
E l e c t r o n i
c

J
o

u
r n a l

o
f

P
r

o b a b i l i t y

Electron. J. Probab. 26 (2021), article no. 80, 1–56.
ISSN: 1083-6489 https://doi.org/10.1214/21-EJP640

Geometry of weighted recursive and affine preferential
attachment trees
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Abstract

We study two models of growing recursive trees. For both models, the tree initially
contains a single vertex u1 and at each time n ≥ 2 a new vertex un is added to the tree
and its parent is chosen randomly according to some rule. In the weighted recursive
tree, we choose the parent uk of un among {u1, u2, . . . , un−1} with probability propor-
tional to wk, where (wn)n≥1 is some deterministic sequence that we fix beforehand.
In the affine preferential attachment tree with fitnesses, the probability of choosing
any uk is proportional to ak + deg+(uk), where deg+(uk) denotes its current number
of children, and the sequence of fitnesses (an)n≥1 is deterministic and chosen as a
parameter of the model.

We show that for any sequence (an)n≥1, the corresponding preferential attach-
ment tree has the same distribution as some weighted recursive tree with a random
sequence of weights (with some explicit distribution). We then prove almost sure
scaling limit convergences for some statistics associated with weighted recursive
trees as time goes to infinity, such as degree sequence, height, profile and also the
weak convergence of some measures carried on the tree. Thanks to the connection
between the two models, these results also apply to affine preferential attachment
trees.
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1 Introduction

The uniform recursive tree has been introduced in the 70’s as an example of random
graph constructed by addition of vertices: starting from a tree containing a single
vertex, the vertices arrive one by one and the n-th vertex picks its parent uniformly at
random from the n− 1 already present vertices. Many properties of this tree were then
investigated due to its particularly simple dynamics: number of leaves, profile, height,
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Geometry of WRTs and PATs

degrees, size of subtrees and others. We refer to the survey [52] and the more recent
book [15, Section 6] for an overview of the results obtained for this model.

We consider a generalization of the uniform recursive tree called the weighted
recursive tree (WRT), which was introduced in [8] in 2006. In this model, each vertex
is assigned a non-negative weight, constant in time. When a newcomer randomly
picks its parent, it does so with probability proportional to those weights. Most of the
contributions concerning WRTs are very recent, see e.g. [34, 24, 25, 20, 33]. In [34]
those trees are studied because of their connection to a model of random walk with
preferential relocation (a.k.a. “monkey walk”). The authors prove some limiting results
for the distribution of the weight of vertices at different heights in the tree, for different
assumptions on the weight sequence which cover a wide range of behaviours. The two
papers [25, 20] study the properties of some more general models of increasing trees,
and their results apply to WRTs when the sequence of weights is i.i.d. and identify in that
case the asymptotic degree distribution in the tree. Finally [33] studies the behaviour
of the maximal degree, also in the i.i.d. case, for different tail behaviours of the weight
distribution.

In this paper, we prove asymptotic results for this model concerning the degree
sequence, the height, the profile and the convergence of some probability measures
carried on the tree, mainly under some assumptions that ensure that the sequence
(wn)n≥1 describing the weights of the vertices in order of creation behaves roughly as
a power of n. Our deepest result is the one that concerns the asymptotic behaviour of
the profile of the tree, which is the function that maps each integer k to the number
of vertices in the tree at height k. Both the statement and the proof of this result are
inspired from the work carried out in the last 20 years for different models of logarithmic
trees, see [9, 10, 53, 50, 29]. They rely on the study of the Laplace transform of the
profile using tools that ultimately date back to Biggins [5] in the context of the branching
random walk, together with a Fourier inversion argument, which in our case is handled
by a very precise theorem of [29]. The rest of our results and proofs on WRTs are less
involved and mostly rely on more elementary arguments, as well as a connection with
Pemantle’s time-dependent Pólya urns, introduced in [43].

We also consider another model of trees which we call the affine preferential attach-
ment tree (PAT) with fitnesses. In this one, every vertex has a fixed fitness, and the
probability of picking any vertex to be the parent of a newcomer is proportional to its
fitness plus its current number of children.

The term “preferential attachment”, coined by Barabási and Albert in [2], refers to
the property that a vertex in the graph that has a high degree tends to increase its
degree even more over time, also referred to as a “rich-get-richer” effect. Many different
preferential attachment mechanisms have then been studied in the last two decades
because the degree distribution that emerges from this type of construction shares some
quantitative properties with real-world networks, see [54, 37] for good overviews of the
vast literature on this subject.

One of the original motivations of this paper comes from the fact that PATs arise in the
analysis of some growing random graphs, studied in the companion paper [51]. The class
of models that we study there is designed to encompass Rémy’s algorithm, described in
[47], which creates a sequence of binary trees, and a lot of its natural generalizations,
studied separately in [19, 35, 11, 22, 23, 48]. In particular, we show that the sequences
of graphs obtained using these constructions, considered as metric spaces, almost surely
converge in the so-called Gromov–Hausdorff–Prokhorov scaling limit towards a limiting
random continuous metric space. This proof relies on a decomposition of our graphs
along the structure of a tree, whose evolution is that of a PAT. Notably, a crucial result
that is needed in this argument is a uniform control over the degrees of all the vertices
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in the tree, which we prove in this paper.
Note that only a few contributions in the literature concern this particular version

of the model, where the fitness can depend on the vertex. In the case where the
fitnesses are i.i.d., the model is considered for the first time in [17] and the first rigorous
mathematical result can be found in [4]. Recently, still in the case of i.i.d. fitnesses, it
has been studied in more detail in [32] along with some other similar models. In [32]
the authors study the asymptotic degree distribution and maximum degree in the tree
and show that these can exhibit different behaviours depending on the tail of the fitness
distribution, which the authors classify as weak, strong and extreme disorder. A result
from [25] also applies in that case and also identifies the limiting degree distribution.
Even more recently, the local weak limit of this model has been investigated in [31],
and the limit is expressed as the so-called π-Pólya point tree. We also mention two
models that do not fall in our setting but are somewhat related, studied in [13] and
[7], in which the reinforcement is affine in the degree of the vertices but there is some
inhomogeneity between vertices. Instead of coming from different fitnesses associated
to vertices like in our model, the inhomogeneity is introduced using a random initial
degree, or respectively a random time of creation.

Our approach for studying this model relies on the connection between the PAT and
the WRT models (this was already known in the field in the case of constant fitnesses
but stated in a slightly different form, see [7, 3]). Indeed we shall see that using a
de Finetti-type argument, a PAT can be seen as a WRT with a random sequence of
weights that almost surely decays like a power of n. This enables us to translate all
of the results obtained for WRTs to corresponding results for PATs, and hence prove
asymptotics for degrees, height and profile of the tree. In particular, we prove the
almost sure scaling limit convergence of the sequence of degrees of the vertices in order
of creation in an `p norm. For some regular sequences of fitnesses, we can explicitly
describe the distribution of the limiting sequence using Beta, Gamma and Mittag-Leffler
distributions. This relates in various ways to other results that can be found in the
literature associated to preferential attachment trees or to urn models, contained in
[36, 27, 41, 26, 42, 40, 39, 1].

1.1 Two related models of growing trees

Definitions. For any sequence of non-negative real numbers (wn)n≥1 with w1 > 0, we
define the distribution WRT((wn)n≥1) on sequences of growing rooted labelled trees1,
which is called the weighted recursive tree with weights (wn)n≥1. We construct a
sequence of rooted trees (Tn)n≥1 by starting from T1 containing only one root-vertex u1

with label 1 and letting it evolve in the following manner: the tree Tn+1 is obtained from
Tn by adding a vertex un+1 with label n+ 1. The parent of this new vertex is chosen to
be the vertex with label Kn+1, where the random variable Kn+1 is such that

∀k ∈ {1, . . . , n}, P (Kn+1 = k | T1, T2, . . . Tn) ∝ wk. (1.1)

Remark that this conditional distribution does not depend on the evolution T1, T2, . . . Tn
up to time n, which ensures in particular that the random variables K2,K3, . . . are
independent. In this definition, we also allow sequences of weights (wn)n≥1 that are
random and in this case the distribution WRT((wn)n≥1) denotes the law of the random
tree obtained by first sampling the random sequence (wn)n≥1, and then running the
above process conditionally on (wn)n≥1.

Similarly, for any sequence (an)n≥1 of real numbers, with a1 > −1 and an ≥ 0 for
n ≥ 2, we define another model of growing tree. The construction goes on as before: P1

1In fact, in the rest of the paper we see them as plane trees, see Section 1.2.2.
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contains only one root-vertex u1 with label 1 and Pn+1 is obtained from Pn by adding a
vertex un+1 with label n+ 1 and the parent of the newcomer is chosen to be the vertex
with label Jn+1, where now

∀k ∈ {1, . . . , n}, P (Jn+1 = k | P1, P2, . . . , Pn) ∝ deg+
Pn

(uk) + ak, (1.2)

where deg+
Pn

(·) denotes the number of children in the tree Pn. In the particular case
where n = 1, the second vertex u2 is always defined as a child of u1, even in the case
−1 < a1 ≤ 0 for which the last display does not make sense. We call this sequence of
tree an affine preferential attachment tree with fitnesses (an)n≥1 and its law is denoted
by PAT((an)n≥1).

Notation. Here and in the rest of the paper, whenever we have any sequence of non-
negative real numbers (xn)n≥1, we write x = (xn)n≥1 in a bold font as a shorthand for
the sequence itself, and (Xn)n≥0 with a capital letter to denote the sequence of partial
sums defined for all n ≥ 0 as Xn :=

∑n
i=1 xi, where the empty sum is interpreted as

0. This ensures that we can write (xn)n≥1 = (Xn −Xn−1)n≥1 and hence that defining
(Xn)n≥1 is equivalent to defining (xn)n≥1. In particular, we do so for sequences of
fitnesses a = (an)n≥1, for deterministic sequences of weights w = (wn)n≥1 and for
random sequence of weights w = (wn)n≥1.

Representation result. The following result gives a connection between these two
models of growing trees. It is an analogue of the so-called “Pólya urn-representation”
result described in [3, Theorem 2.1] or [7, Section 1.2] for related models, which already
cover the case of constant sequences a.

For a, b > 0 the distribution Beta(a, b) has density Γ(a+b)
Γ(a)Γ(b) · x

a−1(1− x)b−1 · 1{0≤x≤1}
with respect to Lebesgue measure. If b = 0 and a > 0, we use the convention that the
distribution Beta(a, b) is a Dirac mass at 1.

Theorem 1.1 (WRT-representation of PATs). For any sequence a of fitnesses, we define
the associated random sequence wa = (wa

n)n≥1 through its partial sums (Wa
n)n≥1 as

Wa
1 = 1 and ∀n ≥ 2, Wa

n =
n−1∏
k=1

β−1
k ,

where the (βk)k≥1 are independent with respective distribution Beta(Ak + k, ak+1). Then,
the distributions PAT(a) and WRT(wa) coincide.

The result of the theorem is obtained by studying the evolution of the degree of fixed
vertices in the preferential attachment model (Pn)n≥1. The key argument lies in the fact
that we can describe the whole process (Pn)n≥1 using a sequence of Pólya urns, related
to the degrees of those vertices. The connection of the evolution of the degrees to Pólya
urns in the context of preferential attachment models is well-know and was observed for
the first time in [36]. It explains why Beta-distributed random variables appear in the
limit. In our case, the theorem relies on applying the de Finetti theorem to this sequence
of urns and on proving that those urns are jointly independent.

The result stated in the theorem can be made a bit more precise than an equality
in distribution as soon as the sequence a is chosen in such way that almost surely the
degree of the first vertex deg+

Pn
(u1) tends to infinity as n→∞. It is easy to check that

the condition An = O(n) is sufficient to ensure this behaviour, and in this case we can
state the following corollary.
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Corollary 1.2. For a sequence a such that An = O(n), we can construct the sequence
wa from (Pn)n≥1 in such a way that for all k ≥ 1:

wa
k = lim

n→∞

deg+
Pn

(uk)

deg+
Pn

(u1)
almost surely. (1.3)

The obtained sequence wa = (wa
k)k≥1 has the distribution described in Theorem 1.1 and

conditionally on wa, the sequence of trees (Pn)n≥1 has distribution WRT(wa).

In fact, and this is the content of Proposition 1.3 below, if An grows linearly as some
c · n for some c > 0, then the sequence (Wa

n)n≥1 almost surely grows as some power of n
whose exponent depends on c. This is achieved through moment computations, using
the explicit definition of (Wa

n)n≥1 given by the theorem. In the rest of the paper, we
investigate several properties of WRTs under this type of assumptions for the sequence
of weights, such as convergence of height, profile and measures carried on the tree.
Thanks to this connection, our results then also hold for PATs under the assumption that
An grows linearly.

Assumptions on the sequences. For two sequences (xn) and (yn) we say that

xn ./
n→∞

yn if and only if ∃ε > 0, xn =
n→∞

yn · (1 +O
(
n−ε

)
).

Our main assumption for sequences a = (an)n≥1 of fitnesses is the following (Hc), which
is parametrised by some positive c > 0 and ensures that the fitness of vertices is c on
average

An ./
n→∞

c · n. (Hc)

For sequences of weights w = (wn)n≥1, we introduce the following hypothesis, which
depends on a parameter γ > 0

Wn ./
n→∞

cst ·nγ , (�γ)

where the symbol “cst” denotes an unspecified positive constant. The following proposi-
tion ensures in particular that our assumption on sequences of fitnesses a translates to a
power-law behaviour for the random sequence of cumulated weights (Wa

n)n≥1 defined in
Theorem 1.1.

Proposition 1.3. Suppose that there exists c > 0 such that a satisfies (Hc), then the
random sequence (wa

n)n≥1 defined in Theorem 1.1 almost surely satisfies (�γ) with

γ =
c

c+ 1
.

If furthermore a is such that an ≤ (n+1)c
′+o(1) for some c′ ∈ [0 , 1), then almost surely

wa
n ≤ (n+ 1)c

′− 1
c+1 +oω(1), where oω(1) denotes a random function of n that almost surely

tends to 0 as n→∞.

Convergence of degrees using the WRT representation. In the WRT with a deter-
ministic sequence of weights w that satisfies

Wn ∼
n→∞

C · nγ

for some γ ∈ (0 , 1), the degree of a fixed vertex evolves as a sum of independent Bernoulli
random variables and it is possible to handle it with elementary methods and obtain that
a.s. for all k ≥ 1,

deg+
Tn

(uk) ∼
n→∞

wk
C(1− γ)

· n1−γ .
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Further calculations allow us to improve this statement to an almost sure convergence

n−(1−γ) · (deg+
Tn

(u1),deg+
Tn

(u2), . . . )→ 1

C(1− γ)
· (w1, w2, . . . ) (1.4)

in the space `p of p-th power summable sequences for some p ≥ 1, for weight sequences
w that satisfy some additional control. A precise version of this statement is given in
Proposition 2.1.

Suppose that a satisfies (Hc) and consider (Pn)n≥1 which has distribution PAT(a).
Then, according to Theorem 1.1 and Corollary 1.2, we know that conditionally on the
sequence wa = (wa

n)n≥1 obtained as in (1.3), the sequence (Pn)n≥1 has distribution
WRT(wa). Also, thanks to Proposition 1.3, we know that there exists some random
variable Z such that Wa

n ∼ Z · nγ almost surely as n→∞, with γ = c
c+1 . This motivates

the introduction of the following random sequence

(ma
n)n≥1 :=

1

Z(1− γ)
· (wa

n)n≥1 =
c+ 1

Z
· (wa

n)n≥1 a.s.. (1.5)

Applying the convergence (1.4) conditionally on the sequence (wa
n)n≥1 (or equivalently

conditionally on (ma
n)n≥1) yields an almost sure convergence in the product topology on

sequences, which can be improved to an `p convergence if a satisfies some additional
control. This is stated below as a theorem.

Theorem 1.4. Suppose that a satisfies (Hc). Then for a sequence (Pn)n≥1 ∼ PAT(a) we
obtain the following almost sure convergence in the product topology

n−
1
c+1 · (deg+

Pn
(u1),deg+

Pn
(u2), . . . ) −→

n→∞
(ma

1 ,m
a
2 , . . . ). (1.6)

Furthermore, if an ≤ (n+ 1)c
′+o(1), for some 0 ≤ c′ < 1

c+1 , the previous convergence also

takes place in the space `p of p-th power summable sequences, for all p > c+1
1−(c+1)c′ .

Note that the function max : `p → R that outputs the maximum of a sequence is
a continuous function, so that the scaling limit of the maximal degree in the tree Pn
is ensured by the theorem whenever the appropriate condition on the sequence a is
satisfied. Convergence of the rescaled degree of fixed vertices in preferential attachment
trees is a well-know phenomenon in the case a preferential attachment trees with
constant fitnesses, as is the convergence of the maximum of that sequence, see [36].
However, to the best of the author’s knowledge, Theorem 1.4 is the first result that
ensures an almost sure convergence of the rescaled degrees as a sequence in such a
topology. This improves the `p convergence proved in distribution in [40] for a related
model, which we treat in Proposition 5.5.

The distribution of the limiting sequence (ma
n)n≥1 can be characterized, and even has

a reasonable description for certain regular sequences of fitnesses a, as it is explained in
the following paragraph. This result is actually related to the study of some urn models
like the Pólya urns with immigration of [42] or the periodic Pólya urns of [1] and allows
us to provide some alternative proofs and complete some of the known results about
those processes. This is developed in Section 5.2.

Distribution of the limiting chain. Let us say a word on the properties of the non-
decreasing sequence (Ma

n)n≥1 that corresponds using our notation to the partial sums of
the sequence (ma

n)n≥1 defined in (1.5). Using the random variables (βn)n≥1 defined in
Theorem 1.1, we can write for any n ≥ 1,

Ma
n =

c+ 1

Z
·
n−1∏
k=1

β−1
k ,
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but then, since the random variable Z depends on the whole sequence (βn)n≥1, the
sequence (Ma

n)n≥1 is not just an iterated product of independent random variables, as it
was the case for (Wa

n)n≥1. Nevertheless, the sequence still has the nice property of being
a time-inhomogeneous Markov chain with a simple backward transition, characterised
by the equality

Ma
n = βn ·Ma

n+1,

where βn is independent of Ma
n+1 and has distribution Beta(An + n, an+1). This is the

content of Proposition 4.2.
For some specific choices of sequences a, the distribution of the chain (Ma

n)n≥1 is
explicit. Whenever a is of the form

a = a, b, b, b, . . . with a > −1 and b > 0,

we retrieve Goldschmidt and Haas’ Mittag-Leffler Markov chain family, introduced in
[21] and also studied by James [26].

The other case where the chain is explicit is when a is periodic starting from the
second term, of the form

a = a, b1, b2, . . . , b`︸ ︷︷ ︸, b1, b2, . . . , b`︸ ︷︷ ︸, b1, b2 . . . ,
where a > −1 is a real number and b1, b2, . . . , b` are non-negative integers such that at
least one of them is non-zero. Then the sequence (Ma

n)n≥1 has an explicit distribution
defined using products of Gamma-distributed random variables. We discuss this in
Section 5.1.2.

1.2 Other geometric properties of weighted random trees

We now state the convergence for other statistics of weighted random trees, namely
profile, height and probability measures. Here (Tn)n≥1 denotes a sequence of trees
evolving according to the distribution WRT(w) for some deterministic sequence w and
state our results in this setting. Our results also apply to random sequences of weights
w that satisfy the assumptions of the theorems almost surely, they hence apply to PATs
with appropriate sequences of fitnesses, thanks to Theorem 1.1 and Proposition 1.3.

1.2.1 Height and profile of WRT

We define

Ln(k) := # {1 ≤ i ≤ n | ht(ui) = k}

the number of vertices of Tn at height k. The function k 7→ Ln(k) is called the profile
of the tree Tn. The height of the tree is the maximal distance of a vertex to the root,
which we can also express as ht(Tn) := max {k ≥ 0 | Ln(k) > 0}. We are interested in the
asymptotic behaviour of Ln and ht(Tn) as n→∞.

In order to express our results, we need to introduce some quantities. For γ > 0, we
define the function fγ : R→ R as

fγ : z 7→ fγ(z) := 1 + γ (ez − 1− zez) .

This function is increasing on (−∞ , 0] and decreasing on [0 ,∞) with fγ(−∞) = 1 − γ
and fγ(0) = 1 and fγ(∞) = −∞. We define z+ and z− as

z+ := sup {z ∈ R | fγ(z) > 0} and z− :=

{
−∞ if γ ≤ 1,

log((γ − 1)/γ) if γ > 1.
(1.7)
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We assume that we work with a sequence w that satisfies the following assump-
tion (�pγ) for some γ > 0 and p ∈ (1 , 2],

Wn ./
n→∞

cst ·nγ and
2n∑
i=n

wpi ≤ n
1+(γ−1)p+o(1). (�pγ)

Thanks to Proposition 1.3, this property is almost surely satisfied for γ = c
c+1 by the

random sequence wa for any sequence a of fitnesses satisfying An ./
n→∞

c · n and

an ≤ (n+ 1)o(1).

Theorem 1.5. Suppose that there exists γ > 0 and p ∈ (1 , 2] such that the sequence w

satisfies (�pγ). Then, for a sequence of random trees (Tn)n≥1 ∼ WRT(w), we have the
almost sure asymptotics for the profile

Ln(k) =
n→∞

n√
2π log n

exp

{
−1

2
·
(
k − γ log n√

γ log n

)2
}

+O

(
n

log n

)
, (1.8)

where the error term is uniform in k ≥ 0. Also for any compact K ⊂ (z− , z+) we have
almost surely for all z ∈ K

Ln (bγez log nc) = nfγ(z)− 1
2

log logn
logn +O( 1

logn ), (1.9)

where the error term is uniform in z ∈ K. Moreover, we have the almost sure conver-
gence

ht(Tn)

log n
−→
n→∞

γ · ez+ . (1.10)

The proof of this result follows the path used for many similar results for trees with
logarithmic growth (see [9, 10, 30]): we study the Laplace transform of the profile
z 7→

∑n
k=0 e

zkLn(k) on a domain of the complex plane and prove its convergence to some
random analytic function when appropriately rescaled. Then, we apply [29, Theorem
2.1], which consists of a fine Fourier inversion argument and hence allows to obtain
precise asymptotics for Ln. The application of [29, Theorem 2.1] in its full generality
proves a so-called Edgeworth expansion for Ln, which we express here in a weaker
form by equations (1.8) and (1.9). The convergence (1.8) expresses that the profile is
asymptotically close to a Gaussian shape centred around γ log n and with variance γ log n,
so that a majority of vertices have a height of order γ log n. The second equation (1.9)
describes the behaviour of the number of vertices at a given height, for heights that
are not necessarily close to γ log n (for which the preceding result ensure that there are
of order n√

logn
vertices per level). According to this result, at height bγez log nc for any

z ∈ (z− , z+) there are of order nfγ (z)
√

logn
vertices.

Remark that the exponent fγ(z) is continuous in z and tends to 0 when z → z+.
Although this does not directly prove the convergence (1.10), it already provides a
lower-bound for ht(Tn) since it ensures that asymptotically there always exist vertices
at height bγe(z+−ε) log nc, for any small ε > 0. The convergence of the height (1.10) can
then be obtained by proving a corresponding upper-bound, which can be done using
quite rough estimates.

This result includes the well-known asymptotics ht(Tn) ∼ e log n as n → ∞ for
the uniform random tree, proved for example in [14, 46]. Using the connection from
preferential attachment trees to weighted recursive trees given by Theorem 1.1, it also
includes the case of preferential attachment trees with constant fitnesses, for which
similar results were proved, in [46] for the height and in [30, 29] for the asymptotic
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behaviour of the profile (1.8). This type of asymptotics for the profile in the case of
non-constant sequences of fitnesses is new. In a subsequent work [38], Pain and the
author studied the corrective terms for the asymptotic behaviour of the height (1.10)
and proved that

ht(Tn) = γez+ log n− 3

2z+
log log n+OP(1),

adapting techniques that were originally developed in the context of branching random
walks.

Remark 1.6. Remark that (1.9) can only make sense whenever fγ(z) > 0. Since in the
case γ > 1, the function fγ tends to 1 − γ < 0 as z → ∞, it is understandable that the
asymptotics (1.9) cannot be valid for values of z below a certain threshold. Nevertheless,
one can check that fγ(z−) > 0 and wonder about what part of the proof breaks down
below z−. In fact, we could (and it would be easier to) prove an analog of Theorem 1.5
for the the weighted profile of the tree, which corresponds to the total weight of vertices
at every height instead their number, and a statement similar to (1.9) would hold for
every z such that fγ(z) > 0. What breaks down when z is below z− is that the number
of vertices at height bγez log nc start behaving differently from their total weight, which
in our proof is reflected in the fact that the Laplace transform of the profile and its
“weighted” counterpart do not share the same asymptotics.

As a complement to this result, we mention that there is another case where we
can compute the asymptotic height of the tree, which corresponds to sequences w that
grow fast to infinity. For any sequence of weights w, a quantity of interest is

∑n
i=2

wi
Wi

,
which is the expected height of a vertex taken with probability proportional to its weight
in Tn. When this quantity grows faster than logarithmically, we have the almost sure
convergence (see Proposition 3.16 in Section 3.3)

lim
n→∞

ht(Tn)∑n
i=2

wi
Wi

= lim
n→∞

ht(un)∑n
i=2

wi
Wi

= 1,

which indicates that vertices are always added close to the tip of the tree.

1.2.2 Convergence of the weight measure

We study the convergence of some natural probability measures defined on the trees
(Tn)n≥1. Some of those results are used in the proof Theorem 1.5 and others are
motivated by applications developed in the companion paper [51], in which they allow to
improve a Gromov-Hausdorff to a Gromov-Hausdorff-Prokhorov scaling limit convergence
for some randomly growing graphs.

Plane-tree framework. To express these results it is easier to work with plane trees.
We introduce the Ulam-Harris tree U =

⋃∞
n=0N

n, where N := {1, 2, . . . }, with the
convention that N0 = {∅}. Classically, a plane tree τ is defined as a non-empty subset of
U such that

(i) if v ∈ τ and v = ui for some i ∈ N, then u ∈ τ ,

(ii) for all u ∈ τ , there exists deg+
τ (u) ∈ N ∪ {0} such that for all i ∈ N, ui ∈ τ iff

i ≤ deg+
τ (u).

We choose to construct our sequence (Tn)n≥1 of weighted recursive trees as plane trees
by considering that each time a vertex is added, it becomes the right-most child of its
parent. In this way the vertices (u1, u2 . . . ) of the trees (Tn)n≥1, listed in order of arrival,
form a sequence of elements of U. In fact, from now on, we always assume that we use
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this particular embedded construction, both for the WRT and the PAT. Note that with
this representation as unlabelled subsets of U, the tree Tn itself, for any n ≥ 1, does not
contain information relative to the labelling (hence the weight) of its vertices, but this
piece of information can be read from the sequence (T1, T2, . . . , Tn).

We also denote ∂U = NN, which we can be interpreted as the set of infinite paths
from the root to infinity, and write U = U ∪ ∂U. We classically endow this set with the
distance

dexp(u, v) =

{
0, if u = v,

exp(−ht(u ∧ v)), otherwise,
(1.11)

where u∧ v denotes the most recent common ancestor of u and v, and the height ht(u) of
a vertex u ∈ U is defined as the only n such that u ∈ Nn. Note that even when u, v ∈ ∂U,
their most recent common ancestor u ∧ v belongs to U, as long as u 6= v. Endowed with
this distance, U is then a complete separable metric space.

In the paper, except when proving results related to the weak convergence of mea-
sures, for which we use the topology generated by dexp, we consider U as a graph and
we compute distances between vertices using the corresponding graph distance, which
we denote d. In particular, the height ht(u) of a vertex u is always its graph distance
d(∅, u) to the root ∅.

Convergence of measures. For every n ≥ 1, we define the measure µn on U, which
only charges the set {u1, . . . , un} of vertices of Tn, with for any 1 ≤ k ≤ n,

µn({uk}) =
wk
Wn

. (1.12)

We refer to µn as the natural weight measure on Tn. The following theorem classifies
the possible behaviours of (µn) for any weight sequence, and is, in a way, an extension
to the case of trees of a theorem of Pemantle [43] for time-dependent Pólya urns.

Theorem 1.7. The sequence (µn)n≥1 converges almost surely weakly towards a limiting
probability measure µ on U. There are three possible behaviours for µ:

(i) If
∑∞
i=1 wi <∞, then µ is carried on U.

(ii) If
∑∞
i=1 wi =∞ and

∑∞
i=1

(
wi
Wi

)2

<∞, then µ is diffuse and supported on ∂U.

(iii) If
∑∞
i=1

(
wi
Wi

)2

=∞ then µ is concentrated on one point of ∂U.

This convergence can be extended to other natural measures on the tree, such as
the uniform measure on Tn, or some “preferential attachment measure” which charges
each vertex proportionally to some affine function of its degree. This is the content of
Proposition 2.4. Note that in our case of interest, when the sequence w satisfies the
assumption (�γ) for some γ > 0, we are in case (ii) of the theorem.

In the specific case of a WRT (resp. PAT) with a sequence of weights (resp. of
fitnesses) that is constant starting from the second term, the measure µ has an explicit
description: for any u ∈ U, writing T (u) :=

{
uv
∣∣ v ∈ U} for the sub-tree descending

from u, the sequences (
µ(T (ui))

µ(T (u))

)
i≥1

, for u ∈ U,

are independent and have an explicit GEM distribution (see [45] for a definition). Fur-
thermore, the corresponding sequence of trees, conditionally on µ, can be described as
a split tree. This result, along with other properties of these families of growing trees
can be found in [28].
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1.3 Organisation of the paper

The paper is organised as follows.
We first investigate some properties of weighted random trees (Tn)n≥1 with a deter-

ministic weight sequence w. In Section 2.1 we first prove Proposition 2.1 which states
the scaling limit convergence of the degree sequence using elementary methods. Then
in Section 2.2, we prove the weak convergence of the weight measure µn to some limit
µ and describe three regimes for its behaviour. We also study other natural measures
related to the sequence of trees (Tn) and prove that they also converge towards µ. For
all these measures, our main tool consists in introducing martingales related to the mass
of a subtree descending from a fixed vertex. This is the content of Theorem 1.7 and
Proposition 2.4. In Section 3, we prove Theorem 1.5 about the convergence of the height
and the profile of WRT. This is achieved by first proving the uniform convergence of a
rescaled version of the Laplace transform of the profile on a complex domain, which is
the content of Proposition 3.1. This ensures that we can use [29, Theorem 2.1] for the
convergence of the profile. This convergence provides a lower-bound for the height of
the tree; we then prove a matching upper-bound to obtain asymptotics for the height.
We also prove Proposition 3.16, which identify the asymptotic behaviour of the height of
the tree in the case where the weights increase very fast.

Then we switch to studying a sequence (Pn)n≥1 of preferential attachment trees with
sequence of fitnesses a. In Section 4, we present a proof of Theorem 1.1 and Corollary 1.2
using a coupling between the preferential attachment process with a sequence of
Pólya urn processes and this establishes that (Pn)n≥1 can also be described as having
distribution WRT(wa) for a random sequence wa; we then prove Proposition 1.3 which
relates the properties of wa to that of a. We finish the section by stating and proving
Proposition 4.2 which states that the sequence (Ma

n) defined in (1.5) as some random
multiple of (Wa

n) is a Markov chain. In Section 5, we identify in Proposition 5.1 the
distribution of the chain (Ma

n) for particular sequences a using moment identifications.
We then present two applications of this result, one concerning a model of Pólya urn
with immigration and the other concerning another model of preferential attachment
graphs, in Proposition 5.5.

Some technical results can be found in Appendix A.

2 Measures and degrees in weighted random trees

In this section, we work with a sequence of trees (Tn)n≥1 that has distribution
WRT (w) for some deterministic sequence w. We start with two statistics of the tree
that are quite easy to analyze, namely the sequence of degrees of the vertices of the tree
and also some natural measures defined on the tree.

2.1 Convergence of the degree sequence

We start the section by proving convergence for the sequence of degrees of the
vertices in their order of creation in the WRT model. We suppose here that the sequence
of weights w is such that there exists constants C > 0 and 0 < γ < 1 for which

Wk ∼
k→∞

C · kγ . (2.1)

We write deg+
Tn

(uk) for the out-degree of the vertex uk in Tn. For a fixed k ≥ 1 remark
that, as a sequence of random variables indexed by n ≥ 1, we have the equality in
distribution (

deg+
Tn

(uk)
)
n≥1

(d)
=

(
n−1∑
i=k

1{
Ui≤

wk
Wi

}
)
n≥1

, (2.2)
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with (Ui)i≥1 a sequence of independent uniform variables in (0 , 1). With this description
of the distribution of the degrees of fixed vertices, only using some law of large numbers
for the convergence and Chernoff bounds for the fluctuations we obtain the following
result.

Proposition 2.1. For a sequence of weights w satisfying (2.1), the following holds.

(i) We have the almost sure pointwise convergence

n−(1−γ) · (deg+
Tn

(u1),deg+
Tn

(u2), . . . ) −→
n→∞

1

(1− γ)C
· (w1, w2, . . . ). (2.3)

(ii) If the sequence furthermore satisfies wk ≤ (k + 1)γ−1+c′+o(1) for some constant
0 ≤ c′ < 1 − γ, then there exists a deterministic function of k which goes to 0 as
k →∞, also denoted o(1), such that all n large enough, we have for all k ≥ 1

deg+
Tn

(uk) ≤ n1−γ · (k + 1)γ−1+c′+o(1), (2.4)

and the convergence (2.3) holds almost surely in the space `p for all p > 1
1−γ−c′ .

Proof. To prove (i), first remark that for any k ≥ 1 such that wk 6= 0, thanks to (2.1), we
have

n−1∑
i=k

wk
Wi

∼
n→∞

wk ·
n1−γ

C(1− γ)
.

Using a version of the Borel-Cantelli lemma (see Lemma A.1 in the appendix), we get
that almost surely

deg+
Tn

(uk) =

n−1∑
i=k

1{
Ui≤

wk
Wi

} ∼
n→∞

n−1∑
i=k

wk
Wi

∼
n→∞

wk ·
n1−γ

(1− γ)C
,

and hence n−(1−γ) · deg+
Tn

(uk)→ wk
(1−γ)C . For the indices k for which wk = 0, we of course

have deg+
Tn

(uk) = 0 almost surely for all n ≥ 1, and so the convergence also holds. This
finishes the proof of (i).

For the second part of the statement, we first compute

E
[
exp

(
deg+

Tn
(uk)

)]
= E

[
exp

(
n−1∑
i=k

1{
Ui≤

wk
Wi

}
)]

=

n−1∏
i=k

(
1 + (e− 1)

wk
Wi

)

≤ exp

(
(e− 1)wk

n−1∑
i=k

1

Wi

)
,

where we have used the inequality 1 + x ≤ ex. Now let C ′ be a constant such that
for all n ≥ 1, we have

∑n−1
i=1

1
Wi
≤ C ′ · n1−γ (such a constant exists because of the

assumption (2.1)). For all k ≥ 1, we introduce the following

ξk := max
(
2C ′(e− 1)wk, k

γ−1 log2(k + a)
)
,

where the real number a > 0 is chosen in such a way that the function x 7→ xγ−1 log(x+ a)

is decreasing on (0 ,∞). Using the definition of C ′ and of ξk, together with Markov’s
inequality, we get that for any integers k and n such that n ≥ k

P
(
deg+

Tn
(uk) ≥ ξk · n1−γ) ≤ exp

(
−ξk · n1−γ + (e− 1)wk

n−1∑
i=k

1

Wi

)

≤ exp

(
−1

2
· ξk · n1−γ

)
.
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Using a union bound and the fact that deg+
Tn

(uk) = 0 for any k > n, we get that for all
n ≥ 1,

P
(
∃k ≥ 1, deg+

Tn
(uk) ≥ ξk · n1−γ) ≤ n∑

k=1

exp

(
−1

2
· ξk · n1−γ

)

≤
n∑
k=1

exp

(
−1

2
· kγ−1 log2(k + a) · n1−γ

)
≤ n · exp

(
−1

2
· log2(n+ a)

)
.

The last display is summable over all n ≥ 1 and hence using the Borel-Cantelli lemma,
we almost surely have for n large enough

∀k ≥ 1, deg+
Tn

(uk) ≤ n1−γ · ξk.

We can conclude by noting that under our assumptions we have ξk ≤ (k + 1)γ−1+c′+o(1).
The convergence in `p for p > 1

1−γ−c′ is just obtained by dominated convergence using
the componentwise convergence (2.3) and the `p domination (2.4).

2.2 Convergence of measures

The goal of this section is to prove Theorem 1.7, which concerns the convergence of
the sequence of weight measures (µn) seen as measures on U. One of the key arguments
is the fact that the weight of the subtree descending from a fixed vertex can be described
using a generalised Pólya urn scheme, as studied by Pemantle [43]. We also prove
Proposition 2.4, which states the weak convergence of other measures.

Time-dependent Pólya urn scheme. We start by describing an urn process, following
Pemantle [43]. Let a, b be two non-negative real numbers, with a+ b > 0, and k ≥ 1 be
an integer and (sn)n≥k+1 be a sequence of non-negative real numbers. We refer to the
following process as a time-dependent Pólya urn starting at time k with a red balls and b
black balls and weight sequence (sn)n≥k+1:

• At time k, the urn contains a red balls and b black balls2.

• Then at every time n ≥ k + 1, a ball is drawn at random and replaced in the urn,
along with sn additional balls of the same colour.

For any n ≥ k we call Rn the proportion of red balls in the urn at time n. We can easily
check that (Rn)n≥k is a martingale in its own filtration, with values in [0 , 1]. As a result,
it converges as n→∞ a.s. and in L1 towards some random variable R∞.

Characterization of the convergence of probability measures over U. Recall
from the introduction the definition of the Ulam-Harris tree U =

⋃∞
n=0N

n and its
completed version U = U∪∂U, which is endowed with the distance dexp defined in (1.11).
Recall that (U,dexp) is a separable and complete metric space.

For any u ∈ U, we write T (u) :=
{
uv
∣∣ v ∈ U} the subtree descending from u. In U

there is an easy characterisation of the weak convergence of sequences of probability
measures defined on the Borel-σ-field associated to dexp, which a direct consequence of
the Portmanteau theorem (see e.g. [6, Theorem 2.1]):

2Those numbers of balls are not required to be integers.
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Lemma 2.2. Let (πn)n≥1 be a sequence of Borel probability measures on U. Then
(πn)n≥1 converges weakly to a probability measure π if and only if for any u ∈ U,

πn({u})→ π({u}) and πn(T (u))→ π(T (u)) as n→∞.

We provide a proof of this lemma for completeness.

Proof. We can check that the sets of the form {u} for u ∈ U, or T (u) for u ∈ U, are clopen
(closed and open) for the topology generated by dexp, so by the Portmanteau theorem
this already proves the “only if” part of the lemma. Now reciprocally, suppose that the
condition on (πn)n≥1 is satisfied. We can check that every open set O can be written as
a countable disjoint union of these clopen sets (see for example [49, Lemma 1.2] for a
similar statement for the topology of ∂U), which we write O =

⊔
k≥1Ok. Then, using

Fatou’s lemma and the σ-additivity of measures we get

lim inf
n→∞

πn (O) = lim inf
n→∞

∞∑
k=1

πn(Ok) ≥
∞∑
k=1

lim inf
n→∞

πn(Ok) =

∞∑
k=1

π(Ok) = π(O)

We conclude using the Portmanteau theorem again.

2.2.1 Proof of Theorem 1.7.

We apply the criterion given in Lemma 2.2 to our sequence (µn)n≥1, which, we recall,
is defined in such a way that for all n ≥ 1, the measure µn charges only the vertices
{u1, u2, . . . , un} of the tree Tn, and such that for any 1 ≤ k ≤ n,

µn({uk}) =
wk
Wn

. (2.5)

Proof of Theorem 1.7. We can already see that if (Wn)n≥1 is bounded and hence con-
verges to some W∞ we have µn({uk})→ wk

W∞
as n→∞. In this case it is easy to verify

that (µn) weakly converges to the measure µ which is such that µ({uk}) = wk
W∞

for all

k ≥ 1 and µ(U \ {u1, u2, . . . }) = 0. In this case µ(U) = 1 and so µ is carried on U.
From now on, we assume that Wn → ∞ as n → ∞ and show that in this case,

µn converges weakly to some limit µ that is carried on ∂U. In this case we have
µn({uk}) = wk

Wn
→ 0 as n→∞. We denote for every integers n, k ≥ 1,

M (k)
n := µn(T (uk)),

the proportion of the total mass above vertex uk at time n. Remark that this quantity
evolves as the proportion of red balls in a time-dependent Pólya urn scheme with weights
(wi)i≥k+1, starting at time k with Wk−1 black balls and wk red balls. Hence for all k ≥ 1,

the sequence (M
(k)
n )n≥k almost surely converges to a limit M (k)

∞ . Also, for any u ∈ U such
that u /∈ {u1, u2, . . . }, the sequence (µn(T (u)))n≥1 (and also (µn({u}))n≥1) is identically
equal to zero. Hence we have convergence of (µn({u}))n≥1 and (µn(T (u)))n≥1 for all
u ∈ U.

The last step in order to prove the weak convergence of (µn)n≥1 is to prove that the
quantities that we obtain in the limit indeed define a probability measure on U. If for all
u ∈ U we have

lim
n→∞

µn(T (u)) =

∞∑
i=1

lim
n→∞

µn(T (ui)), (2.6)

then it entails that µn →
n→∞

µ, where µ is the unique probability measure on U such that

for all u ∈ U,
µ({u}) = 0 and µ(T (u)) = lim

n→∞
µn(T (u)).
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The existence of such a measure µ is ensured by the Kolmogorov extension theorem on
the product space ∂U = NN.

For any u /∈ {u1, u2, . . . }, the equality (2.6) is immediate, so we focus on proving it for
all uk for k ≥ 1. For any n, k, i ≥ 1, let

M (k,i)
n := µn({uk}) +

∞∑
j=i+1

µn(T (ukj)) = µn (T (uk))−
i∑

j=1

µn (T (ukj)) .

Using the right-hand-side of the last display, and the fact that we already proved the a.s.
convergence of the sequences (µn(T (u)))n≥1 for all u ∈ U, we know that for any k, i, the

quantity M (k,i)
n almost surely converges as n → ∞ to some limit M (k,i)

∞ . Proving (2.6)
then reduces to proving that for any k ≥ 1, we almost surely have M

(k,i)
∞ →

i→∞
0. By

construction, the sequence (M
(k,i)
∞ )i≥1 is non-negative and non-increasing, hence it

converges almost surely, so it suffices to prove that its almost sure limit is 0.
We define τ (k,i) := inf {n ≥ 1 | un = uki}, the time when the vertex uk receives its

i-th child in the growth procedure. Conditionally on the event {τ (k,i) = t}, the process

(M
(k,i)
n )n≥t evolves as the proportion of red balls in a time-dependent Pólya urn scheme,

starting at time t with wk red balls (that correspond to the weight of uk) and (Wt − wk)

blacks balls (that correspond to the total weight of other vertices in the tree), and
weights (wm)m≥t+1. Hence we have

E
[
M (k,i)
∞

∣∣∣ τ (k,i) = t
]

= E
[
M

(k,i)
t

∣∣∣ τ (k,i) = t
]

=
wk
Wt

.

On the event {τ (k,i) = ∞}, we have M (k,i)
n = 0 for n < k and M

(k,i)
n = µn({uk}) for

n ≥ k, which decreases almost surely to 0, so M (k,i)
∞ = 0 a.s. on that event.

Using the crude bound τ (k,i) ≥ i, which entails that Wτ(k,i) ≥Wi almost surely, we get

E
[
M (k,i)
∞

]
= E

[
M (k,i)
∞ 1{τ(k,i)<∞}

]
= E

[
M

(k,i)

τ(k,i)1{τ(k,i)<∞}
]

= E

[
wk

Wτ(k,i)

1{τ(k,i)<∞}

]
≤ wk
Wi

→
i→∞

0,

hence M (k,i)
∞ →

i→∞
0 in L1, so its almost sure limit is also 0. In the end, by Lemma 2.2,

the sequence of measures (µn) almost surely converges weakly to a limit µ, and this
measure only charges the set ∂U.

We just finished proving that, for any sequence of weight w, the sequence (µn)n≥1

almost surely converges weakly to a probability measure µ. Furthermore, we proved
that µ is carried on U when (Wn) is bounded and carried on ∂U when Wn → ∞. The
proof is then finished by applying the lemma stated below.

Lemma 2.3. Suppose that
∑∞
n=1 wn = ∞ so that µ is carried on ∂U. Then either∑∞

n=1

(
wn
Wn

)2

<∞ and then µ is almost surely diffuse, or
∑∞
n=1

(
wn
Wn

)2

=∞ and then µ

is carried on one point of ∂U.

Proof. For any k ≥ 1 the process (µn(T (uk))n≥k evolves as the proportion of red balls
in a time-dependent Pólya urn started at time k with wk red balls, Wk−1 black balls
and a weight sequence (wn)n≥k+1. By the work of Pemantle in [44], if we assume∑∞
n=1

(
wn
Wn

)2

= ∞ then the limiting proportion µ(T (uk)) almost surely belongs to the

set {0, 1}. This translates into the fact that µ(T (u)) ∈ {0, 1} almost surely for any u ∈ U,
which entails that µ is almost surely carried on one leaf of ∂U.
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On the contrary, we now assume that
∑∞
n=1

(
wn
Wn

)2

<∞ and prove that this entails

that the limiting measure µ is diffuse almost surely. Consider the function (·∧·) : U×U→
U which associates to each couple (u, v) their most recent common ancestor u ∧ v in
the completed tree U. This function is continuous with respect to the distance dexp.
Then, since µn → µ almost surely weakly, we also get the following almost sure weak
convergence of the push-forward of the product measure µn⊗µn onU×U by the function
(· ∧ ·):

(· ∧ ·)∗(µn ⊗ µn)→ (· ∧ ·)∗(µ⊗ µ). (2.7)

We fix n ≥ 1 and conditionally on (T1, T2, . . . , Tn), let Dn and D′n be two independent
vertices taken under µn. Then, an argument taken from the proof of [12, Lemma 3.8] in
a slightly different setting ensures that

P (Dn ∧D′n = uk) =

(
wk
Wk

)2

·
n∏

i=k+1

(
1−

(
wi
Wi

)2
)

−→
k→∞

pk :=

(
wk
Wk

)2

·
∞∏

i=k+1

(
1−

(
wi
Wi

)2
)
.

The argument goes as follows:

• with probability
(
wn
Wn

)2

, we have Dn = D′n = Dn ∧D′n = un,

• with probability 1−
(
wn
Wn

)2

, it is not the case, and we can check that conditionally

on this event, the vertices [Dn]n−1 and [D′n]n−1 defined as the most recent ancestor
in Tn−1 of respectively Dn and D′n, are independent and taken under the measure
µn−1, and that Dn ∧D′n = [Dn]n−1 ∧ [D′n]n−1.

It suffices to then apply this in cascade to get the last display.

Note that thanks to the summability condition, the infinite product
∏∞
i=2

(
1−

(
wi
Wi

)2)
is non-zero, and this suffices to ensure that the obtained sequence (pk)k≥1 is a probability
distribution. Thanks to the weak convergence (2.7), it corresponds to the (annealed)
distribution pk = P (D∞ ∧D′∞ = uk), where D∞ and D′∞ are two independent points
taken under the measure µ, conditionally on (Tn)n≥1. Now we can write

P
(
dexp(D∞, D

′
∞) ≤ e−k

)
= P (ht(D∞ ∧D′∞) ≥ k) ≤

∞∑
i=k+1

pi,

where the inequality is due to the fact that the vertices u1, u2, . . . , uk have a height
smaller than k. Hence P (dexp(D∞, D

′
∞) = 0) ≤ limk→∞P

(
dexp(D∞, D

′
∞) ≤ e−k

)
= 0.

So, almost surely, two points taken independently under µ are different, and this ensures
that µ is diffuse.

2.2.2 Convergence of other sequences of measures.

In the last part of this section, we study two other sequences of measures (ηn) and (νn)

carried on the Ulam tree U. For every n ≥ 2, these measures only charge the vertices
{u1, u2, . . . , un} in such a way that for any 1 ≤ k ≤ n,

ηn({uk}) =
bk + deg+

Tn
(uk)

Bn + n− 1
and νn({uk}) =

1

n
,
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where (bn)n≥1 is a sequence of real numbers such that b1 > −1 and bn ≥ 0 for all n ≥ 2.
We write Bn :=

∑n
k=1 bk. We suppose that Bn = O(n) and that there exists ε > 0 such

that bn = O
(
n1−ε). The assumptions on the sequence (bn)n≥1 are chosen such that they

are satisfied by a sequence (an)n≥1 of fitnesses that satisfies (Hc) for some c > 0.

Proposition 2.4. Under the assumptions
∑∞
n=1 wn = ∞ and

∑∞
n=1

(
wn
Wn

)2

< ∞, the

sequences (ηn)n≥1 and (νn)n≥1 converge almost surely weakly towards the limiting
measure µ on ∂U that is defined in Theorem 1.7.

The convergence of the uniform measure (νn)n≥1 is used in the proof of Theorem 1.5,
and the case of (ηn)n≥1 is mostly motivated by the applications carried out in [51]. The
rest of this section is devoted to proving Proposition 2.4. We treat the two sequences of
measures separately. We use the notation Fn = σ(T1, T2, . . . , Tn) for all n ≥ 1.

The degree measure. Consider the sequence (ηn)n≥1 on U. Since the sequence
(Wn)n≥1 tends to infinity, we have ηn({u}) → 0 for every u ∈ U. Indeed, using the
equality in distribution (2.2) and Lemma A.1 in the appendix, it is easy to see that
either

∑∞
i=1W

−1
i < ∞ in which case the degrees deg+

Tn
(uk) are eventually constant as

n→∞; or
∑∞
i=1W

−1
i =∞, in which case we have the almost sure asymptotic behaviour

deg+
Tn

(uk) ∼ wk ·
∑n
i=kW

−1
i . Trivially in the first case and by Cesàro summation in the

second, for all k ≥ 1, we have n−1 deg+
Tn

(uk)→ 0 almost surely as n→∞.

For all k ≥ n, we keep the notation M
(k)
n = µn(T (uk)) introduced in the proof of

Theorem 1.7 and let

N (k)
n := ηn(T (uk)).

We can check that

N
(k)
n+1 =

1

Bn+1 + n
·
(

(Bn + n− 1) ·N (k)
n + (bn+1 + 1) · 1{un+1∈T (uk)}

)
.

Now, using that P (un+1 ∈ T (uk) | Fn) = M
(k)
n and that E

[
M

(k)
n+1

∣∣∣ Fn] = M
(k)
n , we get

E
[
N

(k)
n+1 −M

(k)
n+1

∣∣∣ Fn] =
Bn + n− 1

Bn+1 + n
·N (k)

n +
bn+1 + 1

Bn+1 + n
·M (k)

n −M (k)
n

=
Bn + n− 1

Bn+1 + n
·
(
N (k)
n −M (k)

n

)
.

Hence, if we denote X(k)
n := (Bn+n−1) ·

(
N

(k)
n −M (k)

n

)
, then the last computation shows

that
(
X

(k)
n

)
n≥k is a martingale for the filtration (Fn)n≥1. More precisely we can write

X
(k)
n+1 −X(k)

n =

(
(1 + bn+1)− wn+1

Wn+1
(Bn+1 + n)

)
︸ ︷︷ ︸

cn

·
(
1{un+1∈T (uk)} −M (k)

n

)
,

hence we have

E
[
X

(k)
n+1 −X(k)

n

∣∣∣ Fn] = 0 and E

[(
X

(k)
n+1 −X(k)

n

)2
]
≤ c2n.

Then, using [18, Chapter VII.9, Theorem 3], we get that if

∞∑
n=k

n−2c2n <∞ (2.8)
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then X(k)
n

n → 0 a.s. as n → ∞, which would prove that N (k)
n −→ M

(k)
∞ as n → ∞. In our

case, we can verify that (2.8) holds. Indeed, we have

n−2c2n = n−2

(
(1 + bn+1)− wn+1

Wn+1
(Bn+1 + n)

)2

≤ n−2 · 3

(
1 + b2n+1 +

(
wn+1

Wn+1
(Bn+1 + n)

)2
)

≤ 3n−2 + 3b2n+1n
−2 + cst ·

(
wn+1

Wn+1

)2

,

and thanks to our assumptions, each term in the last display is that of a summable series.
In particular, for the second term, this can be proved using the fact that Bn = O(n) and
bn+1 = O

(
n1−ε), through a computation similar to that of (A.4) in the appendix. In the

end, using Lemma 2.2, we have the almost sure convergence

ηn → µ weakly.

The uniform measure on the vertices of Tn. Consider the sequence (νn) on U. Fix
k ≥ 1. For any n ≥ k we can write νn(T (uk)) = 1

n

∑n
i=k 1{ui∈T (uk)}. For any i ≥ k + 1, we

have pi := P (ui ∈ T (uk) | Fi−1) = µi−1(T (uk)), which tends a.s. to some limit µ(T (uk))

as i→∞. Using Lemma A.1 in the appendix, we have∑n
i=k+1 1{ui∈T (uk)}∑n

i=k+1 pi
−→
n→∞

1 a.s. on the event

{ ∞∑
i=k+1

pi =∞

}
,

and also

n∑
i=k+1

1{ui∈T (uk)} converges a.s. on the event

{ ∞∑
i=k+1

pi <∞

}
.

In both cases we get νn(T (uk)) →
n→∞

limi→∞ pi = µ(T (uk)) almost surely. We also have

for any k ≥ 1,

νn({uk}) =
1

n
→

n→∞
0 and ∀u /∈ {u1, u2, . . . },∀n ≥ 1, νn({u}) = νn(T (u)) = 0,

so we can conclude using Lemma 2.2 that almost surely νn →
n→∞

µ weakly.

3 Height and profile of WRT

The main goal of this section is to prove Theorem 1.5 which gives asymptotics for the
profile and height of the tree. Recall that we denote

Ln(k) := # {1 ≤ i ≤ n | ht(ui) = k} ,

the number of vertices at height k in the tree Tn. In order to get information on the
sequence of functions (k 7→ Ln(k))n≥1 we study their Laplace transform

z 7→
∞∑
k=0

Ln(k)ekz =

n∑
i=1

ez ht(ui) = n ·
∫
U

ez ht(u)dνn(u), (3.1)

where the last expression is given using an integral against the probability measure νn
defined in Section 2.2 as the uniform measure on the vertices of Tn. The key result in
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our approach is to prove the convergence of this sequence of analytic functions when
appropriately rescaled, uniformly in z on an open neighbourhood of 0 in the complex
plane. It then allows us to use [29, Theorem 2.1] and hence derive a convergence result
for the profile. We actually start in Section 3.1 by studying the asymptotic behaviour of
the similarly defined sequence of functions

z 7→
∫
U

ez ht(u)dµn(u) =

n∑
i=1

wi
Wn

ez ht(ui), (3.2)

where we integrate with respect to the weight measure µn instead of the uniform
measure νn as before. This one is easier to study because for every fixed z ∈ C, it defines
a martingale as n grows, up to some deterministic scaling. Then in Section 3.2, we make
use of this first result and show that up to some deterministic multiplicative constant,
the two sequences of integrals appearing in (3.1) and (3.2) are almost surely equivalent
when n tends to infinity.

We fix the value of γ > 0 for this whole section. Throughout this section,
we always work under the assumption that (�γ) holds for the sequence w. For
some results, we additionally assume that their exists p ∈ (1 , 2] such that the stronger
condition (�pγ) holds, i.e.

Wn ./
n→∞

cst ·nγ and
2n∑
i=n

wpn ≤ n1+(γ−1)p+o(1).

We let φ : z 7→ γ(ez − 1) be a function of a complex parameter z and let z 7→ Nn(z) be
the following rescaled version of the Laplace transform of the profile

Nn(z) := n−(1+φ(z))
∞∑
k=0

Ln(k)ezk. (3.3)

The proposition below ensures that the sequence (z 7→ Nn(z))n≥1 converges uniformly
on all compact subsets of some complex domain D , i.e. an open, connected subset of C,
to some limiting function z 7→ N∞(z) which does not vanish anywhere on the set D ∩R,
along with some more technical statements.

Proposition 3.1. Suppose that the weight sequence w satisfies (�pγ) for some γ > 0 and
some p ∈ (1 , 2]. Then there exists a domain D ⊂ C such that D ∩ R = (z− , z+) where
z− < 0 and z+ > 0 are defined as in (1.7), such that the following properties are satisfied:

(i) With probability 1, the sequence of random analytic functions (z 7→ Nn(z))n≥1

converges uniformly on all compact subsets of D , as n → ∞, to some random
analytic function z 7→ N∞(z) which satisfies P (N∞(z) 6= 0 for all z ∈ (z−, z+)) = 1.

(ii) For every compact subset K ⊂ D and r ∈ N, we can find an a.s. finite random
variable CK,r such that for all n ∈ N,

sup
z∈K
|Nn(z)−N∞(z)| < CK,r(log n)−r.

(iii) For every compact subset K ⊂ (z− , z+), every 0 < a < π and r ∈ N,

sup
z∈K

[
e−(1+φ(z)) logn

∫ π

a

∣∣∣∣∣
∞∑
k=0

Ln(k)ez+iu

∣∣∣∣∣du
]

= o
(
(log n)−r

)
a.s. as n→∞.

EJP 26 (2021), paper 80.
Page 19/56

https://www.imstat.org/ejp

https://doi.org/10.1214/21-EJP640
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Geometry of WRTs and PATs

Under the results of Proposition 3.1 we can apply [29, Theorem 2.1] whose con-
clusions for the sequence (k 7→ L(k))n≥1 are the following. For any k ≥ 0, n ≥ 1 and
z ∈ (z− , z+), we denote

xn(k; z) =
k − γez log n√

γez log n
.

Then, for every integer r ≥ 0 and every compact subset K ⊂ (z− , z+), we have the
convergence

(log n)
r+1
2 · sup

k∈N
sup
z∈K

∣∣∣∣∣∣ezk−(1+φ(z)) lognLn(k)− N∞(z)e−
1
2xn(k;z)2

√
2π log n

r∑
j=0

Gj(xn(k; z), z)

(log n)j/2

∣∣∣∣∣∣ a.s.−→
n→∞

0,

where for all j ≥ 0, the (random) functions Gj(x, z) are polynomials of degree at most 3

in x and are entirely determined from φ and N∞, with G0 = 1, see [29, Equation (16)] for
their complete definition. The asymptotics (1.8) and (1.9) stated in Theorem 1.5 follow
from the last display. Indeed, (1.8) is obtained by letting r = 0 and z = 0 and using the
fact that N∞(0) = 1 almost surely. For (1.9), we let r = 0, and use k = bγez log nc.

In Section 3.3, we complete the proof of Theorem 1.5 by computing the asymptotic
behaviour of the height of the tree. Since the convergence of the profile already ensures
that there almost surely are vertices at height γe(z+−ε) log n for ε > 0 small enough and
all n large enough, it suffices to prove a corresponding upper-bound in order to finish
proving the convergence (1.10) in Theorem 1.5.

3.1 Study of the Laplace transform of the weighted profile

The goal of this section is to study the sequence
(
z 7→

∑n
i=1

wi
Wn

ez ht(ui)
)
n≥1

. We give

here a brief summary of the work presented in the section. The results to which we refer
in the following paragraph are the ones that are later used in Section 3.2 to ultimately
prove Proposition 3.1.

First in Section 3.1.1 we write
∑n
i=1

wi
Wn

ez ht(ui) = Cn(z) ·Mn(z) for some deterministic
Cn(z) and a martingale Mn(z). We analyze the behaviour of Cn(z) in Lemma 3.3. Then
in Section 3.1.2 we study the asymptotic behaviour of Mn(z) as n → ∞ and we prove
Proposition 3.6 which states that for z in open set V ⊂ C, we almost surely have the
convergence Mn(z) → M∞(z) as n → ∞, and this convergence is uniform in z on
every compact set and happens at a polynomial speed in n. Lemma 3.5 identifies the
intersection of V and the real line. The main ingredient for the proof of Proposition 3.6
is Lemma 3.7, which concerns the moments of |Mn(z)| and |M2n(z)−Mn(z)|, and this
result is also used in the next section. Section 3.1.3 then aims at showing that z 7→M∞(z)

has no real zero, which is the content of Lemma 3.9.

3.1.1 Definition of Mn(z) and Cn(z)

The following lemma is the starting point of our analysis. We use the notation Fn =

σ(T1, T2, . . . , Tn).

Lemma 3.2. For all z ∈ C and all n ≥ 1, we have

E

[
n+1∑
i=1

wi
Wn+1

ez ht(ui)

∣∣∣∣∣ Fn
]

=

(
1 + (ez − 1)

wn+1

Wn+1

)
·
n∑
i=1

wi
Wn

ez ht(ui).

Proof. Recall that conditionally on Fn, the (n+ 1)-st vertex un+1 of Tn+1 is a child of the
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vertex uKn+1
, where P (Kn+1 = k | Fn) = wk

Wn
. We compute

n+1∑
i=1

wi
Wn+1

ez ht(ui) =
Wn

Wn+1

n∑
i=1

wi
Wn

ez ht(ui) +
wn+1

Wn+1
· ez · ez ht(uKn+1

).

Taking conditional expectation with respect to Fn yields:

E

[
n+1∑
i=1

wi
Wn+1

ez ht(ui)

∣∣∣∣∣ Fn
]

=
Wn

Wn+1
·
n∑
i=1

wi
Wn

ez ht(ui) +
wn+1

Wn+1
· ez ·

n∑
i=1

wi
Wn

ez ht(ui)

=

(
1 + (ez − 1)

wn+1

Wn+1

)
·
n∑
i=1

wi
Wn

ez ht(ui).

This concludes the proof.

Let J be an integer that we are going to fix later on. The last result ensures that if
z ∈ C is such that ∀i ≥ J, 1 + (ez − 1) wiWi

6= 0, then we can define for all n ≥ J

Cn(z) :=

n∏
i=J

(
1 + (ez − 1)

wi
Wi

)
and Mn(z) :=

1

Cn(z)

n∑
i=1

wi
Wn

ez ht(ui),

and the sequence (Mn(z))n≥J is a martingale. If J is fixed, then there exist parameters
z with Im(z) = π mod 2π for which the sequence (Cn(z))n≥J takes the value 0. Under
the assumption (�γ) on the sequence w, we know that wn

Wn
→ 0 as n→∞. If we restrict

ourselves to values of z that belong to a set of the form {ξ ∈ C | Re(ξ) < x} for some
x > 0, then∣∣∣∣1 + (ez − 1)

wn
Wn

∣∣∣∣ ≥ 1− |ez − 1| · wn
Wn
≥ 1− (ex + 1) · wn

Wn
→

n→∞
1 > 0,

hence it suffices to take J large enough in order for the sequence (Cn(z))n≥J to only
take non-zero values for all z ∈ {ξ ∈ C | Re(ξ) < x} and all n ≥ J . In what follows we
work on the set

E = {z ∈ C | Re z < z+} ,

where z+ is as defined in Proposition 3.1. For technical reasons, we also sometimes
consider the larger set

E ′ = {z ∈ C | Re z < 2z+} .

Using the preceding discussion, we fix J ≥ 1 such that the sequence z 7→ (Cn(z))n≥J
does not have any zero on E ′, so that z 7→ (Mn(z))n≥J is well-defined for all z ∈ E ′.

We introduce the following notation. Let F (z, n) and G(z, n) be two functions of a
complex parameter z and an integer n ∈ N. For any subset of the complex plane S ⊂ C
(we don’t require it to be open nor connected) we write

F (n, z) = OS(G(n, z)) (resp. F (n, z) = oS(G(n, z))) (3.4)

to express the fact that F (n, z) is a big (resp. small) o of G(n, z) as n→∞, uniformly on
every compact K ⊂ S. Note that later in the paper, we also use this notation for random
functions of z and n when such a comparison holds almost surely.

Now, we derive some information on the asymptotic behaviour of Cn(z).
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Lemma 3.3. Suppose that w satisfies (�γ). Then there exists ε > 0 and an analytic
function z 7→ c(z) on E ′ such that

Cn(z) = exp
(
φ(z) log n+ c(z) +OE

(
n−ε

))
.

Remark that the lemma implies that for any z ∈ E ′, we have

Cn(z) ∼ ec(z) · nφ(z)

as n → ∞. It is also immediate that E
[∑n

k=1
wk
Wn

ez ht(uk)
]

= E [MJ(z)] · Cn(z) satisfies

the same asymptotics up to a constant, as soon as z is such that E [MJ(z)] 6= 0.
Before proving the lemma, we state the following result which follows from elemen-

tary calculus. Its proof can be found in the appendix.

Lemma 3.4. Suppose that w satisfies (�γ). Then there exists ε > 0 such that

+∞∑
i=n

(
wi
Wi

)2

= O
(
n−ε

)
and also

n∑
i=1

wi
Wi

= γ log n+ cst +O
(
n−ε

)
.

Proof of Lemma 3.3. We write Log for the principal value of the complex logarithm. For

z ∈ C such that |z| < 1 we have Log(1 + z) =
∑∞
i=1

(−1)n−1

n zn. If for every i ≥ J and
z ∈ E ′, we let

h(i, z) = Log

(
1 + (ez − 1)

wi
Wi

)
− (ez − 1)

wi
Wi

,

which is well-defined thanks to our choice of J , then |h(i, z)| = OE ′

((
wi
Wi

)2
)

is summable

in i and the rest of the series is∣∣∣∣∣
∞∑
i=n

h(i, z)

∣∣∣∣∣ ≤
∞∑
i=n

|h(i, z)| = OE ′

( ∞∑
i=n

(
wi
Wi

)2
)

= OE ′
(
n−ε

)
, (3.5)

for some ε > 0, thanks to Lemma 3.4. Then we write

Cn(z) =

n∏
i=J

(
1 + (ez − 1)

wi
Wi

)
= exp

(
(ez − 1)

n∑
i=J

wi
Wi

+

n∑
i=J

h(i, z)

)

which yields using (3.5) and Lemma 3.4

Cn(z) = exp

(
(ez − 1)(γ log n+ cst +OE ′

(
n−ε

)
) +

∞∑
i=J

h(i, z)−
∞∑

i=n+1

h(i, z)

)

= exp

φ(z) log n+ (ez − 1) · cst +

∞∑
i=J

h(i, z)︸ ︷︷ ︸
c(z)

+OE ′
(
n−ε

)
,

and c(z) is an analytic function of z, which finishes the proof.

3.1.2 Asymptotic properties of the martingale (Mn(z))n≥1.

Note that when the parameter z is a positive real number, the sequence (Mn(z))n≥1

is a positive martingale and so it converges almost surely to some limit. In fact, we
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Figure 1: The boundary of the connected component of Vq that contains 0, for some
values of q ∈ (1 , 2], plotted for γ = 2 and γ = 1

2 .

want to prove that these martingales converge almost surely (and also in L1) for the
largest possible range of parameters z. For the rest of Section 3.1 and also in the
subsequent Section 3.2, we assume that the weight sequence w satisfies (�pγ)
for some fixed parameters γ > 0 and p ∈ (1 , 2].

We align our notation with the one used in [10, Theorem 2.2] which states something
similar to our forthcoming Proposition 3.6 for another model, the binary search tree. For
any z ∈ E and q ∈ (1 , p], we let

g(z, q) := φ(qRe z)− qRe(φ(z))− q + 1 = γ(eqRe z − 1− qRe(ez) + q)− q + 1.

For any q ∈ (1 , p], let Vq = {z ∈ E | g(z, q) < 0}, and denote

V =
⋃

1<q≤p

Vq. (3.6)

As we prove below in Proposition 3.6, this set V is our set of interest, on which we can
prove that the martingales (Mn(z))n≥J converge nicely. Before stating anything about
convergence of martingales, we state and prove an easy lemma about the intersection of
V and the real line.

Lemma 3.5. The set V is open and contains the open interval of real numbers Iγ :=

{x ∈ R | γ(xex − ex + 1)− 1 < 0} which contains 0.

Proof. Of course V is open as a union of open sets. For any real x we have g(x, 1) = 0.
So, if ∂g

∂q (x, 1) < 0 then there exists q > 1 for which g(x, q) < 0. Since ∂g
∂q (x, 1) =

γ(xex − ex + 1) − 1, the set V contains the interval Iγ in the statement of the lemma.
Since ∂g

∂q (0, 1) = −1 < 0, we have 0 ∈ Iγ .

Note that the interval Iγ contains the interval (z−, z+) defined in (1.7) and this will
be particularly important later on for the proof of Proposition 3.1. We now turn to the
next proposition, which justifies our definition of V .

Proposition 3.6. The sequence of functions (z 7→ Mn(z))n≥J converges uniformly al-
most surely and in L1 towards an analytic function z 7→M∞(z) on every compact subset
of V . Furthermore, for any compact subset K ⊂ V , there exists a real ε(K) > 0 such
that almost surely

|Mn(z)−M∞(z)| = OK

(
n−ε(K)

)
.
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The proof of the proposition follows from the next lemma, together with Lemma A.3,
stated in the appendix.

Lemma 3.7. For any q ∈ (1 , p] and z ∈ E we have

E [|Mn(z)|q] = OE

(
n0∨g(z,q)+oE (1)

)
. (3.7)

and also

E [|M2n(z)−Mn(z)|q] = OE

(
n(1−q)∨g(z,q)+oE (1)

)
. (3.8)

We first prove Proposition 3.6, assuming the lemma and then proceed to prove the
lemma.

Proof of Proposition 3.6. Let K ⊂ V be a compact set. Without loss of generality, we can
assume that K ⊂ Vq for some q ∈ (1 , p]. Indeed, if that is not the case, by compactness

we can write K ⊂
⋃k
i=1 Vqi , with k finite and q1, q2, . . . qk ∈ (1 , p], and separately consider

the compact sets

Kj = K \
k⋃
i=1
i 6=j

Vqi

which are such that Kj ⊂ Vqj , for j = 1, 2, . . . k.
The convergence result is then an application of Lemma A.3, on the set Vq with

α(z) = 0 and, say δ(z) = − 1
2g(z, q) > 0. The limiting function is analytic as a uniform

limit of analytic functions.

Proof of Lemma 3.7. For any q ∈ (1 , p] and n ≥ J , we write

Mn+1(z)−Mn(z) = Mn(z)

(
Cn(z)

Cn+1(z)
− 1

)
+

1

Cn+1(z)
· wn+1

Wn+1
· ez ht(un+1).

Taking the q-th power of the modulus on both sides and using the inequality |a+ b|q ≤
2q · (|a|q + |b|q), we get

E [|Mn+1(z)−Mn(z)|q]

≤ E [|Mn(z)|q] · 2q
∣∣∣∣ Cn(z)

Cn+1(z)
− 1

∣∣∣∣q + 2q
1

|Cn+1(z)|q
(
wn+1

Wn+1

)q
· E
[
|ez|q ht(un+1)

]
. (3.9)

Using Lemma A.2 in the appendix, we have for any n ≥ J ,

E [|Mn+1(z)|q] ≤ E [|Mn(z)|q] + 2q · E [|Mn+1(z)−Mn(z)|q] .

Using the last display and equation (3.9), we get a recurrence inequality of the form

E [|Mn+1(z)|q] ≤ (1 + an(z)) · E [|Mn(z)|q] + bn(z), (3.10)

where

an(z) = 22q

∣∣∣∣ Cn(z)

Cn+1(z)
− 1

∣∣∣∣q and bn(z) = 22q 1

|Cn+1(z)|q
(
wn+1

Wn+1

)q
· E
[
|ez|q ht(un+1)

]
.

Applying (3.10) in cascade we get

E [|Mn(z)|q] ≤
n−1∏
i=J

(1 + ai(z)) ·

(
E [|MJ(z)|q] +

n−1∑
i=J

bi(z)

)
. (3.11)
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Now notice that from our assumption on the sequence (wn)n≥1 we have

an(z) = 22q

∣∣∣∣ Cn(z)

Cn+1(z)
− 1

∣∣∣∣q = 22q

∣∣∣∣∣ 1

1 + (ez − 1) wn+1

Wn+1

− 1

∣∣∣∣∣
q

= OE

((
wn+1

Wn+1

)q)
. (3.12)

On the other hand, since z ∈ E then qRe z ∈ E ′, so we can use Lemma 3.3 to get

bn(z) = cst ·
(
wn+1

Wn+1

)q
· |Cn+1(z)|−q · eqRe z · E

[
n∑
k=1

wk
Wn

e(qRe z) ht(uk)

]

=

(
wn+1

Wn+1

)q
·OE

(
n−qRe(φ(z))

)
·OE

(
nφ(qRe z)

)
=

(
wn+1

Wn+1

)q
·OE

(
ng(z,q)−1+q

)
. (3.13)

We conclude using the following lemma which is an application of Hölder’s inequality
using the assumption (�pγ).

Lemma 3.8. For any q ∈ (1 , p] we have
2n∑
i=n

(
wi
Wi

)q
≤ n1−q+o(1).

Together with (3.12), this proves that (an(z))n≥1 is summable and so
∏∞
i=J(1+ai(z)) =

OE (1). Also

2n∑
i=n

bi(z) = OE

(
ng(z,q)+oE (1)

)
,

and so
∑n
i=J bi(z) = OE

(
n0∨g(z,q)+oE (1)

)
. Replacing this in (3.11) finishes to prove (3.7).

In order to prove (3.8), we use Lemma A.2 again and write

E [|M2n(z)−Mn(z)|q] ≤ 2q ·
2n−1∑
i=n

E [|Mi+1(z)−Mi(z)|q]

≤
(3.7), (3.9)

2n−1∑
i=n

(
ai(z) ·OE

(
n0∨g(z,q)+oE (1)

)
+ bi(z)

)
≤

(3.12), (3.13)

2n−1∑
i=n

(
wi+1

Wi+1

)q (
OE

(
n0∨g(z,q)+oE (1)

)
+OE

(
ng(z,q)−1+q

))
.

Using Lemma 3.8 we get E [|M2n(z)−Mn(z)|q] = OE

(
n(1−q)∨g(z,q)+oE (1)

)
which finishes

the proof of the lemma.

3.1.3 The limit M∞(z) does not have real zeros

Now that we have proved that their almost surely exists a limiting function z 7→M∞(z)

defined on the set V , we are interested in the possible location of the zeros of this
random function. In fact, the function z 7→M∞(z) is related to the function z 7→ N∞(z)

of Proposition 3.1, for which we aim to prove that it has almost surely no zero on some
real interval (z− , z+) which contains 0. We state a similar result for z 7→M∞(z). Recall
the definition of the interval Iγ in Lemma 3.5.

Lemma 3.9. The function M∞(z) has almost surely no zero on Iγ .

The rest of Section 3.1.3 is devoted to proving Lemma 3.9. We start by stating and
proving the following weaker statement.
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Lemma 3.10. For all z ∈ Iγ , we have almost surely M∞(z) > 0. As a consequence, the
number of zeros of the map (z 7→ M∞(z)) on the interval Iγ is almost surely at most
countable.

Recall from (1.1) the definition of the sequence of independent random variables
(K2,K3, . . . ) that is used in the construction of the trees (Tn)n≥1. The main argument
in the following proof consists in checking that an event of interest is measurable with
respect to the tail σ-algebra for the sequence (K2,K3, . . . ) and applying Kolmogorov’s
0− 1 law.

Proof of Lemma 3.10. Fix N ≥ J and z ∈ Iγ and for all n ≥ N , let

M (N)
n (z) =

1

Cn(z)

n∑
i=1

wi
Wn

ez d(ui,TN ),

where d denotes the graph distance in U, and the distance between a vertex and a subset
of vertices is defined the obvious way. The idea behind the introduction of (M

(N)
n (z))n≥N

is that, up to a positive multiplicative constant (i.e. a deterministic constant that depends
on N and z but not on n), it has the same distribution as the sequence (Mn(z))n≥J
associated to the growth of the tree that one informally obtains by contracting all the
vertices {u1, u2, . . . , uN} into one. The growth of such a tree can be described as that
of a weighted recursive tree with weight sequence (WN , wN+1, wN+2, . . . ), which shares
the same asymptotic property (�pγ) as the original sequence (wn)n≥1.

We claim the following:

(i) Due to the above remarks, (M
(N)
n (z))n≥N is a positive martingale that satisfies

the same assumptions as (Mn(z))n≥N so it converges a.s. and in L1 towards a

non-negative limit, M (N)
∞ (z), thanks to Proposition 3.6, which we can apply here

because z ∈ Iγ ⊂ V .

(ii) We have (1 ∧ ez)NM (N)
n (z) ≤Mn(z) ≤ (1 ∨ ez)NM (N)

n (z).

(iii) The sequence (M
(N)
n (z))n≥N , hence also its limit M (N)

∞ (z), is independent of the N
first steps of the construction, and is hence a measurable function of the sequence
(Kn)n≥N+1.

Using all these observations we deduce that for any N ≥ J we have the equality of
events {M∞(z) > 0} = {M (N)

∞ (z) > 0}. This proves that {M∞(z) > 0} is measurable with
respect to the tail σ-algebra generated by the sequence (Kn)n≥2, which is a sequence
of jointly independent random variables. Kolmogorov’s 0-1 law then ensures that this
event has probability 0 or 1. By L1 convergence we have E [M∞(z)] = E [MJ(z)] > 0 and
this proves that P (M∞(z) > 0) = 1. It follows immediately that the limit z 7→ M∞(z)

can only have finitely many zeros in any compact subset of Iγ almost surely, because
otherwise, by analyticity of z 7→M∞(z) on the connected component of V that contains
Iγ , the function would be identically 0 on Iγ with positive probability. This ensures that
the total number of zeros in Iγ is at most countable and finishes the proof.

Now, in order to prove Lemma 3.9, we use an argument of self-similarity: essentially,
if we take two vertices ui and uj in the tree, then conditionally on the sequences of
vertices that are respectively added above ui or above uj , the subtrees above ui and
uj evolve as two independent weighted recursive trees. Using Proposition 3.6 and
Lemma 3.10, the normalized Laplace transform of the weighted profile of each of those
two subtrees should almost surely converge to some random analytic function on V ,
which is non-negative on Iγ and has at most countably many zeros on this interval. Since
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the two are independent, their zeros should not overlap and hence the sum of their
contribution should result in a function that is positive on Iγ .

Proof of Lemma 3.9. Let us formalise this line of reasoning. First, recall from Theo-
rem 1.7 the definition of the measure µ on ∂U and the fact that under our assumption (�γ)
for the weight sequence w, it is almost surely diffuse. This allows us to define

I(1) := inf {i ≥ 1 | µ(T (ui)) ∈ (0 , 1)}

and

I(2) := inf {i ≥ I1 | ui /∈ T (uI1) and µ(T (ui)) ∈ (0 , 1)} ,

and those two random variables are almost surely finite.

Consider the sequences
(
1{un∈T (u

I(j)
)}
)
n≥1

for j ∈ {1, 2}, which record the times

when a vertex is added to T (uI(1)) or T (uI(2)). We work conditionally on those two
sequences for the rest of the proof. For j ∈ {1, 2}, we define

∀n ≥ 1, N (j)
n :=

n∑
i=1

1{ui∈T (u
I(j)

)} and ∀k ≥ 1, τ
(j)
k := inf

{
n ≥ 1

∣∣∣ N (j)
n ≥ k

}
,

which record respectively the number of vertices among {u1, u2, . . . , un} that are in
T (uI(j)) and conversely, the k-th time where a vertex is added to T (uI(j)) in the construc-

tion of (Tn)n≥1. We let w(j)
k := wτ(j)(k) and W (j)

k :=
∑k
i=1 w

(j)
k , and also u(j)

k := u
τ
(j)
k

. We

also define for k ≥ 1

T
(j)
k :=

{
u ∈ U

∣∣∣ uI(j)u ∈ T
τ
(j)
k

}
,

the subtree hanging above uI(j) at the time where it contains exactly k vertices (trans-
lated to the origin in so as to be considered as a plane tree).

Let us state the following intermediate result, which we prove at the end of the
section. Note that the random sequences (N

(j)
n )n≥1, (τ

(j)
k )k≥1 and (w

(j)
k )k≥1 for j ∈ {1, 2}

can be read from the two sequences
(
1{un∈T (u

I(j)
)}
)
n≥1

for j ∈ {1, 2}.

Lemma 3.11. The following holds.

(i) For j ∈ {1, 2}, we almost surely have N (j)
n ∼

n→∞
µ(T (uI(j))) · n.

(ii) For j ∈ {1, 2}, the sequence (w
(j)
k )k≥1 satisfies (�pγ) almost surely.

(iii) Conditionally on the two sequences
(
1{un∈T (u

I(1)
)}
)
n≥1

and
(
1{un∈T (u

I(2)
)}
)
n≥1

,

the sequences of trees (T
(1)
k )k≥1 and (T

(2)
k )k≥1 are independent and have respective

distributions WRT((w
(1)
k )k≥1) and WRT((w

(2)
k )k≥1).

Recall the discussion before Lemma 3.3. For j ∈ {1, 2}, let J (j) ≥ 1 be the smallest

integer such that for all k ≥ J (j) and for all z ∈ E ′ we have 1 + (ez − 1)
w

(j)
k

W
(j)
k

6= 0. Then we

can define for k ≥ J (j),

M
(j)
k (z) :=

1

C
(j)
k (z)

k∑
i=1

w
(j)
i

W
(j)
k

ez d(u
I(j)

,u
(j)
i ) with C

(j)
k (z) :=

k∏
i=J(j)

(
1 + (ez − 1)

w
(j)
i

W
(j)
i

)
.

These processes are the martingales associated to the weighted profile of the trees
(T

(j)
k )k≥1 for j ∈ {1, 2}. Thanks to Lemma 3.11(iii) those trees have respective distribution
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WRT((w
(j)
k )k≥1), for j ∈ {1, 2} and thanks to Lemma 3.11(ii), those weight sequences

satisfy (�pγ) almost surely. This allows us to apply Proposition 3.6, which entails that for

j ∈ {1, 2}, the sequence of functions (z 7→M
(j)
k (z))k≥J(j) converges almost surely to an

analytic limit z 7→M
(j)
∞ (z) on the set V . Now we can write, for n sufficiently large

Mn(z) =
1

Cn(z)

n∑
i=1

wi
Wn

ez ht(ui)

≥
C

(1)

N
(1)
n

(z) ·W (1)

N
(1)
n

Cn(z) ·Wn
· ez ht(u

I(1)
) ·M (1)

N
(1)
n

(z) +
C

(2)

N
(2)
n

(z) ·W (2)

N
(2)
n

Cn(z) ·Wn
· ez ht(u

I(2)
) ·M (2)

N
(2)
n

(z).

(3.14)

Using Lemma 3.3, we have almost surely for j ∈ {1, 2},

C
(j)
k (z) = exp

(
φ(z) log k + c(j)(z) + oE (1)

)
as k →∞.

Using the asymptotics N (j)
n =

n→∞
µ(T (uI(j))) · n · (1 + o(1)) from Lemma 3.11(i) we get

C
(j)

N
(j)
n

(z) = exp
(
φ(z) log n+ φ(z) log(µ(T (uI(j)))) + c(j)(z) + oE (1)

)
.

From the a.s. convergence of the sequence of measures (µn)n≥1, see Theorem 1.7, we
also get

W
(j)

N
(j)
n

Wn
= µn(T (uI(j))) →

n→∞
µ(T (uI(j))) > 0,

which entails that for j ∈ {1, 2}, uniformly on all compact subsets of E , we have the a.s.
convergence

W
(j)

N
(j)
n

Wn
·
C

(j)

N
(j)
n

(z)

Cn(z)
→

n→∞
Aj(z) := µ(T (uI(j))) · exp

(
φ(z) log(µ(T (uI(j)))) + c(j)(z)− c(z)

)
,

where the limiting function z 7→ Aj(z) is analytic and only takes positive values on E ∩R.
Then, for any z ∈ V ∩R, taking the limit n→∞ in (3.14) yields

M∞(z) ≥ ez ht(u
I(1)

) ·A1(z) ·M (1)
∞ (z) + ez ht(u

I(2)
) ·A2(z) ·M (2)

∞ (z).

Now, thanks to Lemma 3.10, the function z 7→M
(1)
∞ (z) can only have at most countably

many zeros on Iγ ⊂ V ∩ R and for any z ∈ Iγ , we have M
(2)
∞ (z) > 0 almost surely.

Then, if we condition on the location of the zeros z1, z2 . . . of M (1)
∞ on Iγ , since M (2)

∞ is

independent of z1, z2 . . . , we have M (2)
∞ (zi) > 0 for all i ≥ 1 almost surely. Hence M∞ has

almost surely no zeros on Iγ .

We now prove Lemma 3.11, which we used in the preceding proof.

Proof of Lemma 3.11. Point (i) follows just from Theorem 1.7 and Proposition 2.4 and
the fact that for j ∈ {1, 2} we have N (j)

n = nνn(T (uI(j))).
We now prove (ii). In order to do that, we first prove that for j ∈ {1, 2}, we have

µn(T (uI(j))) ./
n→∞

µ(T (uI(j))) and τ (j)
n ./

n→∞
µ(T (uI(j)))

−1 · n. (3.15)

We conclude from here: using the fact that w satisfies (�γ), we get

W (j)
n = W

τ
(j)
n
· µ

τ
(j)
n

(T (uI(j))) ./
n→∞

cst ·(τ (j)
n )γ · µ(T (uI(j))) ./

n→∞
cst ·nγ ,
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with a positive constant. We also have

2n∑
k=n

(w
(j)
k )p =

2n∑
k=n

(w
τ
(j)
k

)p ≤
τ
(j)
2n∑

i=τ
(j)
n

wpi .

Because of (3.15), we have the following almost sure convergence
τ
(j)
2n

τ
(j)
n

→ 2 as n→∞,

hence almost surely for n large enough we have τ (j)
2n ≤ 4τ

(j)
n , so

τ
(j)
2n∑

i=τ
(j)
n

wpi ≤
4τ(j)
n∑

i=τ
(j)
n

wpi ≤
2τ(j)
n∑

i=τ
(j)
n

wpi +

4τ(j)
n∑

i=2τ
(j)
n

wpi ≤ (τ (j)
n )1+(γ−1)p+o(1) + (2τ (j)

n )1+(γ−1)p+o(1)

≤ n1+(γ−1)p+o(1),

where in the two last inequalities we used the fact that w satisfies (�pγ) and the almost

sure linear growth of τ (j)
n ensured by (3.15).

So it remains only to prove (3.15). Recall the proof of Theorem 1.7. For all k ≥ 1 the
process (µn(T (uk)))n≥k is a martingale and almost surely we have

|µn+1(T (uk))− µn(T (uk))| = wn+1

Wn+1
·
∣∣1{un+1∈T (uk)} − µn(T (uk))

∣∣ ≤ wn+1

Wn+1
.

Using successively Lemma A.2 and then Lemma 3.8, where the latter applies because w

satisfies (�pγ), we get

E [|µ2n(T (uk))− µn(T (uk))|p] ≤ 2p ·
2n∑

i=n+1

(
wi
Wi

)p
= O

(
n1−p+o(1)

)
.

Using then Lemma A.3 with q = p and α = 0 and δ = (p − 1)/2, we get that, for some
ε > 0, |µn(T (uk))− µ(T (uk))| = O(n−ε) almost surely. Since this is true almost surely
for all k ≥ 1, we use it with k ∈ {I(1), I(2)}. As by definition for j ∈ {1, 2} we have
µ(T (uI(j))) > 0, we conclude that µn(T (uI(j))) ./

n→∞
µ(T (uI(j))).

Then, for any k ≥ 1, consider the process
(
nνn(T (uk))−

∑n
i=k+1 µi(T (uk))

)
n≥k. It

is easy to verify that this process is a martingale in its own filtration and that its
increments are bounded by 1. Using again Lemma A.3 with q = 2 and α = 1 and
δ = 1, we get that n−1

∣∣nνn(T (uk))−
∑n
i=k+1 µi(T (uk))

∣∣ = O(n−ε) for some ε > 0. Using
again that for j ∈ {1, 2} the value µ(T (uI(j))) is almost surely positive, we can write

N
(j)
n = nνn(T (uI(j))) ./

n→∞
µ(T (uI(j))) · n. Using the definition of τ (j)

n , we can check

that this entails that τ (j)
n ./

n→∞
µ(T (uI(j)))

−1 · n almost surely. This concludes the proof

of (3.15) and so, (ii) is proved.
We now prove (iii). For any k ≥ 1, we consider the sequence

(
1{un∈T (uk)}

)
n≥1

that

encodes the labels of the vertices above uk. Note that the limiting mass µ(T (uk))

can be computed from that sequence. Now, we sequentially reveal the sequences(
1{un∈T (u1)}

)
n≥1

,
(
1{un∈T (u2)}

)
n≥1

, . . . ,
(
1{un∈T (uk)}

)
n≥1

, . . . until we get to a k for which

µ(T (uk)) ∈ (0 , 1). By definition, the first index k for which it happens is k = I(1).
Then we continue revealing the sequences

(
1{un∈T (uk)}

)
n≥1

for k > I(1) but only

for the k’s such that uk /∈ T (uI(1)) until we get to a k for which µ(T (uk)) ∈ (0 , 1). By
definition, this second index k is k = I(2). Remark, and this is the key in this argument,
that after determining I(1) and I(2) in this way, the only information that we have about
T (uI(1)) and T (uI(2)) is the list of labels of the vertices that belong each of them (and the
position of uI(1) and uI(2)).
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Now, conditionally on all this information, it is straightforward to see from the
attachment dynamics that for any j ∈ {1, 2}, when the (i + 1)-st vertex attaches

above uI(j) at time τ
(j)
i+1, the label K

τ
(j)
i+1

of the vertex to which it attaches is cho-

sen among τ
(j)
1 , τ

(j)
2 , . . . τ

(j)
i with probability proportional to their respective weight

w
τ
(j)
1
, w

τ
(j)
2
, . . . w

τ
(j)
i

, independently for different choices of i ≥ 1 and j ∈ {1, 2}. This

ensures that those trees evolve as independent weighted recursive trees and finishes
the proof of (iii) and hence that of the lemma.

3.2 From the weighted to the unweighted sum.

Now we want to transfer these results of convergence to the Laplace transform
of the “true” profile. Recall from (3.3) the definition of the sequence of functions
(z 7→ Nn(z))n≥1. We still assume until the end of Section 3.2 that w satisfies (�pγ) for
some γ > 0 and p ∈ (1 , 2].

We introduce the following quantity, for n ≥ J ,

Xn(z) := n1+φ(z) ·Nn(z)− ez
n−1∑
k=J

Ck(z)Mk(z)

=

n∑
i=1

ez ht(ui) − ez
n−1∑
k=J

(
k∑
i=1

wi
Wk

ez ht(ui)

)

The goal of this subsection is to show that the quantity Xn(z) is negligible as n → ∞
compared to any of the two terms in the difference, for z contained in some subset of the
complex plane. This way we transfer the asymptotics that we have proved for Mn(z) and
Cn(z) in the last section to asymptotics for Nn(z), which is the quantity that we want to
study in the end. We start by stating and proving a lemma.

Lemma 3.12. The process (Xn(z))n≥J is a martingale with respect to the filtration (Fn).
Furthermore, for all q ∈ (1 , p],

E [|X2n(z)−Xn(z)|q] = OE

(
n1+(qRe(φ(z))∨φ(qRe z))+oE (1)

)
.

Proof. This process is of course (Fn)-adapted and integrable. For the martingale prop-
erty we compute

E [Xn+1(z) | Fn] = E
[
Xn(z)− ezCn(z)Mn(z) + ez ht(un+1)

∣∣∣ Fn]
= Xn(z)− ezCn(z)Mn(z) + ez

n∑
i=1

wi
Wn

ez ht(ui) = Xn(z).

For z ∈ E and q ∈ (1 , p], we make the following computation, using Lemma 3.3 and
Lemma 3.7,

E [|Xn+1(z)−Xn(z)|q] = E
[∣∣∣−ezCn(z)Mn(z) + ez ht(un+1)

∣∣∣q]
≤ 2q ·

(
eqRe z|Cn(z)|qE [|Mn(z)|q] + eqRe zE

[
n∑
i=1

wi
Wn

eht(ui)qRe z

])
= OE

(
nqReφ(z)+0∨g(z,q)+oE (1)

)
+OE

(
nφ(qRe z)

)
= OE

(
nqReφ(z)∨(qReφ(z)+g(z,q))∨φ(qRe z)+oE (1)

)
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and the last exponent reduces to qReφ(z) ∨ φ(qRe z) because (qReφ(z) + g(z, q)) =

φ(qRe z) + 1− q < φ(qRe z). Hence, using Lemma A.2, we get

E [|X2n(z)−Xn(z)|q] ≤ 2q
2n∑
i=n

E [|Xi+1(z)−Xi(z)|q] = OE

(
n1+(qRe(φ(z))∨φ(qRe z))+oE (1)

)
,

which finishes the proof of the lemma.

Recall the definition of z+ and z− in (1.7). We define the domain D to which we refer
in the statement of Proposition 3.1 as the connected component of

V ∩ {z ∈ C | 1 + Re(φ(z)) > 0}

that contains 0, where V is defined in (3.6). In this way, D is a domain of C and
D ∩ R = (z− , z+). Indeed, first, D is open and connected by definition. Then re-
call from Lemma 3.5 that V ∩ R contains Iγ = {x ∈ R | 1 + γ(ex − 1− xex) > 0} an
open interval which contains 0 and has z+ as its right endpoint. Now just check that
{z ∈ R | 1 + Re(φ(z)) > 0} = (z− ,∞) and that z− ∈ Iγ .

For technical reasons, we also introduce the following subset of C, here identified as
R×R,

D ′ := (z− , z+)× (0 , 2π),

on which the process (z 7→Mn(z))n≥J , and hence also (z 7→ Xn(z))n≥J , are well-defined.
We further decompose D ′ into a union of open sets

D ′ =
⋃

1<q≤p

D ′q where D ′q = {z ∈ D ′ | g(Re z, q) < 0} .

Lemma 3.13. The following holds.

(i) For all compact K ⊂ D there exists ε(K) > 0 such that almost surely

n−(1+Reφ(z)) · |Xn(z)| = OK

(
n−ε(K)

)
.

(ii) For all compact K ⊂ D ′, there exists ε(K) > 0 such that

n−(1+φ(Re z)) ·

∣∣∣∣∣
n−1∑
i=J

Ci(z)Mi(z)

∣∣∣∣∣ = OK

(
n−ε(K)

)

(iii) For all compact K ⊂ D ′, there exists ε(K) > 0 such that almost surely

n−(1+φ(Re z)) · |Xn(z)| = OK

(
n−ε(K)

)
.

Proof. We start by proving (i). For that, we first prove that the statement holds for all
compact K ⊂ V ∩ {z ∈ C | 1 + Re(φ(z)) > 0} hence that will also be the case for K ⊂ D .
First, we use the same compactness argument as in the proof of Proposition 3.6 to
ensure that it suffices to prove the statement for compact sets K such that K ⊂ Vq ∩
{z ∈ C | 1 + Re(φ(z)) > 0} for some q ∈ (1 , p]. Then, for such a compact set K, the result
is ensured by an application of Lemma A.3 on the open set Vq∩{z ∈ C | 1 + Re(φ(z)) > 0}
with α(z) = 1 + Re(φ(z)) > 0 and δ(z) = min(q − 1,−g(z, q)) > 0, which we can apply
thanks to Lemma 3.12.
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We now prove (ii). For any q ∈ (1 , p], thanks to Lemma 3.7, on the open set D ′q ⊂ E

we have E [|M2n(z)−Mn(z)|q] = OD′q

(
n

(1−q)∨g(z,q)+oD′q
(1)
)

and

g(z, q) = q(φ(Re z)− Reφ(z))︸ ︷︷ ︸
>0

+ g(Re z, q)︸ ︷︷ ︸
<0

.

Applying Lemma A.3 for the sequence of functions (z 7→ Mn(z))n≥J on any compact
subset K ⊂ D ′q with α(z) = φ(Re z) − Reφ(z) > 0 and δ(z) = min(−1 + q + q(φ(Re z) −
Re(φ(z))),−g(Re z, q)) > 0 yields:

n−φ(Re z)+Reφ(z) ·Mn(z) = OK

(
n−ε(K)

)
.

Using the estimates of Lemma 3.3, we have |Cn(z)| = OK
(
nReφ(z)

)
, and so |Ci(z)Mi(z)| =

OK
(
iφ(Re z)−ε(K)

)
. Hence

∑n−1
i=J |Ci(z)Mi(z)| = OK

(
n0∨(1+φ(Re z)−ε(K))

)
which finishes the

proof of (ii).
Last, in order to prove (iii), we use Lemma A.3 on D ′q for the sequence (z 7→ Xn(z))n≥J

with α(z) = 1+φ(Re z) > 0 and δ(z) = min(−1+q+q(φ(Re z)−Re(φ(z))),−g(Re z, q)).

In order to conclude, we also need the following lemma, which is a direct consequence
of Lemma 3.3.

Lemma 3.14. For any compact K ⊂ E ∩ {z ∈ C | 1 + Re(φ(z)) > 0}, there exists ε(K)

such that ∣∣∣∣∣n−(1+φ(z)) ·
n−1∑
i=J

Ci(z)−
ec(z)

1 + φ(z)

∣∣∣∣∣ = OK

(
n−ε(K)

)
Proof. On any compact K ⊂ E ∩ {z ∈ C | 1 + Re(φ(z)) > 0}, using Lemma 3.3 we write

Cn(z) = ec(z) · nφ(z) · (1 +OK
(
n−ε

)
),

so that

n−1∑
i=J

Ci(z) = ec(z) ·
n−1∑
i=J

iφ(z) + ec(z) ·
n−1∑
i=J

iφ(z) ·OK
(
i−ε
)

=
ec(z)n1+φ(z)

1 + φ(z)
· (1 +OK

(
n−1

)
) +OK

(
n1+φ(z)−ε(K)

)
,

where in the second line, we use the fact that infz∈K(1 + Reφ(z)) > 0, and we define
ε(K) := ε ∧ 1 ∧ infz∈K(1 + Reφ(z)). This proves the lemma.

We can now prove Proposition 3.1.

Proof of Proposition 3.1. We start by proving simultaneously that for any z ∈ D , we
almost surely have

N∞(z) := lim
n→∞

Nn(z) =
ez+c(z)

1 + φ(z)
·M∞(z), (3.16)

and also that both points (i) and (ii) of the proposition hold. Let K ⊂ D be a compact set.
For z ∈ K, we write∣∣∣∣Nn(z)− ez+c(z)

1 + φ(z)
M∞(z)

∣∣∣∣ ≤ ∣∣∣∣n−(1+φ(z))Xn(z)

∣∣∣∣
+

∣∣∣∣∣n−(1+φ(z))ez
n∑
i=J

Ci(z)Mi(z)−
ez+c(z)

1 + φ(z)
M∞(z)

∣∣∣∣∣
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The first term is OK
(
n−ε(K)

)
thanks to Lemma 3.13(i). For the second one, we re-

write the term Mi(z) appearing in the sum as Mi(z) = M∞(z) + (Mi(z)−M∞(z)), then
re-arrange the terms and use the triangle inequality to get the following upper-bound

|M∞(z)| · |ez| ·

OK(n−ε(K))︷ ︸︸ ︷∣∣∣∣n−(1+φ(z)) ·
n∑
i=J

Ci(z)−
ec(z)

(1 + φ(z))

∣∣∣∣
+ n−(1+Reφ(z)) · |ez| ·

n−1∑
i=J

|Ci(z)| · |Mi(z)−M∞(z)|︸ ︷︷ ︸
OK(iReφ(z)−ε(K))

.

In the above display, we used Lemma 3.14 for the first term and then Lemma 3.3 together
with Proposition 3.6 for the second term. Note that here we slightly abuse notation
and use the same symbol ε(K) for different positive quantities. In the end, the whole
expression is OK

(
n−ε(K)

)
, for yet another value ε(K) > 0. From (3.16), it is clear that

the limiting function z 7→ N∞(z) is analytic and has almost surely no zero on (z− , z+)

because of Lemma 3.9. For (iii), we prove the stronger statement: for any compact
subset K ⊂ (z− , z+) and 0 < a < π, there exists ε(K, a) > 0 such that almost surely,

sup
x∈K

sup
a≤η≤π

n−(1+φ(x))

∣∣∣∣∣
n∑
i=1

e(x+iη) ht(ui)

∣∣∣∣∣ = O
(
n−ε(K,a)

)
.

For this, we write

n−(1+φ(x))

∣∣∣∣∣
n∑
i=1

e(x+iη) ht(ui)

∣∣∣∣∣ ≤ n−(1+φ(x))|Xn(x+ iη)|

+ n−(1+φ(x))

∣∣∣∣∣
n−1∑
i=J

Ci(x+ iη)Mi(x+ iη)

∣∣∣∣∣.
We apply points (ii) and (iii) of Lemma 3.13 to the compact K × [a , π] and get the desired
bound.

3.3 Height of the tree

In this section, we study the behaviour of the height ht(Tn) of the tree Tn, which is
defined as the maximal height of the vertices of Tn, i.e.

ht(Tn) = max
1≤k≤n

ht(uk).

We start by showing that under the assumption (�pγ) we have the convergence (1.10).
Then, for the sake of completeness, we also study the simpler case where log n =

o
(∑n

i=1
wi
Wi

)
.

One key argument in our proofs is the following equality for the annealed moment
generating function of the height of uk, for any fixed k ≥ 2, which can be seen as a
corollary of Lemma 3.2

E
[
ez ht(uk)

]
= ez ·

k−1∏
j=2

(
1 + (ez − 1)

wj
Wj

)
. (3.17)

Some elementary computations using the Chernoff bound and the last display yield the
following lemma.
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Lemma 3.15. Suppose that the sequence of weights w satisfies

lim sup
n→∞

1

log n

n∑
i=2

wi
Wi
≤ u ∈ (0 ,∞).

Then almost surely we have

lim sup
n→∞

ht(Tn)

log n
≤ uez+(u),

where z+(u) is the unique positive root of u(zez − ez + 1)− 1 = 0.

Proof. Using the expression (3.17) for the moment generating function of ht(un) we get,
for any z > 0 and n ≥ 2

E
[
ez ht(un)

]
= ez ·

n−1∏
j=2

(
1 + (ez − 1)

wj
Wj

)
≤ exp

1 + (ez − 1)

n−1∑
j=2

wj
Wj


≤ exp ((log n) · (u(ez − 1) + o(1))) ,

where we use the inequality (1 + x) ≤ ex and the assumption on w. Then, for any z > 0

and n ≥ 1, we use Markov’s inequality to get

P (ht(un) ≥ uez log n) ≤ e−uze
z lognE

[
ez ht(un)

]
≤ exp (−u log n(zez − ez + 1 + o(1))) .

If we take z > 0 such that u(zez − ez + 1) > 1 then the right-hand-side is summable
and hence using the Borel-Cantelli lemma shows that for all n large enough, we have
ht(un) ≤ uez log n. Letting z ↘ z+(u), we get the result.

We now prove the last claim (1.10) of Theorem 1.5. Here we suppose that the weight
sequence w satisfies (�pγ) for some γ > 0 and some p ∈ (1 , 2].

Proof of (1.10). Recall the asymptotics (1.9) in Theorem 1.5. It ensures that there almost
surely exist vertices at height bγez log nc, for any fixed z ∈ (z− , z+) and n large enough.
Hence the height of the tree Tn satisfies

lim inf
n→∞

ht(Tn)

log n
≥ γez+ .

For the limsup, we use Lemma 3.15 with u = γ (this is justified by Lemma 3.4), which
yields lim supn→∞

ht(Tn)
logn ≤ γe

z+ .

To finish the section, we state a proposition.

Proposition 3.16. Let f(n) :=
∑n−1
i=2

wi
Wi

. If log n = o(f(n)) then we have the almost
sure convergences

lim
n→∞

ht(Tn)

f(n)
= lim
n→∞

ht(un)

f(n)
= 1.

Proof. As we can check from its moment generating function (3.17), for n ≥ 2 the
random variable ht(un) − 1 is a sum of independent Bernoulli random variables, with
expectation f(n). Using standard bounds for sums of Bernoulli random variables yields

P (|ht(un)− 1− f(n)| ≥ εf(n)) ≤ 2 exp
(
−ε2f(n)/3

)
,

which is summable in n for any ε > 0. The result of the proposition is then obtained
using the Borel-Cantelli lemma.
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4 Preferential attachment trees are weighted recursive trees

In this section, we study preferential attachment trees with fitnesses a as defined
in the introduction. First, in Section 4.1, we prove Theorem 1.1 which allows us to see
them as weighted random trees WRT(wa) for some random weight sequence wa. Then
in Section 4.2 we prove Proposition 1.3 which relates the a.s. asymptotic behaviour of
wa to the behaviour of a. Finally, in Section 4.3 we prove Proposition 4.2, which ensures
that the sequence ma obtained as the scaling limit of the degrees can be expressed as
the increments of a Markov chain.

4.1 Coupling with a sequence of Pólya urns: proof of Theorem 1.1

Here we fix an arbitrary sequence a such that a1 > −1 and ∀n ≥ 2, an ≥ 0. We recall
the notation, for n ≥ 0,

An :=

n∑
i=1

ai,

with the convention that A0 = 0. We consider a sequence of trees (Pn)n≥1 evolving
according to the distribution PAT(a) and we want to prove Theorem 1.1, namely that
there exists a random sequence of weights wa for which the sequence evolves as a
WRT(wa). The proof uses a decomposition of this process into an infinite number of
Pólya urns. This is very close to what is used in the proofs of [3, Theorem 2.1] or [7,
Section 1.2] in similar settings. The novelty of our approach is to express this result
using weighted random trees, since it allows us to apply all the results developed in the
preceding section.

Pólya urns. For us, a Pólya urn process (Urn(n))n≥0 = (X(n),Total(n))n≥0 is a Markov
chain on E := {(x, z) ∈ [0 ,∞)× (0 ,∞) | x ≤ z} with transition probabilities given by the
matrix P where for all (x, z) ∈ E,

P ((x, z), (x+ 1, z + 1)) =
x

z
and P ((x, z), (x, z + 1)) =

z − x
z

.

The quantities X(n) and Total(n) represent respectively the number of red balls and
the total number of balls at time n in a urn containing red and blacks balls where at
each step, a colour is chosen at random proportionally to the current proportion in
the urn and a ball of the drawn colour is added to the urn. Starting at time 0 from
the state (a, a + b), i.e. with a red balls and b black balls, it is well-known that the
sequence (∆X(n))n≥1 = (X(n) − X(n − 1))n≥1 of random variables is exchangeable,
and an application of de Finetti’s representation theorem ensures that it has the same
distribution as i.i.d. samples of Bernoulli random variables with a random parameter
β, which has distribution Beta(a, b), where we use the convention that Beta(a, b) = δ1 if
b = 0.

Note that the process (Urn(n))n≥0 is entirely determined from (∆X(n))n≥1 and that
the random variable β is a measurable function of the sequence (Urn(n))n≥0 because it

can almost surely be obtained as β = limn→∞
X(n)
n .

Nested structure of urns in the tree. For all k ≥ 1 we define the following process
in n ≥ k

Wk(n) := Ak +

k∑
i=1

deg+
Pn

(ui),
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the “total activity” of the vertices {u1, u2, . . . , uk}, for which we remark that for any k ≥ 1

we have

Wk(k) = Ak + k − 1 and Wk(k + 1) = Ak + k.

Imagine that Pn is already constructed and that we add a new vertex un+1 to the tree.
We choose its parent in a downward sequential way:

• we first determine whether the parent is un, this happens with probability

an + deg+
Pn

(un)

Wn(n)
= 1− Wn−1(n)

Wn(n)
,

• then with the complementary probability Wn−1(n)
Wn(n) it is not, so conditionally on this

we determine whether it is un−1, this happens with (conditional) probability

an−1 + deg+
Pn

(un−1)

Wn−1(n)
= 1− Wn−2(n)

Wn−1(n)
.

• then with the complementary probability Wn−2(n)
Wn−1(n) it is not, etc... We continue this

process until we stop at some ui.

Now we fix k ≥ 1 and introduce the following time-change: for all N ≥ 0, we let

θk(N) := inf {n ≥ k + 1 |Wk+1(n) = Ak+1 + k +N} ,

be the N -th time that a vertex is attached on one of the vertices {u1, . . . , uk+1} after time
k + 1, where by definition, we have θk(0) = k + 1. Remark that it can be the case that
θk(N) is not defined for large N , if there is only a finite number of vertices attaching to
{u1, . . . , uk+1}. We ignore this possibility for the moment, and only consider sequences a

for which An = O(n), for which this almost surely does not happen. In this case for all
N ≥ 0 we set

Urnk(N) := (Wk(θk(N)),Wk+1(θk(N))) = (Wk(θk(N)), Ak+1 + k +N).

Now, the three following facts are the key observations in order to prove Theorem 1.1:

(i) for all k ≥ 1, the process Urnk = (Urnk(N))N≥0 has the distribution of a Pólya urn
starting from the state (Ak + k,Ak+1 + k),

(ii) those process are jointly independent for k ≥ 1,

(iii) the whole sequence (Pn)n≥1 is a function of the trajectories of the processes
(Urnk, k ≥ 1).

Point (i) already follows from the discussion above. A moment of thought shows that (ii)
holds as well: of course the processes (Wk(n),Wk+1(n))n≥k+1 for different k are not
independent at all but the point is that they only interact through the time-changes
(θk(·), k ≥ 1). Last, for (iii), note that we can reconstruct the tree Pn at time n from
the random variables (Wi(k))1≤i,k≤n and that these random variables can be entirely
determined using the system of equations below{

Wk(n) = Urnk(Wk+1(n)− (Ak+1 + k)), for 1 ≤ k ≤ n− 1,

Wn(n) = An + n− 1.
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Reversing the construction and using the exchangeability. We now reverse the
construction and start with an independent family (Urnk, k ≥ 1) of processes that have,
for each k ≥ 1, the distribution of a Pólya urn starting from the state (Ak + k,Ak+1 +

k), so that they have the joint same distribution as the ones described in (i) and (ii).
From what we did above, the sequence (Pn)n≥1 that they determine through (iii) has
distribution PAT(a). A moment of thought shows that this argument actually still holds
for a completely arbitrary sequence of fitnesses a.

Now, using de Finetti’s theorem, each of the processes Urnk can be produced by
sampling βk ∼ Beta(Ak + k, ak+1) and adding a red ball at each step independently
with probability βk and a black ball with probability 1 − βk. This is of course done
independently for different k ≥ 1.

In terms of our downward sequential procedure defined above for finding the parent
of each newcomer, it amounts to saying that each time that we have to choose between
attaching to uk+1 or attaching to a vertex among {u1, . . . , uk}, the former is chosen with
probability 1− βk and the latter with probability βk. Let us verify that the law of (Pn)n≥1

conditionally on the sequence (βk)k≥1 can indeed be expressed as WRT(wa) where the
random sequence of weights wa = (wa

n)n≥1 is defined from the sequence (βk)k≥1 as

∀n ≥ 1, Wa
n =

n−1∏
i=1

β−1
i and wa

n = Wa
n −Wa

n−1,

with the convention that Wa
1 = 1 and Wa

0 = 0. We reason conditionally on the sequence
(βk)k≥1 (or equivalently the sequence (wa

n)n≥1). When determining the parent of un+1,
whose label we denote Jn+1 as in (1.2), we successively try to attach to un, un−1, . . . until
we stop at uJn+1 . Using the independence, we get that for every k ∈ {1, 2, . . . , n},

P (Jn+1 = k | P1, . . . , Pn, (βi)i≥1) = βn−1βn−2 . . . βk(1− βk−1) =
Wa
k −Wa

k−1

Wa
n

=
wa
k

Wa
n

.

This proves Theorem 1.1. Let us explain how Corollary 1.2 follows from the proof
that we developed here. From the discussion in the previous paragraph, in the case
of a sequence a for which An = O(n), each of the processes (Urnk(N))N≥0 for k ≥ 1

is a measurable function of (Pn)n≥1, and hence the associated βk also is. In the end,
the sequence (wa

n)n≥1 is a measurable function of (Pn)n≥1 and it is easy to check that it
corresponds to the one described in the statement of Corollary 1.2.

4.2 Proof of Proposition 1.3

Recall the definition of (Wa
n)n≥1 as the random sequence of cumulated weights

defined Theorem 1.1, whose distribution depends on a sequence a of fitnesses, and is
expressed using a sequence of independent Beta-distributed random variables (βk)k≥1,
where

βk ∼ Beta(Ak + k, ak+1).

We now prove Proposition 1.3, which relates the growth of (Wa
n)n≥1 to that of (An)n≥1.

Proof of Proposition 1.3. As in [21, Proof of Lemma 1.1], we introduce

Xn :=

n−1∏
i=1

βi
E [βi]

. (4.1)

It is easy to see that Xn is a positive martingale, hence it almost surely converges to a
limit X∞ as n→∞. Now, using the fact that the (βn)n≥1 are independent and that for
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any integer q ≥ 0, the q-th moment of a random variable with Beta(a, b) distribution is
given by

Γ(a+ q)Γ(a+ b)

Γ(a)Γ(a+ b+ q)
=

q−1∏
k=0

a+ k

a+ b+ k
, (4.2)

we can compute

n−1∏
i=1

E [βpi ] =

n−1∏
i=1

(
p−1∏
k=0

i+Ai + k

i+Ai+1 + k

)

=

p−1∏
k=0

(
1 +A1 + k

n+An + k − 1

n−1∏
i=2

i+Ai + k

i+Ai + k − 1

)

=

(
p−1∏
k=0

1 +A1 + k

n+An + k − 1

)
·
p−1∏
k=0

n−1∏
i=2

(
1 +

1

i+Ai + k − 1

)
. (4.3)

Now since by assumption a satisfies (Hc), there exists ε > 0 such that An = c ·n+O
(
n1−ε)

and without loss of generality we can assume that ε < 1. For all k ∈ J0 , p − 1K we can
write

n+An+k−1 =
n→∞

(c+1)n+O
(
n1−ε) and so

1

n+An + k − 1
=

n→∞

1

(c+ 1)n
+O

(
n−1−ε) .

Hence

p−1∏
k=0

n−1∏
i=2

(
1 +

1

i+Ai + k − 1

)
=

p−1∏
k=0

n−1∏
i=2

(
1 +

1

(c+ 1)i
+O

(
i−1−ε))

= exp

(
p−1∑
k=0

n∑
i=2

(
1

(c+ 1)i
+O

(
i−1−ε)))

= exp

(
p

c+ 1
log n+ cst +O

(
n−ε

))
= cst ·n

p
c+1
(
1 +O

(
n−ε

))
. (4.4)

In the end, since
(∏p−1

k=0
1+A1+k

n+An+k−1

)
= cst ·

∏p−1
k=0

1
(c+1)n+O(n1−ε) = cst ·n−p · (1 +O(n−ε)),

we get, using (4.3) and (4.4),

n−1∏
i=1

E [βpi ] = Cp · n−p+p/(c+1) · (1 +O
(
n−ε

)
) (4.5)

where Cp is a positive constant which depends on p and the sequence a. This entails
that, under our assumptions, for any p ≥ 1, we have

E [Xp
n] =

∏n−1
i=1 E [βpi ]∏n−1
i=1 E [βi]

p →
n→∞

Cp
Cp1

,

which shows that this martingale is bounded in Lp for all p ≥ 1 and hence it is uniformly
integrable. Consequently, it converges a.s. and in Lp to a limit random variable X∞, with
moments determined by

∀p ≥ 1, E [Xp
∞] =

Cp
Cp1

. (4.6)

Furthermore, we have

E
[
(Xn+1 −Xn)2

]
= E

[
X2
n

(
βn
E [βn]

− 1

)2
]
≤ E

[
X2
n

]
· Var (βn)

E [βn]
2 . (4.7)

EJP 26 (2021), paper 80.
Page 38/56

https://www.imstat.org/ejp

https://doi.org/10.1214/21-EJP640
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Geometry of WRTs and PATs

Since βn ∼ Beta(n+An, an+1), we get

E [βn] =
n+An
n+An+1

→ 1 and Var (βn) =
an+1(n+An)

(n+An+1)2(n+An+1 + 1)
= O

(an+1

n2

)
.

(4.8)

Using (4.7), (4.8), Lemma A.2 and then summing over n ≤ k ≤ 2n− 1 and using the fact
that a satisfies (Hc) we get that

E
[
(X2n −Xn)2

]
= O

(∑2n
k=n+1 ak

n2

)
= O

(
A2n

n2

)
= O

(
n−1

)
.

Using Lemma A.3, we get that almost surely, for any ε′ < 1
2 ,

|Xn −X∞| = O
(
n−ε

′
)
.

Since βi > 0 almost surely for every i ≥ 1, the event {X∞ = 0} is a tail event for the
filtration generated by the βi’s and has hence probability 0 or 1, thanks to Kolmogorov’s
0-1 law. In the end, it has probability 0 because E [X∞] = 1. We deduce that

(Wa
n)−1 =

n−1∏
i=1

βi = Xn ·
n−1∏
i=1

E [βi]

= X∞ ·
(

1 +O
(
n−ε

′
))
· C1 · n−1+ 1

c+1 ·
(
1 +O

(
n−ε

))
= C1 ·X∞ · n−1+ 1

c+1 ·
(

1 +O
(
n−(ε∧ε′)

))
. (4.9)

Hence, we have,

Wa
n ./
n→∞

Z · n
c

(c+1) with Z :=
1

X∞ · C1
. (4.10)

Whenever an ≤ nc
′+o(1) as n→∞, we can show the following (we postpone the proof to

the end of the section)

Lemma 4.1. For any δ > 0 small enough, we have

P
(

1− βk > k−1+c′+δ
)
≤ exp

(
−(k + 1)c

′+δ+o(1)
)
.

Since the last quantity is summable in k we can use the Borel-Cantelli lemma (and
a sequence of δ going to 0) to show that almost surely 1− βk ≤ k−1+c′+oω(1) as k →∞,
where the term oω(1) denotes a random function of k that almost surely tends to 0 as
k →∞. Combining this with (4.10), we finish proving the proposition by writing

wa
k = Wa

k −Wa
k−1 = Wa

k · (1− βk−1) ≤ (k + 1)c
′−1/(c+1)+oω(1).

We finish by giving a proof of Lemma 4.1.

Proof of Lemma 4.1. Let x ≥ 0 and y > 1 and let X be a random variable with distribu-
tion Beta(x + 1, y) and Y with distribution Beta(x, 1), independent of X. By standard
results on Beta distributions, the product Z = X · Y has distribution Beta(x, y).

Then for any z ∈ [0 , 1] we have, using the explicit expression of the density of X,

P (Z > z) ≤ P (X > z) =
Γ (x+ 1 + y)

Γ (x+ 1) Γ (y)

∫ 1

z

ux(1− u)y−1 du

≤ Γ (x+ 1 + y)

Γ (x+ 1) Γ (y)
· exp (−(y − 1)z)

∫ 1

z

ux du

≤ Γ (x+ 1 + y)

Γ (x+ 2) Γ (y)
· exp (−(y − 1)z) ,
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and the last display in increasing in x. We later use this inequality for well-chosen
sequences (xn), (yn) and (zn) taking place of the values of x, y, z. First, remark that for
any two non-negative sequences (xn) and (yn) with (yn) going to infinity and xn = o(yn),
we have the following estimate using Stirling’s approximation:

log

(
Γ (xn + 1 + yn)

Γ (xn + 2) Γ (yn)

)
=

n→∞
(xn + 1) log(yn) · (1 + o(1)).

Now we apply the above computations for every n ≥ 1 with zn := n−1+c′+δ to the
random variables (1 − βn) which have distribution Beta (xn, yn), with xn := an+1 and
yn := An + n. In particular, in this context we have xn = an ≤ (n + 1)c

′+o(1) and
yn = An + n = (n+ 1)1+o(1), so that the all of the above applies and

logP
(

(1− βn) > n−1+c′+δ
)
≤ (xn + 1) log(yn)(1 + o(1))− (yn − 1)zn

≤ (n+ 1)c
′+o(1) − (n+ 1)c

′+δ+o(1)

≤ −(n+ 1)c
′+δ+o(1),

which is what we wanted.

4.3 The distribution of the limiting sequence

We stay in the same setting as Section 4.2. Suppose that we are working with a
sequence of fitnesses a that satisfies (Hc) for some c > 0. The sequence (Ma

n)n≥1 is
defined in (1.5) as some random multiple of the sequence (Wa

n)n≥1, whose construction
is described in Theorem 1.1 from a sequence (βn)n≥1 of independent random variables
with βn ∼ Beta(An + n, an+1), so that for all n ≥ 1,

Ma
n =

c+ 1

Z
·
n−1∏
k=1

β−1
k ,

where the random variable Z is the one that appears in (4.10), and depends on the whole
sequence (βn)n≥1.

Proposition 4.2. For any sequence a that satisfies the condition (Hc), the sequence
(Ma

k)k≥1 is a (possibly time-inhomogeneous) Markov chain such that for all k ≥ 1, Ma
k+1

is independent of β1, β2, . . . , βk. The fact that for all k ≥ 1 we have Ma
k = βk ·Ma

k+1 with
βk ∼ Beta(Ak + k, ak+1) independent of Ma

k+1 characterises the backward transitions of
the chain.

Proof. We follow the same steps as [21, Lemma 1.1]. Recall the definition of the random
variable X∞ as the limit of the sequence (Xn)n≥1 defined in (4.1), the definition (4.5) of
the constant C1 and their relation to the random variable Z. We have

Ma
1 =

c+ 1

Z
= (C1 · (c+ 1) ·X∞) and for k ≥ 2, Ma

k = Ma
1 ·

k−1∏
i=1

β−1
i . (4.11)

It then follows that we can write, for k ≥ 1,

Ma
k+1 = C1 · (c+ 1) ·X∞ ·

k∏
i=1

β−1
i = C1 · (c+ 1) · lim

n→∞

∏n−1
i=k+1 βi∏n−1
i=1 E [βi]

,

which ensures that Ma
k+1 is independent of β1, β2, ..., βk. The limit in the last equality

exists almost surely thanks to the results of the preceding section.
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Now we prove the Markov property of the chain. Let k ≥ 1. Because of the definition
of the chain as a product, the distribution of Ma

k+1 conditional on the past trajectory
Ma

1 ,M
a
2 , . . . ,M

a
k is the same as the distribution of Ma

k+1 conditional on Ma
k, β1, . . . , βk−1.

Since Ma
k+1 = β−1

k ·Ma
k and that βk and Ma

k are both independent of β1, . . . , βk−1, this
conditional distribution corresponds to the one of Ma

k+1 conditional on the present state
of the chain Ma

k.

Computing the moments. In some cases where the sequence a is sufficiently regular,
we can compute explicitly every moment of the random variable Ma

k for every k ≥ 1.
Indeed, using (4.6) and (4.11) and the independence, we get

E [(Ma
k)p] = E

[(
C1 · (c+ 1) · lim

n→∞

∏n−1
i=k βi∏n−1

i=1 E [βi]

)p]

= Cp1 · (c+ 1)p · lim
n→∞

∏n−1
i=k E [βpi ](∏n−1
i=1 E [βi]

)p
=

(c+ 1)p · Cp∏k−1
i=1 E [βpi ]

. (4.12)

In general, if the collection (µp)p≥1 of p-th moments of some random variable satisfies

the so-called Carleman’s condition:
∑∞
p=1 µ

−1/(2p)
2p =∞, then its distribution is uniquely

determined from those moments.

5 Examples and applications

In this section, we compute the explicit distribution of (Ma
n) for some particular

sequences a. We then describe some applications of our results to a model of Pólya urn
with immigration and then to a model of preferential attachment graphs.

5.1 The limit chain for particular sequences a

As stated in the preceding section, we can compute the distribution of Ma
k for some

fixed k by the expression of its moments (4.12), provided that they satisfy Carleman’s
condition. Knowing these distributions and the backward transitions given in Proposi-
tion 4.2 then characterizes the law of the whole process. For two particular examples,
this law has an explicit expression.

Proposition 5.1. In the two following cases, the distribution of the chain (Ma
n) is explicit.

(i) If a is of the form a = (a, b, b, b, . . . ) with a > −1 and b > 0, then the sequence

(Ma
n)n≥1 is a Mittag-Leffler Markov chain MLMC

(
1
b+1 ,

a
b+1

)
.

(ii) If a is of the form a = (a, b1, b2, . . . , b`, b1, b2, . . . b`, b1, . . . ), periodic of period `

starting from the second term and such that a > −1 and b1, b2, . . . , b` are non-
negative integers with at least one being non-zero, then, letting S = b1 +b2 + · · ·+b`,

the sequence `
−`
S+`

S+` · (M
a
n)n≥1 has the distribution of an Intertwined Product of

Generalised Gamma Processes with parameters (a, b1, b2, . . . , b`), which we denote
IPGGP(a, b1, b2, . . . , b`).

Note that the two cases (i) and (ii) are not mutually exclusive. We prove the two points
of this proposition in separate subsections. The proper definitions of the distributions to
which we refer in the statement are given along the proof.
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5.1.1 Mittag-Leffler Markov chains

Let us study the case where the underlying preferential attachment tree has a sequence
of fitnesses a that is of the form (a, b, b, b, . . . ). We start by recalling the definitions of
Mittag-Leffler distributions and Mittag-Leffler Markov chains and introduced in [21],
and also studied in [26].

Mittag-Leffler distributions. Let 0 < α < 1 and θ > −α. The generalized Mittag-
Leffler ML(α, θ) distribution has pth moment

Γ(θ)Γ(θ/α+ p)

Γ(θ/α)Γ(θ + pα)
=

Γ(θ + 1)Γ(θ/α+ p+ 1)

Γ(θ/α+ 1)Γ(θ + pα+ 1)
(5.1)

and the collection of p-th moments for p ∈ N uniquely characterizes this distribution
thanks to Carleman’s criterion.

Mittag-Leffler Markov Chains. For any 0 < α < 1 and θ > −α, we introduce the
(a priori) inhomogenous Markov chain (Mα,θ

n )n≥1, the distribution of which we call the
Mittag-Leffler Markov chain of parameters (α, θ), or MLMC(α, θ). This type of Markov
chain was already defined in [21], for some parameters α and θ. It is a Markov chain
such that for any n ≥ 1,

Mα,θ
n ∼ ML (α, θ + n− 1) ,

and the transition probabilities are characterised by the following equality in law:(
Mα,θ
n ,Mα,θ

n+1

)
=
(
Bn ·Mα,θ

n+1,M
α,θ
n+1

)
,

with Bn ∼ Beta
(
θ+n−1
α + 1, 1

α − 1
)
, independent of Mα,θ

n+1. These chains are constructed
(for some values of θ depending on α) in [21]. Our proof of Proposition 5.1(i) ensures that
these chains exist for any choice of parameters 0 < α < 1 and θ > −α. Let us mention
that the proof of [21, Lemma 1.1] is still valid for the whole range of parameters 0 < α < 1

and θ > −α, which proves that these Markov chains are in fact time-homogeneous. We
provide, in a later paragraph, another proof of this time-homogeneity using a more
conceptual argument that relies on preferential attachment trees.

The limiting Markov chain is a Mittag-Leffler. Recall the definition of the sequence
(βk)k≥1 and their respective distributions βk ∼ Beta(Ak + k, ak+1). From our assumption
that a = a, b, b, b . . . we have for all k ≥ 1,

(Ak + k, ak+1) = (1 + a+ (k − 1)b, b).

Proof of Proposition 5.1 (i). For p ≥ 1, we can make the following computation, us-
ing (4.2), one change of indices and several times the property of the Gamma function
that for any z > 0 we have Γ (z + 1) = zΓ (z):

n−1∏
i=1

E [βpi ] =

n−1∏
i=1

Γ (1 + a+ p+ (b+ 1)(i− 1)) Γ (a+ (b+ 1)i)

Γ (1 + a+ (b+ 1)(i− 1)) Γ (a+ (b+ 1)i+ p)

=
Γ (1 + a+ p)

Γ (1 + a)
· Γ (a+ (b+ 1)(n− 1))

Γ (a+ (b+ 1)(n− 1) + p)
·

Γ
(
a+p
b+1 + n− 1

)
Γ
(

a
b+1 + n− 1

) · Γ
(

1 + a
b+1

)
Γ
(

1 + a+p
b+1

) .
(5.2)
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Using Stirling formula, we can then compute the numbers Cp introduced in (4.5),

Cp = (b+ 1)−p ·
Γ (1 + a+ p) Γ

(
1 + a

b+1

)
Γ (1 + a) Γ

(
1 + a+p

b+1

) . (5.3)

Using (4.12), the moments of Mk are given, for any p ∈ N by the formula:

E [(Ma
k)p] =

(b+ 1)p · Cp∏k−1
i=1 E [βpi ]

=
(5.3), (5.2)

Γ
(

a
b+1 + k − 1

)
Γ (a+ (b+ 1)(k − 1) + p)

Γ (a+ (b+ 1)(k − 1)) Γ
(
a+p
b+1 + k − 1

)
These moments identify using (5.1) the distribution of Ma

k for all k ≥ 1 as

Ma
k ∼ ML

(
1

b+ 1
,

a

b+ 1
+ k − 1

)
.

From this, and the form of the backward transitions, we can identify (Ma
k)k≥1 as having

a distribution MLMC
(

1
b+1 ,

a
b+1

)
.

Time-homogeneity of MLMC. We keep the notation from the previous paragraph,
working with a sequence a = a, b, b, b . . . , and show the time-homogeneity of the corre-

sponding Mittag-Leffler Markov chain (Ma
k)k≥1 ∼ MLMC

(
1
b+1 ,

a
b+1

)
using its connection

with preferential attachment trees.
For any x > −1, consider the sequence x = x, b, b, b . . . and (Pxn)n≥1 ∼ PAT(x) in such

a way that, using Theorem 1.4,

Mx
1 = lim

n→∞
n−1/(b+1) · deg+

Pxn
(u1) and Mx

2 = lim
n→∞

n−1/(b+1) · (deg+
Pxn

(u1) + deg+
Pxn

(u2)).

By choosing x appropriately, we can make (Mx
1 ,M

x
2 ) have the distribution of any of the

couples (Ma
k,M

a
k+1) for k ≥ 1. Thus, in order to prove the time-homogeneity of the

transitions, it suffices to prove that the conditional distribution of Mx
2 with respect to Mx

1

does not depend on x.
Recall from Section 1.2.2 in the introduction that we see (Pxn)n≥1 as an increasing

sequence of plane trees, defined as subsets of U. Also recall that for any u ∈ U, we
denote T (u) the subtree descending from u in U. At every time n ≥ 1, we can consider
the sequence (#(Pxn∩T (1)),#(Pxn∩T (2)), . . . ), which counts the number of vertices in the
subtrees descending from the children of u1 = ∅ in Pxn, in order of creation (completed
by an sequence of zeros). We can check that this sequence evolves as n grows with the
same distribution as the number of customers seating at different tables in a Chinese
Restaurant Process with seating plan ( 1

b+1 ,
x
b+1 ), see [45, Section 3.2] for a definition.

Then, conditionally on the evolution of this sequence, every time that a vertex is
added to one of those subtrees, it is attached to any vertex already present in the subtree
with probability proportional to its out-degree plus b (and in particular this does not
depend on the value of x).

Thanks to [45, Corollary 3.9], two Chinese Restaurant Processes with respective
seating plan ( 1

b+1 ,
x
b+1 ) and ( 1

b+1 ,
x′

b+1 ) with x, x′ > −1 have a density with respect to each
other and this density is a function of the scaling limit of the number of tables created in
the process, which corresponds in our case to Mx

1 .
These observations allow us to conclude that the distribution of (Pxn)n≥1 for any

x > −1 has a positive density with respect to (P0
n)n≥1, and this density is a function

of Mx
1 . From here, it is clear that conditionally on Mx

1 , the distribution of the quantity
(Mx

2 −Mx
1 ) = limn→∞ deg+

Pxn
(u2) does not depend on x, which concludes the argument.
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5.1.2 Products of generalised Gamma random variables.

The following paragraphs aim at proving Proposition 5.1(ii). In the first and second
paragraphs, we define the families of distributions of GGP and IPGGP-processes. Some
special cases of these processes already appeared in [42, 40]. In the third one we prove
that the distribution of (Ma

k)k≥1 belongs to this family whenever the sequence a is of the
form assumed in Proposition 5.1(ii).

Construction of a GPP(z, r)-process. For z, r > 0 real numbers, let (Zi)i≥1 be a
family of independent variables with the following distribution:

Z1 ∼ Gamma
(z
r

)
and for i ≥ 2, Zi ∼ Gamma(1) = Exp(1),

where, for any k > 0, the distribution Gamma(u) has density x 7→ xu−1e−x

Γ(u) 1{x>0} with
respect to the Lebesgue measure. Then for all k ≥ 1 we define Gk as,

Gk :=

(
k∑
i=1

Zi

) 1
r

.

We say that the process (Gk)k≥1 has the distribution of a Generalised Gamma process
with parameters (z, r) which we denote GPP(z, r).

Note that, using standard distributional equalities with Gamma and Beta distributions,
for every k ≥ 1, we have (Gk)r ∼ Gamma

(
k − 1 + z

r

)
and

Vk :=

(
Gk

Gk+1

)r
∼ Beta

(
k − 1 +

z

r
, 1
)
, so that V

1/r
k =

Gk
Gk+1

∼ Beta (r(k − 1) + z, 1) ,

(5.4)

and V
1/r
k is independent of Gk+1. In fact, we can further show that V1, V2, . . . , Vk,Gk+1

are jointly independent with the corresponding distribution and that this characterizes
the finite dimensional marginals of this process.

Remark 5.2. For z = r, the process (Gk)k≥1 has exactly the distribution of the points of
a Poisson process on (0 ,∞) with intensity r · tr−1dt, listed in increasing order.

Intertwined Products of GGP-processes. Let a be a real number with a > −1 and
b1, b2, . . . , b` be non-negative integers where at least one is non-zero. We let Br :=

∑r
s=1 bs

for all 0 ≤ r ≤ `, with the convention that B0 := 0. We also let S = B`. Then we define
the set

S := {1, 2, . . . , S + `− 1} \ {Br + r | 1 ≤ r ≤ `− 1}

=
⋃̀
r=1

{r +Br−1, r +Br−1 + 1, . . . , r +Br−1 + br − 1}

Start with independent GPP processes
{
G(q)

∣∣ q ∈ S} indexed by S such that for all
q ∈ S,

G(q) ∼ GPP(a+ q, `+ S).

Now G = (Gk)k≥1 is defined in such a way that for all n ≥ 1 and 1 ≤ r ≤ ` we have

G`·(n−1)+r =

 ∏
q∈S

1≤q≤r−1+Br−1

G
(q)
n+1

 ·
 ∏

q∈S
r+Br−1≤q≤S+`−1

G(q)
n

 . (5.5)
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The process (Gk)k≥1 defined above is said to have distribution of an Intertwined Product
of Generalized Gamma Processes with parameters (a, b1, b2, . . . , b`), which we denote
IPGGP(a, b1, b2, . . . , b`). Its finite dimensional marginals can be obtained in the same way
as it was done in the preceding paragraph for Generalized Gamma processes.

Identification of the limiting chain. Fix ` ≥ 1 and b1, b2, . . . , b` ≥ 0 some integers
(where at least one is non-zero) and suppose that the sequence a has the following form,

a = (a, b1, b2, . . . , b`, b1, b2, . . . b`, b1, . . . )

meaning that the sequence is periodic with period ` starting from the second term, with
a > −1.

For any j ≥ 0 and 1 ≤ r ≤ ` we have

βj`+r ∼ Beta (a+Br−1 + r + j(`+ S), br) ,

for the (βk)k≥1 as defined in Theorem 1.1. We fix 1 ≤ r ≤ `. For any j ≥ 1, p ≥ 1, we use
the moments (4.2) of a Beta random variable and a telescoping argument to write

E [(βj`+r)
p] =

p−1∏
q=0

a+Br−1 + r + j(`+ S) + q

a+Br−1 + r + j(`+ S) + q + br

=

br−1∏
q=0

a+Br−1 + r + j(`+ S) + q

a+Br−1 + r + j(`+ S) + q + p
.

Using the last display, we get that for any n ≥ 1,

n∏
j=0

E [(βj`+r)
p] =

br−1∏
q=0

Γ
(
a+Br−1+r+q

`+S + n+ 1
)

Γ
(
a+Br−1+r+q+p

`+S

)
Γ
(
a+Br−1+r+q

`+S

)
Γ
(
a+Br−1+r+q+p

`+S + n+ 1
) .

Using Stirling’s approximation we get that for a fixed 1 ≤ r ≤ `,

n∏
j=0

E [(βj`+r)
p] ∼
n→∞

n−
p·br
`+S ·

br−1∏
q=0

Γ
(
a+Br−1+r+q+p

`+S

)
Γ
(
a+Br−1+r+q

`+S

) .

Hence, recalling the definition of Cp in (4.5) and accounting for all the possible values of
r we get

Cp = `
pS
`+S ·

∏̀
r=1

br−1∏
q=0

Γ
(
a+Br−1+r+q+p

`+S

)
Γ
(
a+Br−1+r+q

`+S

) = `
pS
`+S ·

∏
i∈S

Γ
(
a+i+p
`+S

)
Γ
(
a+i
`+S

) .

Then using (4.12) with c = S/`,

E
[
(Ma

`·(n−1)+r)
p
]

=
(c+ 1)p · Cp∏`·(n−1)+r−1

i=1 E [βpi ]

=

(
S + `

`

)p
· `

pS
S+` ·

r−1∏
t=1

bt−1∏
j=0

Γ
(
n+ a+Bt−1+t+j+p

`+S

)
Γ
(
n+ a+Bt−1+t+j

`+S

) ·
∏̀
t=r

bt−1∏
j=0

Γ
(
n− 1 + a+Bt−1+t+j+p

`+S

)
Γ
(
n− 1 + a+Bt−1+t+j

`+S

)
=
(

(S + `) · (`
−`
S+` )

)p
·

∏
q∈S

1≤q≤r−1+Br−1

Γ
(
n+ a+q+p

`+S

)
Γ
(
n+ a+q

`+S

) · ∏
q∈S

r+Br−1≤q≤S+`−1

Γ
(
n− 1 + a+q+p

`+S

)
Γ
(
n− 1 + a+q

`+S

) .
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Using the last display and the fact that random variable with distribution Gamma(u) has
p-th moment equal to Γ(u+p)

Γ(u) , we can identify the distribution of the one-dimensional

marginals `
`

S+`

S+` ·M
a
k for any k ≥ 1 with the ones of the process described in (5.5). The

identification of the distribution of the process `
`

S+`

S+` ·(M
a
k)k≥1 as IPGGP(a, b1, b2, . . . , b`) is

then obtained by comparing their finite dimensional distribution which are characterized
by Proposition 4.2 and, respectively, (5.5) together with the discussion below (5.4).

Sparse sequences. Let us treat a particular example of parameters a, b1, b2, . . . b` for
which the distribution IPGGP(a, b1, b2, . . . , b`) has a simpler description than the general
case. Suppose that only one of the parameters b1, b2, . . . , b` is non-zero, say b` for example.
Keeping the notation introduced above, the corresponding set S contains only b` elements
S = {`, ` + 1, . . . , ` + b` − 1}. Following the definition (5.5), the process (Gk)k≥1 with
distribution IPGGP(a, 0, 0, . . . , 0, b`) is constant on every interval J(n−1)`+ 1 , n`K for any
integer n ≥ 1 and, the process (G(n−1)`+1)n≥1 is just given by a product of b` independent
GGP-processes

G(k−1)`+1 =
∏

`≤q≤`+b`−1

G
(q)
k ,

where for all ` ≤ q ≤ `+ b` − 1, the process (G
(q)
k )k≥1 has distribution GPP(a+ q, `+ b`).

In the particular case where a = 1 and (b1, b2, . . . , b`−1, b`) = (0, 0, . . . , 0, 1), the picture
is even simpler because the last display becomes a product over only one term. We can
check using Remark 5.2 that the process (G(k−1)`+1)k≥1 has then exactly the distribution
of the points of a Poisson process on (0 ,∞) with intensity (`+ 1)t`dt, listed in increasing
order, which was already noted in [40, Remark 2].

5.2 Application to Pólya urns with immigration

Define the following generalisation of Pólya’s urn, which depends on a sequence of
numbers (an)n≥1: start at time 1 with an urn containing a1 red balls. At every time n ≥ 2,
we sample a ball uniformly at random from the urn, return it to the urn with 1 additional
ball of the same colour, plus an immigration of an additional black balls. The outcome
of the first step being deterministic, it is equivalent to consider that we start at time 2

with a1 + 1 red balls and a2 white balls in the urn, so that we allow ourselves to consider
any (possibly negative) value a1 > −1. This model was studied in the sequence of paper
[41, 42, 40] in specific cases of periodic immigration and also studied in [1] with a larger
class of periodic immigration.

We denote Rn the number of red balls in the urn at time n and state a scaling limit
result for Rn when n→∞. We also identify the speed of convergence and the Gaussian
fluctuations around the limit, provided that the immigration is sufficiently regular.

Recall from the introduction the assumption (Hc) defined for a real number c > 0. We
introduce the following more precise assumption of the same type, for any c > 0 and
δ > 0.

An = c · n ·
(
1 +O

(
n−δ

))
. (Hδ

c )

Remark that for any 0 < δ < 1
2 , this assumption is satisfied for periodic sequences a,

and almost surely satisfied by sequences of i.i.d. non-negative random variables with a
second moment.

Proposition 5.3. Assume that the sequence a = (an)n≥1 satisfies (Hc) for some c > 0.

Then for Dn := n−
1
c+1 ·Rn the following holds:
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(i) We have the following almost sure convergence,

Dn −→
n→∞

D∞,

where D∞ has the same law as Ma
1 , defined in (1.5).

(ii) If we additionally assume that a satisfies (Hδ
c ) for some δ > 1

2(c+1) then we have

n
1

2(c+1) · D∞ −Dn√
Dn

(d)−→
n→∞

N (0, 1).

Remark 5.4. If the sequence a has one of the particular forms treated in Proposition 5.1
of the previous section, we can identify the distribution of the limiting random variable as
being Mittag-Leffler or a product of independent generalized Gamma random variables.
This gives us an alternative proof for the similar statement [1, Theorem 3.8].

Proof. Let (Pn)n≥1 be a sequence of trees with distribution PAT(a) and consider the
sequence (a1 + deg+

Pn
(u1))n≥1. It is easy to see that this sequence has exactly the

same distribution as the sequence (Rn)n≥1 of numbers of red balls in a Pólya urn with
immigration sequence a, hence it suffices to study the former quantity.

Since the sequence a satisfies our assumption (Hc) for some c > 0 then using (1.6)
we can write the following almost sure convergence

n−
1
c+1 · deg+

Pn
(u1) →

n→∞
Ma

1 ,

where the sequence (Ma
n)n≥1 is defined in (1.5), so this proves (i).

We turn to the proof of (ii). We prove this convergence in two steps, by first prov-
ing some corresponding result for the degree of the first vertex in a WRT, and then
using Theorem 1.1 and Proposition 1.3 to transfer the result to the corresponding PAT

distribution.
Let (Tn)n≥1 be a sequence of trees with distribution WRT(w) with a sequence w

satisfying the following assumption

Wn =
n→∞

nγ

1− γ
·
(

1 + o
(
n−

1−γ
2

))
, (5.6)

for some γ ∈ (0 , 1). In this context, recalling (2.2), the degree of the first vertex can be
written as

deg+
Tn

(u1) =

n∑
i=2

1{Ui≤ w1
Wn
}

= w1 · n1−γ + w1 ·

(
n∑
i=2

1

Wn
− n1−γ

)
+

n∑
i=2

(
1{Ui≤ w1

Wn
} −

w1

Wn

)
.

Now, using our assumption on the sequence (Wn)n≥1 we get 1
Wn

= 1−γ
nγ + o

(
n−

γ
2−

1
2

)
, so

that (
n∑
i=2

1

Wn
− n1−γ

)
= o
(
n

1−γ
2

)
.

Rearranging the terms, we get

n
1−γ
2 · (n−(1−γ) · deg+

Tn
(u1)− w1) = n−

1−γ
2 ·

n∑
i=2

(
1{Ui≤ w1

Wn
} −

w1

Wn

)
+ o(1) ,
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and using the Lindeberg-Feller theorem (see [16, Theorem 3.4.5] for example), we get
that the expression on the RHS of the last display converges in distribution when n→∞
to a Gaussian distribution N (0, w1). Recalling that n−(1−γ) · deg+

Tn
(u1) → w1 a.s. as

n→∞, we can also write using Slutsky’s lemma

n
1−γ
2 ·

(n−(1−γ) · deg+
Tn

(u1)− w1)√
n−(1−γ) · deg+

Tn
(u1)

(d)−→
n→∞

N (0, 1). (5.7)

Now we transfer this result to the case of preferential attachment trees. For this,
thanks to Theorem 1.1 and Proposition 1.3, it suffices to prove that a satisfies the
condition (Hδ

c ) with δ > 1
2(c+1) then the corresponding sequence (Ma

n)n≥1 defined (1.5)
almost surely satisfies (5.6) for γ = c

c+1 . From Proposition 1.3 and the definition
of (Ma

n)n≥1 as a scaled version of (Wa
n)n≥1, we already know that we have Ma

n =
n→∞

1
1−γ · n

γ · (1 + O(n−ε)) almost surely, for γ = c
c+1 and some ε > 0. In our case, this is

not enough, because we need something quantitative on ε. Going along the proof of
Proposition 1.3 again, we get from (4.9) that we can in fact write

Ma
n =
n→∞

1

1− γ
· nγ · (1 +O

(
n−ζ

)
)

for any ζ < δ ∧ 1
2 , so that (5.6) is almost surely satisfied by (Ma

n)n≥1 if

δ >
1− γ

2
=

1

2(c+ 1)
,

which is what we assumed. Now, thanks to Theorem 1.1, conditionally on the sequence
(Ma

n)n≥1 the distribution of (Pn)n≥1 is WRT((ma
n)n≥1). Applying (5.7) in this case finishes

to prove (ii).

5.3 Applications to some other models of preferential attachment

We present here another model of preferential attachment which appears in the
literature, for example in [40]. This model does not produce a tree as ours does, but we
can couple them in such a way that some of their features coincide. We only focus on
one particular model of graph here but the method presented here can adapt to other
similar models.

A model of (m,α)-preferential attachment Let S be a non-empty graph, with vertex-

set {v(1)
1 , . . . , v

(k)
1 } which have degrees (d1, . . . dk), and m ≥ 2 an integer and α > −m a

real number such that α+ di > 0 for all 1 ≤ i ≤ k. The model is then defined as follows:
we let G1 = S. Then, at any time n ≥ 1, the graph Gn+1 is constructed from the graph Gn
by:

• adding a new vertex labelled vn+1 with m outgoing edges,

• choosing sequentially to which other vertex each of these edges are pointed, each
vertex being chosen with probability proportional to α plus its degree (the degree
of the vertices are updated after each edge-creation).

The degree of a vertex in a graph refers in this section to the number of edges incident
to it. Here the growth procedure in fact produces multigraphs, in which it is possible for
two vertices to be connected to each other by more than one edge. In this case, all those
edges contribute in the count of their degree.
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We can couple this model to a preferential attachment tree with sequence of fitnesses
a defined as:

a = (w(S), 0, 0, . . . , 0︸ ︷︷ ︸
m−1

,m+ α, 0, 0, . . . , 0︸ ︷︷ ︸
m−1

,m+ α, 0, 0 . . . ),

where w(S) := d1 + d2 + · · ·+ dk + kα.
Indeed, we first construct (Pn) with distribution PAT(a). Then, for any n ≥ 1, consider

the tree P1+m(n−1) and for all 2 ≤ i ≤ n, merge together each vertex with fitness m+ α

together with the m − 1 vertices with fitness 0 that arrived immediately before it. If
G1 only contains one vertex, it is immediate that the obtained sequence of graphs has
exactly the same distribution as (Gn)n≥1. For general seed graphs S, we can still use the
same construction and the obtained sequence of graphs has the same evolution as some
sequence (G̃n)n≥1 which would be obtained from (Gn)n≥1 by merging all the vertices

{v(1)
1 , . . . , v

(k)
1 } into a unique vertex v1.

Note that a similar construction would also be possible if the degrees of the vertices
v2, v3, . . . were given by a sequence of integers (m2,m3, . . . ) instead of all being equal to
some constant value m. This is for example the case in the model studied in [13], where
the degrees are random.

We have the following convergence for degrees of vertices in the graph, as n→∞.
The distribution Dir(x1, x2, . . . , xk) appearing in the statement is a Dirichlet distribution
with parameters x1, x2, . . . , xk on the k-dimensional simplex.

Proposition 5.5. The following convergence holds almost surely in any `p with p > 2+ α
m :

n−
1

2+α/m (degGn(v
(1)
1 ),degGn(v

(2)
1 ), . . . ,degGn(v

(k)
1 ),degGn(v2),degGn(v3), . . . )

−→
n→∞

(N1 ·B(1),N1 ·B(2), . . .N1 ·B(k),N2 − N1,N3 − N2, . . . ),

where

(B(1), B(2), . . . B(k)) ∼ Dir(d1 + α, d2 + α, . . . , dk + α),

and the process (Nn)n≥1 is independent of (B(1), B(2), . . . , B(k)).
Furthermore, whenever α ∈ Z with α > −m or m = 1 then the distribution of (Nn)n≥1

is explicit and given by:

• if α ∈ Z with α > −m, then

m
−2m
2m+α

2m+ α
· (Nn)n≥1 ∼ IPGGP(w(S), 0, 0, . . . , 0︸ ︷︷ ︸

m−1

,m+ α)

• if m = 1, then

(Nn)n≥1 ∼ MLMC

(
1

2 + α
,
w(S)

2 + α

)
,

where those distributions are the ones that appear in Proposition 5.1.

This result strengthens the one of [40, Theorem 1, Theorem 2 and Proposition 1]
which corresponds (up to some definition convention) to the case α = 1 − m. We
emphasize that the convergence here is almost sure in an `p space.

Proof of Proposition 5.5. Using the coupling argument, we know that we can construct
jointly the sequence of graphs (Gn)n≥1 and a sequence of trees (Pn)n≥1 ∼ PAT(a) with
fitness sequence

a = (w(S), 0, 0, . . . , 0︸ ︷︷ ︸
m−1

,m+ α, 0, 0, . . . , 0︸ ︷︷ ︸
m−1

,m+ α, . . . ),
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in such a way that for every n ≥ 1, the sequence k∑
j=1

(
degGn(v

(j)
1 )− dj

)
, (degGn(v2)−m), . . . , (degGn(vn)−m), 0, 0 . . .


coincides with

(deg+
P1+(n−1)m

(u1),deg+
P1+(n−1)m

(u1+m),deg+
P1+(n−1)m

(u1+2m), . . . ).

Using this connection, together with Theorem 1.1, Proposition 1.3 and Proposition 2.1
we get

n−
1

2+α/m (degGn(v1) + degGn(v2) + · · ·+ degGn(vk),degGn(u2),degGn(u3), . . . )

−→
n→∞

(N1,N2 − N1,N3 − N2, . . . ),

almost surely in `p for all p > 2 + α
m , for some random sequence (Nn)n≥1. Note that

the time-change between (Gn)n≥1 and (Pn)n≥1 is responsible for an extra factor in the
scaling, so that the sequence (Nn)n≥1 has the distribution of m

m
2m+α · (Ma

n)n≥1. In the
case α ∈ Z or m = 1, Proposition 5.1 identifies the distribution of the limiting sequence.

Last, the convergence of 1∑k
j=1 degGn

(v
(j)
1 )
· (degGn(v

(1)
1 ),degGn(v

(2)
1 ), . . . ,degGn(v

(k)
1 )) just

follows from the classical result of convergence for the proportion of balls in a Pólya
urn.

A Technical proofs and results

This appendix contains some technical results that are used throughout this paper.
Let start by stating a useful conditional version of the Borel-Cantelli lemma.

Lemma A.1. Let (Fn)n≥1 be a filtration and let (Bn)n≥1 be a sequence of events adapted
to this filtration. For all n ≥ 1, let pn := P (Bn | Fn−1). We have∑n

i=1 1Bi∑n
i=1 pi

→
n→∞

1 a.s. on the event

{ ∞∑
i=1

pi =∞

}

and also

n∑
i=1

1Bi converges a.s. on the event

{ ∞∑
i=1

pi <∞

}
.

Proof. The first convergence is the content of [16, Theorem 5.4.11] and the second one
is an application of [16, Theorem 5.4.9] to the martingale (

∑n
i=1(1Bi − pi))n≥1

.

The following lemma is a rewriting of [5, Lemma 1]. We provide the proof for
completeness.

Lemma A.2. Let (Mn)n≥1 be a complex-valued martingale with finite q-th moment for
some q ∈ [1 , 2]. Then for every n ≥ 1 we have

E [|Mn+1|q] ≤ E [|Mn|q] + 2q · E [|Mn+1 −Mn|q] .

Proof. Let Xn+1 := Mn+1 −Mn and let X ′n+1 be a random variable such that condition-
ally on (M1, . . . ,Mn) the random variable X ′n+1 is independent of, and has the same
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distribution as Xn+1. Then

E [|Mn+1|q] = E

[∣∣∣∣E [Mn+1 −X ′n+1

∣∣M1, . . .Mn+1

]∣∣∣∣q]
≤ E

[∣∣Mn+1 −X ′n+1

∣∣q]
= E

[∣∣Mn +Xn+1 −X ′n+1

∣∣q]
≤ E [|Mn|q] + E

[∣∣Xn+1 −X ′n+1

∣∣q]
≤ E [|Mn|q] + 2q · E [|Xn+1|q] ,

where the first equality comes from the fact that E
[
X ′n+1

∣∣M1, . . .Mn+1

]
= 0. The first

inequality is the one of Jensen for conditional expectation, applied to the convex function
z 7→ |z|q. The second inequality is due to Clarkson, see [55, Lemma 1], and can be
applied because the distribution of Xn+1 −X ′n+1 conditional on Mn is symmetric and
1 ≤ q ≤ 2. The last inequality comes from the triangle inequality for the Lq-norm.

Let us state another result about martingales, which we use numerous times through-
out the paper. Recall our uniform big-O and small-o notation, introduced in (3.4).

Lemma A.3. Suppose that (z 7→ Zn(z))n≥1 is a sequence of analytic functions on some
open set O ⊂ C, adapted to some filtration (Gn). Suppose that for every z ∈ O, the
sequence (Zn(z))n≥1 is a martingale with respect to the filtration (Gn). If there exists a
parameters q > 1 and continuous functions α : O → R and δ : O → (0 ,∞) such that for
all n ≥ 1 we have

E [|Z2n(z)− Zn(z)|q] = OO

(
nα(z)q−δ(z)+oO(1)

)
,

then for any compact subset K ⊂ O, there exists ε(K) > 0 such that

(i) if α > 0 on O we have n−α(z) · |Zn(z)− Z1(z)| = OK
(
n−ε(K)

)
almost surely and also

in expectation,

(ii) if α ≤ 0 on O, the almost sure limit Z∞(z) exists for z ∈ O and we have n−α(z) ·
|Zn(z)− Z∞(z)| = OK

(
n−ε(K)

)
almost surely and also in expectation.

Proof of Lemma A.3. First, without loss of generality, we can consider that the term
oO(1) is identically equal to 0, otherwise we just replace the function z 7→ δ(z) by
z 7→ 1

2 · δ(z). Second, by compactness, it is sufficient to prove the result for a small disk
around each x ∈ K. Since O is an open set, let ρ > 0 be such that D(x, 2ρ) ⊂ O, where
D(x, 2ρ) is the closed disk in the complex plane with centre x and radius 2ρ. We denote

α = inf
D(x,2ρ)

α, α = sup
D(x,2ρ)

α, δ = inf
D(x,2ρ)

δ,

and choose ρ small enough so that α − α + 1
q δ > 0. Then if we let ξ : [0 , 2π] → C such

that ξ(t) = x+ 2ρeit, we have for any n and m, using the Cauchy formula

sup
z∈D(x,ρ)

|Zn(z)− Zm(z)| ≤ π−1

∫ 2π

0

|Zn(ξ(t))− Zm(ξ(t))|dt.

Now,

sup
2s≤n≤2s+1

sup
z∈D(x,ρ)

|Zn(z)− Z2s(z)| ≤ π−1 sup
2s≤n≤2s+1

∫ 2π

0

|Zn(ξ(t))− Z2s(ξ(t))|dt

≤ π−1

∫ 2π

0

sup
2s≤n≤2s+1

|Zn(ξ(t))− Z2s(ξ(t))|dt. (A.1)
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Using sequentially Jensen’s inequality, Doob’s maximal inequality in Lq and the assump-
tion of the lemma gives us, for z ∈ D(x, 2ρ),

E

[
sup

2s≤n≤2s+1

|Zn(z)− Z2s(z)|

]
≤ E

[
sup

2s≤n≤2s+1

|Zn(z)− Z2s(z)|q
] 1
q

≤ q

q − 1
· E [|Z2s+1(z)− Z2s(z)|q]

1
q

=
s→∞

OD(x,2ρ)

(
2(α(z)− 1

q ·δ(z))s
)
. (A.2)

So using (A.1), Fubini’s theorem and (A.2), we get

E

[
sup

2s≤n≤2s+1

sup
z∈D(x,ρ)

|Zn(z)− Z2s(z)|

]
≤ π−1

∫ 2π

0

E

[
sup

2s≤n≤2s+1

|Zn(ξ(t))− Z2s(ξ(t))|

]
dt

=
s→∞

O
(

2(α− 1
q ·δ)s

)
. (A.3)

Now we treat the two cases α > 0 and α ≤ 0 separately. Remark that the quantity(
α− 1

q · δ
)

is negative when α ≤ 0, but can be of any sign in the case α > 0.

• For α > 0 and r ≥ 0, we let

Ar := 2−αr ·
r∑
s=0

sup
2s≤n≤2s+1

sup
z∈D(x,ρ)

|Zn(z)− Z2s(z)|.

Using (A.3), we have

E [Ar] ≤ cst ·2−αr ·
r∑
s=0

2(α− 1
q ·δ)s ≤ cst ·2−(α−0∨(α− 1

q ·δ))r.

Thanks to our assumptions, the number β := α−0∨ (α− 1
q · δ) is positive. Using Markov’s

inequality and the last display yields

P
(
Ar > 2−

β
2 r
)
≤ 2

β
2 r · E [Ar] ≤ cst ·2−

β
2 r,

which is summable, so the Borel-Cantelli lemma ensures that Ar = O
(

2−
β
2 r
)

almost

surely as r → ∞. Now for any n ≥ 1, there is a unique integer rn such that 2rn ≤ n <

2rn+1, namely rn = blog2(n)c, and we write

n−α(z) · |Zn(z)− Z1(z)| ≤ n−α(z) sup
1≤k≤n

sup
z∈D(x,ρ)

|Zn(z)− Z1(z)| ≤ Arn ,

which proves point (i), because almost surely Arn = O
(
n−

β
2

)
as n→∞.

• For α ≤ 0, the reasoning is similar so we use the same notation for slightly different
quantities. For any integer r ≥ 0 we let

Ar := 2−α(r+1) ·
∞∑
s=r

sup
2s≤k≤2s+1

sup
z∈D(x,ρ)

|Zk(z)− Z2s(z)|

Then, thanks to (A.3), we have

E [Ar] ≤ cst ·2−α(r+1) ·
∞∑
s=r

2(α− 1
q ·δ)s ≤ cst ·2−(α−α+ 1

q ·δ)r,
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and thanks to our assumption the number β := α− α+ 1
q · δ is positive. Using the same

arguments as in the case α > 0 we have Ar = O
(

2−
β
2 r
)

almost surely as r → ∞ and

taking rn := blog2(n)c yields

n−α(z) sup
k≥n

sup
z∈D(x,ρ)

|Zk(z)− Zn(z)| ≤ Arn .

Again we almost surely have Arn = O
(
n−

β
2

)
as n→∞. This ensures that the sequence

of functions (z 7→ Zn(z))n≥1 is almost surely a Cauchy sequence for the uniform conver-
gence on the disc D(x, ρ) (so that its limit z 7→ Z∞(z) is well-defined on the disk) and
that (ii) is satisfied.

Finally, we give a proof of Lemma 3.4.

Proof of Lemma 3.4. From the assumption, we know that there exists ε > 0 such that
Wn = cst ·nγ +O(nγ−ε) as n→∞. Without loss of generality, we can assume that ε < 1.

Then it is immediate that wn = Wn+1 −Wn = O(nγ−ε). Then

2n∑
i=n

(
wi
Wi

)2

≤ 1

W 2
n

· max
n≤i≤2n

wi ·
2n∑
i=n

wi ≤
W2n

W 2
n

· max
n≤i≤2n

wi = O
(
n−ε

)
, (A.4)

and the first point follows by summing over intervals of the type Jn2k , n2k+1K.
Now write

W1

Wn
=

n∏
i=2

Wi−1

Wi
=

n∏
i=2

(
1− wi

Wi

)
= exp

(
n∑
i=2

log

(
1− wi

Wi

))
.

Since wi
Wi
→ 0 as i→∞, we get

log

(
1− wi

Wi

)
= − wi

Wi
+O

((
wi
Wi

)2
)

Putting everything together, we get

n∑
i=2

wi
Wi

= −
n∑
i=2

log

(
1− wi

Wi

)
+

n∑
i=2

O

((
wi
Wi

)2
)

= logWn − logW1 +

∞∑
i=2

O

((
wi
Wi

)2
)
−O

( ∞∑
i=n+1

(
wi
Wi

)2
)

= logWn + cst +O
(
n−ε

)
.

Last, just remark that logWn = log(cst ·nγ · (1 +O(n−ε))) = γ log n+ cst +O(n−ε), which
finishes the proof.
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