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A localization theorem for the planar Coulomb gas in
an external field

Yacin Ameur*

Abstract

We examine a two-dimensional Coulomb gas consisting of n identical repelling point
charges at an arbitrary inverse temperature β, subjected to a suitable external field.

We prove that the gas is effectively localized to a small neighbourhood of the
droplet – the support of the equilibrium measure determined by the external field.
More precisely, we prove that the distance between the droplet and the vacuum is
with very high probability at most proportional to√

logn

βn
.

This order of magnitude is known to be “tight” when β = 1 and the external field is
radially symmetric.

In addition, we prove estimates for the one-point function in a neighbourhood of
the droplet, proving in particular a fast uniform decay as one moves beyond a distance

roughly of the order
√

logn
βn

from the droplet.
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1 Introduction and main results

The planar Coulomb gas is a random configuration consisting of many (but finitely
many) identical repelling point charges {ζi}n1 in C.

To keep the system from dispersing to infinity we assume the presence of an external
field nQ where Q is a suitable extended real-valued function defined on C, large near
infinity in the sense that

lim inf
ζ→∞

Q(ζ)

2 log |ζ|
> 1. (1.1)
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Localizing the Coulomb gas

The function Q, which is called an external potential, is fairly general but not quite
arbitrary; precise assumptions are given below.

To a planar configuration {ζj}n1 we associate the Hamiltonian (or energy)

Hn =

n∑
j 6=k

log
1

|ζj − ζk|
+ n

n∑
j=1

Q(ζj). (1.2)

The statistical model is completed by fixing an inverse temperature β = 1/kBT and
considering {ζj}n1 as a random sample with respect to the Gibbs measure

dPβn =
1

Zβn
e−βHn dAn. (1.3)

Here and throughout we write dA for the Lebesgue measure in C divided by π and
dAn(ζ1, . . . , ζn) = dA(ζ1) · · · dA(ζn) for the corresponding product measure, where the
constant Zβn in (1.3) is the usual partition function,

Zβn =

∫
Cn

e−βHn dAn. (1.4)

We shall now gradually become explicit about our precise assumptions, introducing
simultaneously our basic objects of study.

(i) The external potential Q is assumed to be a fixed lower semi-continuous function
on C with values in R ∪ {+∞} such that the set Σ := {Q < +∞} has non-empty
interior Int Σ. We also suppose that Q is C2-smooth in Int Σ, and that Q obeys the
growth condition (1.1).

We next define the logarithmic Q-energy of a finite, compactly supported Borel
measure µ on C by

IQ[µ] =

∫∫
C2

log
1

|ζ − η|
dµ(ζ)dµ(η) + µ(Q),

where “µ(Q)” is shorthand for
∫
C
Qdµ.

It is shown in [25] that there is a unique equilibrium measure σ of total mass 1, which
minimizes IQ[µ] over all compactly supported Borel probability measures µ. The support
of σ, which we denote by the symbol

S = S[Q] := suppσ

is called the droplet in external potential Q; we stress that this is a compact set. It is
convenient to make the following assumption.

(ii) We assume that the droplet S = S[Q] is contained in Int Σ where Σ = {Q < +∞}.

By (i) and (ii) it follows that Q is smooth in a neighbourhood of S. It is well-known
(see [25]) that in this circumstance, the equilibrium measure σ is absolutely continuous
with respect to dA and takes the form

dσ = ∆Q · 1S dA. (1.5)

Here and in what follows we normalize the Laplacian by

∆Q := ∂∂̄Q =
1

4
(Qxx +Qyy), (z = x+ iy).

Observe that since σ is a probability measure, Q is necessarily subharmonic on the
support S.

We now list additional conditions which we always assume to be satisfied in the
sequel.
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Localizing the Coulomb gas

(iii) The potential Q is strictly subharmonic in a neighbourhood of the boundary ∂S.

(iv) The boundary ∂S has finitely many components.

(v) Each component of ∂S is an everywhere C1-smooth Jordan curve.

(vi) S∗ = S where S∗ is the coincidence set for the obstacle problem, given in Section
2.

Some of these conditions are assumed merely for convenience and may be relaxed.
The practically minded reader may note that the class of potentials which are real-
analytic where finite typically works well, and sufficiently small smooth perturbations of
such potentials are also manageable. A detailed discussion of this situation is given in
Subsection 5.1.

We will denote the Euclidean distance between a point ζ ∈ C and the compact set S
by the symbol

δ(ζ) = dist(ζ, S) := min{|ζ − η|; η ∈ S}.

Let {ζj}n1 be a random sample from (1.3). If W is a measurable subset of C we will
denote by #(W ∩ {ζj}n1 ) the number of indices j such that ζj ∈ W . By definition, the
one-point function of {ζj}n1 is

Rβ
n(ζ) = lim

ε→0

Eβn[#(D(ζ; ε) ∩ {ζj}n1 )]

ε2
,

where D(ζ; ε) is the open disc {η; |ζ − η| < ε}.
We next define a positive constant c0 = c0[Q] by

c0 := min{∆Q(η); η ∈ ∂S}. (1.6)

Given these preliminaries, we have the following theorem.

Theorem 1. Let Q be a potential satisfying assumptions (i)-(vi). There exists an open
neighbourhood Ω of S and constant C > 1 such that for all n ≥ 1

Rβ
n(ζ) ≤ Cβn2e−cβn·δ(ζ)

2

, ζ ∈ Ω. (1.7)

Here c can be taken to be any positive constant with c < c0.

The exterior decay given in (1.7) comes close to known exact results for β = 1 as well
as projected (or “physical”) results for arbitrary β in [12].

We note that the uniform bound R β
n (ζ) ≤ Cβn2 of Theorem 1 can be improved in the

determinantal case β = 1 to R 1
n ≤ Cn (e.g. [5, Section 3]). We are not aware of similar

uniform bounds for β 6= 1.
Associated to a random sample {ζj}n1 we now define the number

Dn := max
1≤j≤n

{δ(ζj)}. (1.8)

We regard Dn as a random variable with respect to the Gibbs measure, which thus
represents the distance from the droplet to the vacuum.

Theorem 2. Assume that the external potential Q satisfies assumptions (i)-(vi).
Let β = βn be a possibly n-dependent inverse temperature which is not too small in

the sense that

lim
n→∞

βnn

log n
=∞. (1.9)
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Localizing the Coulomb gas

Then there exists a sequence µ = µn of positive numbers with

µn . log log n+ βn, (1.10)

and constants c > 0 and a > 0, such that for each real t satisfying

t ≤ aβnn

we have the estimate

Pβn

({
Dn >

√
log n+ µn + t

cβnn

})
≤ e−2t. (1.11)

Here c and a depend only on Q; c can be taken as any positive number with c < c0, where
c0 is given in (1.6).

Remark 1.1. The meaning of the notation an . bn is that there exists a number n0 and
a constant C such that an ≤ Cbn for all n ≥ n0. (The number n0 may depend on the
sequence (βn) and Q, while C depends only on n0 and Q.) The symbol an � bn means
an . bn and bn . an.

Recall from [20] that (for any fixed β > 0) the system {ζj}n1 tends to follow the
equilibrium measure σ in the sense that

lim
n→∞

1

n
Eβn(f(ζ1) + · · ·+ f(ζn))→ σ(f) (1.12)

for each bounded continuous function f . This implies, in a loose sense, that that the
particles are likely to stay in the immediate vicinity of the droplet. It could be said that
Theorem 2 gives more detailed information about exactly how “localized” the gas is
about the droplet.

To illustrate this point, we may observe that if we fix a β > 0 and choose t = tn so
that tn →∞ and tn/ log n→ 0 as n→∞, then (1.11) implies

A >

√
1

c0
implies lim

n→∞
Pβn

({
Dn > A

√
log n

βn

})
= 0. (1.13)

Hence if A satisfies the premise in (1.13), then the gas is effectively localized to the
set of ζ with

δ(ζ) < A

√
log n

βn
. (1.14)

The estimate (1.14) might be compared with earlier results on the distribution of
the spectral radius of certain types of normal random matrices, due to Rider [23] for
the Ginibre ensemble, cf. [16] for more general ensembles corresponding to radially
symmetric potentials Q.

Indeed, as is well-known, we can interpret the Coulomb gas {ζj}nj=1 in external
potential Q at inverse temperature β = 1 as eigenvalues of normal random matrices.
(See [17, 19] for details.) Let us temporarily assume that Q is radially symmetric and
that the droplet is the disc centered at 0 of radius R.

A normal matrix with eigenvalues {ζj}n1 has its spectral radius equal to max1≤j≤n |ζj |,
and if Dn > 0 then clearly

R+Dn = max
1≤j≤n

|ζj |. (1.15)

The identity (1.15) may of course fail if Dn = 0, but since P1
n({Dn = 0})→ 0 rapidly

as n→∞ by estimates in [16, 23], we may regard (1.15) as “essentially” an identity.
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Localizing the Coulomb gas

We shall show in Subsection 5.2 that the estimate (1.14) comes close to earlier results
on spectral radii in [23, 16], in the sense that the order of magnitude of our obtained
localization is comparable with what is obtained in those papers.

While our main focus is on the case when t = tn increases slowly to infinity in the
sense that tn/βn is “small”, it is also relevant to note the following theorem, concerning
the case when tn/βn is “large”.

Theorem 3. Keeping the conditions in Theorem 2, there exists a number r0 > 0 such
that for each r ≥ r0 there is a number k(r) > 0 such that

Pβn
n ({Dn > r}) . exp(−k(r) · βnn).

Indeed, we may take k(r) proportional to min{Q eff(ζ); δ(ζ) ≥ r} where Q eff is the
effective potential defined in Section 2.

We remark that Theorem 3 is closely related to a result of Chafaï, Hardy, and Maïda,
which holds in dimension d ≥ 2. See [15, Theorem 1.12].

Plan of this paper

In Section 2 we give some background on potential theory and weighted polynomials.
Theorem 1 is proven in Section 3 while Section 4 contains proofs of Theorem 2 and
Theorem 3. In Section 5 we will state and prove generalized versions of the above
theorems, and we also discuss some related earlier work in the area.

2 Preparation

In order to make this note as detailed and complete as possible, we shall now review
some notions from the theories of obstacle problems and of weighted polynomials. We
shall also discuss, in a suitably adapted form, some relevant background from [3].

As general sources for some statements taken for granted below, we refer to the book
[25] and the paper [20].

We stress, once and for all, that in the following, the external potential Q is assumed
to be a fixed function satisfying assumptions (i)-(vi) above.

2.1 The obstacle problem

Let FQ be the family of all subharmonic functions f on C which are everywhere ≤ Q
and which satisfy f(ζ) ≤ 2 log |ζ|+O(1) as ζ →∞.

We define a subharmonic function Q̌ on C by

Q̌(ζ) = sup{f(ζ); f ∈ FQ}.

This is the obstacle function corresponding to the obstacle Q; it is well-known and easy
to check that Q̌ satisfies Q̌ ≤ Q and Q̌(ζ) = 2 log |ζ|+O(1) as ζ →∞.

Borrowing notation from [9], we define the effective potential

Q eff := Q− Q̌,

and note that Q eff ≥ 0 on C. By the coincidence set for the obstacle problem we shall
mean the compact set

S∗ := {Q eff = 0}.
It is well-known (cf. [20]) that Q̌ is C1,1-smooth on C and harmonic in the complement

(S∗)c. (“C1,1-smooth” means that the gradient is Lipschitz continuous.) Moreover, Q̌ is
related to the equilibrium measure σ by

Q̌(ζ) = −2Uσ(ζ) + γ
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Localizing the Coulomb gas

where γ is a suitable (Robin’s) constant and

Uσ(ζ) :=

∫
C

log
1

|ζ − η|
dσ(η)

is the logarithmic potential of σ.
Differentiating in the sense of distributions we have

∆Q̌ = ∆Q · 1S∗ = −2∆Uσ = σ.

Hence, since S is the support of σ, we have the inclusion

S ⊂ S∗.

In general the difference set S∗ \ S may be non-empty, consisting then of “shallow
points” in the parlance of [20]. However, our assumption (vi) says precisely that there
are no shallow points, i.e., that S∗ = S. Thus condition (vi) can be restated as that

Q eff > 0 on Sc. (2.1)

(Here and in the following, Sc := C \ S.)
We will have frequent use for the following simple lemma. A proof is included for

completeness.

Lemma 2.1. There exists a number a0 > 0 such that

Q eff(ζ) ≥ 2 min
{
c · δ(ζ)2, a0

}
for all ζ ∈ Sc.

Here the constant c is any positive number with c < c0 (cf. (1.6)).

Proof. Fix a boundary point p ∈ ∂S and let N = Np be the unit normal to ∂S at p
pointing outwards from S. Let V be a C2-smooth (Whitney’s) extension of Q eff |Sc to a
neighbourhood of ∂S.

We shall write ∂NV (p) for the directional derivative in direction N and ∂TV (p) for
the derivative in the (positively oriented) tangential direction to ∂S.

By the C1,1-smoothness of Q eff and the fact that Q eff = 0 on S we have V (p) =

∂NV (p) = 0. Moreover, (∂2
N + ∂2

T )V (p) = 4∆Q(p) > 0 and ∂2
TV (p) = 0.

For small δ > 0 we hence obtain by Taylor’s formula that

Q eff(p+ δN) = V (p+ δN) = 2∆Q(p)δ2 + o(δ2), (δ → 0+).

Moreover, there is δ0 > 0 such that Q eff(ζ) ≥ 2cδ(ζ)2 when δ(ζ) ≤ δ0.
Finally, by the lower semi-continuity of Q eff and the assumptions (1.1), (2.1) we

conclude that Q eff attains a strictly positive minimum over the set {δ(ζ) ≥ δ0}. The
lemma follows if we denote this minimum value by “2a0”.

We next note the following lemma – a simple consequence of our growth assumption
on the external potential Q.

Lemma 2.2.
∫
C
Qe−Q dA <∞ where Qe−Q := 0 on {Q = +∞}.

Proof. Let α be a number in the range 1 < α < lim infζ→∞Q(ζ)/ log |ζ|2, cf. (1.1). Fix
a number θ < 1 such that θα > 1 and let xθ be a real number such that xe−x ≤ e−θx

when x ≥ xθ. Choosing xθ somewhat larger if necessary we can also assume that
Q(ζ) ≥ α log |ζ|2 when |ζ| ≥ xθ. Then Q(ζ)e−Q(ζ) ≤ |ζ|−2αθ when |ζ| ≥ xθ, proving the
lemma.
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Localizing the Coulomb gas

2.2 Weighted polynomials

Let Wn denote the subspace of L2 = L2(C, dA) consisting of elements (weighted
polynomials)

f = q · e−nQ/2

where q is a holomorphic polynomial of degree at most n− 1.

The following well-known lemma is sometimes known as the “maximum principle of
weighted potential theory”. We outline a proof for convenience.

Lemma 2.3. If f ∈ Wn and ζ ∈ C then

|f(ζ)| ≤ ‖f‖L∞(S) · e−nQ
eff (ζ)/2.

Proof. We may assume that ‖f‖L∞(S) = 1 where f = q · e−nQ/2. Since

1

n
log |q(ζ)|2 =

1

n
log |f(ζ)|2 +Q(ζ)

we see that the function u := 1
n log |q|2, which is subharmonic on C, satisfies u ≤ Q on S,

and furthermore u(ζ) ≤ log |ζ|2 +O(1) as ζ →∞.

A suitable version of the maximum principle now shows that u ≤ Q̌ on C, thus
finishing the proof of the lemma.

We now fix, once and for all, an open neighbourhood V of the droplet S, which is
small enough so that ∆Q is continuous and strictly positive in a neighbourhood V1 of the
closure V . This is possible by assumption (iii).

Next fix a number s with

s > max{∆Q(ζ); ζ ∈ V }.

Lemma 2.4. There exists n0 > 0 such that if n ≥ n0 then for each f ∈ Wn and each
ζ0 ∈ V we have the pointwise-L2β estimate

|f(ζ0)|2β ≤ ne sβ
∫
D(ζ0;1/

√
n)

|f |2β dA.

Proof. Consider the function

F (ζ) = |f(ζ)|2βesnβ|ζ|
2

.

Writing f = q · e−nQ/2 we have

∆ logF (ζ) ≥ −βn∆Q(ζ) + sβn ≥ 0

for all ζ ∈ V1. We infer that F is logarithmically subharmonic in V1, and in particular it is
subharmonic there.

Applying the sub mean-value inequality, we obtain (for n large enough that 1/
√
n ≤

dist(V, V c1 )) the estimate

F (ζ0) ≤ n
∫
D(ζ0;1/

√
n)

F dA ≤ ne sβ
∫
D(ζ0;1/

√
n)

|f |2β dA.

The proof is complete.
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Localizing the Coulomb gas

2.3 Random variables

Let {ζj}n1 be a random sample with respect to the Gibbs measure (1.3).
Consider now, for a fixed j with j ∈ {1, . . . , n} the random weighted Lagrange

polynomial

`j(ζ) =

∏
i 6=j

(ζ − ζi)/
∏
i 6=j

(ζj − ζi)

 · e−n(Q(ζ)−Q(ζj))/2. (2.2)

These weighted polynomials were used in [3] to study the separation of random con-
figurations. We shall here use similar techniques to examine the localization of the
gas.

Towards this end, let us fix a measurable subset W ⊂ C and write Yj = Yj,W for the
random variable

Yj,W :=

∫
W

|`j(ζ)|2β dA(ζ). (2.3)

2.4 Exact identities

The following lemma is a slight generalization of [3, Lemma 2]; it will play a key rôle
in what follows.

Lemma 2.5. Let U ⊂ C be a measurable subset, of dA-measure |U |. Then

Eβn [1U (ζj) · Yj,W ] = |U | · pβn(W ), (j = 1, . . . , n),

where

pβn(W ) := Pβn({ζj ∈W}) = Pβn({ζ1 ∈W}).

Proof. We start with the basic identity

|`j(ζ)|2βe−βHn(ζ1,...,ζj ,...,ζn) = e−βHn(ζ1,...,ζ,...,ζn).

By Fubini’s theorem, integrating first in ζj , we get∫
W

dA(ζ)Eβn
[
|`j(ζ)|2β · 1U (ζj)

]
=

∫
U

dA(ζj)

∫
ζ∈W, ζk∈C, (k 6=j)

dPβn(ζ1, . . . , ζ, . . . , ζn) = |U | · pβn(W ).

The proof is complete.

The argument above may be iterated. To illuminate the principle, we start by
considering the case of two different indices j and k, 1 ≤ j < k ≤ n.

Lemma 2.6. If j < k and U1, U2,W1,W2 are any measurable subsets of C then

Eβn [1U1
(ζj) · Yj,W1

· 1U2
(ζk) · Yk,W2

] = |U1||U2| · pβn,2(W1,W2),

where

pβn,2(W1,W2) := Pβn({ζ1 ∈W1, ζ2 ∈W2}).

Proof. Note that

|`j(ζ)|2β |`k(η)|2βe−βHn(ζ1,...,ζj ,...,ζk,...,ζn) = e−βHn(ζ1,...,ζ,...,η,...,ζn).

with ζ and η in positions j and k, respectively. The lemma follows by using Fubini’s
theorem as in the preceding proof.

EJP 26 (2021), paper 46.
Page 8/21

https://www.imstat.org/ejp

https://doi.org/10.1214/21-EJP613
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Localizing the Coulomb gas

More generally, if {j1, . . . , jm} is any subset of {1, . . . , n} with j1 < j2 < · · · < jm then
with a self-explanatory notation

Eβn [1U1
(ζj1) · Yj1,W1

· 1U2
(ζj2) · Yj2,W2

· · ·1Um
(ζjm) · Yjm,Wm

]

= |U1||U2| · · · |Um| · pβn,m(W1, . . .Wm).
(2.4)

The proof of this formula is straightforward and is omitted.
In the following we will consider the case when all the sets Wj coincide with a set W ,

in which case we will use the abbreviation

pβn,m(W ) := pβn,m(W,W, . . . ,W ).

(“W ” occurs m times in the right hand side.)

3 Proof of Theorem 1

To begin, we fix a positive number c < c0 and a small enough open neighbourhood
Ω of S such that cδ(ζ)2 < a0 for each ζ ∈ Ω. (Here c0 is fixed as in (1.6) and a0 is the
constant from Lemma 2.1.) We assume also that Ω is small enough that Lemma 2.4
applies with V = Ω.

Now fix a point ζ0 ∈ Ω and a number ε > 0 which is small enough that the neighbour-
hood W = D(ζ0; ε) is contained in Ω.

Next define a non-negative number δ by

δ := dist(S,W ) = inf{|ζ − η|; ζ ∈ S, η ∈W}.

Thus δ → δ(ζ0) as ε→ 0.
For 1 ≤ j ≤ n we consider the random variables

Yj =

∫
W

|`j |2β dA,

Zj =

∫
C

|`j |2β dA.

By Lemma 2.4 we have the global estimate

|`j(ζ)|2β ≤ ne sβ
∫
D(ζ,1/

√
n)

|`j |2β ≤ ne sβZj , ζ ∈ Ω.

In particular this holds for all ζ ∈ S, so since `j ∈ Wn we obtain from lemmas 2.3 and 2.1
that

|`j(ζ)|2β ≤ ne sβe−cnβδ
2

Zj , ζ ∈W.

Integrating the latter inequality over W using that |W | = ε2, we find that

Yj ≤ ne sβe−cnβδ
2

ε2Zj . (3.1)

Now fix a measurable subset U of positive, finite measure and recall from Lemma 2.5
that

Eβn [1U (ζj) · Yj ] = |U | · pβn(W ),

Eβn [1U (ζj) · Zj ] = |U | · pβn(C) = |U |.

If we multiply through in (3.1) by 1U (ζj) and then take expectations, we obtain the
inequality

pβn(W ) ≤ ne sβe−cnβδ
2

ε2. (3.2)
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Localizing the Coulomb gas

Next define for j 6= k

Yj,k =

∫
W 2

|`j(ζ)`k(η)|2β dA2(ζ, η),

Zj,k =

∫
C2

|`j(ζ)`k(η)|2β dA2(ζ, η).

Applying the argument above, we find first that

|`j(ζ)`k(η)|2β ≤ (ne sβe−cnβδ
2

)2Zj,k, ζ, η ∈W,

and then, by integrating over W 2,

Yj,k ≤ (ne sβe−cnβδ
2

)2Zj,kε
4.

Taking expectations in this inequality and using Lemma 2.6 it now follows that

pβn,2(W ) ≤ (ne sβe−cnβδ
2

)2pβn,2(C)ε4 = (ne sβe−cnβδ
2

)2ε4.

By the same token, using the identity (2.4), we obtain for each k, 1 ≤ k ≤ n that

pβn,k(W ) ≤ qkpβn,k(C)ε2k = qkε2k where q = ne sβe−cnβδ
2

.

From this, we infer that

Eβn(#(W ∩ {ζj}n1 )) = Pβn({#(W ∩ {ζj}n1 ) = 1})
+ 2Pβn({#(W ∩ {ζj}n1 ) = 2}) + · · ·+ nPβn({#(W ∩ {ζj}n1 ) = n})

≤
(
n

1

)
q ε2 + 2

(
n

2

)
q2 ε4 + · · ·+ n

(
n

n

)
qn ε2n.

We finally conclude that

Rβ
n(ζ0) = lim

ε→0

Eβn(#(W ∩ {ζj}n1 ))

ε2
≤ n2e sβe−cnβδ(ζ0)2 ,

as desired. Q.E.D.

4 Proofs of Theorem 2 and Theorem 3

We start by fixing a sequence (Un)∞n=1 of bounded open neighbourhoods of the droplet
S, which is increasing and exhausts C, viz.

S ⊂ U1 ⊂ U2 ⊂ · · · ,
∞⋃
n=1

Un = C.

In the sequel we fix an unspecified integer n0 which can be chosen larger as we go
along, and we assume that n ≥ n0.

For definiteness, we will fix Un to be the disc of radius log n about the origin,

Un := D(0;Rn), Rn := log n, (n ≥ n0). (4.1)

Now fix j, 1 ≤ j ≤ n, and put

Xj =

∫
C

|`j |2β dA.
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Localizing the Coulomb gas

By Lemma 2.5 we know that

Eβn [1Un
(ζj) ·Xj ] = |Un| = R2

n. (4.2)

Now introduce the two events

Aj := {ζj ∈ Un}, Bj := {Xj ≤ λ}, (4.3)

where λ > 0 is a parameter.
By Chebyshev’s inequality and (4.2) we have the basic estimate

Pβn(Aj ∩Bcj ) ≤
R2
n

λ
.

Passing to complements we conclude that

Pβn(Acj) + Pβn(Bj) ≥ 1− R2
n

λ
. (4.4)

We shall now prove that the probability Pβn(Acj) is “negligible”.

Lemma 4.1. There are constants h∗ > 0 and n0 > 0 such that n ≥ n0 implies

Pβn(Acj) ≤ R−βh∗nn , 1 ≤ j ≤ n.

Proof. We will give a proof based on estimates for the partition function which can
essentially be found in the union of the papers [20, 21]. ([21] is written in the setting of
a real log-gas, but the following argument is virtually the same in the complex case.)

We first note, due to the growth assumption (1.1) on Q, that there are numbers h0 > 0

and n0 > 0 such that for all ζ, η ∈ C with |η| > Rn0
we have

log
1

|ζ − η|2
+Q(ζ) +Q(η) > h0 log |η|. (4.5)

(To see this, use the elementary inequality |ζ − η|2 ≤ (1 + |ζ|2)(1 + |η|2).)
Recalling the definition of the partition function Zβn in (1.4), we now write

Pβn(Acj) = Pβn(Acn) = Pβn({ζn ∈ U cn}) =
Zβn−1

Zβn

∫
Uc

n

e−nβQ(ζn)dA(ζn)×

×
∫
Cn−1

exp

−β n−1∑
j=1

[
log

1

|ζj − ζn|2
+Q(ζj)

] dPβn−1(ζ1, . . . , ζn−1).

Using (4.5) we now obtain

Pβn(Acj) ≤
Zβn−1

Zβn

∫
Uc

n

e−βQ(ζn)e−β(n−1)h0 log |ζn| dA(ζn)

≤
Zβn−1

Zβn
R−βh0(n−1)/2
n

∫
Uc

n

e−βQ(ζn)|ζn|−βh0(n−1)/2 dA(ζn).

We conclude that there are constants C and h1 > 0 such that

Pβn(Acj) ≤ C
Zβn−1

Zβn
R−βh1n
n . (4.6)

We shall thus be done when we can prove an upper bound of the form

Zβn−1

Zβn
≤ Ce βh2n. (4.7)
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Localizing the Coulomb gas

For fixed β this is shown in Section 5 of [15] (see eq. (5.4)), and it also follows
formally from a well-known large n expansion of the partition function in [28]. As we
want to ensure a certain uniformity in β, we shall here give an elementary proof based
on the papers [20, 21].

We start with the identity

Zβn

Zβn−1

= Eβn−1

∫
C

exp

β n−1∑
j=1

log |t− ζj |2 − nβQ(t)

 dA(t)

 . (4.8)

Now write I :=
∫
C
e−Q and use Jensen’s inequality to conclude that the last expression

is

≥ I · exp

Eβn−1

∫
C

β n−1∑
j=1

log |t− ζj |2 − (βn− 1)Q(t)

 e−Q(t)

I
dA(t)

 . (4.9)

We must estimate this expression from below. For this, we start by estimating the
number

mn : =
1

n
Eβn−1

∫
C

n−1∑
j=1

log |t− ζj |2 e−Q(t) dA(t)


≥ 1

n
Eβn−1

∫
C

n−1∑
j=1

log− |t− ζj |2 e−Q(t) dA(t)


where log− x = min{log x, 0}.

Now fix a number δ, 0 < δ < 1 so that
∫
|t−ζ|<δ log |t − ζ|2 e−Q(t) dA(t) > −1 for each

ζ ∈ C. Then

mn > −1 +
1

n
Eβn−1

n−1∑
j=1

∫
|t−ζj |≥δ

log− |t− ζj |2 e−Q(t) dA(t)


> −1 + 2 log δ +

1

n
Eβn−1

∫
C

n−1∑
j=1

lδ(t− ζj) e−Q(t) dA(t)

 ,
where lδ(ζ) := 2 max{log− |ζ|, log δ}.

Now as lδ is bounded and continuous on C we can apply the convergence in (1.12) to
obtain

1

n
Eβn−1(lδ(t− ζ1) + · · ·+ lδ(t− ζn−1))→

∫
C

lδ(t− ζ) dσ(ζ) (4.10)

for each t ∈ C.
In fact, an examination of the proof of the convergence (1.12) in [20, 21] holds

uniformly in t provided that β = βn satisfies βnn→∞ as n→∞. For convenience of the
reader, we have collected the relevant details in the appendix; see in particular Theorem
A.1.

Integrating both sides of the limit (4.10) with respect to the measure e−Q(t) dA(t) we
infer that the sequence mn is uniformly bounded from below when β � logn

n , which is all
that we need to know here.

In view of Lemma 2.2, we now obtain by (4.8) and (4.9) that a bound of the form (4.7)
must hold.

The proof of the lemma is complete.
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Localizing the Coulomb gas

Remark 4.2. If we slightly strengthen our assumptions on the potential, then the above
uniform convergence in (4.10) also follows from a quantitative result in [15, Theorem
1.5]. (The function lδ belongs to the bounded Lipschitz class used there.)

4.1 Proof of Theorem 2

Now fix an n ≥ n0 and recall that Bj = {Xj ≤ λ} where λ > 0 is fixed. (See (4.3).)
It follows from Lemma 4.1 and the inequality (4.4) that

Pβn(Bj) ≥ 1−R2
nλ
−1 −R−βh∗nn , j = 1, . . . , n.

In order to be able to neglect the last term, we shall impose the following (mild)
condition on the parameter λ,

λ . Rβh∗n/2n . (4.11)

Under this assumption we have

Pβn(Bj) ≥ 1−KR2
nλ
−1

for some constant K. Hence if we write

B :=

n⋂
j=1

Bj ,

then

Pβn(B) ≥ 1− ε, (4.12)

where we have put

ε := KnR2
nλ
−1. (4.13)

In the sequel we assume that ζ belongs to the fixed neighbourhood V of S. Pick a
random sample {ζj}n1 .

By Lemma 2.4 we have that

|`j |2β(ζ) ≤ ne sβXj , (Xj =

∫
|`j |2β).

Thus assuming that Bj has occurred, we obtain

‖`j‖2βL∞(S) ≤ ne
sβλ. (4.14)

We now apply Lemma 2.3 to conclude that

|`j(ζ)|2β ≤ ne sβλ · e−nβQ
eff (ζ), (ζ ∈ C).

In view of Lemma 2.1 we deduce that if ζ ∈ Sc then

|`j(ζ)|2β ≤ ne sβλ exp
(
−2nβmin

{
cδ(ζ)2, a0

})
. (4.15)

To proceed, we now impose the further restriction on λ that

λ . enβa0 . (4.16)

We also fix an arbitrary number α ∈ (0, 1) and choose n0 large enough that n ≥ n0 implies

ne sβλe−2nβa0 < α. (4.17)
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Localizing the Coulomb gas

This is possible by (4.16) since (1.9) implies that nβa0 > log n for large n.
For a fixed n ≥ n0 we now consider the set Mn ⊂ Sc of points ζ such that

ne sβλe−2cβnδ(ζ)2 ≤ α. (4.18)

Note that if Bj has occurred then certainly ζj 6∈Mn, for otherwise (4.15) would imply

α ≥ |`j(ζj)|2β = 1 > α.

Thus with probability at least 1− ε the entire Coulomb gas is actually contained in the
neighbourhood M c

n of S.
To finish the proof we observe that our restrictions on λ are equivalent to that the

parameter ε (cf. (4.13)) satisfy

ε & nR2
ne
−nβa0 and ε & nR2

ne
−βh∗n/2. (4.19)

For such ε we now write

λ =
nνn
ε
, where νn = KR2

n + o(1).

The inequality (4.18) is then equivalent to that

n2e sβ
νn
ε
≤ αe2cβnδ2 , (δ = δ(ζ)),

which transforms to

δ2 ≥ 1

2cβn

(
log

1

α
+ sβ + 2 log n+ log

νn
ε

)
.

Thus if we define

δn =

√
1

2cβn

(
log

1

α
+ sβ + 2 log n+ log

νn
ε

)
then certainly

Mn ⊂ {ζ ∈ C; δ(ζ) ≥ δn}.

so the Coulomb gas is with probability at least 1− ε contained in the δn-neighbourhood
of S. In symbols, we have shown that

Pβn ({Dn ≥ δn}) ≤ ε.

If we write ε = e−t and µn = log νn + log(1/α) + sβ this becomes

Pβn

({
Dn >

√
1

cβn
(log n+ µn/2 + t/2)

})
≤ e−t. (4.20)

Now notice that log νn � log log n as n→∞, so µn � log log n+ β.
We have shown (4.20) under the hypothesis (4.19). Since we have assumed that

β · n→∞ as n→∞, (4.19) surely holds if t ≤ aβn for a small enough a > 0.
The proof of Theorem 2 is complete. Q.E.D.

4.2 Proof of Theorem 3

It is now easy to modify the above proof so as to also prove Theorem 3.
Fix a number r0 with cr2

0 ≥ a0 and suppose that δ(ζ) ≥ r ≥ r0. The estimate (4.15)
then takes the form

|`j(ζ)|2β ≤ ne sβλe−2nβk0 , (4.21)
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where k0 is some constant with k0 ≥ a0. A glance at the proof of Lemma 2.1 shows that
we may take 2k0 = min{Q eff(ζ); δ(ζ) ≥ r}.

For a fixed α ∈ (0, 1) we now choose n0 large enough that n ≥ n0 implies

ne sβλe−2nβk0 ≤ α.

This can certainly be done if we assume that λ . enβk0 , in view of (1.9).
If the event Bj = {Xj ≤ λ} has occurred then δ(ζj) < r, for otherwise α ≥ |`j(ζj)|2β =

1 > α.
Thus if we define, as before, ε = KnR2

n/λ for a suitableK > 0, then {ζj}n1 ⊂ {δ(ζ) < r}
with probability at least 1− ε, or in other words

Pβn({Dn ≥ r}) ≤ ε.

This is proven whenever ε & nR2
ne
−βk0n. Taking ε = e−βkn where k = k0/2, we finish the

proof. Q.E.D.

5 Concluding remarks

In this section, shall generalize our main results, by allowing for perturbations of the
form u/n where u is a suitable function. After that, we will comment on related results
and say something about future prospects.

5.1 Perturbations of real-analytic potentials

Let us fix a potential Q obeying the conditions (i)-(vi).
Now pick an arbitrary bounded, measurable, real-valued function u and consider the

n-dependent potential

Vn(ζ) = Q(ζ) +
1

n
u(ζ).

In a “classical” meaning, the potentials Q and Vn are indistinguishable; their droplets
and equilibrium measures are the same. The difference between them appears on the
statistical level, when we introduce the Gibbs measure corresponding to Vn,

dPβn ∝ e−βHn dAn, Hn :=

n∑
j 6=k

log
1

|ζj − ζk|
+ n

n∑
j=1

Vn(ζj).

More precisely, the weakly n-dependent term (u/n) affects the distribution of particles
near the boundary.

The present more general situation can be treated similarly as before, by redefining
the class Wn of weighted polynomials to consist of elements of the form

f = q · e−nVn/2,

where q is a holomorphic polynomial of degree at most n− 1. Again we consider this as
a subspace of L2.

To an element f = q · e−nVn/2 ∈ Wn we associate the weighted polynomial f̃ =

q · e−nQ/2 = f · eu/2. Since u is in L∞(C) we have

|f(ζ)| � |f̃(ζ)| (5.1)

uniformly in f and in ζ.

Theorem 4. Under the above hypotheses, Theorem 1 holds up to a constant, i.e., the
1-point function of the ensemble in potential Vn satisfies Rβ

n . n2e sβe−cnβδ(ζ)
2

. Moreover,
Theorem 2 and Theorem 3 remain in force as stated (but with u-dependent O-constants).
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Remark on the proof. In view of (5.1) we have for each measurable subset W ⊂ C and
each j, 1 ≤ j ≤ n, that Yj,W � Ỹj,W where

Yj,W =

∫
W

|`j |2β dA and Ỹj,W =

∫
W

|˜̀j |2β dA.

The identity Eβn(1U (ζj)·Yj,W ) = |U |Pβn({ζ1 ∈W}) holds as before, and likewise Ẽβn(1U (ζj)·
Ỹj,W ) = |U |·P̃βn({ζ1 ∈W}), where tildes are used to indicate the unperturbed distribution
(with respect to potential Q).

Using this, it is easily seen that we lose at most a constant factor when adding
the perturbation u/n. In Theorem 2 the logarithm of that factor can be absorbed in
the constant µ, and likewise our argument for Theorem 3 goes through essentially
unaltered.

Remark 5.1. The assumptions (iv) and (vi) on the underlying potential Q are automatic
from the others if we assume that Q is real-analytic where it is finite. This follows from
Sakai’s regularity theorem, see [7]. The perturbation u/n may however be smooth.

Remark 5.2. It is interesting to view the above result from the perspective of the self-
improving method from the paper [4]. This method was developed with a partial intention
to eventually obtain a rigorous proof of full plane Gaussian field convergence of linear
statistics of a Coulomb gas, but due to some technical challenges it was only applied
when β = 1. (The influential paper [21] provides a somewhat analogous construction on
R, which was also applied to β-ensembles.)

One of the technical obstacles for extending the proof to cover β-ensembles involved
having a good enough decay of the 1-point function in the exterior of the droplet, which
is a case where Theorem 4 could be relevant.

The problem of proving Gaussian field convergence in the planar case was later
subject of some attention, when the papers [11, 22] appeared almost simultaneously,
proposing different approaches to its solution. This notwithstanding, given a profound
statement there are of course always questions of finding alternative explanations. (For
the standard Ginibre ensemble, convergence to the Gaussian field was first proved in
[24].)

5.2 Comparison of Theorem 2 to earlier results

Suppose that β = 1, Q is radially symmetric, and S is a disc of radius R. In this
case we have recognized R+Dn as, essentially, the spectral radius of a matrix picked
randomly from a certain normal matrix ensemble. The distribution of this spectral radius
was worked out by Rider [23] for the Ginibre ensemble (the potential Q = |ζ|2) and
Chafaï and Péché for more general radially symmetric potentials [16].

For a detailed comparison, we introduce the random variables

ωn =
√

4nγnc0

(
Dn −

√
γn

4nc0

)
, (c0 = ∆Q(R)).

The results in [16, 23] imply that ωn converges in distribution to the standard Gumbel
distribution as n→∞, where

γn = log(n/2π)− log log n+ log(R2c0).

(We may recall here that a random variable X is said to have a standard Gumbel
distribution if its distribution function is P(X ≤ t) = exp(− exp(−t)).)

Natural generalizations of these results for ensembles with various types of “boundary
confinements” are given in the papers [6, 26].
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The theorems of Rider and Chafaï-Péché can be said give a kind of two-dimensional
analogue to the well-known convergence to the Tracy-Widom distribution for the top
eigenvalue in Hermitian random matrix theory [1, 27]. Numerical evidence in the recent
paper [14] indicates that some similar kind of law might hold for the β-Ginibre ensemble.
In this connection, it is interesting to recall that a very precise asymptotic for the tail of
the Tracy-Widom β-distribution for certain one-dimensional ensembles was worked out
by Dumaz and Virág in the paper [18].

To further compare with our Theorem 2 we observe that as n→∞√
γn

4nc0
∼ 1

2
√
c0

√
log n

n
. (5.2)

This is of the same order of magnitude (
√

logn
n ) as our present bound in Theorem 2.

Incidentally, we see that our value for the constant A of proportionality in (1.13) can be
improved by a factor 1/2 in this case.

The low temperature regime when β � log n was studied in [3]. In such a setting, our
present results show that the gas is effectively localized to a microscopic neighbourhood
of S, i.e., to a neighbourhood of the form

{ζ; δ(ζ) . n−1/2}.

This is used in [8] to analyze low temperature Coulomb systems.

Due to limitations of our methods, we do not seem to quite reach up to high tem-
peratures of the magnitude β � 1/n here. This kind of regime is however studied, in a
suitably adapted setting, in the recent paper [2].

A Johansson’s convergence theorem

In this appendix, we present relevant details about Johansson’s convergence theorem
[21, Theorem 2.1] in the planar setting, with varying β’s. As we shall see, the arguments
in [21] and [20, Appendix A] carry through (with some slight extra care) provided that β
is not too small.

Given a confining potential Q it is convenient to introduce the kernel

LQ(ζ, η) := log
1

|ζ − η|
+

1

2
(Q(ζ) +Q(η)).

If µ is a compactly supported Borel measure on C, the logarithmic Q-energy can be
written as

IQ[µ] =

∫∫
LQ(ζ, η) dµ(ζ) dµ(η) =

∫∫
C2

log
1

|ζ − η|
dµ(ζ) dµ(η) + µ(Q). (A.1)

Let σ = ∆Q · 1S dA be the equilibrium measure in external potential Q, i.e., the
minimizer among compactly supported unit charges of the functional (A.1). The minimum
value of the weighted energy

γ(Q) := IQ[σ] (A.2)

is called the “modified Robin constant” in external potential Q.

It is pertinent to recall that the assumption (1.1) implies that there are constants
C ∈ R and k > 1 such that

Q(ζ) + C ≥ k log(1 + |ζ|2), ζ ∈ C. (A.3)
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To each configuration {ζj}n1 we associated the empirical measure µn = 1
n

∑n
j=1 δζj .

This measure has infinite Q-energy, and we use as a substitute the discrete energy

I]Q[µn] :=
1

n(n− 1)

∑
j 6=k

LQ(ζj , ζk) =
1

n(n− 1)

∑
j 6=k

log
1

|ζj − ζk|
+ µn(Q). (A.4)

This is closely connected to the Hamiltonian Hn in (1.2), namely we have

Hn =
∑
j 6=k

LQ(ζj , ζk) +

n∑
j=1

Q(ζj) = n(n− 1)I]Q[µn] +

n∑
j=1

Q(ζj).

In the following, we consider {ζj}n1 as a random sample from the Gibbs measure
associated with the potential Q and denote by Rβ

n the 1-point function.
The following “Johansson type” theorem, which partly generalizes [21, Theorem 2.1]

and [20, Theorem 2.9] to a case of n-dependent β’s, is the main result of this appendix.

Theorem A.1. Let β = βn be a sequence such that nβn → ∞ as n → ∞. Then for any
continuous and bounded function f on C we have

1

n

∫
C

f ·Rβn
n dA→ σ(f), n→∞.

To prove this theorem, we fix a small ε > 0 and form the event

A(n, ε) =
{
I]Q(µn) ≤ γ(Q) + ε

}
,

where (as always) µn =
∑n

1 δζj is picked randomly with respect to Pβn
n .

Lemma A.2. Fix a ≥ 0. Then there is a positive integer n0 depending on ε but not on a
such that if n ≥ n0, then

Pβn({µN 6∈ A(n, ε+ a)}) ≤ e−βan(n−1)/2+cn

where c > 0 is a constant depending only on Q.

Our proof of Lemma A.2 is in two steps.
We start with the following “entropy estimate” for the partition function Zn :=

Zβn
n (Q) =

∫
Cn e

−βnHn dAn. (The estimate is found for instance in [20, 21]; cf. also [15,
Lemma 4.1] for the corresponding statement in Rd.)

Lemma A.3. There are constants C1 and C2 depending only on Q such that for all n

1

n2
logZβn

n ≥ −βn(1− C1/n)γ(Q) + C2/n.

Proof. Write

Zn =

∫
Cn

exp
{
− β

∑
j 6=k

LQ(ζj , ζk)−
n∑
j=1

(βQ(ζj) + logϕ(ζj))
} n∏
j=1

ϕ(ζj) dA(ζj).

where ϕ ≥ 0 is any continuous compactly supported function with
∫
C
ϕdA = 1.

By Jensen’s inequality,

logZn ≥
∫
Cn

{
− β

∑
j 6=k

LQ(ζj , ζk)−
n∑
j=1

(βQ+ logϕ)(ζj)
} n∏
j=1

ϕ(ζj) dA(ζj)

= −βn(n− 1)IQ[ϕ]− n
∫
C

(β Q+ logϕ)ϕdA,
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with the understanding that 0 log 0 = 0, and where we write IQ[ϕ] in place of IQ[ϕdA].
This leads to

1

n2
logZn ≥ −βIQ[ϕ] +

β

n
IQ[ϕ]− β

n

∫
QϕdA− 1

n

∫
ϕ logϕdA, (A.5)

For small δ > 0 we let χ(ζ) := δ−21D(0,δ)(ζ) and define a function ϕδ by the convolution

ϕδ(ζ) := χ ∗ σ(ζ) =
σ(D(ζ, δ))

δ2
,

where σ = ∆Q · 1S dA is the equilibrium measure.
As δ → 0 we have that IQ[ϕδ] → IQ[σ] = γ(Q); see [20, pp. 870-871] for a careful

proof of this.
Thus setting ϕ = ϕδ in (A.5) and letting δ → 0 we obtain

1

n2
logZn ≥ −β(1− n−1)γ(Q)− β

n

∫
S

Q∆QdA− 1

n

∫
S

∆Q log ∆QdA.

The finiteness of the two integrals appearing here follows from our assumptions on
Q.

Proof of Lemma A.2. If µn 6∈ A(n, ε+ a), then

I]n[µn] ≥ γ(Q) + ε+ a. (A.6)

We next note that the assumption (A.3) and the elementary inequality |ζ − η|2 ≤ (1 +

|ζ|2)(1+ |η|2) for all ζ, η ∈ C imply LQ(ζ, η) ≥ c1
2 (Q(ζ)+Q(η))−c2, where c1 = 1−1/k > 0

and c2 = C/k. This gives the inequality

I]n[µn] ≥ c1
n

n∑
j=1

Q(ζj)− c2. (A.7)

Now fix a (small) constant θ, 0 < θ < 1 and take a convex combination of the
inequalities (A.6) and (A.7). We obtain that for all µn 6∈ A(n, ε+ a),

I]n[µn] ≥ (1− θ)(γ(Q) + ε+ a) + θ(
c1
n

n∑
j=1

Q(ζj)− c2), (A.8)

which implies (by use of the inequality (A.3)),

Hn ≥ n(n− 1)(1− θ)(γ(Q) + ε+ a) (A.9)

+ k((n− 1)θc1 + 1)

n∑
j=1

log(1 + |ζj |2)− n(θc3n+ c4).

Consequently,∫
Cn\A(n,ε+a)

e−βHn dAn ≤ e−βn(n−1)(1−θ)(γ(Q)+ε+a)+βn(θc3n+c4)

×
[ ∫

C

(1 + |ζ|2)−kβ((n−1)θc1+1) dA(ζ)
]n
.

Since
∫
C

(1 + |ζ|2)−α dA(ζ) = 1
α−1 for α > 1, the integral in brackets is no larger than 1

when n is large enough, so

Pβn({µN 6∈ A(n, ε+ a)}) ≤ 1

Zn
e−βn(n−1)(1−θ)(γ(Q)+ε+a)+βn(θc3n+c4), n ≥ n0.
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We now observe that Lemma A.3 implies

Zn ≥ exp(−n(n− 1)β(γ(Q) + ε)− c5n).

Then for n ≥ n0,

Pβn({µN 6∈ A(n, ε+ a)}) ≤ eβn(n−1)[θ(γ(Q)+c3+ε)−(1−θ)a+o(1)]+c5n.

Finally we fix θ with 0 < θ < 1/4 such that θ(γ(Q) + c3 + ε) < a/4. Then for n ≥ n0

Pβn({µN 6∈ A(n, ε+ a)}) ≤ eβn(n−1)[a/4−(1−θ)a]+c5n ≤ e−βan(n−1)/2+c5n.

Proof of Theorem A.1. It now suffices to recapitulate a standard argument, which can
be found (for example) in [21, p. 195] in the linear case.

Fix a small ε > 0. For each n ≥ n0(ε) we pick with large probability a configuration
{ζj}n1 with µn ∈ A(n, 2ε). Indeed, by Lemma A.2 the probability for the complementary
event is no larger than e−εβn(n−1)/2+cn.

The measures µn are then “tight” by (A.3), i.e., given any m > 0 there is an R > 0 such
that µn(C \D(0, R)) < m for all n. This means that we can extract weakly convergent
subsequences (renamed µn) converging weakly to probability measures µε on C, in the
sense that µn(f)→ µε(f) for each continuous and bounded function f .

Letting ε = εn ↓ 0 along a suitable sequence, the measures µεn converge weakly to a
probability measure µ with IQ[µ] ≤ γ(Q). This implies µ = σ by unicity of the equilibrium
measure, see [25, Theorem I.1.3]. If the convergence εn → 0 is sufficiently slow that
εnβnn→∞ as n→∞, this happens with large probability, tending to 1 as n→∞.

We have shown that with probability 1 + o(1), every subsequence of the measures µn
has a further subsequence converging weakly to σ, which shows that the full sequence
µn → σ weakly.

In particular, the (uniformly bounded) random variables µn(f) converge to σ(f) in
probability as n→∞, where f is a continuous and bounded function. Taking expectations
we obtain Eβn[µn(f)] → σ(f) as n → ∞, i.e., 1

n

∫
C
f · Rβn

n dA = Eβn
n [µn(f)] → σ(f) as

n→∞.
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