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Abstract: We introduce a procedure to generate an estimator of the re-
gression function based on a data-dependent quasi-covering of the feature
space. A quasi-partition is generated from the quasi-covering and the esti-
mator predicts the conditional empirical expectation over the cells of the
quasi-partition. We provide sufficient conditions to ensure the consistency
of the estimator. Each element of the quasi-covering is labeled as significant
or insignificant. We avoid the condition of cell shrinkage commonly found
in the literature for data-dependent partitioning estimators. This reduces
the number of elements in the quasi-covering. An important feature of our
estimator is that it is interpretable.

The proof of the consistency is based on a control of the convergence rate
of the empirical estimation of conditional expectations, which is interesting
in itself.
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1. Introduction

We consider the following regression setting: let (X, Y ) be a pair of random
variables in Rd × R of unknown distribution Q such that

Y = g∗(X) + Z,

where E[Z] = 0, V(Z) = σ2 < ∞ and g∗ is a measurable function from Rd to R.

We make the following common assumptions:

• Z is independent of X; (H1)

• Y is bounded: Q(S) = 1 where S = Rd × [−L,L] for some
unknown L > 0.

(H2)
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The accuracy of g : Rd → R such that E[g(X)2] < ∞ is measured by its
quadratic risk defined as

L (g) := E
[
(g(X)− Y )2

]
.

Then we have
g∗(X) = E [Y |X] = argmin

g
L (g) a.s,

where the argmin ranges over all the measurable functions g with E[g(X)2] < ∞.
Given a sample Dn = ((X1, Y1), . . . , (Xn, Yn)), we aim at predicting Y con-

ditionally on X. The observations (Xi, Yi) are assumed independent and iden-
tically distributed (i.i.d.) from the distribution Q.

Let us denote the empirical measure for any r ⊆ Rd and I ⊆ R

Qn(r× I) :=
1

n

n∑
i=1

1Xi∈r1Yi∈I .

For simplicity of notation, for any r ⊆ Rd we write Qn(r) instead of Qn(r×R)
as well as Q(r) instead of Q(r× R).

We consider a set of functions Gn. Any g̃n ∈ argming∈Gn
L(g) minimizes

the risk over Gn but is not an estimator since it depends on the knowledge of
Q. Following the Empirical Risk Minimization (ERM) principle (Vapnik, 1995,
Section 1.5), we define the empirical risk and an empirical risk minimizer over
Gn as, respectively,

Ln(g) :=
1

n

n∑
i=1

(g(Xi)− Yi)
2
and gn ∈ argmin

g∈Gn

Ln(g). (1.1)

The aim of this paper is to provide interpretable1 learning algorithms that
generate weakly consistent empirical risk minimizers gn, i.e. such that their
excess of risk � (g∗, gn) fulfill

� (g∗, gn) := L(gn)− L(g∗) = E[(gn(X)− g∗(X))2] = oP(1) .

Note that P refers to an underlying probability measure of reference that is
unique (on the contrary to Q that is arbitrary) and that E corresponds to the
expectation under P.

1.1. Rule-based algorithms using partitions and quasi-coverings

In this paper, we consider algorithms generating interpretable models that are
rule-based, such as CART (Breiman et al., 1984), ID3 (Quinlan, 1986), C4.5
(Quinlan, 1993), FORS (Karalič and Bratko, 1997), M5 Rules (Holmes, Hall
and Prank, 1999). In these models, the estimator is explained by the realization

1A formal definition of interpretability convenient to our framework is proposed and dis-
cussed in Section 1.2.
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of a simple condition, an If-Then statement of the form:

IF (X ∈ c1) And (X ∈ c2) And . . . And (X ∈ ck) (1.2)

THEN gn(X) = p

where p ∈ R and each ci ⊆ Rd is expressed in its simplest shape. For instance,
the subset [a1, b1]× [a2, b2]× Rd−2 will be expressed as two ci’s:

c1 = [a1, b1]× Rd−1 and c2 = R× [a2, b2]× Rd−2.

The If part, called the condition of the rule, or simply the rule, is composed
of the conjunction of k basic tests which forms a subset of Rd and k is called
the length of the rule. The Then part, called the conclusion of the rule, is the
estimated value when the rule is activated (i.e., when the condition in the If
part is satisfied). The rules are easy to understand and allow an interpretable
decision process when k is small. For a review of the best-known algorithms
for descriptive and predictive rule learning, see Zhao and Bhowmick (2003) and
Fürnkranz and Kliegr (2015).

Formally, models generated by such algorithms are defined by a corresponding
data-dependent partition Pn of Rd. Each element of the partition is named a
cell. Let us define for any r ⊆ Rd such that Q(r) > 0 and for any h measurable

E[h(Y ) | X ∈ r] :=
E[h(Y )1X∈r]

P(X ∈ r)

and
V(Y | X ∈ r) := E

[
Y 2 | X ∈ r

]
− E [Y | X ∈ r]

2

and their empirical counterparts for any r ⊆ Rd such that Qn(r) > 0:

En[h(Y ) | X ∈ r] :=

∑n
i=1 h(Yi)1Xi∈r∑n

i=1 1Xi∈r

and
Vn(Y | X ∈ r) := En

[
Y 2 | X ∈ r

]
− En [Y | X ∈ r]

2
.

Any such algorithm following the ERM principle associates to Pn an estima-
tor such that

gn1⋃{A∈Pn:Qn(A)>0} =
∑

A∈Pn

Qn(A)>0

En[Y | X ∈ A]1A (1.3)

which minimizes the empirical risk among the class of piecewise constant func-
tions over Pn.

Those algorithms use the dataset Dn twice: The partition Pn = Pn(Dn) is
constructed according to the dataset, then the dataset is used again to calculate
the value of gn on each element of Pn as in (1.3).

In this paper, we present a novel family of algorithms by relaxing the condi-
tion that the rules constitute a partition of Rd. We consider collections of sets
Cn = Cn(Dn) which asymptotically cover Rd (see (H4)). We call such a collec-
tion a quasi-covering, and a quasi-partition if the sets do not intersect, which
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we do not need to assume in general. Such a quasi-covering is turned into a
quasi-partition P(Cn) using the definition below. Then according to the ERM
principle we define a quasi-covering estimator gn by (1.3) where Pn = P(Cn).
The main interest of quasi-covering estimators compared to partitioning esti-
mators is its interpretability. This will be discussed in Section 1.2.

Definition 1.1. Let C be a finite collection of sets of Rd and let c =
⋃

r∈C r.
We define the activation function as

ϕC : Rd �→ 2C ; ϕC(x) = {r ∈ C : x ∈ r}.

Then P(C), the partition of c generated from C, is defined as

P(C) := ϕ−1
C (Im(ϕC)).

We introduce the maximal (resp. minimal) redundancy of C as

M(C) := max
x∈c

#ϕC(x) , m(C) := min
x∈c

#ϕC(x).

Moreover, the cells of P(C) which are included in an element of C′ ⊂ C are
gathered in PC(C′):

PC(C′) := {A ∈ P(C) : ∃r ∈ C′, A ⊆ r}.

We provide a more explicit characterization of P(C) in Proposition 1.1.

Proposition 1.1. Let C be a finite collection of sets of Rd. Then

P(C) =
{⋂
r∈C̃

r \
⋃

r∈C\C̃

r : C̃ ⊆ C
}
\ {∅}.

The proof of Proposition 1.1 is deferred to the appendix. Figures 1 and 2
illustrate the fact that P(C) can contain (much) more sets than C itself.

Fig 1. The 5 overlapping elements of C. Fig 2. The 11 cells of the partition P(C).
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As the construction of P(C) can be time consuming, it is noteworthy that
there is no need to fully describe P(C) to compute the value of gn(x) for some
x ∈ Rd. The trick is to identify the unique cell of P(C) which contains x.
By creating binary vectors of size #C, whose value is 1 if x fulfills the rule’s
condition and 0 otherwise, this cell identification is a simple sequence of vectorial
operations. Figure 3 is an illustration of this process (we refer to Margot et al.
(2018) for more details).

As compared to ours, the predictors designed by Random Forests (RF) and
other tree ensembles algorithms do not satisfy the ERM principle (1.1): they are
based on the averaging of the predictions of the activated rules at the point x.
This averaging is justified empirically and theoretically as it lowers the variance
of the prediction thanks to the independence of the random rules as explained
in Breiman (2001). The averaging does not decrease the approximation error of
the prediction and there are few results about their consistency, we may cite
Denil, Matheson and Freitas (2013); Scornet et al. (2015) for RF only. On the
opposite, our estimator defined by (1.3) is the empirical conditional expectation
on the cell of P(Cn). Under some conditions, the approximation error of the
prediction is low thanks to the ERM principle. The variance will be controlled
through the significance condition (see Definition 2.1 below) as in the RIPE
algorithm of Margot et al. (2018).

1.2. Interpretability

In many sensitive areas, such as health care, justice, defense or asset manage-
ment the importance of interpretability in the decision-making process has been
underlined. As explained in Lipton (2018), there are different meanings of inter-
pretability depending on the desiderata of the user and the expected properties
of the algorithms. In this paper, we embrace the intuitive definition of model
interpretability of Biran and Cotton (2017): Interpretability is the degree
to which an observer can understand the cause of a decision. Inter-
pretable models should provide a parsimonious characterization of an estimator
of g∗. Nowadays, the most popular and accurate algorithms for regression, such
as Support Vector Machines, Neural networks, Random Forests,. . . are no inter-
pretable. This lack of interpretability comes from the complexity of the models
they generate. We call them black box models. We state that the novel fam-
ily of (quasi-)covering algorithms described in Section 4 can achieve different
interpretability-accuracy trade-off by reducing the complexity of the generated
models while being accurate enough, maintaining weak consistency guarantees.

We distinguish two main approaches to generate interpretable prediction
models. The first approach is to create black-box models and then to summa-
rize them in a so-called post-hoc interpretable model. Recent researches propose
to use explanation models such as LIME (Ribeiro, Singh and Guestrin, 2016),
DeepLIFT (Shrikumar, Greenside and Kundaje, 2019) or SHAP (Lundberg and
Lee, 2017) to interpret black-box models. These explanation models measure the
importance of a feature on the prediction process (see Guidotti et al. (2018) for
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Fig 3. Evaluation steps of the cell containing x = (0.1, 0.7) of the partition generated from the
covering of [0, 1]2, C = {r1, r2, r3}. Using partition from a covering allows to generate complex
cells with a simple interpretation (r1 And r2), where a classical partitioning algorithm cannot.
Note that the condition x satisfies (r1 And r2) implicitly implies that x does not satisfy r3.

a survey of existing methods). The other possibility is to use intrinsic inter-
pretable algorithms that directly generate interpretable models.

The interpretability of a rule-based estimator is achieved when the length
k of each rule and the number of rules are small, i.e. when the corresponding
collection of rules is simple. Considering that a collection C with one rule of
length k is just as interpretable as a collection with k rules of length 1 since they
consists in the same number of tests, interpretability gets a certain additivity
property. With this in mind, we are able to quantify the interpretability index
of a collection C.
Definition 1.2. The interpretability index of a collection of rules C is defined by

Int(C) :=
∑
r∈C

length(r), (1.4)

By convention, we define the interpretability index of the estimator gn gen-
erated by a set of rules Cn as Int(gn) = Int(Cn).
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Fig 4. Partitions generated by fully deployed decision tree algorithm without pruning for a
maximal depth λ ∈ {1, 2, 3, 4}. Here the number of rules satisfies 2λ, λ ∈ {1, 2, 3, 4}.

Remark 1. The interpretability index Int(gn) does not take into account the
notion of interaction described in Friedman and Popescu (2008). Indeed, a low
interpretability index does not inform whether gn exhibits interactions between
variables or not. Many interactions may exhibit from a set of k rules of length
1 whereas it is less the case for a unique rule of length k. Due to the additivity
property, both cases have the same interpretability index.

We aim at designing estimators which combine consistency guarantees keep-
ing an interpretability index as small as possible. To demonstrate the consistency
of a partition-based estimator gn, results such as Theorem 13.1 in Györfi et al.
(2006), which is a generalization of Stone’s Theorem to data-dependent parti-
tioning estimates, are usually applied. Then, “it is required that the diameter
of the cells of the data-dependent partition [...] converge in some sense to zero”
(Condition (13.10) in Györfi et al., 2006). However, as illustrated in Figure 4,
such approaches based on fine partitions have a high interpretability index. A
cell shrinkage condition such as Condition (13.10) in Györfi et al. (2006) neces-
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sarily implies that the number of elements in the partition Pn tends to infinity
and that the interpretability index also tends to infinity.

For an estimator defined on a data-dependent quasi-covering, we can get rid
of this condition and avoid the condition of shrinkage of the sets in the collection
Cn. Any prediction can potentially be explained by a small set of rules that are
interpretable: See Table 5 in Section 4 for an example. The generated partition
may be finer and more complex than a classical data-dependent partition, while
the explanation of the quasi-covering is easily understood by humans.

Despite the fact that we have not yet proven the parsimony of the selected set
of rules in general, the use of quasi-covering instead of partition and conditions
other than the usual ones drastically reduce the number of rules in simple cases.
This is discussed in detail in Section 2.1.2.

We prove the consistency of a quasi-covering based estimator gn by care-
fully designing the covering elements. The key concept is that of suitable data-
dependent quasi-covering introduced in Section 2. Proposition 3.2 provides rates
of convergence of empirical conditional expectations. This preliminary result of
independent interest is crucial to prove the weak consistency of suitable data-
dependent covering estimators stated in Theorem 2.1. Our main result The-
orem 2.1 is proven in Section 3 while the proofs of intermediate results are
postponed to the appendix. We apply our quasi-covering approach on artificial
data and real data using different rule generators, and we compare it to usual
existing algorithms in Section 4.

2. Consistent prediction based on suitable quasi-coverings

In order to ensure the consistency of quasi-covering based algorithms we have
to introduce the notion of suitable sequence of data-dependent quasi-coverings.

2.1. Suitable data-dependent quasi-coverings

2.1.1. Definition

We use the classical notation x+ = max{x, 0} for any x ∈ R.

Definition 2.1. Let α ∈ [0, 1/2). We call a sequence (Cn)n≥1 of data-dependent
finite collections of sets r of Rd α-suitable if it satisfies:

1. The set coverage condition (H3)

Qn(r) > n−α, r ∈ Cn, n ≥ 1.

2. The collection coverage condition (H4)

Qn(c
c
n) = oP(1)

where cn = ∪r∈Cnr.
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3. The significance condition (H5)
For some consistent estimator (σ2

n) of σ2 and sequences βn = oP(1) and
εn = oP(1), it holds for all n ≥ 1

Cn = Cs
n ∪ Ci

n

where the significant sets Cs
n are defined by

Cs
n :=

{
r ∈ Cn : βn

∣∣En[Y |X ∈ r]−En[Y ]
∣∣ ≥√(Vn(Y |X ∈ r)− σ2

n)+

}
(2.1)

and the insignificant sets Ci
n are defined by

Ci
n :=

{
r ∈ Cn \ Cs

n : εn ≥
√
(Vn(Y |X ∈ r)− σ2

n)+

}
. (2.2)

4. The redundancy condition (H6)
The redundancies of Cs

n and Ci
n satisfy

M(Cs
n)

m(Cs
n)

= oP(β
−2
n ∧ n1/2−α) (2.3)

and
M(Ci

n)

m(Ci
n)

= oP(ε
−2
n ∧ n1/2−α). (2.4)

A few remarks on the conditions of Definition 2.1 are in order. The set cov-
erage condition (H3) controls the minimal number of observations in a set of
the collection Cn, ensuring that the empirical conditional expectation is close to
the conditional expectation given any of the sets in Cn. The collection coverage
condition (H4) guarantees that Cn covers a sufficient part of Rd. The signifi-
cance conditions (H5) control the variance of the rules in two different ways;
The significant rules are predicting significantly differently than the average and
may have a large variance, the insignificant rules are not significant and have
a small variance. The redundancy condition (H6) controls how far from a par-
tition the collections Cs

n and Ci
n can be. This condition is fulfilled if the sets in

these collections are mutually disjoint.

Remark 2. The significant condition (2.1) is not related to a condition on the
diameter of the set r. It is intended to detect areas of the feature space where
the conditional expectation of Y is noticeably different from its unconditional
expectation over the whole feature space. See Example 1. The insignificant con-
dition (2.2) can be proved to hold under a shrinkage condition on the diameter
of the set, see Proposition 3.3. This is not a necessary condition.

Remark 3. We may assume in the following that the noise variance σ2 is known
or that a good enough estimator σ2

n exists. Theorem 2.1 proves the consistency of
the procedure under the assumption that |σ2

n−σ2| = OP(n
α−1/2). One refers to

Liitiäinen et al. (2009) as a reference on the difficult question of the bias-variance
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trade-off of some residual variance estimators. Most of the existing estimators
are based on Nearest-Neighbor methods. Random forests were not used for
residual variance estimation until recently, see Ramosaj and Pauly (2019). None
of these results is satisfactory in our setting of rule-based procedure. We let for
a future work the study of a good enough estimator σ2

n based on a covering
algorithm. We will use on real data in Section 4 the smallest of the empirical
variances of the rules.

Remark 4. An easy way to ensure (H6) is to constrain the proportion of any
element of Cn which can be included in the union of the others to be small. Let
(Cn) be a sequence of collections of sets r of Rd that fulfills (H3) and γ ∈ (0, 1).
We consider (ri)1≤i≤#Cn any ordering of Cn. If

Qn

(
ri+1

⋂{ ⋃
1≤j≤i

rj

})
≤ γQn(ri+1) , 1 ≤ i ≤ #Cn − 1 ,

then the cardinality of Cn is upper bounded by nα

1−γ for n sufficiently large.
Indeed, by the inclusion-exclusion principle we get

1 ≥ Qn(∪1≤i≤#Cnri) =

#Cn∑
i=1

Qn(ri \ ∪1≤j≤i−1rj) ≥ #Cn (1− γ)n−α.

Thus (H6) can be checked for any α ∈ [0, 1/4), using the fact that M(Cs
n) and

M(Ci
n) are smaller than nα

1−γ and setting βn = oP(n
−α/2) and εn = oP(n

−α/2).

2.1.2. Advantages of suitable quasi-coverings

We discuss how our approach can provide estimators with low interpretability
indices by considering quasi-coverings instead of partitions on the one hand
and by introducing conditions on the elements of the quasi-coverings which
are completely different from Condition (13.10) in Györfi et al. (2006) on the
partition cells on the other hand.

We already discussed and illustrated in Figures 1 and 2 that a quasi-covering
Cn contains less elements than the quasi-partition P(Cn). Then its interpretabil-
ity index is lower.

Moreover, P(C) contain more complex elements than those of a partition-
based algorithm: the cells in P(C) in Figure 2 are not necessarily conjunctions of
simple tests on coordinates as the sets in Figure 1. Our covering-based approach
generates complex cells without sacrificing interpretability since the algorithm
keeps small the number of elements of C which have to be designed.

Let us illustrate this point in the following example considering rules designed
as hyperrectangles which is usual, see Remark 6.

Proposition 2.1. Let C = [0, 1]d ⊂ Rd.

1. The minimal cardinality of a partition P of Rd by hyperrectangles such
that C ∈ P is 2d+ 1.
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2. The minimal cardinality of a covering C of Rd by hyperrectangles such that
C ∈ P(C) is 2.

The proof of Proposition 2.1 is deferred to the appendix and is a consequence
of the fact that Rd \ [0, 1]d is a more complex set than an hyperrectangle.

On the other hand, our Condition (H5) suits better the requirement of inter-
pretability than Condition (13.10) of Györfi et al. (2006) as they do not imply
any shrinkage of the sets in the collection Cn and the number of sets in Cn
does not necessarily have to grow with n. We illustrate in the following example
this point when g∗ itself is rule-based with a low interpretability index: in this
important situation, an estimator with low interpretability index is expected.

Example 1. The condition involved in (2.1) can hold for a set r with arbi-
trary diameter that does not satisfy Condition (13.10) of Györfi et al. (2006).
Consider the case g∗ = 1A for some Borel set A such that 0 < P(X ∈ A) < 1
and assume that σ2 is known. Then r = A is a significant set as it satisfies
the condition involved in (2.1) for some well-chosen βn = oP(1). Indeed, from
the Strong Law of Large Numbers kn := #{i : Xi ∈ A} ∼ nP(X ∈ A) a.s. as
n → ∞. Then repeated application of the Central Limit Theorem yields∣∣En[Y |X ∈ A]− En[Y ]

∣∣ ≥ En[Y |X ∈ A]− En[Y ]

= 1− kn
n

+
1

kn

n∑
i=1

Zi1Xi∈A − 1

n

n∑
i=1

Zi

= 1− P(X ∈ A) +OP(n
−1/2)

and

(Vn(Y |X ∈ A)− σ2)+ ≤ |Vn(Y |X ∈ A)− σ2|

=

∣∣∣∣ 1kn
n∑

i=1

Z2
i 1Xi∈A −

( 1

kn

n∑
i=1

Zi1Xi∈A

)2
− σ2

∣∣∣∣
= OP(n

−1/2).

It follows that (2.1) holds for r = A with

βn =

√
(Vn(Y |X ∈ A)− σ2)+∣∣En[Y |X ∈ A]− En[Y ]

∣∣ = OP(n
− 1

4 ).

For similar reasons (2.1) also holds for r = Ac with

β′
n = βn ∨

√
(Vn(Y |X ∈ Ac)− σ2)+∣∣En[Y |X ∈ Ac]− En[Y ]

∣∣ = OP(n
− 1

4 ).

Finally it can easily be checked that Cn = {r ∈ {A,Ac} : Qn(r) > n−α} defines
an α-suitable sequence of quasi-partitions for any α ∈ (0, 1

2 ). The number of
rules in Cn tends to 2.
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Remark 5. In Section 4 and for many usual procedures, only hyperrectangles
are considered as rules. In Example 1, if A is assumed to be an hyperrectangle
itself, Ac can be written as the union of a set of hyperrectangles as in the
proof of Proposition 2.1 and similar arguments as above apply to prove that
an α-suitable sequence of quasi-coverings which are all subsets of a small set of
hyperrectangles can thus be defined accordingly.

Note that in Proposition 2.1, Example 1, and Remark 5, the number of ele-
ments of the quasi-coverings and the interpretability index are bounded as d or
n grows whereas they would need to tend to infinity for any method partition-
based or relying on Condition (13.10) of Györfi et al. (2006).

Besides, another advantage is that the check of the conditions involved in
(2.1) and (2.2) for elements of a quasi-covering can be done simultaneously
with parallel computing on the contrary to any condition on partition cells that
depend on each other.

2.2. Consistency of data-dependent quasi-covering algorithms

2.2.1. Generalization of the partitioning number

Conditions are required to control the complexity of the family of partitions
P(Cn) that the algorithm can generate. These conditions use some concepts
introduced in (Nobel, 1996, Sec. 1.2) (see also (Györfi et al., 2006, Def 13.1)).
The standard definitions have to be adapted since we consider collections which
do not necessarily cover Rd. To discriminate with the standard definitions for
partitions we denote these quantities with tildes.

Definition 2.2. Let Π be a family of finite collections of disjoint sets of Rd.

1. The maximal number of sets in an element of Π is denoted by

M̃(Π) := sup {#P : P ∈ Π} .

2. For a set xn
1 = {x1, . . . ,xn} ∈ (Rd)n, let

Δ̃(xn
1 ,Π) := #

{
{xn

1 ∩A : A ∈ P} \ {∅} : P ∈ Π
}
.

3. The partitioning number Δ̃n(Π) of Π is defined by

Δ̃n(Π) := max
xn
1∈(Rd)n

Δ̃(xn
1 ,Π).

The partitioning number is the maximal number of different collections of
disjoint non-empty subsets of any n-point set that can be induced by elements
of Π and is smaller than or equal to (n + 1)n, which is an upper bound of the
number of collections of disjoint subsets of xn

1 as the number of maps from
{1, . . . , n} to {0, . . . , n}.

Classical consistency theorems require to control the partitioning number of
the family of partitions Πn over which the estimators are defined (see (13.7)
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and (13.8) in Györfi et al., 2006, Theorem 13.1). As illustrated in Figure 2, the
complexity of the sets in P(Cn) may be high even if the complexity of the sets
in Cn is low. This fact makes the partitioning number of the family of partitions
tough, if not impossible, to bound because no control on the shape of the cells
is available.

Usually Πn is chosen as {P(Cn(dn)) : dn ∈ Sn}. It can be useful to take into
account the building process of the family of sets Cn(dn) in the evaluation of
the partitioning number when the partitioning number of {P(Cn(dn)) : dn ∈
Sn} cannot be controlled easily. This is what the definition below enables by
considering Πn as a refinement of {P(Cn(dn)) : dn ∈ Sn}.

Definition 2.3. Let F and F ′ be two families of finite collections of disjoint
sets. F ′ is called a refinement of F if

∀F ∈ F , ∃F ′ ∈ F ′, ∀A ∈ F, A =
⋃

A′∈F ′:A′⊆A

A′.

2.2.2. Main result

Our main result provides the consistency of estimators based on suitable quasi-
covering sequences.

Theorem 2.1. Assume that g∗ and Q satisfy (H1), (H2). Let α ∈ [0, 1
2 ) and

(Cn) be an α-suitable sequence of finite collections of sets of Rd such that:

Q(ccn) = OP(n
α−1/2)

where cn = ∪r∈Cnr;

(H7)

M̃(Πn) = o(n) and log(Δ̃n(Πn)) = o(n)

where Πn is a refinement of {P(Cn(dn)) : dn ∈ Sn};
(H8)

∀n ∈ N∗, ∀dn ∈ Sn, {r× R, r ∈ Cn(dn)} ⊆ B
where B is a Q-Donsker class.

(H9)

Assume moreover that the estimator (σ2
n) involved in Definition 2.1 is such that

|σ2
n − σ2| = OP(n

α−1/2).

Then

gn =
∑

A∈P(Cn)

Qn(A)>0

En[Y | X ∈ A]1A

is weakly consistent:

� (g∗, gn) = oP(1).
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Remark 6. Many algorithms as CART generate rules as in (1.2) where each
simple condition (X ∈ c) consists in some distinct coordinate of X belonging
to an interval of R. In Section 4 we use such rule generators for which (H9) is
automatically satisfied. Indeed let H be the set of all hyperrectangles of Rd:

H :=
{
I1 × . . .× Id ⊂ Rd : Ii is an interval of R

}
∪ {∅}.

Any set of rules Cn such that Cn ⊆ H, which is always the case of the sets of
rules considered in Section 4, fulfills (H9) since it is a VC class (see Wenocur and
Dudley, 1981) and VC classes are Q-Donsker (see for example Van der Vaart,
2000, Lemma 19.15 and comments).

3. Proof of Theorem 2.1

In order to prove the main theorem, we need some preliminary results based
on the notions of Q-Donsker class and outer probability. The outer probability,

defined for A ⊆ Ω by P∗(A) := inf
{
P(Ã) : A ⊂ Ã, Ã ∈ A

}
, is introduced to

handle functions which are not necessarily measurable. The usual notion of
boundedness in probability for sequences of random variables is generalized
because sequences of maps are considered with values in metric spaces which
are not Euclidean spaces (thus bounded and closed sets need not be compact)
and which are not guaranteed to be measurable. See (Van der Vaart, 2000,
Chapter 18) for details.

Definition 3.1 (Van der Vaart, 2000, Chapter 18). A sequence (Mn)n∈N of
maps defined on Ω and with values in a metric space (D, d) is said to be asymp-
totically tight if

∀ε > 0, ∃K ⊂ D compact, ∀δ > 0, lim sup
n→∞

P∗(Mn /∈ Kδ) < ε,

with Kδ = {y ∈ D : d(y,K) < δ}.

Remark 7. If D = R, (Mn) is asymptotically tight if and only if

∀ε > 0, ∃M > 0 such that lim sup
n→∞

P∗(|Mn| > M) < ε.

The notation OP∗(1) stands for asymptotically tight instead of the usual OP(1)
(bounded in probability).

For f : S → R in L1(Q) we define vnf :=
√
n(
∫
fdQn −

∫
fdQ) and consider

the empirical process indexed by a set F of such functions: {vnf : f ∈ F}.

Definition 3.2 (Van der Vaart, 2000, Section 19.2). A class of functions F
is called Q-Donsker if the sequence of processes {vnf : f ∈ F} converges in
distribution to a tight limit process in the space �∞(F).

The limit process is then a Q-Brownian bridge.
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Definition 3.3. A class of sets B ⊆ BS is called Q-Donsker if IB := {1A : A ∈
B} is a Q-Donsker class of functions.

If F is a Q-Donsker class of functions, then the empirical process
((vnf)f∈F )n∈N is asymptotically tight as a sequence of maps with values in
�∞(F) (this is a consequence of Prohorov’s Theorem adapted to this frame-
work – see Van der Vaart, 2000, Theorem 18.12). Keeping in mind that a com-
pact set in �∞(F) is bounded, we have:

Proposition 3.1. Let F be a Q-Donsker class of functions. Then

‖Qn −Q‖F = OP∗(n−1/2),

where for any v : F → R, ‖v‖F = supf∈F |v(f)|.
Remark 8. If B ⊆ BS is a Q-Donsker class of sets, where BS is the Borel set on
S, then

‖Qn −Q‖B = OP∗(n−1/2),

where for any v : B → R, ‖v‖B = supA∈B |v(A)|.
Remark 9. It can be checked that if (Zn)n∈N is a sequence of non-negative
random variables, (an)n∈N ∈ (R+)N such that an = oP(1) and (Mn)n∈N is a
sequence of maps (non necessarily measurable) such that Mn = OP∗(1) and

Zn ≤ anMn for any n, then Zn
P−→

n→+∞
0.

3.1. Empirical estimation of conditional expectations

We shall also prove and use the following proposition, which is inspired by the
work of Grunewalder (2018) (Proposition 3.2).

Proposition 3.2. Let B ⊆ BS and let FB := {f1A : f ∈ F , A ∈ B} where F
is a set of functions in L1(Q) uniformly bounded. If B and FB are Q-Donsker
classes then for any α ∈ [0, 1/2) and with Bn := {A ∈ B,Qn(A) ≥ n−α} we
have

sup
f∈F

sup
A∈Bn

∣∣En [f | A]− E [f | A]
∣∣ = OP∗(nα−1/2).

Corollary 3.1. Let B ⊆ BS be a Q-Donsker class. If Y is bounded then for any
i ∈ N and any α ∈ [0, 1/2), with Bn := {A ∈ B,Qn(A) ≥ n−α} we have

sup
A∈Bn

∣∣En

[
Y i | (X, Y ) ∈ A

]
− E

[
Y i | (X, Y ) ∈ A

]∣∣ = OP∗(nα−1/2), (3.1)

and

sup
A∈Bn

|Vn [Y | (X, Y ) ∈ A]− V [Y | (X, Y ) ∈ A]| = OP∗(nα−1/2). (3.2)

Proofs of these results are deferred to the appendix.
It seems that the result of Corollary 3.1, which is of independent interest,

does not appear as such in the existing literature. As a first application of
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Corollary 3.1, we show that any sequence of partitions with shrinking cell di-
ameters is a suitable covering. We define the diameter of a cell r as Diam(r) =
supx∈r,x′∈r ‖x− x′‖, where ‖ · ‖ is any norm of Rd.

Proposition 3.3. Consider a sequence (Pn)n∈N of data-dependent partitions
that satisfies the coverage condition (H3) with α ∈ [0, 1

2 ) and such that⋃
n∈N∗

⋃
dn∈(Rd)n

{r× R : r ∈ Pn(dn)}

is a.s. a Q-Donsker class. Suppose that σ2 is known, g∗ is uniformly continuous
and

max
r∈Pn

Diam(r) = oP(1). (3.3)

Then the sequence (Pn) is α-suitable.

Proof. Let us show that each cell is either significant or insignificant. Thanks
to Condition (H3), Corollary 3.1 (Eq. (3.2)) and Remark 9,

max
r∈Pn

|Vn(Y |X ∈ r)− V(Y | X ∈ r)| = OP(n
α−1/2). (3.4)

Moreover V(Y | X ∈ r) = V(g∗(X) | X ∈ r) + σ2. Thus, as the redundancy
condition (H6) is automatically satisfied for cells of a partition, the desired result
will follow if we check that εn = oP(1) with

εn := max
r∈Pn

√
(Vn(Y |X ∈ r)− σ2)+.

From (3.4) we remark that

εn ≤ max
r∈Pn

√
V(g∗(X) | X ∈ r) +OP(n

α/2−1/4) .

For all n, if r ∈ Pn, then r×R ∈ BS . We denote Xr and X′
r two independent

variables distributed as X given that X ∈ r. We obtain

V(g∗(X) | X ∈ r) = V(g∗(Xr))

= 1
2V
(
g∗(Xr)− g∗(X′

r)
)

≤ 1
2E
[
(g∗(Xr)− g∗(X′

r))
2
]
.

Thus, if we denote w the modulus of continuity of g∗, we get√
V(g∗(X) | X ∈ r) ≤ 2−1/2w(Diam(r)).

By uniform continuity, the condition (3.3) implies that

εn ≤ 2−1/2 max
r∈Pn

(
w(Diam(r))

)
+OP(n

α/2−1/4) = oP(1) .

Thus, from (2.2), each cell which is not significant is insignificant and the cor-
responding covering sequence is α-suitable.
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3.2. Estimation-approximation decomposition

Let Gn denote the set of piecewise constant functions on the partition P(Cn) ∪
{ccn} such that ∀g ∈ Gn, ∀x ∈ Rd, |g(x)| ≤ L and ∀g ∈ Gn, ∀x ∈ ccn, g(x) = 0.

The excess risk �(g∗, gn) can be decomposed into two terms mimicking Lemma
10.1 of Györfi et al. (2006). First notice that under the conditions of Theorem 2.1
on gn we have

1

n

n∑
i=1

(gn(Xi)− Yi)
21cn(Xi) ≤

1

n

n∑
i=1

(g(Xi)− Yi)
21cn(Xi), ∀g ∈ Gn. (3.5)

Now, since moreover gn ∈ Gn,

�(g∗, gn) = E
[(
gn(X)− g∗(X)

)2]
= E

[(
gn(X)− Y )2

]
− E

[(
g∗(X)− Y

)2]
= E

[(
gn(X)− Y )2

]
− inf

g∈Gn

E
[(
g(X)− Y

)2]
+ inf

g∈Gn

E
[(
g(X)− Y

)2]− E
[(
g∗(X)− Y

)2]
= sup

g∈Gn

{
E
[(
gn(X)− Y )2

]
− 1

n

n∑
i=1

(gn(Xi)− Yi)
2

+
1

n

n∑
i=1

(gn(Xi)− Yi)
2 − 1

n

n∑
i=1

(g(Xi)− Yi)
2

+
1

n

n∑
i=1

(g(Xi)− Yi)
2 − E

[(
g(X)− Y

)2]}
+ inf

g∈Gn

E
[(
g(X)− g∗(X)

)2]
≤ 2 sup

g∈Gn

∣∣E[(g(X)− Y )2
]
− 1

n

n∑
i=1

(g(Xi)− Yi)
2
]∣∣

+
1

n

n∑
i=1

(gn(Xi)− Yi)
21cc

n
(Xi)︸ ︷︷ ︸

≤4L2Qn(cc
n)

+ inf
g∈Gn

E
[(
g(X)− g∗(X)

)2]
.

Up to the term 4L2Qn(c
c
n) which converges to zero by assumption, this is the

standard decomposition of the risk into the estimation error and the approxi-
mation error. To prove the theorem it is sufficient to prove that

inf
g∈Gn

E

[
(g(X)− g∗(X))

2
]
= oP(1) (3.6)
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and

sup
g∈Gn

∣∣E[(g(X)− Y )2
]
− 1

n

n∑
i=1

(g(Xi)− Yi)
2
]∣∣ = oP(1). (3.7)

3.3. Approximation error

Let us define Ci\s
n = {r\csn : r ∈ Ci

n} where csn = ∪r∈Cs
n
r. Notice that P(Ci\s

n ) ={
A \ csn : A ∈ P(Ci

n)
}
. Indeed, by Proposition 1.1:

P(Ci\s
n ) =

{⋂
r∈C̃

r \
⋃

r∈Ci\s
n \C̃

r : C̃ ⊆ Ci\s
n

}
=
{ ⋂
r∈C̃i

(r \ csn) \
⋃

r∈Ci
n\C̃i

(r \ csn) : C̃i ⊆ Ci
n

}
=
{( ⋂

r∈C̃i

r \
⋃

r∈Ci
n\C̃i

r
)
\ csn : C̃i ⊆ Ci

n

}
=
{
A \ csn : A ∈ P(Ci

n)
}
. (3.8)

So that, by Proposition 1.1 again, P(Cn) is a partition of cn finer than P(Cs
n)∪

P(Ci\s
n ). Hence, with

g̃n =
∑

A∈P(Cs
n)∪P(Ci\s

n )

Q(A)>0

E[Y |X ∈ A]1A,

we have g̃n ∈ Gn and

inf
g∈Gn

√
E

[
(g(X)− g∗(X))

2
]
≤
√
E

[
(g̃n(X)− g∗(X))

2
]

≤
√
E

[
(g̃n(X)− g∗(X)1cn(X))

2
]

+
√
E
[
g∗(X)21cc

n
(X)

]︸ ︷︷ ︸
≤L

√
Q(cc

n)

.

Thus, to prove (3.6), it suffices to show that Wn = oP(1) where

Wn := E

[
(g̃n(X)− g∗(X)1cn(X))

2
]
.

We will repeatedly make use of the following equalities:{
E[g∗(X)1cn(X) | X ∈ r] = E[g∗(X) | X ∈ r] = E[Y | X ∈ r] ,

V(g∗(X)1cn(X) | X ∈ r) = V(g∗(X) | X ∈ r) , ∀r ⊆ cn
(3.9)
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and
V(Y |X ∈ r) = V(g∗(X)|X ∈ r) + σ2 , ∀r ⊆ Rd. (3.10)

Let us first remark that

Wn = E

⎡⎢⎣
⎛⎜⎝ ∑

A∈P(Cs
n)∪P(Ci\s

n )

E [Y | X ∈ A]1A(X)− g∗(X)1cn(X)

⎞⎟⎠
2⎤⎥⎦

=
∑

A′∈P(Cs
n)∪P(Ci\s

n )∪{ccn}

E

⎡⎢⎣
⎛⎜⎝ ∑

A∈P(Cs
n)∪P(Ci\s

n )

E [g∗(X)1cn(X) | X ∈ A]1A(X)

−g∗(X)1cn(X))
2
1A′(X)

]
=

∑
A′∈P(Cs

n)∪P(Ci\s
n )∪{ccn}

E

[(
E
[
g∗(X)1cn(X) | X ∈ A′] − g∗(X)1cn(X)

)2
1A′(X)

]
=

∑
A′∈P(Cs

n)∪P(Ci\s
n )∪{ccn}

E

[ (
E
[
g∗(X)1cn(X) | X∈A′] − g∗(X)1cn(X)

)2∣∣∣X∈A′
]

× P
(
X ∈ A′) (3.11)

which shows that Wn is a within-group variance for the variable g∗(X)1cn(X)

and the groups P(Cs
n) ∪ P(Ci\s

n ) ∪ {ccn}.
According to the decomposition

Wn =
∑

A∈P(Cs
n)

E

[
(E [Y | X ∈ A]− g∗(X)1cn(X))

2
∣∣∣X ∈ A

]
P (X ∈ A)

︸ ︷︷ ︸
Ws

n

+
∑

A∈P(Ci\s
n )

E

[
(E [Y | X ∈ A]− g∗(X)1cn(X))

2
∣∣∣X ∈ A

]
P (X ∈ A)

︸ ︷︷ ︸
W

i\s
n

+ E

[
(E [g∗(X)1cn(X) | X ∈ ccn]− g∗(X)1cn(X))

2
∣∣∣X ∈ ccn

]
P (X ∈ ccn)︸ ︷︷ ︸

0

,

it is sufficient to prove that Ws
n

P−−−−→
n→∞

0 and W
i\s
n

P−−−−→
n→∞

0.

To deal with Ws
n, we start from the decomposition of the total variance into

the within-group and the between-group variances:

Ws
n = E[(g∗(X)1cn(X)− E[g∗(X)1cn(X)])21cs

n
(X)]− Bs

n

≤ V(g∗(X)1cn(X))− Bs
n (3.12)

where

Bs
n :=

∑
A∈P(Cs

n)

(E [g∗(X)1cn(X) | X ∈ A]− E [g∗(X)1cn(X)])
2
P (X ∈ A) .
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The between group variance Bs
n will be lower estimated by a function ofWs

n from
which an upper bound of Ws

n will follow. The key point of this lower bound is to
use the definition of Cs

n in (H5). To make the terms controlled by this significant
condition appear, we lower bound Bs

n by a sum over the elements of Cs
n instead

of elements of P(Cs
n) and the expectations is replaced by empirical expectations.

After applying the inequality provided by the significant condition we’ll have to
do the reverse operation to make Ws

n appear again.
Let us first lower bound Bs

n by a sum over the elements of Cs
n instead of

elements of P(Cs
n) and replace the expectations by empirical expectations:

Bs
n =

∑
r∈Cs

n

∑
A∈PCs

n
(r)

1

#ϕCs
n
(A)

(
E [Y | X ∈ A]− E

[
g∗(X)1cn(X)

])2
P (X ∈ A)

≥
∑
r∈Cs

n

1

M(Cs
n, r)

∑
A∈PCs

n
(r)

(
E [Y | X ∈ A]− E

[
g∗(X)1cn(X)

])2
P (X ∈ A)

≥ 1

M(Cs
n)

∑
r∈Cs

n

∑
A∈PCs

n
(r)

(
E [Y | X ∈ A]− E

[
g∗(X)1cn(X)

])2
P (X ∈ A | X ∈ r)P (X ∈ r)

≥ 1

M(Cs
n)

∑
r∈Cs

n

⎛⎜⎝ ∑
A∈PCs

n
(r)

E [Y | X ∈ A]P (X∈A | X ∈ r)− E
[
g∗(X)1cn(X)

]⎞⎟⎠
2

P (X∈ r)

=
1

M(Cs
n)

∑
r∈Cs

n

(
E [Y | X ∈ r]− E

[
g∗(X)1cn(X)

])2
P (X ∈ r)

≥ 1

M(Cs
n)

∑
r∈Cs

n

(
V 2
n,r×R −Δn

)
P(X ∈ r) (3.13)

where we applied Jensen’s inequality for the third to last inequality and where

Δn := sup
A∈Bn

{V 2
n,A − U2

n,A}

with for any A ∈ B,

Un,A := E [Y | (X, Y ) ∈ A]− E [g∗(X)1cn(X)]

Vn,A := En [Y | (X, Y ) ∈ A]− En [Y ]

and Bn = {A ∈ B s.t. Qn(A) > n−α}.
Continuing (3.13) with the definition of Cs

n in (H5) in mind,

Bs
n ≥ 1

M(Cs
n)

∑
r∈Cs

n

(
β−2
n (Vn(Y |X ∈ r)− σ2

n

)
−Δn

)
P(X ∈ r)

≥ 1

M(Cs
n)

∑
r∈Cs

n

(
β−2
n (Vn(Y |X ∈ r)− σ2

)
− β−2

n |σ2
n − σ2| −Δn

)
P(X ∈ r).

Since Ws
n =

∑
A∈PCn (Cs

n)
V(g∗(X)1cn(X)|X ∈ A)P (X ∈ A), this last term

can be lower bounded by Ws
n if the empirical variances are replaced by variances

and the sum over Cs
n by a sum over P(Cs

n). Let us then define

Δ′
n := sup

A∈Bn

{∣∣V(Y |(X, Y ) ∈ A)− Vn(Y |(X, Y ) ∈ A)
∣∣}
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and write

Bs
n ≥ 1

M(Cs
n)

∑
r∈Cs

n

(
β−2
n (V(Y | X ∈ r)− σ2 −Δ′

n)− β−2
n |σ2

n − σ2| −Δn
)
P(X ∈ r)

=
1

M(Cs
n)

∑
r∈Cs

n

(
β−2
n (V(g∗(X)1cn (X) | X ∈ r)−Δ′

n)− β−2
n |σ2

n − σ2| −Δn
)
P(X ∈ r)

by (3.9) and (3.10)

=
β−2
n

M(Cs
n)

×
∑
r∈Cs

n

(
E

[(
E [Y | X ∈ r]− g∗(X)1cn (X)

)2 | X ∈ r
]

−(Δ′
n + |σ2

n − σ2|+ β2
nΔn)

)
P(X ∈ r)

≥ β−2
n

M(Cs
n)

×
∑
r∈Cs

n

∑
A∈PCs

n
(r)

(
E

[(
E [Y | X ∈ r]− g∗(X)1cn (X)

)2 | X ∈ A
])

P(X ∈ A)

− (β−2
n Δ′

n + β−2
n |σ2

n − σ2|+Δn) since
∑

r∈Cs
n
P(X ∈ r) ≤ M(Cs

n)

≥ β−2
n

M(Cs
n)

×
∑
r∈Cs

n

∑
A∈PCs

n
(r)

(
E

[(
E [Y | X ∈ A]− g∗(X)1cn (X)

)2 | X ∈ A
])

P(X ∈ A)

− (β−2
n Δ′

n + β−2
n |σ2

n − σ2|+Δn)

≥ β−2
n

m(Cs
n)

M(Cs
n)

×
∑

A∈P(Cs
n)

(
E

[(
E [Y | X ∈ A]− g∗(X)1cn (X)

)2 | X ∈ A
])

P(X ∈ A)

− (β−2
n Δ′

n + β−2
n |σ2

n − σ2|+Δn)

= β−2
n

m(Cs
n)

M(Cs
n)

Ws
n − (β−2

n Δ′
n + β−2

n |σ2
n − σ2|+Δn).

Together with (3.12), this yields

Ws
n ≤ V(g∗(X)1cn(X)) + β−2

n Δ′
n + β−2

n |σ2
n − σ2|+Δn

1 + β−2
n

m(Cs
n)

M(Cs
n)

·

Under (H3) and (H9), Corollary 3.1 applies and we obtain

Δn = sup
A∈Bn

{(Vn,A − Un,A)(Vn,A + Un,A)}

≤ sup
A∈Bn

{∣∣En[Y | (X, Y ) ∈ A]− E[Y | (X, Y ) ∈ A]
∣∣

+
∣∣E[g∗(X)1cn(X)]− En[Y ]

∣∣}× 4L

≤ 4L×
(
sup
A∈Bn

∣∣En[Y |(X, Y ) ∈ A]− E[Y |(X, Y ) ∈ A]
∣∣

+
∣∣E[g∗(X)1cn(X)]− E[g∗(X)]

∣∣+ ∣∣E[g∗(X)]︸ ︷︷ ︸
E[Y ]

−En[Y ]
∣∣)

≤ 4L×
(
OP∗(nα−1/2) + LQ(ccn) +OP(n

−1/2)
)

= OP∗(nα−1/2)
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since Q(ccn) = OP∗(nα−1/2). Corollary 3.1 also yields

Δ′
n = OP∗(nα−1/2).

Since it is moreover assumed that |σ2
n−σ2| = OP(n

α− 1
2 ), (2.3) of Condition (H6)

and Remark 9 lead to

Ws
n

P−−−−→
n→∞

0.

To deal with W
i\s
n , remember (3.8) and write

Wi\s
n =

∑
A∈P(Ci\s

n )

E

[
(E [Y | X ∈ A]− g∗(X)1cn(X))

2
1A(X)

]
=

∑
A∈P(Ci

n)

E

[
(E [Y | X ∈ A \ csn]− g∗(X)1cn(X))

2
1A\cs

n
(X)

]
≤

∑
A∈P(Ci

n)

E

[
(E [Y | X ∈ A]− g∗(X)1cn(X))

2
1A\cs

n
(X)

]
≤

∑
A∈P(Ci

n)

E

[
(E [Y | X ∈ A]− g∗(X)1cn(X))

2
1A(X)

]
≤ 1

m(Ci
n)

∑
r∈Ci

n

∑
A∈PCi

n
(r)

E

[
(E [Y | X ∈ A]− g∗(X)1cn(X))

2
1A(X)

]
≤ 1

m(Ci
n)

∑
r∈Ci

n

∑
A∈PCi

n
(r)

E

[
(E [Y | X ∈ r]− g∗(X)1cn(X))

2
1A(X)

]
≤ 1

m(Ci
n)

∑
r∈Ci

n

E

[
(E [Y | X ∈ r]− g∗(X)1cn(X))

2
1r(X)

]
=

1

m(Ci
n)

∑
r∈Ci

n

E

[
(E [Y | X ∈ r]− g∗(X)1cn(X))

2
∣∣∣X ∈ r

]
P (X ∈ r)

=
1

m(Ci
n)

∑
r∈Ci

n

(
V(Y |X ∈ r)− σ2

)
P (X ∈ r) by (3.9) and (3.10)

≤ 1

m(Ci
n)

∑
r∈Ci

n

(
Vn(Y |X ∈ r)− σ2

n + |σ2
n − σ2|+Δ′

n

)
P (X ∈ r)

≤ 1

m(Ci
n)

∑
r∈Ci

n

(
ε2n + |σ2

n − σ2|+Δ′
n

)
P (X ∈ r) under (H5)

≤ M(Ci
n)

m(Ci
n)

(
ε2n + |σ2

n − σ2|+Δ′
n

) P−−−−→
n→∞

0

under (2.4) of Condition (H6) and with Remark 9.



Covering based regression 1765

3.4. Estimation error

The proof of (3.7) is inspired by (Györfi et al., 2006, Theorem 13.1) and its
proof. It is not needed here to truncate the functions in Gn nor Y since they are
all bounded by assumption. Thus the assumptions (H8) do not need to involve
the truncation constant.

Recall that Gn is the set of piecewise constant functions with values in [−L,L]
on the elements of the partition P(Cn)∪{ccn} such that ∀g ∈ Gn, ∀x ∈ ccn, g(x) =
0. Then Gn is a subset of

Gc ◦Πn :=

{
g : Rd → R : g =

∑
A∈P

fA1A,P ∈ Πn, fA ∈ Gc

}
,

where Πn is a refinement of {P(Cn(dn)) : dn ∈ Sn} (see Defintion 2.3) and Gc

is the set of constant functions Rd → [−L,L]. Then

sup
g∈Gn

∣∣∣∣ 1n
n∑

i=1

(g(Xi)− Yi)
2 − E

[(
g(X)− Y )2

]∣∣∣∣
≤ sup

g∈Gc◦Πn

∣∣∣∣ 1n
n∑

i=1

(g(Xi)− Yi)
2 − E

[(
g(X)− Y )2

]∣∣∣∣,
According to (Györfi et al., 2006, Theorem 9.1 and Problem 10.4) we have,

P

{
sup

g∈Gc◦Πn

∣∣∣∣ 1n
n∑

i=1

(g(Xi)− Yi)
2 − E

[(
g(X)− Y )2

]∣∣∣∣ > ε

}

≤ 8E
[
N1

( ε

32L
,Gc ◦Πn,X

n
1

)]
exp

{
−nε2

128.(4L2)2

}
, (3.14)

where Xn
1 = {X1, . . . ,Xn}.

Here N1 (ε,Gc ◦Πn,X
n
1 ) is the random variable corresponding to the minimal

number N ∈ N such that there exist functions g1, . . . , gN : Rd → [−L,L] with
the property that for every g ∈ Gc ◦Πn there is a j ∈ {1, ..., N} such that

1

n

n∑
i=1

|g(Xi)− gj(Xi)| ≤ ε.

This number is called the ε-covering number of Gc ◦Πn. It can be interpreted
as the complexity of the class. Then using (Györfi et al., 2006, Lemma 13.1)
(it can be checked to hold in the current situation, in particular for a family of
finite collections of disjoint sets instead of a family of partitions of Rd) we have

N1

( ε

32L
,Gc ◦Πn,X

n
1

)
≤ Δ̃n(Πn)

{
sup

z1,...,zm∈{X1,...,Xn},m≤n

N1

( ε

32L
,Gc, z

m
1

)}M̃(Πn)

,
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According to (Györfi et al., 2006, Lemma 9.2) for any set of functions G and
any sample zm1 we have

N1

( ε

32L
,G, zm1

)
≤ M1

( ε

32L
,G, zm1

)
,

where M1 (ε,G, zm1 ) is the maximal N ∈ N such that there exist functions
g1, . . . , gN ∈ G with

1

n

m∑
i=1

|gj(zi)− gk(zi)| ≥ ε,

for all 1 ≤ j < k ≤ N . It is called L1 ε-packing of G on zm1 . See (Györfi et al.,
2006, Definition 9.4 (c)).

Now, from the definition of Gc,

sup
z1,...,zm∈{X1,...,Xn},m≤n

M1 (ε,Gc, z
m
1 ) ≤

⌈
2L

ε

⌉
+ 1.

Finally,

sup
z1,...,zm∈{X1,...,Xn},m≤n

N1

( ε

32L
,Gc ◦Πn, z

m
1

)
≤ Δ̃(Πn)

(⌈
64L2

ε

⌉
+ 1

)M̃(Πn)

.

(3.15)
According to (3.14) and (3.15) we have:

P

{
sup
g∈Gn

∣∣∣∣∣ 1n
n∑

i=1

|g(Xi)− Yi|2 − E
[
|g(X)− Y |2

]∣∣∣∣∣ > ε

}

≤ 8Δ̃n(Πn)

(⌈
64L2

ε

⌉
+ 1

)M̃(Πn)

exp

(
− nε2

128.(4L2)2

)

and since

8Δ̃n(Πn)

(⌈
64L2

ε

⌉
+ 1

)M̃(Πn)

exp

(
− nε2

2048L4

)

= 8 exp

⎛⎜⎜⎝− n

L4

⎛⎜⎜⎝ ε2

2048
− log Δ̃n(Πn)L

4

n
−

M̃(Πn)L
4 log

(⌈
64L2

ε

⌉
+ 1

)
n

⎞⎟⎟⎠
⎞⎟⎟⎠ ,

this concludes the proof of (3.7) and of Theorem 2.1.
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4. Illustrations

In this section we propose a simple algorithm to generate data-dependent cov-
erings using either Random Forests (RF, Breiman (2001)) or Gradient Boosted
trees (GB, Friedman (2001)) or Stochastic Gradient Boosting trees (SGB, Fried-
man (2002)) as rule generator. The interest is twofold; First, it exhibits examples
of data-dependent quasi-coverings that are likely to be suitable as in Definition
2.1. Second, we observe that the interpretability indices are small when applying
our algorithm predicting real data selecting suitable sets of rules. Note that all
rules considered here are based on intervals of R as in Remark 6 and then their
length is automatically smaller than or equal to d.

4.1. Covering algorithm

The proposed algorithm generates an estimator based on a data-dependent
quasi-covering:

1. Generate trees with a given method among RF, GB or SGB with a maxi-
mal tree size, tree size, and a maximal number of generated rules (all the
nodes and leaves of the trees), max rules.

2. For a chosen α ∈ (0, 1/2), set βn = nα/2−1/4 and εn = βnsn, where sn is
the empirical standard deviation of Y . Keep all rules which length is less
than or equal to l max ∈ {1, . . . , d} and which fulfill (H3).

3. Split this set of rules into two sets: The set of significant rules Sn (i.e.,
rules r that fulfill βn

∣∣En[Y |X ∈ r] − En[Y ]
∣∣ ≥ √

(Vn(Y |X ∈ r)− σ2
n)+)

and the set of insignificant rules In (i.e., rules r that are not in Sn and
that fulfill εn ≥

√
(Vn(Y |X ∈ r)− σ2

n)+).
4. Select a minimum set of rules Cn using Algorithm 1 given in the appendix.

If at any step the set of selected rules forms a covering, the selection process
is stopped. A rule is added to the currently selected set of rules if and only
if it has at least a rate 1− γ ∈ (0, 1) of points not covered by the current
set of rules2. The set Sn, sorted by decreasing empirical coverage rate, is
browsed first. Then, if necessary, the set In, sorted by increasing empirical
variance, is browsed.

As explained in Definition 2.1 the set Cn is the union of the significant set
Cs
n = Cn ∩Sn and the insignificant set Ci

n = Cn ∩ In. In practice the set Cs
n is the

most interesting one because it identifies the rules where the conditional mean
is prominent.

The datasets and the code for the illustrations are available on GitHub. The
code is written in both the Python and R languages.

2This step was already described in Remark 4 in order to fulfill the redundancy condition
(H6).

https://github.com/VMargot/CoveringAlgorithm
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4.2. Artificial data

We consider here the same model as in Friedman and Popescu (2008). We gen-
erate n = 5000 observations following the regression setting

Y = g∗(X) + Z,

where d = 100 (the dimension of X) and

g∗(X) = 9
3∏

j=1

exp
(
−3 (1−Xj)

2
)
− 0.8 exp (−2 (X4 −X5))

+ 2 sin2(π ·X6)− 2.5 (X7 −X8) , (4.1)

and Z ∼ N (0, σ2). The value of σ > 0 was chosen to produce a two-to-one
signal-to-noise ratio. The variables were generated from a uniform distribution
on {0/10, . . . , 9/10}. It is important to note that only the eight first variables are
informative; the 92 others are just noise. The coefficients that multiply each of
the terms in g∗ have been chosen to ensure that the variables have approximately
the same influence.

We evaluate the accuracy of the estimators with the mean squared error
defined by

MSE =
EQ

[
(Y − gn(X))2

]
V(Y )

.

In order to evaluate the error without the noise variance, we also consider
the following criterion:

MSE∗ =
EQ [(g∗(X)− gn(X))]

V(g∗(X))
.

We approximate the criteria MSE and MSE∗ with 50000 test observations
sampled independently from Q.

4.2.1. Execution

We run M = 100 simulations with 5000 independent observations. For each sim-
ulation we compare the Covering Algorithm with RF as rules generator (Cov-
ering) with a classical Random Forest (RF) and with RuleFit (Friedman and
Popescu, 2008) with rules only.

RuleFit is a very accurate rule-based algorithm. First it generates a list of
rules by considering all nodes and leaves of a boosted tree ensemble ISLE (Fried-
man et al., 2003). Then rules are used as features in a sparse linear regression
model obtained by Lasso (Tibshirani, 1996).

For RF, we set the number of trees at 100. For RuleFit and Covering we set
the maximal number of generated rules at 4000 and the maximal length of a rule
is fixed at kmax = 3. And we set α = 1/2− 1/100 and γ = 0.90 for Covering.
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4.2.2. Results

The MSE and MSE∗ and the interpretability index (1.4) for each algorithm
across the experiments are summarized in Table 1 and plotted in Figure 5.

Fig 5. MSE on 100 realizations from model (4.1) for Covering Algorithm (Covering), Ran-
dom Forest (RF) and RuleFit.

Fig 6. For each informative variable, frequency of occurrence in at least one rule selected by
the Covering Algorithm in 100 independent simulations.

4.2.3. Comments

Figure 6 shows the frequency of occurrence of a variable in at least one rule of
the selected set of rules. Note that only informative variables are involved in
the selected rules. Moreover, in one thirds of the experiments, all informative
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Table 1

Number of rules generated by the algorithm (Nb Rules), interpretability index (1.4)
(Interpretability) and mean squared errors MSE and MSE∗ for each algorithm.

Random
Forest

Nb rules Interpretability MSE MSE*

mean 630718.78 6871475.52 0.35 0.18
std 429.56 28124.49 0.01 0.01
min 629458.00 6815078.00 0.33 0.16
25% 630434.00 6848260.00 0.34 0.17
50% 630701.00 6871049.00 0.35 0.18
75% 631020.50 6890434.00 0.35 0.18
max 631790.00 6947934.00 0.36 0.19

Covering
Algorithm

Nb rules Interpretability MSE MSE*

mean 15.89 43.16 0.52 0.40
std 2.53 8.65 0.03 0.04
min 10.00 23.00 0.46 0.32
25% 14.00 36.00 0.50 0.37
50% 16.00 42.00 0.52 0.39
75% 17.00 48.00 0.54 0.43
max 24.00 70.00 0.60 0.50

RuleFit Nb rules Interpretability MSE MSE*
mean 360.65 1155.63 0.22 0.02
std 55.30 232.09 0.00 0.00
min 253.00 747.00 0.22 0.02
25% 314.75 965.25 0.22 0.02
50% 358.50 1143.00 0.22 0.02
75% 397.00 1297.25 0.22 0.02
max 507.00 1792.00 0.23 0.03

variables are identified. It means the support of g∗ is well identified in these
cases. In the most of the experiences, the variable X6 is the only variable that
is not involved. One reason could be that RF is a random generator of rules
that may not capture the importance of X6 at every run. The problem could
be solved by considering a deterministic rule generator algorithm.

Table 1 emphasizes that Covering Algorithm generates more interpretable
models than RF and RuleFit according to the interpretability index defined in
(1.4). Indeed, for the same constraints on the maximal number of rules and
the maximal length of the rules, Covering Algorithm selects far fewer rules than
RuleFit. Nevertheless, RuleFit is much more accurate than Covering Algorithm.
The accuracy of RuleFit is high even if many noise variables are included in
its generated model. Therefore, a posteriori analysis of the importance of the
variables and rules of the generated model of RuleFit is crucial, see Section 9.1.2
of Friedman and Popescu (2008) for more information.

4.3. Real data

For this application, we consider seven public datasets presented in Table 2.
with different dimension and number of observations. For the dataset Student
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Table 2

Brief description of the public regression datasets.

Name (n× d) Short description
Diabetes 443× 10 Prediction of quantitative measure of disease progression

one year after baseline (Efron et al., 2004).

Prostate 97× 8 Prediction of the level of prostate-specific antigen based
on clinical measures in men who were about to receive a
radical prostatectomy (Hastie, Friedman and Tibshirani,
2001).

Ozone 330× 9 Prediction of atmospheric ozone concentration from daily
meteorological measurements (Hastie, Friedman and Tib-
shirani, 2001).

Machine 209× 8 Prediction of published relative performance (Dua and
Graff, 2017).

MPG 398× 8 Prediction of city-cycle fuel consumption in miles per gal-
lon (Dua and Graff, 2017).

Boston 506× 13 Prediction of the median price of neighborhoods, (Harri-
son Jr and Rubinfeld, 1978).

Student 649× 32 Prediction of the final grade of students based on at-
tributes collected by reports and questionnaires (Cortez
and Silva, 2008).

we have removed the variables G1 and G2 that are the first and the second grade
respectively because the target attribute G3 has a strong correlation with G2
and G1. In Cortez and Silva (2008) the authors state that despite the complexity
of the regression model, the prediction of G3 without G2 and G1 is much more
useful in practice.

4.3.1. Execution

For each dataset we run 20 executions. For each execution, the data are randomly
split into a training set and a test set, with 70% and 30% ratios respectively.
As a baseline of accuracy we consider RF (Breiman, 2001) and as a baseline
of interpretability we consider the CART algorithm (Breiman et al., 1984). We
compare Covering Algorithm with RF as rule generator (CA RF), GB trees as
rule generator (CA GB), SGB trees as rule generator (CA SGB) with RuleFit
(Friedman and Popescu, 2008) (with rules only), Node harvest (Meinshausen,
2010) (Nh) and SIRUS (Bénard et al., 2020). These algorithms are the main
existing interpretable rule-based algorithms for regression settings that are based
on tree ensembles.

Node harvest uses also a tree ensemble as rule generator. The algorithm
considers all nodes and leaves of RF as rules and solves a linear quadratic
problem to fit a weight to each rule. So the prediction is a convex combination
of rules.
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SIRUS (Stable and Interpretable RUle Set) is designed as a stable predictive
algorithm. It uses a custom RF algorithm to generate many rules (considering
nodes and leaves). Then it selects the rules with a rate of occurrence greater
than a tuning parameter p0. To ensure a large number of occurrences on rules,
the features are discretized.

The maximal number of leaves of CART is set at tree size = 10 and the
number of tree for RF is set at nb tree = 1000. For CA and RuleFit we
set similarly the maximal number of rules generated by the rule generator
max rules = 4000 and the size of a tree tree size = 8. For CA, Node har-
vest and SIRUS we set identically the maximum rule length l max = 3. For CA
we also set α = 1/2−1/100 and γ = 0.90. In these applications the real value of
σ2 is unknown. We estimate it by σ2

n the minimal variance of the generated rules
fulfilling the covering condition (H3). We have no guarantee that this estimator
is good enough (see Remark 3). For SIRUS, the hyperparameter p0 is estimated
by 10-fold cross-validation and the maximal number of rules is set at 25. The
parameters setting is summarized in Table 3.

Table 3

Algorithm parameter settings.

Algorithm Parameters
CART tree size = 10.
RF nb tree = 1000.
RuleFit tree size = 8,

max rules = 4000.
Node harvest (Nh) l max = 3.
SIRUS l max = 3,

max selected rules = 25,
ncv = 10.

CA max rules = 4000,
tree size = 8,
alpha = 1/2− 1/100,
gamma = 0.90,
l max = 3.

4.3.2. Results

Experimental results are gathered in Table 4. For each dataset and algorithm
we present an average over the 20 executions of the number of selected rules (Nb
rules), the empirical coverage rate on the training set (Cov), the interpretability
index (1.4) (Int) and the mean squared error on the test set divided by the
empirical variance of the target (MSE).

These results emphasize that suitable data-dependent quasi-coverings (see
Definition 2.1) are very efficient to generate an interpretable rule-based model,
see also Section 4.3.3. They generate very simple models with an interpretability
index (1.4) much lower than the other algorithms. Moreover the sets of selected
rules Cn form in most cases a covering of the training set. CA achieves a good
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Table 4

Average of the number of rules (NB rules), the empirical coverage rate on the training set
(Cov), the interpretability index (Int) and the ratio mean squared error/empirical variance

of the target (MSE) over 20 executions of usual interpretable algorithms for various
regression public datasets. Best values are in bold, as well as values within 10% of the best

for each dataset.

Dataset
Regression Tree (CART) Random Forest (RF)
Nb rules Int MSE Nb rules Int MSE

Diabetes 10 30.2 1.14 191190.6 1070454.75 0.58
Prostate 10 25.3 1.11 42047.95 169328.6 0.56
Ozone 10 32 0.5 108082.95 572067.75 0.28
Machine 10 24.2 0.18 73754.25 319376.45 0.06
MPG 10 29.0 0.27 148954.4 623266.0 0.14
Boston 10 26.3 0.29 212961.05 1270252.25 0.14
Student 10 37.75 1.55 199278.65 1838107.25 0.74

Dataset
CA RF CA GB

Nb rules Cov Int MSE Nb rules Cov Int MSE
Diabetes 7.6 0.99 17.95 0.70 9.1 0.99 19.7 0.74
Prostate 5.8 1.0 13.95 0.85 6.05 1.0 13.35 0.86
Ozone 3.3 0.99 5.85 0.42 3.95 0.99 6.55 0.39
Machine 2.85 0.99 5.05 0.40 3.25 0.99 6.05 0.50
MPG 3.1 0.99 4.3 0.28 3.65 0.99 6.85 0.30
Boston 4.9 0.99 10.9 0.45 6.8 0.99 15.15 0.45
Student 18.45 0.99 51.4 0.86 32 0.98 86.75 1.01

Dataset
CA SGB RuleFit

Nb rules Cov Int MSE Nb rules Cov Int MSE
Diabetes 8.75 0.99 19.8 0.67 249.35 1.0 1168.7 0.71
Prostate 6.5 1.0 15.05 0.76 78.4 1.0 268.8 0.66
Ozone 4.05 0.99 6.5 0.38 187.45 1.0 851 0.28
Machine 3.2 0.99 6.1 0.52 99.85 1.0 278.15 0.08
MPG 3.75 0.99 7.25 0.29 174.7 1.0 745.15 0.13
Boston 6.35 0.99 13.85 0.46 264.95 1.0 1207.65 0.12
Student 37.3 0.98 100.05 1.01 277.95 1.0 1280.4 0.90

Dataset
NodeHarvest SIRUS

Nb rules Cov Int MSE Nb rules Cov Int MSE
Diabetes 227.15 1.0 613.05 0.59 21.25 0.99 32.35 0.57
Prostate 66 1.0 160.35 0.57 23.25 0.99 33.7 0.59
Ozone 181.45 1.0 472.9 0.29 24.9 1.0 39.4 0.32
Machine 67.15 1.0 159.0 0.32 13.9 1.0 21.85 0.26
MPG 100.15 1.0 257.85 0.15 25.0 1.0 45.2 0.21
Boston 139.85 1.0 345.4 0.20 25.0 0.99 38.5 0.25
Student 78.5 1.0 228.45 0.76 15.35 1.0 26.2 0.77

interpretability-accuracy trade-off with emphasis on interpretability except for
the dataset Student that might be too complex to be interpretable. SIRUS
appears as a good challenger achieving a more balanced trade-off. Finally, these
results show that the choice of the rule generator for the CA has an impact on
the interpretability index and on the accuracy.
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4.3.3. Examples of interpretation

Any model generated by a CA can be summarized in a table of rules. We present
one set of rules selected by CA RF for the dataset Ozone in Table 5. The measure
Δn is the empirical mean deviation ratio of the prediction from the mean of Y .

Table 5

Summary of the rules selected by CA RF for the dataset Ozone. All rules are significant.
The temp variable is the Sandburg Air Force base temperature in degrees Fahrenheit, the ibt
variable is the inversion base temperature at LAX in degrees Fahrenheit and the humidity

variable is the humidity in percent at LAX.

Rule Conditions Coverage Prediction Std Δn

R1 temp ∈ [30, 67.5] 0.65 7.99 4.57 −0.2

R2 ibt ∈ [−15, 191] 0.60 8.02 4.5 −0.2

R3
ibt ∈ [172, 326]

humidity ∈ [35.5, 92]
0.41 18.61 7 0.8

R4
ibt ∈ [172, 326]

humidity ∈ [19, 35.5]
0.08 6.11 2.64 −0.4

Table 5 is a description of the model. Together with Table 6 we are able to
translate in natural language the significant rules in Table 5, according to the
definition of interpretability of Biran and Cotton (2017).

Table 6

Description of the variables selected by CA RF for the dataset Ozone. The Y variable is the
daily maximum of the hourly average ozone concentration in Upland.

Y temp ibt humidity
mean 11.78 61.75 161.16 58.13
std 8.01 14.46 76.68 19.87
min 1.00 25.00 -25.00 19.00
25% 5.00 51.00 107.00 47.00
50% 10.00 62.00 167.50 64.00
75% 17.00 72.00 214.00 73.00
max 38.00 93.00 332.00 93.00

• Rule R1 has a length equal to 1 and suggests that if the temp variable
is reasonably low then the daily maximum of the hourly average ozone
concentrations in Upland tends to be low.

• Rule R2 has a length equal to 1 and suggests that if the ibt variable is not
too high then the target tends to be low.

• Rules R3 and R4 have a length equal to 2 and suggest that CA has de-
tected an interaction between high ibt and the humidity variable. Indeed,
high value of ibt and high humidity indicate a high hourly average ozone
concentrations and high value of ibt and low humidity indicate a low
hourly average ozone concentrations.

4.3.4. Comments

In Figure 7 and Figure 8 we present boxplots of the MSE over the 20 executions
for each algorithm for the Machine and Ozone datasets. These two datasets has
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been chosen to show that CA can have both a very variable accuracy (Figure 7)
and a stable and a good accuracy (Figure 8) for two datasets with the same
dimension.

Fig 7. Boxplots of the ratio mean squared error/empirical variance of the target (MSE) over
20 executions of algorithms for the Machine dataset.

Fig 8. Boxplots of the ratio mean squared error/empirical variance of the target (MSE) over
20 executions of algorithms for the Ozone dataset.

One reason could be that rule generators of CA are random generators of
rules that may not capture the good features at every run. In particular we
have identified the problem of predicting the empty cells of the partition gen-
erated by the quasi-coverings. Then, by convention, gn(x) = 0 for x ∈ A with
Qn(A) = 0. Thus, the accuracy of CA strongly depends on the coverage Qn(A)
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of the sets A ∈ P(Cn) which can be too small to be stable. In Definition 2.1
of suitable data-dependent quasi-coverings only the coverage of the elements of
Cn is controlled. The problem can be solved by considering a deterministic rule
generator.

5. Conclusion and perspectives

In this paper, we provide a general framework for studying the consistency of
rule-based interpretable estimators. We introduce the definition of a suitable
quasi-covering. It is composed of two types of sets, namely the significant sets
and the insignificant sets. The significant sets are considered as interpretable
sets by construction. The insignificant ones are sets whose variance tends to
zero. We provide a Covering Algorithm that extracts a suitable data-dependent
quasi-covering from any rule generator.

In Section 4.2, we run a Monte Carlo experiment on Covering Algorithm
applied to Random Forest. We compare its results with those of Random Forest
(Breiman, 2001) and RuleFit (Friedman and Popescu, 2008). This experiment
shows that Covering Algorithm, which strives for interpretability, also identifies
the support of the regression function.

In Section 4.3, we apply Covering Algorithm to Random Forest (Breiman,
2001), Gradient Boosting (Friedman, 2001) and Stochastic Gradient Boosting
(Friedman, 2002) and we compare their results with those of CART (Breiman
et al., 1984), Random Forest (Breiman, 2001), RuleFit (Friedman and Popescu,
2008), Node harvest (Meinshausen, 2010) and SIRUS (Bénard et al., 2020).
The loss of accuracy in the prediction is the cost of having an interpretable
model according to our definition of interpretability. We broaden the accuracy-
interpretability trade-off of classical algorithms by providing a much more in-
terpretable method that remains consistent.

Our methodology based on quasi-coverings is very effective in generating in-
terpretable models. The use of tree ensembles such as RF, GB or SGB as rule
generator is questionable; In Section 4.3.4, we pointed out the possible negative
effect of the randomization procedure in combination with the ERM principle
instead of averaging. We also noted that the choice of the rule generator has an
important effect on accuracy, interpretability and stability. We are now looking
for an algorithm that satisfies (H8) and that deterministically generates signif-
icant and insignificant rules that form a suitable sequence of data-dependent
quasi-coverings.

In practice the variance σ2 is unknown and has to be estimated efficiently
enough. We let for future work the difficult question of defining a rule-based
estimator of the variance with rate of convergence OP(n

α−1/2) as required in
Theorem 2.1. Our setting could also be broadened; unbounded Y may be con-
sidered by introducing a truncation operator as in Györfi et al. (2006); strong
consistency and rates of convergence of the data-dependent covering estimators
may be established under regularity conditions on g∗. Finally, the scope could
be easily adapted from the regression setting to the classification setting by
adapting the significant condition accordingly.



Covering based regression 1777

Appendix

We gather here some proofs and provide the pseudo-code of the Covering Algo-
rithm’s selection process.

Proof of Proposition 1.1

Proof. By the definition of ϕC , for any x ∈ Rd, ϕ−1
C (ϕC(x)) =

⋂
r∈C:x∈r r \⋃

r∈C:x/∈r r. Thus

A ∈ P(C) = ϕ−1
C (Im(ϕC)) ⇐⇒ ∃x ∈ Rd/A = ϕ−1

C (ϕC(x)) =
⋂
r∈C
x∈r

r \
⋃
r∈C
x/∈r

r

⇐⇒ ∃C̃ ⊆ C/A =
⋂
r∈C̃

r \
⋃

r∈C\C̃

r and A �= ∅.

Proof of Proposition 2.1

Proof. 1. • Lower bound: Consider the set E1 of the points x ∈ Rd whose
coordinates are all zero except x[i] = 2, for 1 ≤ i ≤ d and the set E2
of the points x ∈ Rd whose coordinates are all zero except x[i] = 1
and x[i+1] = −1, for 1 ≤ i ≤ d (with the convention x[d+1] = x[1]).

If P is a partition by hyperrectangles and C ∈ P , then no pair of the
2d points of E1 ∪ E2 can be in the same element of P \ {C}.
Indeed, suppose that (x, y) ∈ E2

1 (or analogously ∈ E2
1 ) lies in some

D ∈ P\{C}, with x[i] = 2 and y[j] = 2. Since R is an hyperrectangle,

the point z whose coordinates are all zero except z[i] = x[i]+y[i]
2 = 1

and z[j] = x[j]+y[j]
2 = 1 is in R too. Thus C and R intersect. In the

same way, suppose that (x, y) ∈ E1 × E2 lies in some D ∈ P \ {C},
with x[i] = 2, y[j] = 1 and y[j + 1] = −1. Then, the point z whose
coordinates are all zero except z[i] = 1 (while z[j] = x[j] = 0 and
z[j + 1] = x[j + 1] = 0) is in R too. Thus C and R intersect.

Thus, the 2d points of E1 ∪ E2 induce 2d distinct elements of P that
are added to C.

• Upper bound: The partition

P =
{
(−∞, 0) × Rd−1 ; (1,+∞) × Rd−1 ;

[0, 1]× (−∞, 0) × Rd−2 ; [0, 1]× (1,+∞) × Rd−2 ;

. . . ;

[0, 1]d−1 × (−∞, 0) ; [0, 1]d−1 × (1,+∞) ;

[0, 1]d
}

fulfills the conditions of the proposition.
2. The covering C =

{
[0, 1]d ; Rd

}
fulfills the conditions of the proposition.
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Proof of Proposition 3.2

For any f : S → R in L1(Q) we note classically Qf :=
∫
fdQ, Qnf :=

∫
fdQn.

Proof. Let ε > 0. First, for any f ∈ F and A ∈ Bn, since Qn(A) > 0 and then
Q(A) > 0,

|En [f | A]− E [f | A]|

=

∣∣∣∣
∫
A
fdQn

Qn(A)
−
∫
A
fdQ

Q(A)

∣∣∣∣
=

∣∣∣∣∣Q(A)
(∫

A
fdQn −

∫
A
fdQ

)
+ (Q(A)−Qn(A))

∫
A
fdQ

Q(A)Qn(A)

∣∣∣∣∣
≤
∣∣∣∣
∫
A
fdQn −

∫
A
fdQ

Qn(A)

∣∣∣∣+ ∣∣∣∣(Q(A)−Qn(A))

∫
A
fdQ

Q(A)Qn(A)

∣∣∣∣ . (A.1)

Now, according to Proposition 3.1,

sup
f̃∈F,Ã∈B

∣∣∣∣∫
Ã

f̃dQn −
∫
Ã

f̃dQ

∣∣∣∣ = OP∗(n−1/2),

and
sup
Ã∈B

∣∣∣Qn(Ã)−Q(Ã)
∣∣∣ = OP∗(n−1/2).

Thus, According to Remark 7, there exists M > 0 such that for any n large
enough,

P∗

{
sup

f̃∈F,Ã∈B

∣∣∣∣∫
Ã

f̃dQn −
∫
Ã

f̃dQ

∣∣∣∣ > Mn−1/2

}
<

ε

2
,

and

P∗

{
sup
Ã∈B

∣∣∣Qn(Ã)−Q(Ã)
∣∣∣ > Mn−1/2

}
<

ε

2
,

so that P∗(Ωn) ≥ 1− ε with

Ωn :=
{

sup
f̃∈F,Ã∈B

∣∣∣∫
Ã

f̃dQn −
∫
Ã

f̃dQ
∣∣∣ ≤ Mn−1/2

}⋂
{
sup
Ã∈B

∣∣Qn(Ã)−Q(Ã)
∣∣ ≤ Mn−1/2

}
.
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Then (A.1) yields, with c := supf∈F,x∈S |f(x)| < ∞ and since Qn(A) ≥ n−α,
for n large enough, in the event Ωn,

sup
f∈F,A∈Bn

∣∣En [f | A]− E [f | A]
∣∣ ≤ Mnα−1/2(1 + c),

since
∫
A

fdQ

Q(A) ≤ c.

Finally, it has been proved that ∀ε > 0, ∃M > 0, ∃N ∈ N∗/∀n ≥ N ,

P∗

{
sup

f∈F,A∈Bn

|En [f | A]− E [f | A]| > Mnα−1/2

}
< ε,

and then ∀ε > 0, ∃M > 0 such that

lim sup
n→∞

P∗

{
sup

f∈F,A∈Bn

|En [f | A]− E [f | A]| > Mnα−1/2

}
≤ ε,

which, together with Remark 7 again, proves the proposition.

Proof of Corollary 3.1

Proof of (3.1). Let L = ess supY , i ∈ N, and fi ∈ L1(Q) be defined by

fi : R
d × [−L,L] → [−Li, Li]

(x, y) �→ yi.

fi is bounded and {fi} is finite thus Donsker. The result is then a straightforward
application of Proposition 3.2.

Proof of (3.2). This part follows from Proposition 3.2 since Y is bounded and

Vn [Y | (X, Y ) ∈ A] := En

[
Y 2 | (X, Y ) ∈ A

]
− En [Y | (X, Y ) ∈ A]

2
.
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Covering algorithm selection process

Algorithm 1: Selection of minimal set of rules
Input:

• the rate 0 < γ < 1;

• a set of significant rules S;

• a set of insignificant rules I;

Output:
• a minimal set of rules Cn;

1 Cn ← argmaxr∈S Qn(r);
2 S ← S \ Cn;
3 while

∑
r∈Cn

Qn(r) < 1 do

4 r∗ ← argmaxr∈S Qn(r);
5 if Qn(r∗ ∩ {∪r∈Cnr}) ≤ γ Qn(r∗) then
6 Cn ← Cn ∪ r∗;
7

8 S ← S \ r∗;
9 if #S = 0 then

10 Break ;
11

12 end
13 while

∑
r∈Cn

Qn(r) < 1 do

14 r∗ ← argminr∈I Vn(Y |X ∈ r);
15 if Qn(r∗ ∩ {∪r∈Cnr}) ≤ γ Qn(r∗) then
16 Cn ← Cn ∪ r∗;
17

18 I ← I \ r∗;
19 if #I = 0 then
20 Break ;
21

22 end
23 return Cn;
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