function h on a finite-dimensional affine
space E is generalized affine if and only if one of the following cases holds

(a) h−1(∞) = E,
(b) h−1(−∞) = E,
(c) h−1(R) = E and h is an affine function, or
(d) there is a hyperplane H such that h(x) = ∞ for all points on one side of

H, h(x) = −∞ for all points on the other side of H, and h restricted to
H is a generalized affine function.
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All theorems for which a proof does not follow the theorem statement are
proved in Sections A-C in the Appendix. The intention is that this theorem is
applied recursively. If we are in case (d), then the restriction of h to H is another
generalized affine function to which the theorem applies. Since a nested sequence
of hyperplanes can have length at most the dimension of E, the recursion always
terminates.

6.1.2. Topology

Let G(E) denote the space of generalized affine functions on a finite-dimensional
affine space E with the topology of pointwise convergence.

Theorem 2. G(E) is a compact Hausdorff space.

Theorem 3. G(E) is a first countable topological space.

Corollary 1. G(E) is sequentially compact.

Sequentially compact means every sequence has a (pointwise) convergent
subsequence. That this follows from the two preceding theorems is well known
[39, p. 22, gives a proof]. The space G(E) is not metrizable, unless E is zero-
dimensional [18, penultimate paragraph of Section 3.3]. So we cannot use δ-
ε arguments, but we can use arguments involving sequences, using sequential
compactness.

Let λ be a positive Borel measure on E, and let H be a nonempty subset of
G(E) such that ∫

eh dλ = 1, h ∈ H. (10)

We call H a standard generalized exponential family of log densities with respect
to λ. Let H denote the closure of H in G(E).

Theorem 4. Maximum likelihood estimates always exist in the closure H.

Proof. Suppose x is the observed value of the canonical statistic. Then there
exists a sequence hn in H such that

hn(x) → sup
h∈H

h(x).

This sequence has a convergent subsequence hnk
→ h in G(E). This limit h is

in H and maximizes the likelihood.

For full exponential families or even closed convex exponential families the
closure only contains proper log probability densities (h that satisfy the equa-
tion in (10)). This is shown by Geyer [18, Chapter 2] and also by Csiszár and
Matúš [11]. We claim that the closure H is the right way to think about com-
pletion of the exponential families, as it is explicitly constructed to facilitate
useful statistical inference for practitioners. For curved exponential families and
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for general non-full exponential families, applying Fatou’s lemma to pointwise
convergence in G(E) gives only

0 ≤
∫

eh dλ ≤ 1, h ∈ H. (11)

When the integral in (11) is strictly less than one we say h is an improper
log probability density. Examples in Geyer [18, Chapter 4] show that improper
probability densities cannot be avoided in curved exponential families.

Geyer [18, Theorem 4.3] shows that this closure of an exponential family can
be thought of as a union of exponential families, so this generalizes the notion
in Brown [7] of the closure as an aggregate exponential family. Thus our method
generalizes all previous methods of completing exponential families. Admittedly,
this characterization of the completion of an exponential family is very different
from any other in its ignoring of parameters. Only log densities appear. Unless
one wants to call them parameters — and that conflicts with the usual definition
of parameters as real-valued — parameters just do not appear. So in the next
section, we bring parameters back.

6.1.3. Characterization on vector spaces

In this section we take sample space E to be vector space (which, of course, is
also an affine space, so the results of the preceding section continue to hold).
Recall from Section 3 above, that E∗ denotes the dual space of E, which contains
the canonical parameter space of the exponential family.

Theorem 5. An extended-real-valued function h on a finite-dimensional vector
space E is generalized affine if and only if there exist finite sequences (perhaps
of length zero) of vectors η1, . . . , ηj in in E∗ and scalars δ1, . . . , δj such that η1,
. . . , ηj are linearly independent and h has the following form. Define H0 = E
and, inductively, for integers i such that 0 < i ≤ j

Hi = {x ∈ Hi−1 : 〈x, ηi〉 = δi }
C+

i = {x ∈ Hi−1 : 〈x, ηi〉 > δi }
C−

i = {x ∈ Hi−1 : 〈x, ηi〉 < δi }

all of these sets (if any) being nonempty. Then h(x) = +∞ whenever x ∈ C+
i

for any i, h(x) = −∞ whenever x ∈ C−
i for any i, and h is either affine or

constant on Hj, where +∞ and −∞ are allowed for constant values.

The “if any” refers to the case where the sequences have length zero, in which
case the theorem asserts that h is affine on E or constant on E. As we saw in
the preceding section, we are interested in likelihood maximizing sequences.
Here we represent the likelihood maximizing sequence in the coordinates of the
linearly independent η vectors that characterize the generalized affine function
h according to its Theorem 5 representation. Let θn be a likelihood maximizing
sequence of canonical parameter vectors as in (4). To make connection with the
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preceding section, define hθ(x) = lx(θ) = 〈x, θ〉 − c(θ). Then hθn is a sequence
of affine functions, which has a subsequence that converges (in G(E)) to some
generalized affine function h ∈ H, which maximizes the likelihood:

h(x) = sup
θ∈Θ

lx(θ). (12)

The following lemma gives us a better understanding of the convergence hθn →
h.

Lemma 1. Suppose that a generalized affine function h on a finite dimensional
vector space E is finite at at least one point. Represent h as in Theorem 5, and
extend η1, . . . , ηj to be a basis η1, . . . , ηp for E∗. Suppose hn is a sequence of
affine functions converging to h in G(E). Then there are sequences of scalars
an and bi,n such that

hn(y) = an +

j∑
i=1

bi,n (〈y, ηi〉 − δi) +

p∑
i=j+1

bi,n〈y, ηi〉, y ∈ E, (13)

and, as n → ∞, we have

(a) bi,n → ∞, for 1 ≤ i ≤ j,
(b) bi,n/bi−1,n → 0, for 2 ≤ i ≤ j,
(c) bi,n converges, for i > j, and
(d) an converges.

In (13) the first sum is empty when j = 0 and the second sum is empty
when j = p. Such empty sums are zero by convention. The results given in
Lemma 1 are applicable to generalized affine functions in full generality. The
case of interest to us, however, is when hn = hθn is the likelihood maximizing
sequence constructed above.

Corollary 2. For data x from a regular full exponential family defined on a
vector space E, suppose θn is a likelihood maximizing sequence satisfying (4)
with log densities hn = hθn defined by (12) converging pointwise to a generalized
affine function h. Characterize h and hn as in Theorem 5 and Lemma 1. Define
ψn =

∑p
i=j+1 bi,n〈x, ηi〉. Then conclusions (a) and (b) of Lemma 1 hold in this

setting and
ψn → θ∗, as n → ∞,

where θ∗ is the MLE of the exponential family conditioned on the event Hj.

In case j = p the conclusion ψn → θ∗ is the trivial zero converges to zero.
The original exponential family conditioned on the event Hj is what Geyer [21]
calls the LCM.

Proof. The conditions of Lemma 1 are satisfied by our assumptions so all conclu-
sions of Lemma 1 are satisfied. As a consequence, ψn → θ∗ as n → ∞. The fact
that θ∗ is the MLE of the LCM restricted to Hj follows from our assumption
that θn is a likelihood maximizing sequence.
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Taken together, Theorem 5, Lemma 1, and Corollary 2 provide a theory of
maximum likelihood estimation in the completions of exponential families that
is the theory of the preceding section with canonical parameters brought back.

6.2. Convergence theorems

6.2.1. Cumulant generating function convergence

The CGF of the distribution of the canonical statistic for parameter value θ is
the function kθ defined by

kθ(t) = log

∫
e〈x,t〉fθ(x)λ(dx) = c(θ + t)− c(θ) (14)

provided this distribution has a CGF, which it does if and only if kθ is finite
on a neighborhood of zero, that is, if and only if θ ∈ int(dom c). Thus every
distribution in a full exponential family has a CGF if and only if the family is
regular. Derivatives of kθ evaluated at zero are the cumulants of the distribution
for θ. These are the same as derivatives of c evaluated at θ.

We now show CGF convergence along likelihood maximizing sequences (4).
This implies convergence in distribution and convergence of moments of all or-
ders. Theorems 6 and 7 in this section say when CGF convergence occurs. Their
conditions are somewhat unnatural (especially those of Theorem 6). However,
the counterexample in Section D of the Appendix shows not only that some
conditions are necessary to obtain CGF convergence (it does not occur for all
full discrete exponential families) but also that the conditions of Theorem 6 are
sharp, being just what is needed to rule out that example.

The CGF of the distribution having log density that is the generalized affine
function h is defined by

κ(t) = log

∫
e〈y,t〉eh(y) λ(dy),

and similarly

κn(t) = log

∫
e〈y,t〉ehn(y) λ(dy)

where we assume hn are the log densities for a likelihood maximizing sequence
such that hn → h pointwise. The next theorem characterizes when κn → κ
pointwise.

Let cA denote the log Laplace transform of the restriction of λ to the set A,
that is,

cA(θ) = log

∫
A

e〈y,θ〉 λ(dy),

where, as usual, the value of the integral is taken to be +∞ when the integral
does not exist (a convention that will hold for the rest of this section).
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Theorem 6. Let E be a finite-dimensional vector space of dimension p. For
data x ∈ E from a regular full exponential family with natural parameter space
Θ ⊆ E∗ and generating measure λ, assume that every distribution in the family
has a cumulant generating function. Suppose that θn is a likelihood maximizing
sequence satisfying (4) with log densities hn converging pointwise to a generalized
affine function h. Characterize h as in Theorem 5. When j ≥ 2, and for i =
1, ..., j − 1, define

Di = {y ∈ C−
i : 〈y, ηk〉 > δk, some k > i},

F = E \ ∪j−1
i=1Di = {y : 〈y, ηi〉 ≤ δi, 1 ≤ i ≤ j},

(15)

and assume that

sup
θ∈Θ

sup
y∈∪j−1

i=1Di

e
〈y,θ〉−c∪j−1

i=1
Di

(θ)
< ∞ or λ

(
∪j−1
i=1Di

)
= 0. (16)

Then κn(t) converges to κ(t) pointwise for all t in a neighborhood of 0.

Remarks:

1. The quantities in (15) and (16) are technical in nature and are an artifact of
the proof technique. Without these conditions, there exists circumstances
in which CGF convergence fails to hold. The next remarks elaborate these
quantities. The next Theorem shows that (16) is satisfied under the more
intuitive conditions of [7].

2. The sets (Hi, C
−
i , C+

i ), i = 1, . . . , j arise from the characterization of a
generalized affine function h given in Theorem 5 which is a pointwise limit
of the densities of log densities hn. The assumption that the exponential
family is discrete and full implies that

∫
eh(y)λ(dy) = 1 [18, Theorem 2.7]

which in turn implies that λ(C+
i ) = 0 for all i = 1,. . .,j. We now focus on

sets of points y such that λ({y}) > 0. The first iteration of the recursive
structure in the Theorem 5 characterization of a generalized affine function
gives E = H1 ∪ C−

1 ∪ C+
1 . Now consider a point y ∈ C−

1 , it is possible in
a full regular discrete exponential family for 〈y, ηk〉 > δk, k > 1 where the
pair (ηk, δk) form the hyperplane Hk. Such points y form the set D1, and
the sets Di, i > 1, are similarly motivated. Our proof technique requires
bounding of the CGF restricted to ∪j−1

i=1Di evaluated along θn by the
quantities in (16), see (26) in the proof of Theorem 6.

3. The conditions in (16) rule out pathological examples for which CGF
convergence does not hold. In Section E of the Appendix we provide an
example for which (16) does not hold and a lack of CGF convergence
follows. Moreover, this example demonstrates a lack of convergence of
second moments and our approach for statistical inference fails as a result.
More general closures of exponential families in Csiszár and Matúš [11,
12] and Geyer [18, unpublished PhD thesis, Chapter 4] do not assume
condition (16) and therefore rule out CGF convergence in full generality.

4. Discrete exponential families automatically satisfy (16) when the generat-
ing measure satisfies
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infy∈∪j−1
i=1Di

λ({y}) > 0. In this setting, e
〈y,θ〉−c∪j−1

i=1
Di

(θ)
corresponds to

the probability mass function for the random variable conditional on the
occurrence of ∪j−1

i=1Di. Thus,

sup
θ∈Θ

sup
y∈∪j−1

i=1Di

(
e
〈y,θ〉−c∪j−1

i=1
Di

(θ)
)

= sup
θ∈Θ

sup
y∈∪j−1

i=1Di

(
e〈y,θ〉λ({y})

λ({y})
∑

x∈∪j−1
i=1Di

e〈x,θ〉λ({x})

)
≤ sup

y∈∪j−1
i=1Di

(1/λ({y})) < ∞.

Therefore, Theorem 6 is applicable for the non-existence of the maximum
likelihood estimator that may arise in logistic and multinomial regression
or any exponential family with finite support. The same is not necessarily
so for Poisson regression. The next Theorem provides CGF convergence
for Poisson sampling under the regularity conditions of [7].

We show in the next theorem that discrete families with convex polyhedral
support K also satisfy (16) under additional regularity conditions that hold in
practical applications. When K is convex polyhedron, we can write K = {y :
〈y, αi〉 ≤ ai, for i = 1, ...,m}, as in [34, Theorem 6.46]. When the MLE does not
exist, the data x ∈ K is on the boundary of K. Denote the active set of indices
corresponding to the boundary K containing x by I(x) = {i : 〈x, αi〉 = ai}. In
preparation for Theorem 7 we define the normal cone NK(x), the tangent cone
TK(x), and faces of convex sets and then state conditions required on K.

Definition 3. The normal cone of a convex set K in the finite dimensional
vector space E at a point x ∈ K is

NK(x) = { η ∈ E∗ : 〈y − x, η〉 ≤ 0 for all y ∈ K }.

Definition 4. The tangent cone of a convex set K in the finite dimensional
vector space E at a point x ∈ K is

TK(x) = cl{ s(y − x) : y ∈ K and s ≥ 0 }

where cl denotes the set closure operation.

When K is a convex polyhedron, NK(x) and TK(x) are both convex polyhe-
dron with formulas given in [34, Theorem 6.46]. These formulas are

TK(x) = {y : 〈y, αi〉 ≤ 0 for all i ∈ I(x)},
NK(x) = {c1α1 + · · ·+ cmαm : ci ≥ 0 for i ∈ I(x), ci = 0 for i /∈ I(x)}.

Definition 5. A face of a convex set K is a convex subset F of K such that
every (closed) line segment in K with a relative interior point in F has both
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endpoints in F . An exposed face of K is a face where a certain linear function
achieves its maximum over K [33, p. 162].

The four conditions of Brown, stated in Section 4.1 are required for the
Theorem to hold. Conditions (i) and (ii) are already assumed in Theorem 6.
It is now shown that discrete exponential families satisfy (16) under the above
conditions.

Theorem 7. Assume the conditions of Theorem 6 with the omission of (16)
when j ≥ 2. Let K denote the convex support of the exponential family. Assume
that the exponential family satisfies the conditions of Brown:

(i) The support of the exponential family is a countable set X.
(ii) The exponential family is regular.
(iii) Every x ∈ X is contained in the relative interior of an exposed face F of

the convex support K.
(iv) The convex support of the measure λ|F equals F , where λ is the generating

measure for the exponential family.

Then (16) holds and we have that κn(t) converges to κ(t) pointwise for all t in
a neighborhood of zero.

6.3. Extensions of CGF convergence

Theorems 6 and 7 both verify CGF convergence along likelihood maximizing
sequences (4) on neighborhoods of zero. The next theorems show that CGF
convergence on neighborhoods of zero is enough to imply convergence in distri-
bution and of moments of all orders. Therefore moments of distributions with
log densities that are affine functions converge along likelihood maximizing se-
quences (4) to those of a limiting distributions whose log density is a generalized
affine function.

Suppose that X is a random vector in a finite-dimensional vector space E
having a moment generating function (MGF) ϕX , then ϕX(t) = ϕ〈X,t〉(1), for
t ∈ E∗, regardless of whether the MGF exist or not. It follows that the MGF of
〈X, t〉 for all t determine the MGF of X and vice versa, when these MGF exist.
More generally,

ϕ〈X,t〉(s) = ϕX(st), t ∈ E∗ and s ∈ R. (17)

This observation applied to characteristic functions rather than MGF is called
the Cramér-Wold theorem. In that context it is more trivial because character-
istic functions always exist.

If v1, . . . , vd is a basis for a vector space E, then Halmos [28, Theorem 2 of
Section 15] states that there exists a unique dual basis w1, . . . , wd for E∗ that
satisfies

〈vi, wj〉 =
{
1, i = j

0, i �= j
(18)
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Theorem 8. If X is a random vector in E having an MGF, then the random
scalar 〈X, t〉 has an MGF for all t ∈ E∗. Conversely, if 〈X, t〉 has an MGF for
all t ∈ E∗, then X has an MGF.

Theorem 9. Suppose Xn, n = 1, 2, . . . is a sequence of random vectors, and
suppose their moment generating functions converge pointwise on a neighborhood
W of zero. Then

Xn
d−→ X, (19)

and X has an MGF ϕX , and ϕXn(t) → ϕX(t), for t ∈ E∗.

Theorem 10. Under the assumptions of Theorem 9, suppose t1, t2, . . . , tk
are vectors defined on E∗, the dual space of E. Then

∏k
i=1〈Xn, ti〉 is uniformly

integrable so

E

{
k∏

i=1

〈Xn, ti〉
}

→ E

{
k∏

i=1

〈X, ti〉
}
.

The combination of Theorems 6-10 provide a methodology for statistical in-
ference along likelihood maximizing sequences when the MLE is in the comple-
tion of the exponential family. In particular, we have convergence in distribution
and convergence of moments of all orders along likelihood maximizing sequence.
The limiting distribution in this context is a generalized exponential family with
density eh where h is a generalized affine function.

6.4. Convergence of null spaces of Fisher information

Our implementation for finding the MLE in the completion relies on finding
the null space of Fisher information matrix. We first define an appropriate no-
tion of convergence of vector subspaces, and then prove that the null spaces
corresponding to a sequence of semidefinite matrices converge.

Definition 6. Painlevé-Kuratowski set convergence [34, Section 4.A] can be
defined as follows (Rockafellar and Wets [34] give many equivalent characteri-
zations). If Cn is a sequence of sets in R

p and C is another set in R
p, then we

say Cn → C if

(i) For every x ∈ C there exists a subsequence nk of the natural numbers and
there exist xnk

∈ Cnk
such that xnk

→ x.
(ii) For every sequence xn → x in R

p such that there exists a natural number
N such that xn ∈ Cn whenever n ≥ N , we have x ∈ C.

Theorem 11. Suppose that An ∈ R
p×p is a sequence of positive semidefinite

matrices and An → A componentwise. Fix ε > 0 less than half of the least
nonzero eigenvalue of A unless A is the zero matrix in which case ε > 0 may
be chosen arbitrarily. Let Vn denote the subspace spanned by the eigenvectors
of An corresponding to eigenvalues that are less than ε. Let V denote the null
space of A. Then Vn → V (Painlevé-Kuratowski).
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In our context, the sequence of matrices An in Theorem 11 correspond to
the Fisher information matrices obtained from a discrete exponential family
whose canonical parameters are substituted for those in a likelihood maximizing
sequence.

Supplementary materials

The R package glmdr accompanies this submission [22]. Detailed R code which
reproduces the examples in this manuscript can be seen in [14].

7. Discussion

The theory of generalized affine functions and the geometry of exponential fam-
ilies allow GLM software to provide fast and scalable maximum likelihood es-
timation when the observed value of the canonical statistic is on the boundary
of its support. The limiting probability distribution evaluated along the iterates
of a likelihood maximizing sequence has log density that is a generalized affine
function with structure given by Theorem 5. Cumulant generating functions
converge along this sequence of iterates (Theorems 6 and 7), as do estimates of
moments of all orders (Theorem 10), and so do the null spaces of Fisher infor-
mation matrices (Theorem 11). These results allow one to obtain the MLE in
the completion of the exponential family and to construct one-sided confidence
intervals for mean value parameters that are on the boundary of their support.

The glmdr package computes one-sided confidence intervals for mean value
parameters that are on the boundary of their support. Parameter estimation
in the LCM is conducted in the traditional manner. The costs of computing
the support of a LCM using the glmdr package are minimal compared to the
repeated linear programming in the rcdd package. It is much faster to let op-
timization software, such as glm in R, simply go uphill on the log likelihood of
the exponential family until a convergence tolerance is reached, determine null
eigenvectors of the limiting Fisher information matrix, and then compute one-
sided confidence intervals than it is to compute the necessary repeated linear
programming to achieve the same inferences. Our examples demonstrate that
massive time savings are possible using our methodology.

The chance of observing a canonical statistic on the boundary of its support
increases when the dimension of the model increases. Researchers naturally want
to include all possibly relevant covariates in an analysis, and this will often
result in the MLE not existing in the conventional sense. Our methods provide
a computationally inexpensive solution to this problem.
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Appendix

Appendix B: Proofs of main results

Proof of Theorem 6. First consider the case when j = 0, the sequences of η
vectors and scalars δ are both of length zero. There are no sets C+ and C−

in this setting and h is affine on E. From Lemma 1 we have ψn = θn. From
Corollary 2, θn → θ∗ as n → ∞. We observe that c(θn) → c(θ∗) from continuity
of the cumulant function. The existence of the MLE in this setting implies that
there is a neighborhood about 0 denoted by W such that θ∗+W ⊂ int(dom c).
Pick t ∈ W and observe that c(θn+ t) → c(θ∗+ t). Therefore κn(t) → κ(t) when
j = 0.

Now consider the case when j = 1. Define c1(θ) = log
∫
H1

e〈y,θ〉λ(dy) for all

θ ∈ int(dom c1). In this scenario we have

κn(t) = c (ψn + t+ b1,nη1)− c (ψn + b1,nη1)

= c (ψn + t+ b1,nηj)− c (ψn + b1,nη1)± b1,nδ1

= [c (ψn + t+ b1,nη1)− b1,nδ1]− [c (ψn + b1,nη1)− b1,nδ1] .

From [18, Theorem 2.2], we know that

c
(
θ∗ + t+ sη1

)
− sδ1 → c1

(
θ∗ + t

)
, c

(
θ∗ + sη1

)
− sδ1 → c1

(
θ∗
)
, (20)

as s → ∞ since δ1 ≥ 〈y, η1〉 for all y ∈ H1. The left hand side of both conver-
gence arrows in (20) are convex functions of θ and the right hand side is a proper
convex function. If int(dom c1) is nonempty, which holds whenever int(dom c)
is nonempty, then the convergence in (20) is uniform on compact subsets of
int(dom c1) [34, Theorem 7.17]. Also [34, Theorem 7.14], uniform convergence
on compact sets is the same as continuous convergence. Using continuous con-
vergence, we have that both

c (ψn + t+ b1,nη1)− b1,nδ1 → c1
(
θ∗ + t

)
,

c (ψn + b1,nη1)− b1,nδ1 → c1
(
θ∗
)
,

where b1,n → ∞ as n → ∞ by Lemma 1. Thus

κn(t) = c(θn + t)− c(θn) → c1
(
θ∗ + t

)
− c1

(
θ∗
)

= log

∫
H1

e〈y+t,θ∗〉−c(θ∗)λ(dy) = log

∫
H1

e〈y,t〉+h(y)λ(dy)

= log

∫
e〈y,t〉+h(y)λ(dy) = κ(t).

This concludes the proof when j = 1.
For the rest of the proof we will assume that 1 < j ≤ p where dim(E)

= p. Represent the sequence θn in coordinate form as θn =
∑p

i=1 bi,nηi, with
scalars bi,n, i = 1, ..., p. For 0 < j < p, we know that ψn → θ∗ as n → ∞
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from Corollary 2. The existence of the MLE in this setting implies that there is
a neighborhood about 0, denoted by W , such that θ∗ +W ⊂ int(dom c). Pick
t ∈ W , fix ε > 0, and construct ε-boxes about θ∗ and θ∗+t, denoted by N0,ε(θ

∗)
and Nt,ε(θ

∗) respectively, such that both N0,ε(θ
∗),Nt,ε(θ

∗) ⊂ int (dom c). Let
Vt,ε be the set of vertices of Nt,ε(θ

∗). For all y ∈ E define

Mt,ε(y) = max
v∈Vt,ε

{〈v, y〉}, M̃t,ε(y) = min
v∈Vt,ε

{〈v, y〉}. (21)

From the conclusions of Lemma 1 and Corollary 2, we can pick an integerN such
that 〈y, ψn+ t〉 ≤ Mt,ε(y) and b(i+1),n/bi,n < 1 for all n > N and i = 1, ..., j−1.
For all y ∈ F , we have

〈y, θn + t〉 −
j∑

i=1

bi,nδi = 〈y, ψn + t〉+
j∑

i=1

bi,n (〈y, ηi〉 − δi) ≤ Mt,ε(y) (22)

for all n > N . The integrability of eMt,ε(y) and eM̃t,ε(y) follows from∫
eM̃t,ε(y)λ(dy) ≤

∫
eMt,ε(y)λ(dy) =

∑
v∈Vt,ε

∫
{y: 〈y,v〉=Mt,ε(y)}

e〈y,v〉λ(dy)

≤
∑

v∈Vt,ε

∫
e〈y,v〉λ(dy) < ∞.

Therefore,

〈y, ψn + t〉+
j∑

i=1

bi,n (〈y, ηi〉 − δi) →
{

〈y, θ∗ + t〉, y ∈ Hj ,
−∞, y ∈ F \Hj .

which implies that

cF (θn + t)− cF (θn) → cHj (θ
∗ + t)− cHj (θ

∗), (23)

by dominated convergence. To complete the proof, we need to verify that

c(θn + t)− c(θn) = cF (θn + t)− cF (θn) + c∪j−1
i=1Di

(θn + t)− c∪j−1
i=1Di

(θn)

→ cHj (θ
∗ + t)− cHj (θ

∗).
(24)

We know that (24) holds when λ(∪j−1
i=1Di) = 0 in (16) because of (23). Now

suppose that λ(∪j−1
i=1Di) > 0. We have,

〈y, ψn + t〉+
j∑

i=1

bi,n (〈y, ηi〉 − δi) → −∞, y ∈ ∪j−1
i=1Di, (25)
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and

exp
(
c∪j−1

i=1Di
(θn + t)− c∪j−1

i=1Di
(θn)

)
=

∫
∪j−1

i=1Di

e
〈y,θn+t〉−c∪j−1

i=1
Di

(θn)
λ(dy)

≤
∫
∪j−1

i=1Di

e
Mt,ε(y)−M̃0,ε(y)+〈y,θn〉−c∪j−1

i=1
Di

(θn)
λ(dy)

≤ sup
y∈∪j−1

i=1Di

(
e
〈y,θn〉−c∪j−1

i=1
Di

(θn)
)
λ
(
∪j−1
i=1Di

)∫
∪j−1

i=1Di

eMt,ε(y)−M̃0,ε(y)λ(dy)

≤ sup
θ∈Θ

sup
y∈∪j−1

i=1Di

(
e
〈y,θ〉−c∪j−1

i=1
Di

(θ)
)
λ
(
∪j−1
i=1Di

)
×
∫
∪j−1

i=1Di

eMt,ε(y)−M̃0,ε(y)λ(dy) < ∞

(26)

for all n > N by the assumption given by (16). The assumption that the ex-
ponential family is discrete and full implies that

∫
eh(y)λ(dy) = 1 [18, Theo-

rem 2.7]. This in turn implies that λ(C+
i ) = 0 for all i = 1, ..., j which then

implies that c(θ) = cF (θ)+ c∪j−1
i=1Di

(θ). Putting (22), (25), and (26) together we

can conclude that (24) holds as n → ∞ by dominated convergence and

cHj (θ
∗ + t)− cHj (θ

∗) = log

∫
Hj

e〈y,θ
∗+t〉λ(dy)− log

∫
Hj

e〈y,θ
∗〉λ(dy)

= log

∫
e〈y,t〉+h(y)λ(dy),

(27)

for all t ∈ W , where the last equality is κ(t). This verifies CGF convergence on
neighborhoods of 0.

Proof of Theorem 7. Represent h as in Theorem 5. Denote the normal cone of
the convex polyhedron support K at the data x by NK(x). We show that a
sequence of scalars δ∗i and a linearly independent set of vectors η∗i ∈ E∗ can be
chosen so that η∗i ∈ NK(x), and

Hi = {y ∈ Hi−1 : 〈y, η∗i 〉 = δ∗i },
C+

i = {y ∈ Hi−1 : 〈y, η∗i 〉 > δ∗i },
C−

i = {y ∈ Hi−1 : 〈y, η∗i 〉 < δ∗i },
(28)

for i = 1, ..., j where H0 = E so that (16) holds. We will prove this by induction
with the hypothesis H(m), m = 1, ..., j, that (28) holds for i ≤ m where the
vectors η∗i ∈ NK(x) i = 1, ...,m.

We first verify the basis of the induction. The assumption that the exponential
family is discrete and full implies that

∫
eh(y)λ(dy) = 1 [18, Theorem 2.7]. This

in turn implies that λ(C+
k ) = 0 for all k = 1, ..., j. This then implies that

K ⊆ {y ∈ E : 〈y, η1〉 ≤ δ1} = H1 ∪ C−
1 . Thus η1 ∈ NK(x) and the base of the

induction holds with η1 = η∗1 and δ1 = δ∗1 .
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We now show that H(m+ 1) follows from H(m) for m = 1, ..., j − 1. We first
establish that K ∩ Hm is an exposed face of K. This is needed so that (28)
holds for i = 1, ...,m+ 1. Let LK be the collection of closed line segments with
endpoints in K. Arbitrarily choose l ∈ LK such that an interior point y ∈ l and
y ∈ K ∩Hm. We can write y = γa+ (1− γ)b, 0 < γ < 1, where a and b are the
endpoints of l. Since a, b ∈ K by construction, we have that 〈a−x, η∗m〉 ≤ 0 and
〈b− x, η∗m〉 ≤ 0 because η∗m ∈ NK(x) by H(m). Now,

0 ≥ 〈a− x, η∗m〉 = 〈a− y + y − x, η∗m〉 = 〈a− y, η∗m〉
= 〈a− (γa+ (1− γ)b), η∗m〉 = (1− γ)〈a− b, η∗m〉

and

0 ≥ 〈b− x, η∗m〉 = 〈b− y + y − x, η∗m〉 = 〈b− y, η∗m〉
= 〈b− (γa+ (1− γ)b), η∗m〉 = −γ〈a− b, η∗m〉.

Therefore a, b ∈ K ∩Hm and this verifies that K ∩Hm is a face of K since l was
chosen arbitrarily. The function y �→ 〈y−x, η∗m〉−δ∗m, defined onK, is maximized
over K ∩ Hm. Therefore K ∩ Hm is an exposed face of K by definition. The
exposed face K ∩Hm = K ∩ (Hm+1∪C−

m+1) since λ(C
+
m+1) = 0 and the convex

support of the measure λ|Hm is Hm by assumption. Thus, ηm+1 ∈ NK∩Hm(x).
The sets K and Hm are both convex and are therefore regular at every

point [34, Theorem 6.20]. We can write NK∩Hm(x) = NK(x)+NHm(x) since K
and Hm are convex sets that cannot be separated where + denotes Minkowski
addition in this case [34, Theorem 6.42]. The normal cone NHm(x) has the form

NHm(x) = {η ∈ E∗ : 〈y − x, η〉 ≤ 0 for all y ∈ Hm}
= {η ∈ E∗ : 〈y − x, η〉 ≤ 0 for all y ∈ E

such that 〈y − x, ηi〉 = 0, i = 1, ...,m}

=

{
m∑
i=1

aiηi : ai ∈ R, i = 1, ...,m

}
.

Therefore, we can write

ηm+1 = η∗m+1 +

m∑
i=1

am,iη
∗
i (29)

where η∗m+1 ∈ NK(x) and am,i ∈ R, i = 1, ...,m. For y ∈ Hm+1, we have that

〈y, η∗m+1〉 = 〈y, ηm+1〉 −
m∑
i=1

am,i〈y, ηi〉 = δm+1 −
m∑
i=1

am,iδi.

Let δ∗m+1 = δm+1 −
∑m

i=1 am,iδi. We can therefore write

Hm+1 =
{
y ∈ Hm : 〈y, η∗m+1〉 = δ∗m+1

}
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and

C+
m+1 = {y ∈ Hm : 〈y, ηm+1〉 > δm+1}

=

{
y ∈ Hm : 〈y, η∗m+1〉+

m∑
i=1

am,iδi > δm+1

}

=

{
y ∈ Hm : 〈y, η∗m+1〉 > δm+1 −

m∑
i=1

am,iδi

}
=
{
y ∈ Hm : 〈y, η∗m+1〉 > δ∗m+1

}
.

(30)

A similar argument to that of (30) verifies that

C−
i =

{
y ∈ Hm : 〈y, η∗m+1〉 < δ∗m+1

}
.

This confirms that (28) holds for i = 1, ...m+1 and this establishes that H(m+1)
follows from H(m).

Define the sets Di in (15) with starred quantities replacing the unstarred
quantities. Since the vectors η∗1 , . . .,η∗j ∈ NK(x), the sets K ∩Di are all empty

for all i = 1, . . ., j − 1. Thus (16) holds with λ
(
∪j−1
i=1Di

)
= 0.

Proof of Theorem 11. We first consider the case that A is positive definite and
V = {0}. We can write An = A + (An − A) where (An − A) is a perturbation
of A for large n. From Weyl’s inequality [42], we have that all eigenvalues of An

are bounded above zero for large n and Vn = {0} as a result. Therefore, Vn → V
as n → ∞ when A is positive definite.

Now consider the case that A is not strictly positive definite. Without loss of
generality, let x ∈ V be a unit vector. For all 0 < γ ≤ ε, let Vn(γ) denote the
subspace spanned by the eigenvectors of An corresponding to eigenvalues that
are less than γ. By construction, Vn(γ) ⊆ Vn.

From [34, Example 10.28], if A has k zero eigenvalues, then for sufficiently
largeN1 there are exactly k eigenvalues ofAn are less than ε and p−k eigenvalues
of An greater than ε for all n > N1. The same is true with respect to γ for all
n greater than N2. Thus jn(γ) = jn(ε) which implies that Vn(γ) = Vn for all
n > max{N1, N2}.

We now verify part (i) of Painlevé-Kuratowski set convergence with respect
to Vn(γ). Let N3 be such that xTAnx < γ2 for all n ≥ N3. Let λk,n and
ek,n be the eigenvalues and eigenvectors of An, with the eigenvalues listed in
decreasing orders. Without loss of generality, we assume that the eigenvectors
are orthonormal. Then, x =

∑p
k=1(x

T ek,n)ek,n, 1 = ‖x‖2 =
∑p

k=1(x
T ek,n)

2,
and xTAnx =

∑p
k=1 λk,n(x

T ek,n)
2. There have to be eigenvectors ek,n such that

xT ek,n ≥ 1/
√
p with corresponding eigenvalues λk,n that are very small since

λk,n(x
T ek,n)

2 < γ. But conversely, any eigenvalues λk,n such that λk,n ≥ γ
must have

λk,n(x
T ek,n)

2 < γ2 =⇒ (xT ek,n)
2 < γ2/λk,n ≤ γ.
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Define jn(γ) = |{λk,n : λk,n ≤ γ}| and xn =
∑p

k=p−jn(γ)+1(x
T ek,n)ek,n where

xn ∈ Vn(γ) by construction. Now,

‖x− xn‖ = ‖
p∑

k=1

(xT ek,n)ek,n −
p∑

k=p−jn(γ)+1

(xT ek,n)ek,n‖

= ‖
p−jn(γ)∑

k=1

(xT ek,n)ek,n‖ ≤
p−jn(γ)∑

k=1

|xT ek,n| ≤ p
√
γ

for all n ≥ N3. Therefore, for every x ∈ V , there exists a sequence xn ∈ Vn(γ) ⊆
Vn such that xn → x since this argument holds for all 0 < γ ≤ ε. This establishes
part (i) of Painlevé-Kuratowski set convergence.

We now show part (ii) of Painlevé-Kuratowski set convergence. Suppose that
xn → x ∈ R

p and there exists a natural number N4 such that xn ∈ Vn(γ)
whenever n ≥ N4, and we will establish that x ∈ V . From hypothesis, we have
that xT

nAnxn → xTAx. Without loss of generality, we assume that x is a unit
vector and that |xT

nAnxn − xTAx| ≤ γ for all n ≥ N5. From the assumption
that xn ∈ Vn(γ) we have

xT
nAnxn =

p∑
k=1

λk,n(x
T
nek,n)

2 =

p∑
k=p−jn(γ)+1

λk,n(x
T
nek,n)

2 ≤ γ (31)

for all n ≥ N4. The reverse triangle inequality gives

||xT
nAnxn| − |xTAx|| ≤ |xT

nAnxn − xTAx| ≤ γ

and (31) implies |xTAx| ≤ 2γ for all n ≥ max{N4, N5}. Since this argument
holds for all 0 < γ < ε, we have that x ∈ V . This establishes part (ii) of
Painlevé-Kuratowski convergence with respect to Vn(γ). Thus Vn → V .

Appendix C: Proofs of the properties of generalized affine functions

We first prove Theorem 2.

Proof. Let F (E) denote the space of all functions E → R with the topology of

pointwise convergence. This makes F (E) = R
E
, an infinite product. Then F (E)

is compact by Tychonoff’s theorem. We now show that G(E) is closed in F (E)
hence compact.

Let g be any point in the closure of G(E). Then there is a net {gα} in G(E)
that converges to g. For any x and y in E such that g(x) < ∞ and g(y) < ∞
and any t ∈ (0, 1), write z = x+ t(y − x).

Then
gα(z) ≤ (1− t)gα(x) + tgα(y)

whenever the right hand side makes sense (is not ∞ − ∞), which happens
eventually, since gα(x) and gα(y) both converge to limits that are not ∞. Hence

g(z) ≤ λg(x) + (1− λ)g(y)
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and g is convex. By symmetry it is also concave and hence is generalized affine.
Thus G(E) contains its closure and is closed.

F (E) is Hausdorff because the product of Hausdorff spaces is Hausdorff.G(E)
is Hausdorff because subspaces of Hausdorff spaces are Hausdorff.

In order to prove Theorem 1, an intermediate Theorem is first stated and its
proof is provided.

Theorem 12. 12 An extended-real-valued function h on a finite-dimensional
affine space E is generalized affine if and only if h−1(∞) and h−1(−∞) are
convex sets, h−1(R) is an affine set, and h is affine on h−1(R).

Proof. To simplify notation, define

A = h−1(R) (32a)

B = h−1(∞) (32b)

C = h−1(−∞) (32c)

First assume h is generalized affine. Then C is convex because h is convex, and
B is convex because h is concave. For any two distinct points x, y ∈ A and any
s ∈ R, The points x, y, and z = x+s(y−x) lie on a straight line. The convexity
and concavity inequalities together imply

h
(
x+ s(y − x)

)
= (1− s)h(x) + sh(y).

It follows that A is an affine set and h restricted to A is an affine function.
Conversely, assume B and C are convex sets, A is an affine set, and h is affine

on A. We must show that h is convex and concave. We just prove convexity
because the other proof just the same proof applied to −h. So consider two
distinct points x, y ∈ A ∪ C and 0 < t < 1 (the convexity inequality is vacuous
when either of x or y is in B). Write z = x+ t(y − x).

If x and y are both in A, then A being an affine set implies z ∈ A and the
convexity inequality involving x, y, and z follows from h being affine on A. If x
and y are both in C, then C being a convex set implies z ∈ C and the convexity
inequality involving x, y, and z follows from h(z) = −∞.

The only case remaining is x ∈ A and y ∈ C. In this case, there can be no
other point on the line determined by x and y that is in A, because A is an
affine set. Hence all the points in this line on one side of x must be in B and
all the points on the other side must be in C. Thus z ∈ C, and the convexity
inequality involving x, y, and z follows from h(z) = −∞.

We now provide the proof of Theorem 1.

Proof. Again we use the notation in (32a), (32b), and (32c). First we show that
all four cases define generalized affine functions. The first three cases obviously
satisfy the conditions of Theorem 12.

In case (d), we just prove convexity because the other proof just the same
proof applied to −h.
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If x and y are both in H, then h being generalized affine on H implies the
convexity inequality for x and y and any point between them. If x and y are
both in C and not both in H, say x /∈ H, then any point z between x and y
is also not in H, and hence is in C because it is on the same side of H as x
is. So h(z) = −∞ implies the convexity inequality involving x, y, and z. That
completes the proof that all four cases define generalized affine functions.

So we now show that every generalized affine function falls in one of these
four cases. Suppose h is generalized affine, and assume that we are not in case
(a), (b), or (c). Then at least one of B and C is nonempty. This implies A �= E,
hence, A being an affine set, Ac is dense in E. If B = ∅, then C is dense in
E, hence C being a convex set, C = E and we are in case (c) contrary to
assumption. Hence B �= ∅. The same proof with B and C swapped implies
C �= ∅.

Hence B and C are disjoint nonempty convex sets, so by the separating
hyperplane theorem [33, Theorem 11.3], there is an affine function g on S such
that

x /∈ B, when g(x) < 0 (33a)

x /∈ C, when g(x) > 0 (33b)

and the hyperplane in question is

H = {x ∈ E : g(x) = 0 }.

Again we know Ac is dense in E, hence B is dense in the half space on one
side of H, and C is dense in the half space on the other side of H. Now convexity
of B and C imply

x ∈ C, when g(x) < 0 (34a)

x ∈ B, when g(x) > 0 (34b)

That h is generalized affine on H follows from h being generalized affine on E.
Thus we are in case (d).

We now want to show that G(E) is first countable. In aid of that we first
prove a lemma.

Lemma 2. 2 Every finite-dimensional affine space E is second countable and
metrizable. If D is a countable dense set in E, then every point of E is contained
in the interior of the convex hull of some finite subset of D. The same is true
of any open convex subset O of E: every point of O is contained in the interior
of the convex hull of some finite subset of D ∩O.

Proof. The first assertion is trivial. If the dimension of E is d, then the topology
of E is defined to make any invertible affine function E → R

d a homeomorphism.
The second assertion is just the case O = E of the third assertion.
Assume to get a contradiction that the third assertion is false. Then there is

a point x ∈ O that is disjoint from the convex hull of (O ∩D) \ {x}. It follows
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that there is a strongly separating hyperplane [33, Corollary 11.4.2], hence an
affine function g such that

g(x) < 0

g(y) > 0, y ∈ O ∩D and y �= x

But this violates x being in O.

We can now prove Theorem 3.

Proof. We need to show there is a countable local base at h for any h ∈ G(E).
A set is a neighborhood of h if it has the form

{ g ∈ G(E) : g(x) ∈ Ox, x ∈ F }, (35)

where F is a finite subset of E and each Ox is a neighborhood of h(x) in R.
We prove first countability by induction on the dimension of E using Theo-

rem 1. For the basis of the induction, if E = {0}, then G(E) is homeomorphic
to R, hence actually second countable.

We now show that there is a countable local base at h in each of the four cases
of Theorem 1. Fix a countable dense set D in E (there is one by Lemma 2).

There is only one h satisfying case (a), the constant function having the value
∞ everywhere. In this case, a general neighborhood (35) contains a neighbor-
hood of the form

W = { g ∈ G(E) : g(x) > m, x ∈ F },

where m can be an integer. Also by Lemma 2 there exists a finite subset V of D
that contains F in the interior of its convex hull. Then, by concavity of elements
of G(E), the neighborhood

Wm,V = { g ∈ G(E) : g(x) > m, x ∈ V }

is contained in W . Hence the collection

{Wm,V : m ∈ N and V a finite subset of D } (36)

is a countable local base at h.
The proof for case (b) is similar. In case (c) we are considering an affine func-

tion h on E. In this case, a general neighborhood (35) contains a neighborhood
of the form

W = { g ∈ G(E) : h(x)− 1
m < g(x) < h(x) + 1

m , x ∈ F },

where F is a finite subset of E and m is a positive integer.
Again use Lemma 2 to choose a finite set V containing F in the interior

of its convex hull. Then, by convexity and concavity of elements of G(E), the
neighborhood

Wm,V = { g ∈ G(E) : h(x)− 1
m < g(x) < h(x) + 1

m , x ∈ V }.
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is contained in W because any y ∈ F can be written as a convex combination
of the elements of V

y =
∑
x∈V

pxx,

where the px are nonnegative and sum to one, so g ∈ Wm,n implies

g(y) ≤
∑
x∈V

pxg(x) <

(∑
x∈V

pxh(x)

)
+

1

m
= h(y) +

1

m

by the convexity inequality, and the same with the inequalities reversed and
1/m replaced by −1/m by the concavity inequality. Hence the collection (36)
with Wm,V as defined in this part is a countable local base at h.

In case (d) we are considering a generalized affine function h that is nei-
ther affine nor constant. Then, as the proof of Theorem 1 shows, there is a
hyperplane H that is the boundary of h−1(∞) and h−1(−∞). The induction
hypothesis is that G(H) is first countable, that is, there is a countable family U
of neighborhoods of h in G(E) such that

{U ∩H : U ∈ U }
is a countable local base for G(H) at the restriction of h to H.

Again consider a general neighborhood of h (35); call it W . Let g|H denote
the restriction of g ∈ G(E) to H. For any subset Q of G(E) let Q|H be defined
by

Q|H = { q|H : q ∈ Q }.
Then the induction hypothesis is that there exists a U ∈ U such that U |H is
contained in W |H.

Also adopt the notation (32a), (32b), and (32c) used in the proofs of The-
orems 12 and 1. By Lemma 2 choose a set VB in D ∩ (B \ H) that contains
F ∩ (B \H) in the interior of its convex hull, and choose a set VC in D∩ (C \H)
that contains F ∩ (C \H) in the interior of its convex hull,

Then, by convexity and concavity of elements of G(E), the neighborhood

Wm,U,VB ,VC
= { g ∈ U : h(x) ≥ m, x ∈ VB and h(x) ≤ −m, x ∈ VC } (37)

is contained in W . To see this, first consider x ∈ F ∩H (if there are any). Any
g in (37) has g(x) ∈ Ox because of U |H ⊂ W |H. Next consider x ∈ F ∩ B (if
there are any). Any g in (37) has g(x) ∈ Ox because of concavity of g assures
g(x) ≥ m, and we chose m so that (m,∞) ⊂ Ox. Last consider x ∈ F ∩ C (if
there are any). Any g in (37) has g(x) ∈ Ox because of convexity of g assures
g(x) ≤ −m, and we chose m so that (−∞,−m) ⊂ Ox.

Hence the collection

{Wm,U,V ∩(B\H),V ∩(C\H) : m ∈ N and U ∈ U and V a finite subset of D }
is a countable local base at h.

We forgot the case where E is empty. Then G(E) is a one-point space whose
only element is the empty function (that has no argument-value pairs). It is
trivially first countable.
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We now prove Theorem 5.

Proof. First, assume h satisfies the conditions of Theorem 1 on E. We then show
that h satisfies the conditions of Theorem 5 by induction on the dimension of
E. The induction hypothesis, H(p), is that the conclusions of Theorem 1 imply
that the conclusions of Theorem 5 hold when dim(E) = p. We now show that
H(0) holds. In this setting, E = {0}. Therefore our result holds with j = 0 and
h is constant on E. The basis of the induction holds.

Let dim(E) = p + 1. We now show that H(p) implies that H(p + 1) holds.
In the event that h is characterized by case (a) or (b) of Theorem 1 then our
result holds with j = 0. If case (c) of Theorem 1 characterizes h then there is an
affine function f1 defined by f1(x) = 〈x, η1〉 − δ1, x ∈ E, such that h(x) = +∞
for x such that f1(x) > 0, h(x) = −∞ for x such that f1(x) < 0, and h is
generalized affine on the hyperplane H1 = {x : f1(x) = 0}. The hyperplane H1

is p-dimensional affine subspace of E. Now, for some arbitrary ζ1 ∈ H1, define

V1 = {x− ζ1 : x ∈ H1}
= {y ∈ E : 〈y, η1〉 = δ1 − 〈ζ1, η1〉}
= {y ∈ E : 〈y, η1〉 = 0}

where the last equality follows from ζ1 ∈ H1. The space V1 is a p-dimensional
vector subspace of E since every affine space containing the origin is a vector
subspace [33, Theorem 1.1] and because every translate of an affine space is
another affine space [33, pp. 4]. Let

h1(y) = h(y + ζ1), y ∈ V1. (38)

The function h1 is convex since the composition of a convex function with an
affine function is convex. To see this, let 0 < λ < 1, pick y1, y2 ∈ V1 and observe
that

h1(λy1 + (1− λ)y2) = h(λy1 + (1− λ)y2 + ζ1)

≤ λh(y1 + ζ1) + (1− λ)h(y2 + ζ1)

= λh1(y1) + (1− λ)h1(y2).

A similar argument shows that h1 is concave. Therefore h1 is generalized affine.
From our induction hypothesis, the conclusions of Theorem 1 imply that our
result holds for the generalized affine function h1. These conditions are that
there exist finite sequences of vectors η̃2, . . ., η̃j being a linearly independent

subset of V ∗
1 , the dual space of V1, and scalars δ̃2, . . ., δ̃j such that h1 has

the following form. Define H̃1 = V1 and, inductively, for integers i such that
2 < i ≤ j

H̃i = {x ∈ H̃i−1 : 〈x, η̃i〉 = δ̃i }
C̃+

i = {x ∈ H̃i−1 : 〈x, η̃i〉 > δ̃i }
C̃−

i = {x ∈ H̃i−1 : 〈x, η̃i〉 < δ̃i }
(39)
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all of these sets (if any) being nonempty. Then h1(x) = +∞ whenever x ∈ C̃+
i

for any i, h1(x) = −∞ whenever x ∈ C̃−
i for any i, and h1 is either affine or

constant on H̃j , where +∞ and −∞ are allowed for constant values.

It remains to show that the conditions of Theorem 5 hold with respect to h.
The vectors η̃i, i = 2, ..., j can be extended to form a set of vectors ηi, i = 2, ..., j
in E∗ by the Hahn-Banach Theorem [35, Theorem 3.6]. The vectors ηi, i =

2, ..., j, form a linearly independent subset of E∗. To see this, let
∑j

k=2 akηk = 0

on E for scalars ak, k = 2, ..., j. Then
∑j

k=2 akηk = 0 on V1 which implies that
ak = 0 for k = 2, ..., j by the definition of linearly independent. Let H0 = E,
and, for i = 2, ..., j, define

Hi = {x ∈ Hi−1 : 〈x, ηi〉 = δi }
C+

i = {x ∈ Hi−1 : 〈x, ηi〉 > δi }
C−

i = {x ∈ Hi−1 : 〈x, ηi〉 < δi }
(40)

where δi = δ̃i − 〈ζ1, ηi〉 for i = 2, ..., j and H̃i = Hi + ζ1 as a result. We see that
h(x) = h1(x − ζ1) = +∞ whenever 〈x + ζ1, ηi〉 > δ̃i. Therefore h(x) = +∞ for
all x ∈ C+

i for any i. The same derivation shows that h(x) = −∞ whenever
x ∈ C−

i for any i. The generalized affine function h is either affine or constant on
Hj , where +∞ and −∞ are allowed for constant values since the composition
of an affine function with an affine function is affine.

We now show that the vectors η1, ..., ηj are linearly independent. Assume

that
∑j

k=1 akηk = 0 on E for scalars ak, k = 1, ..., j. This assumption implies

that
∑j

k=1 akη̃ = 0 on V ∗
1 where η̃1 is the restriction of η1 to V1. Thus η̃1 is an

element of V ∗
1 and η̃1 = 0 on V1 since 〈y, η̃1〉 = 〈y, η1〉 = 0 on V1. Therefore∑j

k=2 akη̃k = 0 where ak = 0 for k = 2, ..., j from what has already been
shown. In the event that a1 = 0, we can conclude that η1, . . . , ηj are linearly

independent. Now consider a1 �= 0. In this case,
∑j

k=1 akηk = 0 implies that

η1 =
∑j

k=2 bkηk where bk = −ak/a1. This states that
∑j

k=2 bkη̃k = 0 on V1.
Therefore, bk = 0 for all k = 2, ..., j which implies that η1 is the zero vector,
which is a contradiction. Thus a1 = 0 and we can conclude that η1, ..., ηj are
linearly independent. This completes one direction of the proof.

Now assume that h satisfies the conclusions of Theorem 5 and show that
these conclusions imply that Theorem 1 holds by induction on j. The induction
hypothesis, H(j), is that the conclusions of Theorem 5 imply that the conclusions
of Theorem 1 hold for sequences of length j. For the basis of the induction let
j = 0. We now show that H(0) holds. The generalized affine function h is either
affine or constant on E where +∞ and −∞ are allowed for constant values. This
characterization of h is the same as cases (a) of (b) of Theorem 1. The basis of
the induction holds.

We now show that H(j) implies that H(j + 1) holds. When the length of
sequences is j + 1, there exist vectors η1, ..., ηj+1 and scalars δ1, ..., δj+1 such
that h has the following form. Define H0 = E and, inductively, for integers i,
0 < i ≤ j + 1, such that the sets in (40) are all nonempty. Then h(x) = +∞
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whenever x ∈ C+
i for any i, h(x) = −∞ whenever x ∈ C−

i for any i, and h is
either affine or constant on Hj+1, where +∞ and −∞ are allowed for constant
values. From the definition of the setsH1, C

+
1 , and C−

1 , there is an affine function
f1 defined by f1(x) = 〈x, η1〉 − δ1, x ∈ E, such that h(x) = +∞ for all x ∈ E
such that f1(x) > 0 and h(x) = −∞ for all x ∈ E such that f1(x) < 0. This is
equivalent to the case (c) characterization of h in Theorem 1, provided we show
that the restriction of h to H1 is a generalized affine function.

Define V1 = H1 − ζ1 for some arbitrary ζ1 ∈ H1. Let dim(E) = p. The space
V1 is a (p − 1)-dimensional vector subspace of E. Define h1 as in (38). Let η̃i
be the restriction of ηi to V1 so that η̃i is an element of V ∗

1 for 1 < i ≤ j + 1.

Now let H̃1 = V1 and, for 1 < i ≤ j + 1, we can define the sets as in (39) where
δ̃i = δi−〈ζ1, η̃i〉. We see that h1(x) = h(x+ζ1) = +∞ whenever 〈x+ζ1, ηi〉 > δ̃i.

Therefore h1(x) = +∞ for all x ∈ C̃+
i for any i. The same derivation shows that

h1(x) = −∞ whenever x ∈ C̃−
i for any i. The generalized affine function h1 is

either affine or constant on Hj+1, where +∞ and −∞ are allowed for constant
values. Therefore h1 meets the conditions of Theorem 5 with sequences of length
j. From H(j), we know that the conclusions of Theorem 1 hold with respect to
h1. This completes the proof.

We now prove Lemma 1 using the characterization of generalized affine func-
tions on finite-dimensional vector spaces given by Theorem 5.

Proof. First suppose that hn converges to h. The assumption that h is finite
at at least one point guarantees that h is affine on Hj from Theorem 5. For
all y ∈ Hj we can write h(y) = 〈y, θ∗〉 + a where 〈y, θ∗〉 =

∑p
i=j+1 di〈y, ηi〉

and s, di ∈ R. The convergence hn → h implies that bi,n → di, i = j + 1, ..., p
where the set of bi,ns is empty when j = p and that an → a as n → ∞. Thus
conclusions (c) and (d) hold. To show that conclusions (a) and (b) hold we will
suppose that j > 0, because these conclusions are vacuous when j = 0. Both
cases (a) and (b) will be shown by induction with the hypothesis H(m) that
b(j−m),n → +∞ and b(j−m+1),n/b(j−m),n → 0 as n → ∞ for 0 ≤ m ≤ j − 1. We

now show that the basis of this induction holds. Pick y ∈ C+
j and observe that

hn(y) = an + bj,n (〈y, ηj〉 − δj) +

p∑
k=j+1

bk,n〈y, ηk〉 → +∞.

since h(y) = +∞ and hn → h pointwise. From this, we see that bj,n → +∞ as
n → ∞ and bj+1,n/bj,n → 0 as n → ∞ from part (c). Therefore H(0) holds. It is
now shown that H(m) implies that H(m+1) holds. There exists a basis y1, ..., yp
in E∗∗, the dual space of E∗, such that 〈yi, ηk〉 = 0 when i �= k and 〈yi, ηk〉 = 1
when i = k. The set of vectors y1, ..., yp is a basis of E since E = E∗∗. Arbitrarily
choose a y ∈ Hj−m−1 such that y =

∑j−m−1
i=1 δiyi + c1yj−m where c1 > δj−m.

At this choice of y we see that h(y) = +∞ and

hn(y) = an +

j−m+1∑
i=1

bi,n (〈y, ηi〉 − δi)
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= an + b(j−m),n (〈y, ηj−m〉 − δj−m)

→ +∞

as n → ∞. Therefore b(j−m),n → +∞ as n → ∞. Now arbitrarily choose y =∑j−m−1
i=1 δiyi+c1yj−m+c2yj−m+1 where c1 is defined as before and c2 < δj−m+1.

At this choice of y we see that h(y) = +∞ and

hn(y) = an +

j−m+1∑
i=1

bi,n (〈y, ηi〉 − δi)

= an + b(j−m),n (〈y, ηj−m〉 − δj−m

+
b(j−m+1),n

b(j−m),n
(〈y, ηj−m+1〉 − δj−m+1)

)
= an + b(j−m),n

(
c1 − δj−m −

b(j−m+1),n

b(j−m),n
(c2 − δj−m+1)

)
→ +∞

(41)

as n → ∞. It follows from (41) that(
c1 − δj−m −

b(j−m+1),n

b(j−m),n
(c2 − δj−m+1)

)
≥ 0

for sufficiently large n. This implies that

b(j−m+1),n

b(j−m),n
≤ c1 − δj−m

δj−m−1 − c2

for sufficiently large n. From the arbitrariness of the constants c1 and c2 and
(41), we can conclude that b(j−m+1),n/b(j−m),n → 0 as n → ∞. Therefore
H(m+ 1) holds and this completes one direction of the proof.

We now assume that conditions (a) through (d) and the hn takes the form
in (13). Let limn→∞

∑p
i=j+1 bi,nηi = θ∗ and limn→∞ an = a. Cases (a) through

(d) then imply that

hn(y) →

⎧⎨⎩
−∞, y ∈ C−

i

〈y, θ∗〉+ a, y ∈ Hj

+∞, y ∈ C+
i

(42)

for all i = 1, ..., j where the right hand side of (42) is a generalized affine function
in its Theorem 5 representation. This completes the proof.

Appendix D: Proofs of MGF and moment convergence results

We first prove Theorem 8.
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Proof. Suppose ϕX is an MGF, hence finite on a neighborhood W of zero.Fix
t ∈ E∗. Then by (17) ϕ〈X,t〉(s) is finite whenever st ∈ W . Continuity of scalar
multiplication means there exists an ε > 0 such that st ∈ W whenever |s| < ε.
That proves one direction.

Conversely, suppose ϕ〈X,t〉 is an MGF for each t ∈ E∗. Suppose v1, . . . , vd is
a basis for E and w1, . . . , wd is the dual basis for E∗ that satisfies (18). Then
there exists ε > 0 such that ϕ〈X,wi〉 is finite on [−ε, ε] for each i.

We can write each t ∈ E∗ as a linear combination of basis vectors

t =

d∑
i=1

aiwi,

where the ai are scalars that are unique [28, Theorem 1 of Section 15]. Applying
(18) we get

〈vj , t〉 = aj ,

so

t =

d∑
i=1

〈vi, t〉wi,

and

〈X, t〉 =
d∑

i=1

〈vi, t〉〈X,wi〉.

Suppose

|〈vi, t〉| ≤ ε, i = 1, . . . , d

(the set of all such t is a neighborhood of 0 in E∗). Let sign denote the sign
function, which takes values −1, 0, and +1 as its argument is negative, zero, or
positive, and write

si = sign(〈vi, t〉), i = 1, . . . , d.

Then we can write 〈X, t〉 as a convex combination

〈X, t〉 =
d∑

i=1

〈vi, t〉
siε

· siε〈X,wi〉+
(
1−

d∑
i=1

〈vi, t〉
siε

)
· 〈X, 0〉.

So, by convexity of the exponential function,

ϕX(t) ≤
d∑

i=1

〈vi, t〉
siε

ϕ〈X,wi〉(siε) +

(
1−

d∑
i=1

〈vi, t〉
siε

)
< ∞.

That proves the other direction.

We now prove Theorem 9.



2142 D. J. Eck and C. J. Geyer

Proof. The one-dimensional case of this theorem is proved in [6]. We only need
to show the general case follows by Cramér-Wold. It follows from the assumption
that ϕ〈Xn,t〉 converges on a neighborhood W of zero for each t ∈ E∗. Then (19)
follows from the one-dimensional case of this theorem and the Cramér-Wold
theorem. And this implies

〈Xn, t〉 d−→ 〈X, t〉, t ∈ E∗.

By the one-dimensional case of this theorem, this implies 〈X, t〉 has an MGF for
each t, and then Theorem 8 implies X has an MGF ϕX . By the one-dimensional
case of this theorem, ϕ〈Xn,t〉 converges pointwise to ϕ〈X,t〉. So by (17), ϕXn

converges pointwise to ϕX .

We now prove Theorem 10.

Proof. From Theorem 9, we have that 〈Xn, ti〉 d−→ 〈X, , ti〉. Continuity of the

exponential function implies that e〈Xn,ti〉 d−→ e〈X,ti〉. Now, pick an ε > 0 such
that both ε

∑k
i=1 ti ∈ W and ε

∑k
i=1 ui ∈ W where u1 = −t1 and ui = ti for all

i > 1. This construction gives

e〈Xn,ε
∑k

i=1 ti〉 d−→ e〈X,ε
∑k

i=1 ti〉 (43)

and
E
(
e〈Xn,ε

∑k
i=1 ti〉

)
d−→ E

(
e〈X,ε

∑k
i=1 ti〉

)
. (44)

Equations (43) and (44) imply that e〈Xn,ε
∑k

i=1 ti〉 is uniformly integrable by

[5, Theorem 3.6]. A similar argument shows that e〈Xn,ε
∑k

i=1 ui〉 is uniformly

integrable. We now bound |εk
∏k

i=1〈Xn, ti〉| to show uniform integrability of∏k
i=1〈Xn, ti〉. Define

An = {Xn :

k∏
i=1

〈Xn, ti〉 ≥ 0}.

and let IA be the indicator function. We have,

εk
k∏

i=1

〈Xn, ti〉 ≤
k∏

i=1

〈Xn, εti〉IAn

≤ e〈Xn,ε
∑k

i=1 ti〉IAn

≤ e〈Xn,ε
∑k

i=1 ti〉

and

−εk
k∏

i=1

〈Xn, ti〉 =
k∏

i=1

〈Xn, εui〉

≤
k∏

i=1

〈Xn, εui〉IAc
n
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≤ e〈Xn,ε
∑k

i=1 ui〉IAc
n

≤ e〈Xn,ε
∑k

i=1 ui〉.

Therefore

|εk
k∏

i=1

〈Xn, ti〉| ≤ e〈Xn,ε
∑k

i=1 ti〉 + e〈Xn,ε
∑k

i=1 ui〉

The sum of uniformly integrable is uniformly integrable. This implies that
|εk
∏k

i=1〈Xn, ti〉| is uniformly integrable. Scaling of uniformly integrable is also

uniformly integrable, which implies
∏k

i=1〈Xn, ti〉 is uniformly integrable. Our
result follows from [5, Theorem 3.5] and this completes the proof.

Appendix E: Counterexample

This section provides a counterexample to the non-theorem which is Theorem 6
with its conditions removed (that is, the assertion that cumulant generating
function convergence always occurs). It shows that some conditions like those
the theorem requires are needed.

E.1. Model

Suppose we have a two-dimensional exponential family with generating measure
λ concentrated on the set

S = {(0, 0), (0, 1)} ∪ { (1, n) : n ∈ N },

where N is the set of natural numbers 0, 1, 2, . . . . And suppose λ takes values

λ(x) =
1

x2!
, x ∈ S.

The Laplace transform of λ is the function of θ given by

1 + eθ2 + eθ1
∞∑

x2=0

ex2θ2

x2!
= 1 + eθ2 + eθ1ee

θ2

and the cumulant function (log Laplace transform) is

c(θ) = log
[
1 + eθ2 + eθ1+eθ2

]
(45)

E.2. Maximum likelihood

Suppose the observed value of the canonical statistic is x = (0, 1).
From Chapter 2 of Geyer [18] we know that we can find the MLE in the com-

pletion of the family by taking limits first in the direction η1 = (−1, 0) (which is
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a direction of recession) and second in the direction η2 = (0, 1) (which is a direc-
tion of recession for the limiting conditional model resulting from the first limit).
Thus the MLE in the completion is the completely degenerate distribution con-
centrated at the observed data. The Theorem 5 (in the main article) charac-
terization of the corresponding generalized affine function evaluated at data x,
h(x), yields set C−

1 = {(1, n) : n ∈ N} and thus D1 = {(1, n), nN, n ≥ 1}.
Clearly λ(D1) > 0, and we have

sup
θ∈Θ

sup
y∈D1

e〈y,θ〉−cD1
(θ) ≥ sup

y∈N

e〈(1,y),(0,1)〉−cD1
((0,1)) = ∞.

Therefore the bound condition of Theorem 6 in the main article is violated. We
now show that CGF convergence along a likelihood maximizing sequence fails
for t in a neighborhood of 0.

E.3. Log likelihood

The log likelihood is

l(θ) = x1θ1 + x2θ2 − c(θ)

= θ2 − c(θ)

= − log
[
e−θ2 + 1 + eθ1−θ2+eθ2

]
E.4. Likelihood maximizing sequences

Because the MLE in the completion is completely degenerate and because
λ(x) = 1, the log likelihood must go to log(1) = 0 along any likelihood maxi-
mizing sequence.

We know from Lemma 1 in the main article that any likelihood maximizing
sequence θn must have

(i) θ1,n → −∞,
(ii) θ2,n → +∞,
(iii) |θ2,n/θ1,n| → 0,

but now we see that, in this example, it must also have

(iv) θ1,n − θ2,n + eθ2,n → −∞.

Thus we see that Lemma 1 doesn’t tell us everything about likelihood maxi-
mizing sequences (it may do under the conditions of Brown).

E.5. Cumulant generating function convergence

The cumulant generating function for canonical parameter value θ is

kθ(t) = c(θ + t)− c(θ).
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Thus along a likelihood maximizing sequence we have

kθn(t) = log

[
1 + eθ2+t2 + eθ1+t1+eθ2+t2

1 + eθ2 + eθ1+eθ2

]

= log

[
e−θ2 + et2 + eθ1−θ2+t1+eθ2+t2

e−θ2 + 1 + eθ1−θ2+eθ2

]

We know the denominator of the fraction converges to one along any likeli-
hood maximizing sequence. The cumulant generating function of the distribu-
tion concentrated at x is the log of

e0·t1+1·t2

so

klimit(t) = t2

Thus we see that to get the correct limit we need a different condition

(v) θ1,n − θ2,n + eθ2,n+t2 → −∞.

Since (i) through (iv) do not imply (v) unless t2 ≤ 0, we cannot guarantee
cumulant generating function convergence on a neighborhood of zero.

Suppose, for concreteness

θn = (−n, log(n)) (46)

so the sequence in (v) becomes

−n− log(n) + net2

Hence condition (v) is not satisfied unless t2 ≤ 0, but conditions (i) through
(iv) are satisfied.

E.6. Nonconvergence of first moments

First moments (of the canonical statistic) are given by differentiating the cumu-
lant function (45)

∇c(θ) =

⎛⎝ eθ1+eθ2

1+eθ2+eθ1+eθ2

eθ2+eθ1+eθ2+θ2

1+eθ2+eθ1+eθ2

⎞⎠
The first moment of the LCM, which is concentrated at x is just x. So the
necessary and sufficient condition for convergence of first moments to the first
moments of the LCM is

eθ1,n+eθ2,n

1 + eθ2,n + eθ1,n+eθ2,n
→ 0
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eθ2,n + eθ1,n+eθ2,n+θ2,n

1 + eθ2,n + eθ1,n+eθ2,n
→ 1

For the specific likelihood maximizing sequence (46) we have

eθ1,n+eθ2,n

1 + eθ2,n + eθ1,n+eθ2,n
=

e−n+n

1 + n+ e−n+n

=
1

2 + n

eθ2,n + eθ1,n+eθ2,n+θ2,n

1 + eθ2,n + eθ1,n+eθ2,n
=

n+ e−n+n+log(n)

1 + n+ e−n+n

=
2n

2 + n

The first converges to 0 as it must for CGF convergence. The second converges to
2, but it must converge to 1 for CGF convergence. So we do not get convergence
of first moments for this model and this likelihood maximizing sequence, hence
cannot have CGF convergence.

E.7. Nonconvergence of second moments

Non-convergence of first moments already makes CGF convergence impossible,
but since our main interest in CGF convergence is convergence of second mo-
ments, which are components of the Fisher information matrix, we compute
them too.

For c given by (45) and θn given by (46)

∇2c(θn) =
1

(2 + n)2

(
1 + n n2

n2 n(4 + n2)

)
→
(
0 1
1 ∞

)
The variance-covariance matrix for the LCM is the zero matrix (the variance-
covariance matrix of a completely degenerate distribution). Hence we do not get
convergence of Fisher information for this example.

Appendix F: Additional computational materials

In this Section we go into more details about the computational methods im-
plemented in the accompanying R package glmdr.

F.1. One-sided confidence intervals: Logistic regression

F.1.1. Theory for logistic regression

The math of logistic regression is very tricky for the computer. Unless arranged
very carefully, the computer may overflow or underflow causing loss of all sig-
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nificant figures. First there is the map from canonical to mean value parameters
p = logit−1(θ) where this inverse logit function operates componentwise

pi =
eθi

1 + eθi
=

1

1 + e−θi

1− pi =
1

1 + eθi
=

e−θi

1 + e−θi

for all i. We should always choose one of these formulas for which we know we can
have neither overflow, nor catastrophic cancellation. We always calculate 1− pi
using the second line, we never calculate pi and subtract from one because this
results in catastrophic cancellation when pi is near one. If θi is large positive,
we choose a formula that has e−θi in it, as that cannot overflow. If θi is large
negative, we choose a formula that has eθi in it, as that cannot overflow. If θi
is not large, it doesn’t matter which we choose.

We also never use the log function to take logarithms as this can cause hor-
rible inaccuracy when the argument is near one. R has a function log1p that
calculates log(1 + x) accurately for small values of x. Note that the map from
canonical to mean value parameters gives

log(pi) = θi − log(1 + eθi) = − log(1 + e−θi)

log(1− pi) = − log(1 + eθi) = −θi − log(1 + e−θi)

so we calculate

log(pi) = θi − log(1 + eθi) = − log(1 + e−θi)

log(1− pi) = − log(1 + eθi) = −θi − log(1 + e−θi)

With this care, we have a hope of getting approximately correct answers out of
the computer. Thus the optimization problem in (7) will be more computational
stable written as (8). Since θk = logit(pk) is a monotone transformation and log
is a monotone transformation, the two problems (7) and (8) are equivalent.
We maximize canonical rather than mean value parameters to avoid extreme
inexactness of computer arithmetic in calculating mean value parameters near
zero and one. We take logs in the constraint for the same reasons we take logs
of likelihoods. We maximize canonical rather than mean value parameters to
avoid extreme inexactness of computer arithmetic in calculating mean value
parameters near zero and one. We take logs in the constraint for the same
reasons we take logs of likelihoods.

Because optimizers expect to optimize over Rq for some q, let N be a matrix
whose columns are a basis for Γlim. Γlim is the whole parameter space in the
complete separation example of Section 2. Thus, N can be the identity matrix.
In other problems we take it to be a matrix whose columns are null eigenvectors
of the Fisher information matrix. Then every γ ∈ Γlim can be written as γ = Nξ
for some ξ ∈ R

q, where q is the column dimension of N and the dimension of
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Γlim. To an optimizer (the inference function in the glmdr package will use the
R function auglag in CRAN package alabama) problem (8) has the abstract
form

minimize f(ξ)

subject to g(ξ) ≥ 0
(47)

and the optimization works better if derivatives of f and g are provided. Because
R function auglag only does minimization, the objective function must be the
negation of what we have in (8). That is

f(ξ) = −θk

∂f(ξ)

∂ξj
= −okj

g(ξ) =
∑
i∈I

[
yi log(pi) + (ni − yi) log(1− pi)

]
− log(α)

∂g(ξ)

∂ξj
=
∑
i∈I

(yi − nipi)oij

where oij are the components of O = MN .

F.1.2. Quick and dirty intervals

As a sanity check and as a quick and dirty conservative (perhaps very conser-
vative) confidence interval, we note that since all the pi are between zero and
one we must have

pnk

k ≥ α, yk = nk

(1− pk)
nk ≥ α, yk = 0

or

α1/nk ≤ pk ≤ 1, yk = nk

0 ≤ pk ≤ 1− α1/nk , yk = 0

For α = 0.05 and nk = 1 we have

α1/nk = 0.05

1− α1/nk = 0.95

In Section 2 no upper bound for a one-sided 95% confidence interval for the
mean value parameter for a cell for which the MLE in the LCM is zero can be
larger than than 0.95 and no lower bound for the analogous confidence interval
for which the MLE in the LCM is one can be smaller than 0.05.
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F.1.3. Support of the submodel canonical statistic

For GLM the (submodel) canonical statistic is MTY , where M is the model
matrix and y is the response vector [21, Section 3.9]. There are 2n possible
values where n is the dimension of the response vector because each component
of y can be either zero or one. The left panel of Figure 1 shows these possible
values of the submodel canonical statistic.

F.2. One-sided confidence intervals: Poisson sampling

F.2.1. Theory

Here we modify Section F.1 above, changing what needs to be changed for
Poisson regression rather than logistic regression. As in Section F.1 above, let
β denote the vector of submodel canonical parameters, let l(β) denote the log

likelihood, and let β̂ denote an MLE in the LCM. Let I denote the index set of
the components of the response vector on which we condition the OM to get the
LCM, and let YI and yI denote the corresponding components of the response
vector considered as a random vector and as an observed value, respectively.
Then endpoints for a 100(1 − α)% confidence interval for a scalar parameter
g(β) are given by (6), when it does give a one-sided interval.

Since the only boundary of the mean value parameter space of the Poisson
distribution is zero, in this section, we will be doing confidence intervals for
mean value parameters for cells of the contingency table where the MLE in the
LCM is zero. And we know the min is zero, so we only have to calculate the
max.

In (6) pr denotes probability with respect to the OM not the LCM. As always
in categorical data analysis, we have different possible sampling models: Poisson,
multinomial, and product multinomial. So we get different intervals depending
on which sampling model we use. In this section we are assuming Poisson. Let
M denote the model matrix. Let θ = Mβ denote the saturated model canonical
parameter (usually called “linear predictor” in GLM theory). Let μ = exp(θ)
denote the mean value parameter (here exp operates componentwise like the R
function of the same name does), then

prβ(YI = yI) = prβ(YI = 0) = exp

(
−
∑
i∈I

μi

)
.

We could take the confidence interval problem to be

maximize μk

subject to exp

(
−
∑
i∈I

μi

)
≥ α

(48)



2150 D. J. Eck and C. J. Geyer

where μ is taken to be the function of γ described above. And this can be done
for any k ∈ I. But the problem will be more computationally stable if we state
it as

maximize θk

subject to −
∑
i∈I

μi ≥ log(α) (49)

Since μk = exp(θk) is a monotone transformation and log is a monotone trans-
formation, the two problems are equivalent (a solution for one is also a solution
for the other). We maximize canonical rather than mean value parameters to
avoid extreme inexactness of computer arithmetic in calculating mean value pa-
rameters near zero. We take logs in the constraint for the same reasons we take
logs of likelihoods.

As in logistic regression, let N be a matrix whose columns are a basis for
Γlim. Then every γ ∈ Γlim can be written as γ = Nξ for some ξ ∈ R

q, where q
is the column dimension of N and the dimension of Γlim. To an optimizer (we
will use R function auglag in CRAN package alabama) problem (49) has the
abstract form (47) and the optimization works better if derivatives of f and g
are provided. Because R function auglag only does minimization, the objective
function must be the negation of what we have in (49). That is

f(ξ) = −θk

∂f(ξ)

∂ξj
= −okj

g(ξ) = −
∑
i∈I

μi − log(α)

∂g(ξ)

∂ξj
= −

∑
i∈I

μioij

where oij are the components of O = MN .

F.2.2. Quick and dirty intervals

As a sanity check and as a quick and dirty conservative (perhaps very conser-
vative) confidence interval, we note that since all the μi are nonnegative, the
only way the constraint in (48) can be satisfied is if μk ≤ − log(α). For α = 0.05
this upper bound is -log(0.05) = 2.996. No upper bound for a one-sided 95%
confidence interval for the mean value parameter for a cell for which the MLE
in the LCM is zero can be larger than that.

F.3. One-sided confidence intervals: Multinomial sampling

F.3.1. Theory

We use the same notation as in Section F.2 above, except where modified here.
Since the only boundary of the mean value parameter space of the multinomial
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distribution is where one or more components of the state vector are zero, we
will be doing confidence intervals for mean value parameters for cells of the
contingency table where the MLE in the LCM is zero. And we know the min is
zero, so we only have to calculate the max. (If the MLE in the LCM for mean
value parameter vector had all but one component equal to zero, so the other
was equal to one, then we could make one-sided intervals for all components.
For multinomial sampling, contingency table cell probabilities are defined by

pi =
eθi∑
j∈J eθj

, i ∈ J, (50)

where J is the index set for the whole table. Now

prβ(YI = yI) = prβ(YI = 0) =

⎛⎝ ∑
i∈J\I

pi

⎞⎠n

where
n =

∑
j∈J

yj

is the multinomial sample size, where I is the index set of the cells that have
mean value zero for the MLE in the LCM. So we could take the confidence
interval problem to be

maximize pk

subject to

⎛⎝ ∑
i∈J\I

pi

⎞⎠n

≥ α
(51)

where p is taken to be the function of γ described above. And this can be done
for any k ∈ I. Unlike preceding theory for this problem, we cannot take θk to
be the objective function because pk is not a function of θk only (much less a
monotone function of it). Consequently, to obtain computational stability, we
will take logs of both equations obtaining

maximize θk − log

⎛⎝∑
j∈J

eθj

⎞⎠
subject to n log

⎛⎝ ∑
i∈J\I

eθi

⎞⎠− n log

⎛⎝∑
j∈J

eθj

⎞⎠ ≥ log(α)

(52)

The parameterization (50) introduces a direction of constancy (DOC) [21,
Theorem 1 and the following discussion], the vector all of whose components are
the same. So perhaps we should redo our null space of the Fisher information
matrix calculation using the multinomial distribution. But this is not necessary.
Movement along the DOC does not change any of the pi so does not change any
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of the equations in either of our optimization problems. We do not need to add
it to the null space we obtained from the Poisson analysis. (Section 3.17 in [21]
shows that every DOR for the Poisson model is also a DOR for the multinomial
model.) Thus our problem has the abstract form (47) with

f(ξ) = −θk + log

⎛⎝∑
j∈J

eθj

⎞⎠ (53)

∂f(ξ)

∂ξj
= −okj +

∑
i∈J eθioij∑
i∈J eθi

(54)

where okj are the components of O = MN , and

g(ξ) = n log

⎛⎝ ∑
i∈J\I

eθi

⎞⎠− n log

⎛⎝∑
j∈J

eθj

⎞⎠− log(α) (55)

∂g(ξ)

∂ξj
= n

∑
i∈J\I e

θioij∑
k∈J\I e

θk
− n

∑
i∈J eθioij∑
k∈J eθk

(56)

= n
∑
i∈J

(p∗i − pi)oij

where

p∗i =

{
eθi
/∑

j∈J\I e
θj , i ∈ J \ I

0, otherwise

(p is the vector of probabilities in the OM, p∗ is the vector of probabilities in
the LCM).

F.3.2. Quick and dirty intervals

If pi > 0 for some i ∈ I, then⎛⎝ ∑
j∈J\I

pj

⎞⎠n

≤ (1− pi)
n

Introducing μi = npi we get

α ≤

⎛⎝ ∑
i∈J\I

pi

⎞⎠n

≤
(
1− μi

n

)n
≈ exp(−μi)

for large n. Thus this agrees with our analysis in Section F.2.2 when n is large.
We get the exact inequality

α ≤
(
1− μi

n

)n
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or
α1/n ≤ 1− μi

n
or

μi ≤ n(1− α1/n) = 2.9875

when n = 544, which is what it is in our contingency table example example, and
α = 0.05. And this too agrees approximately with our analysis in Section F.2.2
above.

F.3.3. Careful coding

We can modify (53) above as

f(ξ) = a− θk + log

⎛⎝∑
j∈J

eθj−a

⎞⎠
where a is any real number. We avoid overflow and catastrophic cancellation if
we choose

a = θm = max
j∈J

θj

in which case we have

f(ξ) = θm − θk + log

⎛⎝1 +
∑

j∈J\{m}
eθj−θm

⎞⎠
in which overflow cannot occur and we avoid catastrophic cancellation in log(1+
x) for small x. Using the same definition of θm, we modify (54) above as

∂f(ξ)

∂ξj
= −okj +

eθk−θmokj∑
i∈J eθi−θm

=

[
−1 +

eθk−θm∑
i∈J eθi−θm

]
okj

in which overflow cannot occur. We can modify (55) above as

g(ξ) = nb+ n log

⎛⎝ ∑
i∈J\I

eθi−b

⎞⎠− na− n log

⎛⎝∑
j∈J

eθj−a

⎞⎠− log(α)

where a and b are any real numbers. We avoid overflow and catastrophic can-
cellation if we choose a as above and

b = θm∗ = max
i∈J\I

θi

in which case we have

g(ξ) = n

⎡⎣θm∗ − θm + log

⎛⎝1 +
∑

i∈(J\I)\{m∗}
eθi−θm∗

⎞⎠
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− log

⎛⎝1 +
∑

j∈J\{m}
eθj−θm

⎞⎠⎤⎦− log(α)

in which overflow cannot occur and we avoid catastrophic cancellation in log(1+
x) for small x. Then using the same definitions of θm and θm∗ we modify (56)
above as

∂g(ξ)

∂ξj
= n

[∑
i∈J\I e

θi−θm∗ oij∑
k∈J\I e

θk−θm∗
−
∑

i∈J eθi−θmoij∑
k∈J eθk−θm

]
in which overflow cannot occur.
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