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Abstract

Consider an elliptic parameter k; we introduce a family of Z“-Dirac operators
(K(u))uec, relate them to the Z-massive Laplacian of [11], and extend to the full
Z-invariant case the results of Kenyon [45] on discrete holomorphic and harmonic
functions, which correspond to the case k = 0. We prove through combinatorial
identities, how and why the Z“-Dirac and Z-massive Laplacian operators appear
in the Z-invariant Ising model, considering the case of infinite and finite isoradial
graphs. More precisely, consider the dimer model on the Fisher graph G* arising from
a Z-invariant Ising model. We express coefficients of the inverse Fisher Kasteleyn
operator as a function of the inverse Z“-Dirac operator and also as a function of
the Z-massive Green function; in particular this proves a (massive) random walk
representation of important observables of the Ising model. We prove that the squared
partition function of the Ising model is equal, up to a constant, to the determinant of
the Z-massive Laplacian operator with specific boundary conditions, the latter being
the partition function of rooted spanning forests. To show these results, we relate
the inverse Fisher Kasteleyn operator and that of the dimer model on the bipartite
graph G© arising from the XOR-Ising model, and we prove matrix identities between
the Kasteleyn matrix of G® and the Z“-Dirac operator, that allow to reach inverse
matrices as well as determinants.
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1 Introduction

This paper is inspired by three sets of results suggesting connections between the
Ising model on a planar graph G and (massive) random walks on G and its dual G*.

*PSL University Paris-Dauphine, CNRS, UMR 7534, CEREMADE, 75016 Paris, France. Institut universitaire
de France. E-mail: detiliere@ceremade.dauphine.fr


https://imstat.org/journals-and-publications/electronic-journal-of-probability/
https://doi.org/10.1214/21-EJP601
https://ams.org/mathscinet/msc/msc2020.html
https://arXiv.org/abs/1801.00207v2
mailto:detiliere@ceremade.dauphine.fr

The Z-Dirac and massive Laplacian operators in the Z-invariant Ising model

e Messikh [60] observes that large deviation estimates of a massive random walk
occur when computing the correlation length of the super-critical Ising model on Z2;
a result later proved by Beffara and Duminil-Copin [7] using the FK-Ising observable
of [68] away from the critical point.

e In Smirnov and Chelkak-Smirnov’s proof of conformal invariance of the critical
Z-invariant Ising model [67, 68, 18], the key discrete tools are observables - spin or
FK (see also [39]) - that are holomorphic. Discrete holomorphic functions in turn are
naturally related to harmonic functions [33, 59, 45, 17]. The paper [58] addresses the
question of the massive version of these observables and that of proving convergence
to massive SLE’s. In particular, they give ideas of proofs in the case of the massive
harmonic explorer and of loop erased random walks, see [19] for a complete proof. As
mentioned in the previous point, a massive version of the FK-Ising observable is fruitfully
used in the paper [7].

e We prove, through combinatorial constructions, that the squared partition function
of the critical Z-invariant Ising model is equal, up to a multiplicative constant, to the
partition function of spanning trees [29, 30]. An abstract proof of this identity is given in
the toroidal Z-invariant case in [10, 12].

The main contribution of this paper is to provide a unified framework for all of the
above, which holds in the full Z-invariant case, in the infinite and finite cases. Our main
results are obtained as a combination of intermediate steps that are interesting in their
own respect. We nevertheless feel that, before listing statements leading to the principal
Ising results, we should convey the main ideas.

Let us first be more precise about operators underlying our “inspiration” papers.
Large deviation estimates of massive random walks are related to the massive Green
function, the latter being the inverse of the massive Laplacian operator. By definition
discrete holomorphic functions are in the kernel of the Dirac operator, which is a
Kasteleyn matrix/operator of the double graph G” [45]; harmonic functions are in the
kernel of the Laplacian operator. The spanning tree partition function is equal to the
determinant of the Laplacian operator [50]. Summarizing, a central role is played by the
Dirac operator (at criticality) and the (massive) Laplacian in the (super) critical Ising
model.

Our first contribution is to introduce one of the missing pieces of the puzzle, namely
the full Z-invariant version of the (critical) Dirac operator of [45], referred to as the
Z"-Dirac operator, u being a natural free parameter disappearing at criticality. This is
the subject of Section 3, as well as its connections to the Z-invariant massive Laplacian
of [11] and the study of the corresponding dimer model on the double graph G".

To study the Ising model, we use Fisher’s correspondence [35] relating the low (or
high) temperature expansion of the model [51, 52] to the dimer model on the Fisher
graph G" with associated Kasteleyn matrix/operator K*. The partition function of the
dimer model is the Pfaffian of K¥, and the Boltzmann/Gibbs measures are explicitly
expressed using coefficients of K¥ and its inverse (K¥)~! [72, 44, 23, 47, 9]. This means
that knowing the determinant of K* and its inverse amounts to fully understanding the
partition function of the Ising model and probabilities of its low (or high) temperature
expansion. Notably, coefficients of the inverse Kasteleyn operator (K¥)~! are also related
to other important observables of the Ising model as the spin-Ising observable of [18],
see [69, 16], and the FK-Ising observable of [68, 18] which is also the fermionic spinor
observable of [39] (up to normalization), see [32, 63].

Consider the dimer model on G* arising from a Z-invariant Ising model. Our main
contribution is to prove matrix identities relating the Kasteleyn operator K¥ and the
Z"-Dirac operator and also the Z-massive Laplacian of [11]. The strength of these
identities is that they allow to reach inverse operators and also, after some extra
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work, determinants. As a consequence, in the finite and infinite cases, we express
coefficients of (KF)~! using the inverse Z*“-Dirac operator and also using the Z-massive
Green function; this is the subject of Section 5, see also the corresponding part of the
introduction. In essence, this proves that the contour Ising Boltzmann/Gibbs measures
can be computed from (massive) random walks (with specific boundary conditions in the
finite case). In the finite case we also prove that the squared Ising partition function is
equal, up to an explicit constant, to the determinant of the massive Laplacian, that is to
the partition function of rooted spanning forests, see Corollary 4.5 and also Theorem 1.7
of the introduction. Comments on how these results connect to our “inspiration” and
other papers are given at the end of this section.

Section 2 contains preliminaries. Section 4 contains the main intermediate step:
we consider the dimer model on the bipartite graph G® arising from the XOR-Ising
model [74] constructed from two independent Z-invariant Ising models [32, 13]. We
prove matrix identities relating its Kasteleyn matrix/operator K< and the Z“-Dirac
operator. In Section 5, building on the work of Dubédat [32], we express coefficients of
the inverse operator (K¥)~! using coefficients of the inverse operator (K?)~!; this result
holds for the dimer model on the Fisher graph G" arising from any 2d-Ising model, not
necessarily Z-invariant. Note that this result can also be derived from the paper [16],
see Remark 1.9. Combining this with the results of Section 4 then allows us to deduce
the Ising results. In Section 6, we specify some of our results in two important cases: the
Z-invariant critical case, and the full Z-invariant case when the underlying graph is Z?.

To give detailed statements, let us be more precise about Z-invariant models [64, 43],
fully developed by Baxter [4, 5, 6], see also [65, 2, 3]. A Z-invariant model is naturally
defined on an isoradial graph G = (V, E); parameters are chosen so that the partition
function only changes by a constant when performing a star-triangle transformation of
the underlying graph, i.e., they are required to satisfy the Yang-Baxter equations. The
solution to this set of equations for the Ising model has, given the embedding of the
graph, a free elliptic parameter k, such that (k’)? := 1 — k2 € (0,c), and the coupling
constants J are [6]:
1+ sn(0.|k)

en(6.)k) )’
s

where sn, cn are two of the Jacobi elliptic trigonometric functions, and ., = .57 is an
angle associated to the edge e in the isoradial embedding. When k = 0, i.e. k' = 1, the
elliptic functions sn, cn, are the trigonometric functions sin, cos, and the Ising model is
critical [55, 22, 57]. As (k')? varies from 0 to oo, the coupling constants range from
oo to 0 [12] thus covering the whole range of inverse temperatures. In the paper [11],
we introduce Z-invariant rooted spanning forests with associated operator the massive
Laplacian A™; when k& = 0, we recover the critical Laplacian of [45]. We also prove an
explicit local expression for its inverse, the Z-massive Green function G™, using the
discrete massive exponential function [11]. We are now ready to give a detailed overview
of this paper.

1
VeeE, Jeziln(

Section 3: Z“-Dirac and Z-massive Laplacian operators Fix an elliptic parameter
k, and let T(k) be the torus C/(4KZ + 4iK'Z), where K, K’ are defined in Section 2.5.4.
Denote by C(k) the component R/4KZ of T(k); whenever no confusion occurs, we will
omit the argument & in C(k). We introduce a family of Z“-Dirac operators (K(u))uec
on the double graph G® = (W U B, E”) associated to pairs of dual directed spanning
trees, extending to the full Z-invariant case the Dirac operator 0 of [45], corresponding
to k = 0. In the finite case, we introduce a family of operators (K°(u))y,cc/, with
boundary conditions tuned for the Ising model, where C’ is a subset of C defined in
Equation (3.4). Although these operators play a key role in the Z-invariant Ising model,
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they are interesting in their own respect. In the specific case k£ = 0, results we obtain
can be found in [45, 71, 43]. We prove, see also Theorem 3.6:

Theorem 1.1.

¢ Infinite case. Let u € C, then the Z*-Dirac operator K(u), the Z-massive Laplacian
A™ and the dual A™* of [11] satisfy the following identity:

K ke = (7 ).

e Finite case. Let u € C’, then the Z"-Dirac operators K(u), K?(u), the Z-massive
Laplacian A™?(u) and the dual A™* satisfy the following identity:

Ko(u) K(u) = (Amg(“) gfﬁ) .

A function F € CP is said to be Z“-holomorphic if K(u)F = 0. As a consequence of
Theorem 1.1, if F'is Z*“-holomorphic, then Fjy is Z-massive harmonic on G and Fjy- is
Z-massive harmonic on G*, thus explaining the part “Dirac” in “Z“-Dirac operator”.

Note that in the finite case, the Z-massive Laplacian A™?(u) arising in the context
of the Ising model might have negative masses and conductances along the boundary,
see Equation (3.6) where it is explicitly defined. As a consequence, this operator is not
necessarily positive definite.

In the infinite case, Theorem 1.1 yields the following relations for inverse operators,
see also Corollary 3.15; the statement in the finite case is given in Corollary 3.17.

Corollary 1.2 (Infinite case). For every u € C, consider the operator K(u)~! mapping
C" to CP whose coefficients are defined by, for every v, f,w as in Figure 14,

iaf;rﬁf

K(w)g i, =e ™5 (0) " s0(00)* ([dn(ua,) dn(us, )| G, — [0 (ta 4or) dn(us o)) G, )

. ap+PBe

K(u);iv = —je ‘"2 (k/)—l sc(@f)% ([dn((ugt.)*) dn((uaerzK)*)]%G’;g—l—

— [dn((upg—2k)") dn((ua,)")] %G}nft) '

where G™ and G * are the Z-massive and dual Z-massive Green functions of [11]. Then
K(u)~! is the unique inverse of the Z*-Dirac operator K(u) decreasing to zero at infinity.

This gives, in Theorem 3.19, an explicit local expression for a Gibbs measure of the
dimer model on the double graph G°, where the locality property is inherited from that
of the Z-massive Green functions of [11]. Using the KPW-Temperley bijection [71, 49],
probabilities of pairs of dual directed spanning trees are computed using the Green
function of a massive, non-directed random walk. Apart from the locality property which
is specific, a similar result is obtained by Chhita [20] in the case of 72 with a specific
choice of weights.

In Theorem 3.8 and Corollary 3.10, we restrict to the finite case and prove relations
on determinants; we show,

Theorem 1.3. Let My be a dimer configuration of G®. Then, for every u € C’, we have

\detK(u)|=(k')@(Hsc(aw)%)( [T (dn(ua,)dn(us,)|?) det A,

weW e=wxEMq
[det K7(u)| = (&) (] es(0.)¥)( TT (¥ nd(ua,) nd(us, )} ) det A™ ().
weWw e=wzEeMg
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As a consequence, the partition function of pairs of dual directed spanning trees
is equal, up to a constant, to the partition function of rooted spanning forests. In the
critical case, k = 0, this is an easy consequence of Temperley’s bijection [71], but the
correspondence does not extend when k£ # (0. The main tools of the proof are gauge
equivalences on bipartite adjacency matrices and on adjacency matrices of digraphs, see
also Appendix A.

The Z"-Dirac operator is equivalent to a model of directed spanning trees. In
Proposition 3.13, we prove that the latter is Z-invariant, thus explaining the part “Z*“” of
the terminology “Z“-Dirac operator”.

Section 4: Kasteleyn operator of the graph G® and Z“-Dirac operator We con-
sider the dimer model on the graph G arising from the Z-invariant XOR-Ising model,
with Kasteleyn matrix K®. The main result of this section, and one of the main result of
this paper, is Theorem 4.2 proving the following relations between the matrix K< and
the Z“-Dirac operator. The matrices S(u) and T'(u) are defined in Section 4.1 and the
statement is as follows.

Theorem 1.4.

o Infinite case. Let u € C, then the Kasteleyn matrix K, the Z"-Dirac operator K(u)
and the matrices S(u), T'(u) are related by the following identity:

KT (u) = S(u) K(u).

e Finite case. Let u € C’, then the Kasteleyn matrix K%, the Z“-Dirac operator K°(u)
and the matrices S(u), T(u) are related by the following identity:

KT (u) = S(u) K?(u).

The matrix relations established in Theorem 1.4 have quite remarkable consequences.
They allow to establish a one parameter family of relations between inverse operators
which turn out to be very useful for some specific choices of u. Also, after some extra
work, they permit to relate determinants in the finite case, thus partition functions.
More precisely, in the infinite case, Theorem 1.4 yields the following relations on inverse
matrices, see also Corollary 4.12; the statement in the finite case is the subject of
Corollary 4.14.

Corollary 1.5 (Infinite case). For every u € C, for every w, v, f, and every w,b,b’ as in
Figure 20,

ei /;fg/;i

(K enu) (K sn(us) dnluiag) = Fo—rs

w,b

ento K ) —sntos K )

where A(uq,ug) = [snfcnfnd(ug) nd(ug)]?, and 0 = ug — ug.

Specifying the value of the parameter u allows to express coefficients of the inverse
Kasteleyn operator (K?)~! using the inverse Z%“-Dirac operator; combining this with
Theorem 1.2 yields an expression using the Z-massive Green function of [11]. Note
that since the dimer model on G® is also related to a free-fermion, zero-field 6-vertex
model [62, 76, 32], see also Section 2.3.3, the following corollary also relates this 6-
vertex model Boltzmann measure to the inverse Z“-Dirac operator and massive Green
function. We obtain, see also Corollary 4.16 and Corollary 4.18 for the finite case,
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Corollary 1.6 (Infinite case). For every w, b of G? as in Figure 22,

i
et 2

[cn(6r) sn(f¢) nd(6r)] 3

(Cn(ﬂfgﬁ’i ) K(ﬂf)yﬂ}v — isn(%) K(ﬁf);}u)

Bi+a en(Bif
(<o) = e85 1 (25 fanon v, ]+
Sn(ﬁf*ﬁi) - -
R [dAn(60G7: — G,

This proves, in an alternative way, an explicit local expression for a Gibbs measure of
the dimer model on the graph G2 [12], where the locality property is seen as directly
inherited from that of the Z-massive Green function.

Again, using Theorem 1.4 and additional combinatorial arguments, we prove in
Theorem 4.3 that the determinants of K2 and of the Z“-Dirac operator are equal, up to
an explicit constant. By [32], the determinant of K? is equal up to a constant, to the
squared partition function of the Ising model. Combining this with Theorem 1.3 gives,
see also Corollary 4.5 for the explicit value of C'(u),

Theorem 1.7. For every u € C”,
(25506 (G, )]? = C(u)| det A™ (u)],

where C" is a subset of C defined in Equation (3.19).

When k& = 0, we essentially recover the result of [30]; see Section 6.1. The above
proves that the squared partition function of the Z-invariant Ising model is equal, up to
a multiplicative constant, to that of rooted directed spanning forests. This relates on the
level of partition functions two classical, apparently very different, models of statistical
mechanics.

Section 5: Dimer model on the Fisher graph G" and the Kasteleyn matrix K¢
Consider the dimer model on G* with Kasteleyn matrix KF arising from an Ising model
with coupling constants J, not necessarily Z-invariant, and the corresponding dimer
model on the bipartite graph G<, with (real) Kasteleyn matrix K?. Note that the entries of
K< are fully determined by the coupling constants J. Building on the work of Dubédat [32]
and proving additional matrix relations, we express coefficients of the inverse operator
(K*)~! using coefficients of the inverse operator (K?)~!. Partitioning vertices of G* as
A U B as in [32], we obtain, see also Theorem 5.4,

Theorem 1.8 (Finite and infinite cases). Using the notation of Figure 26, there are four
cases to consider:

1. For every g € A and every b € B such that, when the graph G" is moreover finite, b
is not a boundary vertex:

1 Q) — Oy — o f
T (K + (Kb e "],

—1
(KF)g,b =
2. When the graph G* is finite, for every a € A and every boundary vertex b of B, we
have
(K)gp = (K¥)y b
3. Foreverya, a € A,

1 ~
(KF);,}z = _§<KQ)_Q,1bEb,a + Ka,a;

where k4, = 0 if a and a do not belong to the same decoration, and to +7 if they do.
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4. Forevery b, b € B,

(K")ps = —€b,a (K)g,y + b0z (K)o
where (KF);I{b, (KF);;,) are given by Case 1.

As a consequence, the Boltzmann/Gibbs measures of the dimer model on the non-
bipartite graph G* can be computed using the inverse Kasteleyn operator of the bipartite
graph G<. Note that in the finite case, we do not need positivity of the coupling constants
J. When J < 0, the dimer model on the Fisher graph G* has positive weights 1 and e~/
on edges, and is related to a bipartite dimer model with some negative weights, see also
Remark 5.5.

Remark 1.9.

¢ As mentioned in [32], bosonization identities somehow prove the existence of such
linear relations, but working them out requires more work, which is the subject of
the above theorem.

* As pointed out by one of the referees whom I thank, these relations can also be
derived from the paper [16]. Following his/her suggestion, let us explain how.
Using the notation of [16] we have that K" is F = —iU:FUy. The definition of the
matrix F implies, see [16, Section 3.1],

pi_( I 0y/C 0)\(1 -BJ
=B JJLo -J)lo J )

Then, [16, Lemma 3.4] expresses coeﬂilcients of C~! using those of D!, where D=
—iUEDUc is essentially the operator K®. Putting this together gives Theorem 1.8.

Next we restrict to the Z-invariant case. The coefficient (KF);A’}I is equal, up to an
additive constant, to the coefficient (KQ);}b, and is thus expressed using the inverse
Z"-Dirac operator using Corollary 1.6 in the infinite case, and Corollary 4.18 in the finite

case. The same holds for (KF);}) when b is a boundary vertex. The coefficient (KF)b_g

is a simple linear combination of two coefficients (K*) ', (K*)~!, so we are left with
ai,b asz,b

expressing the coefficient (KF)(:}). Choosing a specific value of u in Corollary 1.5, and
using Corollary 1.2 gives, see also Corollary 5.8 for the finite case,

Corollary 1.10 (Infinite case). Let uf = %ﬁ‘ + K. Then,

(KF)2L =gyt 7% () s ) O dnion)
a »W

, 2[en(6f) sn ()] 2

(cn(ugi)K(uf);}ﬂ - isn(ugi)K(uf)EfU)

_paetss en(K5%) (14 () dn(6r))
=Qb,we 2 5 X

cn(ufi) m m sn(ufi) K—0 M, K+6 m,x
x <cn((ff)(Gv,v2 —Gy) — ﬁ(nd(%)c’f,fz - nd(Tf)Gf,fl) :

Connection to previously known results. Apart from allowing to compute the contour
Ising Boltzmann/Gibbs measures, coefficients of the inverse Kasteleyn matrix (K¥)~!
are important observables of the Ising model: (K") b, ; is related to the spin-Ising observ-
able [69, 18], see for example [16]. Dubédat [32] proves that (KF);}I is the fermionic
spinor observable of [39] and, referring to Nienhuis-Knops [63], mentions that it is also
the FK-Ising observable of [67, 18] (up to normalization).

As a consequence, in the specific case k = 0 (the critical case), Theorem 1.8, Corol-
lary 1.10 and Corollary 1.6 are deeply related to the discrete part of [18] proving that
these observables are holomorphic, and integrating the square to obtain close to har-
monic functions, see also Section 6.1. Our results have two important features: they
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prove that in the infinite and finite cases, these observables have an exact explicit
expression involving Green functions, and also that these expressions not only hold at
criticality but in the full Z-invariant regime. Note that since our results hold for all &, by
taking k tending to 0 at an appropriate speed, one may obtain interesting features of the
near critical Ising model.

The paper [56] gives a non-backtracking random walk representation of the inverse
Kac-Ward operator, the latter being connected to the inverse Kasteleyn operator. In this
paper, we give a (massive) random walk representation of the inverse Kasteleyn operator
where, in the finite case, this random walk has some vortices along the boundary. In the
critical case, and for one choice of u (namely u = io0), part of the relation of Theorem 1.4
was obtained in [21]. Let us end this introduction with a comment on the paper [7] based
on an observation by Messikh [60] about the occurrence of large deviation estimates of
a massive random walk in the correlation length of the super-critical Ising model on Z2.
The proof consists in showing that, in the super-critical regime, spin correlations are
approximated by the FK-Ising observable, and then analyzing the latter. By Theorem 1.8
and Corollary 1.6, the latter a directly related to the massive Green function, thus
explaining the occurrence of the massive random walk, see also Section 6.2 specifying
our results to the case where G = Z2.

A word on the parameter u. As noted above, the parameter v of the Z“-Dirac operator
disappears at criticality, and so some motivation on where it comes from may be useful.
When writing this paper, the parameter u naturally arose from elliptic trigonometric
identities; it provided an additional degree of freedom which turned out to be very useful:
for example in Corollary 1.6, choosing specific values of u enables us to express the
operator (K?)~! as a function of the operator K(u)~!. While in the revision process of
this paper, the paper [8] came out and allows to give more insight in the periodic case.
By [12], we know that spectral curves of Z-invariant Ising models with elliptic weights
are in correspondence with genus 1 Harnack curves with central symmetry. From [8]
we know that genus 1 Harnack curves arise from bipartite dimer models with Fock’s
elliptic weights [36]. Indeed, it turns out that the Z“-Dirac operator is gauge equivalent
to Fock’s elliptic Kasteleyn operator on the double graph G as shown in [8, Section
8.2]. Now Fock’s elliptic operator has a natural additional parameter (denoted ¢ in [8]
instead of u here) which is in bijection with the hole of the amoeba of the spectral curve.
In the critical case, corresponding to genus 0 Harnack curves, there is no hole in the
amoeba and thus no extra parameter. Note that, although the construction is not explicit,
Goncharov and Kenyon [37], already proved a correspondence between bipartite dimer
models and Harnack curves with marked points on the ovals. One last point on this
topic: as observed after the statement of Theorem 1.1, every Z“-holomorphic function
is Z-massive harmonic; this in particular raises the question of thoroughly studying a
massive version of discrete complex analysis in the spirit of the papers [59, 17].

2 Preliminaries

This section contains all the preliminaries required for this paper. We give the
definitions of the Ising model, the dimer model per se, the dimer model on decorated
graphs arising from the Ising model, from the XOR-Ising model and from pairs of dual
directed spanning trees; we also define the rooted directed spanning forests model. We
end with isoradial graphs, Z-invariance and the Z-invariant versions of the above models.
In the whole of the paper, planar embedded graphs are supposed to be simply connected.
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2.1 The Ising model

Consider a finite, planar, simple graph G = (V,E). Suppose that edges of G are
assigned positive coupling constants J = (J.)ece. The Ising model on G with free
boundary conditions is defined as follows. A spin configuration is a function on vertices
of G taking values in {—1,1}. The probability on the set of spin configurations {—1,1}V
is given by the Ising Boltzmann measure Py, defined by:

Voe {~1,1}Y, Pring(o) = lemgl(GJ ( Z Jovav)

e=vv’€E

where Ziing(G,J) = Zae{_m}v exp <Ze:vv’eE Jeovau/) is the normalizing constant
known as the Ising partition function.

From now on, we suppose that the planar graph G is embedded. Boundary vertices
of G are vertices on the boundary of the unbounded face of G. The Ising model with +
boundary conditions has the additional restriction that boundary vertices have +1 spin.
Denote by Py . and ngg(G, J) the corresponding Boltzmann measure and partition
function?.

Denote by G* = (V*,E*) the dual graph of G, and by o the vertex of G* corresponding
to the unbounded face of G. Consider also the restricted dual graph G* = (V*,E*)
obtained from G* by removing the vertex o and all of its incident edges. A polygon
configuration of G* is a subset of edges such that every vertex has even degree; let P(G*)
denote the set of polygon configurations of G*. Then, the low temperature expansion
(LTE) of the Ising partition function with + boundary conditions is [51, 52]:

ZEg(6 ) = (TTe*) > TIe™- 2.1)

ecE PeP(G*) e*eP

Ising

Polygon configurations of this expansion separate clusters of +1 spins of the Ising model.

In this paper we consider the case where the graph is finite or infinite. The definition
of the Boltzmann measure does not hold in the infinite case but extends naturally, and
this will be clarified as we go along.

In the finite case, we consider the Ising model with + boundary conditions. It will
be crucial to use the boundary trick of Chelkak and Smirnov [18] consisting in adding
one extra vertex with +1 spin on every boundary edge of the graph. This has no effect
on the Ising model, but the graph gains geometric freedom along the boundary, which
will be key to handling boundary terms in Theorem 4.2. In order not to introduce too
many graphs and confuse the reader, from now on we let G be the graph we started
from with the extra vertex on every boundary edge, then G* is its dual graph and G* its
restricted dual. Figure 1 provides an example of: a graph G, its restricted dual G*, a
spin configuration with 4+ boundary conditions and the corresponding low temperature
polygon configuration of G*.

In the infinite case, we suppose that the embedded graph together with its faces
cover the whole plane. So as not to have too many notation, and since it will be clear
from the setting, we also denote by G the infinite graph; the dual graph is denoted G*.

2.2 The dimer model

Throughout the paper, we use the dimer model defined on three decorated versions
of the graph G. Prior to defining these decorated graphs, we recall the definition of the

1Note that the Ising model with + boundary conditions on the graph G can be seen as the Ising model with
free boundary conditions on the graph G’ obtained from G by merging all boundary edges and vertices into a
single vertex.
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Figure 1: An example of a graph G (black), of its restricted dual G* (grey), of a spin con-
figuration with + boundary conditions on G and its corresponding polygon configuration
on G* (red). Vertices of G are pictured as bullets — black ones represent vertices of the
original graph and grey ones are the additional vertices on boundary edges - vertices of
G* are pictured as diamonds.

dimer model per se, as well as that of the Kasteleyn matrix. We also recall the founding
results that we will use.

Consider a planar, simple, embedded graph G = (V, E). A dimer configuration of G,
also known as a perfect matching, is a subset of edges such that every vertex is incident
to exactly one edge of this subset. Denote by M(G) the set of dimer configurations of
the graph G. Suppose that a positive weight function v is assigned to edges of G.

2.2.1 Finite case

Suppose that the graph G is finite, and that |V] is even. Then, the probability of
occurrence of a dimer configuration, chosen with respect to the dimer Boltzmann
measure Pgimer, iS given by

Heel\/l Ve

TMEMG),  Paimer(M) = 7 =0

where Zgimer (G, V) =Y eM(G) [I.cm Ve is the normalizing constant known as the dimer
partition function.

The main tool used to study the dimer model is the Kasteleyn matrix [41, 42, 72],
it is defined as follows. A face-cycle is a cycle of G bounding a bounded face of the
graph. A Kasteleyn orientation is an orientation of the edges such that every face-cycle is
clockwise odd, meaning that when traveling clockwise around a face-cycle, the number
of co-oriented edges is odd. By the results of [42], a Kasteleyn orientation always exists
for planar graphs. A Kasteleyn matrix, denoted by K, is a weighted, directed, adjacency
matrix of the graph G associated to the weight function v and to a Kasteleyn orientation.
More precisely, rows and columns of the matrix K are indexed by vertices of GG, and
non-zero coefficients of K are defined by,

Vedge (z,y) of G, Ky y = euyVay,
where

1 ifrzye Fandz — y
P
oy —1 ifzy e Eandz <+ y.
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Note that the matrix K is skew symmetric.

When the graph G is bipartite, the set of vertices can be split into V= W U B, where
W represents the set of white vertices, B the set of black ones, and vertices in W are
only adjacent to vertices in B. Suppose that |[W| = |B| for otherwise G has no dimer
configurations. The Kasteleyn matrix K is naturally block diagonal with two 0 blocks
corresponding to rows/columns indexed by W/W or B/B. It thus suffices to consider
the bipartite, weighted, directed, adjacency matrix of the graph G, denoted by K. It has
rows indexed by white vertices of G and column by black ones. Non-zero coefficients are
defined by:

vV edge wb of G, f(w,b = Ew,bVuwb-

Note that the bipartite Kasteleyn matrix can also be defined as minus the transpose of
the above matrix K; rows are then indexed by black vertices and columns by white ones.
Actually both bipartite Kasteleyn matrices are considered in this paper.

The two founding results of the dimer model are: an explicit expression for the
partition function [41, 42, 72] and for the dimer Boltzmann measure [44]. Here are their
statements.

Theorem 2.1 ([41, 42, 72]). The dimer partition function of the graph G with weight
function v is equal to:

Zaimer(G,v) = | PL K.

When the graph G is moreover bipartite, we have:
Zdimer(G, V) = | det f(|

Theorem 2.2 ([44]). The probability of occurrence of a subset & = {e; = z1y1,...,€, =
x1y1} of edges of G, chosen with respect to the dimer Boltzmann measure P4y, is equal
to

l
]Pdimer(ela ceey 6l) = (H Km,yl) Pf(Kil)fgv
=1

where (K ~!)¢ is the sub-matrix of the inverse Kasteleyn matrix K~ whose rows and
columns are indexed by vertices x1,Y1,-..,T, Yi.

When the graph G is moreover bipartite, the subset of edges € is written as £ = {e; =
wiby,...,e; = wb}, and we also have,

!
Paimer(€1, ..., €1) = (H Kwi,bi) det(K™1)e,
=1

where (I?*l)g is the sub-matrix of the inverse bipartite Kasteleyn matrix K~' whose
rows are indexed by black vertices by, . ..,b; and columns by white vertices wy, ..., w;.

2.2.2 Infinite case

Suppose that the graph G is infinite. The dimer Boltzmann measure is not well defined
and is replaced by the notion of Gibbs measure. A Gibbs measure is a probability
measure on M(G) satisfying the DLR-conditions: when one fixes a dimer configuration
in an annular region, then perfect matchings inside and outside of the annulus are
independent; moreover, the probability of a dimer configuration in the finite region
separated by the annulus is proportional to the product of the edge-weights.
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Consider a Kasteleyn orientation of the graph G and the corresponding Kasteleyn
matrix K, then K can also be seen as an operator acting on C":

VF e, (KF)y=Y K.,F,

Yy~
When G is bipartite, the bipartite Kasteleyn matrix K is an operator mapping C" to C5:

VFECW7 (f(F)b:Zf(b,wa-

w~b

Explicit expressions for Gibbs measures typically involve inverse operators of a family of
gauge equivalent Kasteleyn operators, see [47] for definitions and details. An inverse
operator L of a Kasteleyn operator K is asked to satisfy the following conditions:

e KL =Idor LK =1d,
e For every x, L, , — 0 as y tends to infinity.

Existence of an inverse Kasteleyn operator and explicit expressions for coefficients
are proved for: Z2-periodic bipartite graphs using Fourier techniques [23, 47]; Z?-
periodic (non-bipartite) Fisher graphs [9, 32]; non-periodic, bipartite isoradial graphs,
bipartite quadri-tiling graphs, and Fisher graphs, all with specific weights arising from
Z-invariance [45, 10, 12], see Sections 2.3.2, 2.3.3, 2.5 for definitions; coefficients of
the inverse then have the remarkable property of being local. We refer to the original
papers for the explicit expressions.

Uniqueness is established when the graph G is Z?-periodic [66, 9], and when the
graph is non-periodic in the setting of the papers [45, 12, 8]. When the inverse Kasteleyn
operator exists and is unique, it is denoted by K ~!. Note that uniqueness and the fact
that the product (KK 1)K = K (K ~!K) is associative implies that if K ! is a right, resp.
left, inverse it is also a left, resp. right, inverse [24].

Consider the o-field generated by cylinder sets of M(G). In all of the above cases,
there is an explicit expression for a Gibbs measure Pgimer 0n (M(G), F) whose proba-
bilities on cylinder sets is given by the formulas of Theorem 2.2 with K~! being the
inverse Kasteleyn operator above. When the graph G is moreover Z2-periodic, this Gibbs
measure is obtained as weak limit of the Boltzmann measures on the toroidal exhaustion
(Gn)n>1, where G,, = G/ nZ?. We refer to the original papers for an exact statement, see
also Theorem 3.19 which has the same form.

2.3 Dimer models on decorated graphs

In this paper, an important role is played by the dimer model on the double graph G®,
a model in correspondence with random pairs of dual directed spanning trees [71, 14, 49].
Furthermore, we consider two dimer representations of the Ising model. The first is
related to the LTE of the Ising model [51, 52], while the second arises from the XOR-
Ising model, built from two independent copies of the Ising model [32, 13]. The two
corresponding dimer models live on the Fisher graph G* and the bipartite graph G<,
respectively. The three graphs GP, G" and G® are decorated versions of the graph G.

In the next three sections, we define these decorated graphs and the mappings
considered. We treat the case where the graph G is infinite or finite. In the finite case,
the graph G, the dual graph G* and the restricted dual G* are those defined in Section 2.1,
where recall that G has an additional vertex on every boundary edge, and that o denotes
the vertex of G* corresponding to the unbounded face of G. In the infinite case, the
dual graph is G*. Figures illustrate the finite case; a local picture of the infinite case is
obtained by looking at the interior of the finite case.
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2.3.1 Dimers on the double graph G° and Temperley’s bijection

The double graph is denoted by G = (V?,EP). It is defined as follows, see also Figure 2
(left).

Infinite case. Embed the dual graph G* so that edges of the primal and the dual
intersect at a single point. The double graph is obtained by superimposing G and G* and
adding an extra vertex at the crossing of each primal and dual edge.

Finite case. It is constructed similarly to the infinite case from the superimposition of
G and the dual graph G*. Edges incident to the vertex o are then removed.

In the infinite and fine cases, the double graph GP is bipartite and face-cycles are
quadrangles. The set of black vertices of G, denoted by B, consists of vertices of G and
G*; the set of white vertices of G, denoted by W, consists of vertices at the crossing of
edges of G and G* in the infinite case, and of G and G* in the finite case. White vertices
are in bijection with edges of the graph G, or equivalently with edges of the dual graph.
We thus have, VP = BUW, where B=V UV* and W « E.

Suppose again that G is finite, fix a vertex r of G amongst the additional vertices on
boundary edges, and let V" = V \ {r}. Denote by G the graph obtained from G® by
removing the vertex r and all edges incident to it. The graph GP- is also bipartite; its set
of black vertices is B", where B" = V" U V* and its set of white vertices is W" =W « E,
see Figure 2 (right) for an example. Note that G®" has the same number of black and
white vertices: |B"| = |W"|.

Bijection between pairs of dual directed spanning trees and dimers Suppose
that G is finite. Prior to stating the bijection, we need a few definitions. A tree of G is
an acyclic connected subset of edges. A spanning tree is a tree spanning all vertices of
the graph. Let v be a vertex of G, then a v-directed spanning tree (v-dST) is obtained
from a spanning tree by directing all edges towards the vertex v, referred to as the root;
with such an orientation, every vertex has exactly one outgoing edge except the root
which has none. Given a spanning tree, the set of dual edges of the edges absent in the
spanning tree form a spanning tree of the dual graph G*, known as the dual spanning
tree.

Consider the fixed boundary vertex r of G as above. Denote by J"(G) the set of r-dST
of G, by 7°(G*) the set of 0-dST of G*, and by 7"°(G, G*) the set of pairs of dual directed
spanning trees (dST-pairs) of G and G* such that the primal tree is rooted at r and the
dual tree is rooted at o, see Figure 2 (left) for an example.

The result of Temperley [71], extended by [14] to general non-directed graphs and
by [49] to the directed case, proves a weight preserving bijection between dimer config-
urations of the double graph G°' and dST-pairs of 77°(G, G*). It relies on the following
bijection between edges of G°' and directed edges of G and G*. Let w € W' = W,
x € V" U V* such that wz is an edge of G”’, then

,0)of G ifz=v eV and v is s.t. w belongs to the edge (v, v’
wx<_>{(vv) ife=w v i w g ge (v,v") 2.2)

(f, f) of G* ifx = f € V* and f’ is s.t. w belongs to the edge (f, f').

Note that there are no directed edges of G exiting the vertex r, and no directed edges of
G* exiting the vertex o. Using this bijection, a subset of edges of G°" corresponds to a
subset of directed edges of G and G*; Temperley’s bijection states that subsets defining
dimer configurations are in correspondence with subsets defining dST-pairs of 7"°(G, C*).
An example is provided in Figure 2, the vertex o is represented in a spread-out way, i.e.,
the dotted line should be thought of as being the single vertex o.

Let ¢ be a weight function on edges of G° and ¢ a weight function on directed
edges of G, G*. The relation between ¢ and ¢ which makes Temperley’s bijection weight
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T

i E(f{;o

Figure 2: Left: double graph GP of the graph G of Figure 1 (grey lines), r-directed
spanning tree of G (turquoise) and dual o-directed spanning tree of G* (purple). Right:
graph G’ (grey) and the dimer configuration (red) in bijection with the pair of dual
directed spanning trees of the left figure.

preserving naturally arises from the bijection between edges of G° and directed edges
of G,G*. Letw € W', x € V" UV¥*, such that wz is an edge of GP". Using the notation
of (2.2), we have

Co.v! ifr=veV"
Cwzr = fvﬂ 1 * ! (23)
Cf ! ifx =f eV

and ¢, = 0 for every vertex v € V' adjacent to r, ¢, s = 0 for every vertex f' € V*
adjacent to o.

Model on pairs of dual directed spanning trees Suppose that directed edges of
G, G* are assigned the weight function ¢. Consider the Boltzmann measure on dST-pairs,
denoted Pigr ;... defined by

(Mworer Goor) Ty prer Ers7)

V(T, T%) € T°(G,G*), P .. (T, T) = LI 7
st Zcri’SoT-pairs(G G* )

where Z(rigT—pairs((G7 C*), 6) = Z(T}T*)ET“"(G,C*) (H(U,v’)ET EUﬂ;/) (H(f,f')ET* éﬁf’), is the
dSTpairs partition function. As a consequence of the KPW-Temperley bijection [71, 49],
we have

Z(r{SoT-pairs((G’ C*)> E) = Zdimer(GD1r7 C)'

There is also a natural correspondence between the dST-pairs Boltzmann measure
P ST pairs and the dimer Boltzmann measure P} ., on G”” with weight function c.

Note that if ¢ = 1 on edges of G*, resp. on edges of G, then Z;g,. . ((G,G*),¢) is equal
to the partition function Z}¢1.(G, é) of r-directed spanning trees of G, resp. ZSsr(G*,¢) of
o-directed spanning trees of G*.

2.3.2 Dimers on the Fisher graph G” and the LTE of the Ising model

The Fisher graph is denoted by G* = (V*,E"). It is constructed as follows [35, 32], see
Figure 3 for an example.
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Infinite case. Start from the dual graph G* and replace every vertex of G* by a
decoration made of triangles, where each of the triangles corresponds to an edge
incident to this vertex, then join the triangles in a circular way.

Finite case. Start from the dual graph G* and do the same procedure as in the infinite
case. Then, remove the decoration of the vertex o as well as all edges of G* incident to
this decoration.

In both the infinite and finite case, the Fisher graph consists of internal edges, which
are edges of the decorations, and external edges which are in bijection with edges of G*
and will often be identified with them. Each decoration has a dual vertex in its center,
giving a way of identifying decorations and vertices of G*.

(@]

Figure 3: The Fisher graph G* for the LTE expansion of the Ising model on G with +
boundary conditions (black); one of the 2'3 dimer configurations corresponding to the
polygon configuration of Figure 1.

Mapping between LTE polygon configurations and dimers Suppose that G is fi-
nite. Fisher [35] introduces a mapping between polygon configurations of G* and dimer
configurations of the corresponding Fisher graph G*. To a given polygon configuration
of G*, there corresponds 2/V'| dimer configurations of G': edges of the polygon con-
figuration are exactly the external edges of the dimer configurations and given these
external edges, there is exactly two ways of filling each decoration so as to have a dimer
configuration [35], see Figure 3 for an example. This mapping naturally extends when
the graph G is infinite.

We consider polygon configurations arising from the LTE expansion of the Ising
model on G with + boundary conditions and coupling constants J. In order for this
correspondence to be weight preserving up to a multiplicative constant, the dimer
weight function p’ on edges of GF is defined to be, see Equation (2.1), for every edge e
of GF,

| 1 if e is an internal edge
He = o .

€ e~?)e  ifeis an external edge arising from a dual edge e* of G*.
Let PY;,..o and Zgimer(G", 1) be the corresponding dimer Boltzmann measure and parti-
tion function. Then, as a consequence of Fisher’s correspondence we have,

23t (G, ) = 27V (H eJe)Zdimcr(GF, ). (2.4)
ecE

EJP 26 (2021), paper 53. https://www.imstat.org/ejp

Page 15/86


https://doi.org/10.1214/21-EJP601
https://imstat.org/journals-and-publications/electronic-journal-of-probability/

The Z-Dirac and massive Laplacian operators in the Z-invariant Ising model

2.3.3 Dimers on the bipartite graph G2 and the XOR-Ising model

The quadri-tiling graph is denoted by G® = (V< E®), where the name comes from the
paper [28]. In both the finite and infinite cases, we start from the preceding definition
of the double graph G®. Recall that face-cycles of GP are quadrangles consisting of
two black and two white vertices, then add the edges joining opposite black vertices in
quadrangles.

Infinite case. The graph G is the dual of the modified graph GP”.

Finite case. The graph G© is the restricted dual of the modified graph G°, see
Figure 4.

Vertices of G® are partitioned as V@ = BUW, and the bipartite coloring is fixed as
in Figure 4. Black, resp. white, vertices of G® are denoted by b, resp. w, with or with
sub/super-scripts.

In the infinite case, the graph G® consists of quadrangles that are joined by external
edges. Quadrangles are in bijection with edges of G, or equivalently edges of G*, or
equivalently white vertices of G”: each quadrangle has a white vertex of GP in its interior,
two of its edges are “parallel” to an edge of G and the two other edges are “parallel” to
the dual edge of G*. Face-cycles of G? other than quadrangles either have a vertex of G
or a vertex of G* in their interior.

In the finite case, the description is similar away from the boundary. Along the
boundary “quadrangles” in bijection with boundary edges of G, or equivalently with
boundary white vertices of GP, are actually reduced to single edges “parallel” to boundary
edges of G. We refer to those degenerate quadrangles as boundary quadrangles of G<,
keeping in mind that they actually are edges. Note that some quadrangle edges of G are
boundary edges of G< (in the sense that they belong to the boundary of the unbounded
face) but still belong to “full” quadrangles; as such they are not boundary quadrangle
edges.

Figure 4: The quadri-tiling graph G<: take the double graph G” of Figure 2 (left) and
add edges joining opposite black vertices in quadrangle-faces; the restricted dual of this
graph is G<.

We consider the dimer model on the bipartite graph G© arising from the XOR-Ising
model [74], also known as the polarization of the Ising model [38], obtained by taking
the product of the spins of two independent Ising models. There are two mappings
leading to the dimer model on G®, both of them are rather long to describe so that
we refer to the original papers: [32] based on results of [40, 75, 34, 76] for the first
approach, and [13] based on results of [62, 76] for the second one. Note that the last
part of the above constructions establishes a correspondence between the dimer model
on G® and a free-fermion, zero-field 6-vertex model on the medial graph [62, 76, 32]. In
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order not to lengthen this exposition we refer the reader to, for example, Sections 5.1
and 5.2 of [13] for a summary of this correspondence.
The dimer weight function v’ on G is defined by, for every edge e of G%,

1 if e is an external edge

1 if e is a boundary quadrangle edge in the finite case

tanh(2J,) if e is a quadrangle edge/non-boundary quadrangle edge
in the infinite/finite case, “parallel” to an edge e of G

cosh_1(2Je) if e is a quadrangle edge, “parallel” to a dual edge e*

of an edge e of G.

When the graph G° is finite, we let P, = and Zgime(G?, ') be the corresponding
dimer Boltzmann measure and partition function. As a consequence of [32], see also
Corollary 5.3, we have:

Zdimer(GFuU/ = 2‘\/ | H 1 +e Zdlmer(G V)
e*cE*

Combining this with Equation (2.4) for the Ising partition function, and denoting by E®
the set of boundary edges of the graph G, we obtain

[Zitg (G D)2 = 271V \(H ) (T 0+ e)) Zaimer(6%,)

e*cE*

o V] (H . )( 11 COSh(?Je))Zdimer(GQ7VJ)

(IS
ecE?

) ( H cosh(2J.) ) Zdimer(G®, 1Y), (2.5)
where in the last line we used that |E| = |E*|+|E?| and Euler’s formula: |E| = |V|+|V*|—1.

2.4 Rooted directed spanning forests and directed spanning trees

We also need the model of rooted directed spanning forests on the graphs G and G*,
resp. G" and G*, in the infinite, resp. finite, case. So as to include both the primal and
the dual graphs, we now define this model on a simple graph G = (V| E).

Suppose that vertices are assigned non-negative masses, denoted m = (m;).cv, and
that directed edges have positive conductances, denoted p, meaning that every directed
edge (z,z’) has conductance p, ..

A rooted directed spanning forest (rdSF) of GG is a subset of edges spanning all
vertices of the graph, such that each connected component is a directed tree T rooted at
a vertex of GG, denoted z7. Let F(G) denoted the set of rdSF of the graph G.

Suppose that G is finite and consider the Boltzmann measure on rdSF, denoted IP,4sF,
defined by:

[lrer (mwT H(a:,:p’)ET wa')
Zyasr (G, p,m) ’
where Z,qsr (G, p,m) = ZFG?(G) [Irer Mt H(I e P, 18 the rdSF partition function.
Whenever conductances are symmetric, i.e., py o+ = pa’ 5, we will remove the “d” in rdSFE.
As a consequence of the directed version of Kirchhoff’s matrix-tree theorem [50, 73],

the rdSF partition function is computed using the massive Laplacian operator/matrix as
follows. The massive Laplacian operator A™ : CV — CV is defined by:

VE e, (A™F)y = pow(Fo— Fu)+mgF,.

z'~x

VF e ?(G), IPrdSF(F) =
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The operator A™ is represented by a matrix, also denoted A™, whose non-zero coeffi-
cients are given by:

Am ) Pea if (x,2’) is an edge of G
o My + wax Pz if 2’ = is a vertex of G.

A function F € CV is said to be massive-harmonic, if A™F = (.

Consider the graph G; constructed from G by adding a cemetery vertex { and an
edge (z, 1) for every vertex z such that m, # 0. Define the modified weight function p™
on (directed) edges of G; by,

e
¥ edge (z,2') of Gy, plI', = {px,z/ %fx a
’ m, ifz =1.
There is a natural weight-preserving bijection between T77(G+) and F(G): a {-directed
spanning tree of G; corresponds to the rooted directed spanning forest of G obtained by
replacing every edge (z, 1) of the dST by a root of the rdSF.

Denote by A; the (non-massive) Laplacian matrix of G+ with weight function p™
on the edges. Then, A™ is the Laplacian matrix A; from which one has removed the
row and column corresponding to the cemetery t and thus, by Kirchhoff’s matrix-tree
theorem [50, 73], the determinant of A™ counts p" weighted {-dST of G;. Using the
bijection between {-dST of G; and rdSF of G, we thus have,

Theorem 2.3 ([50, 73]).
Zrase (G, p,m) = Zlgp (G, p™) = det(A™).

When there is at least one vertex with positive mass, the massive Green function,
denoted G™, is the inverse of the massive Laplacian A™. Since in the remainder of the
paper, graphs are written with the letter G with or without superscripts, we believe
that the notation G™ will not create confusion. The massive Green function is naturally
related to the expected number of visits of the network random walk associated to the
conductances p and masses m, see for example Appendix D of [11], where a number of
facts are recalled.

2.5 Isoradial graphs and Z-invariance

Sections 3, 4 and 5.3 use Z-invariant models defined on isoradial graphs. We recall
these notions, related concepts and more specifically give the definitions of the Z-
invariant versions of the Ising model on G, of the dimer model on the decorated graphs
G" and G? and of rooted spanning forests on G or G*.

2.5.1 Isoradial graphs, diamond graphs and angles

Isoradial graphs naturally appear when considering a discrete version of the Cauchy-
Riemann equations, see [33] and [59, 45, 17]; they also arise in Z-invariant models when
solving the corresponding Yang-Baxter equations [6, 25]; the name isoradial comes from
the paper [45].

Suppose that G is an infinite, planar graph. Then G is said to be isoradial if it can
be embedded in the plane in such a way that every face is inscribable in a circle of the
same radius, and such that the circumcircles are in the interior of the faces. We consider
G as an embedded graph and take the common radius to be 2. Note that the dual G* of
an isoradial graph is also isoradial, an embedding of G* is obtained by taking as vertices
the circumcenters of the circles.
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This definition also holds when the graph is finite. Recall that in this case, the
notation G is used for the graph having an additional vertex on each boundary edge.
We now fix the isoradial embedding of G when the original graph (the one without the
additional vertices) is isoradial. This is done in the same way as in [18]: each additional
boundary vertex corresponds to a boundary edge zy of the original graph and we embed
this additional vertex in the middle of the arc joining x and y, see Figure 5 (left and
right).

Figure 5: Left: original isoradial graph (black lines) with circumcircles (grey) and dual
vertices embedded as circumcenters (diamonds). Right: isoradial graph G (black lines)
with the additional boundary vertices (grey bullets); diamond graph G° (grey lines);
rhombus (yellow) assigned to an edge e = (v,v’) with the corresponding half-angle 0,
and rhombus vectors 2¢'®, 2¢?5<; a boundary rhombus pair of R? (light grey).

In the infinite case, the diamond graph, denoted G°, is constructed from an isoradial
graph G and its dual G* as follows: its vertex set is V U V*, the vertices of G and G*; and
each dual vertex is joined to all vertices bounding the face it corresponds to. Since the
graph G is isoradial, faces of the diamond graph G° are side-length-2 rhombi.

There is a bijection between rhombi of G® and pairs e, e* of primal and dual edges,
the latter being the two diagonals of the rhombi. To every edge e, one assigns an angle
0. € (0, %) defined to be the half-angle of the corresponding rhombus at the edge e. We
furthermore ask that 6. € (¢, § — ¢), for some ¢ > 0. The rhombus angle of the dual edge
e*is 0. = £ —0, := 7. To a directed edge e = (v,v’) of G we further assign two rhombus
vectors 2¢i%, 2¢'P< of G°, such that 2¢® is on the right of the edge (v, v’), see Figure 5
(right). The angles a. and B. are defined so that *3%6‘ = .. Whenever no confusion
occurs, we remove the subscript e from the notation. In the finite case, the diamond
graph, also denoted G°, is constructed in a similar way from G and its restricted dual G*.
One then adds the missing half-rhombi along the boundary; they may overlap but this
causes no problem, see Figure 5 (right). Angles and rhombus vectors assigned to edges
are defined in the same way.

Because of the additional vertex on each boundary edge and because of our choice
of embedding, rhombi along the boundary of G° come in pairs, both having the same
rhombus half-angle; let us denote by R? the set of boundary rhombus pairs, an instance
is highlighted in Figure 5 (right, light grey).
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2.5.2 Isoradial embeddings of the decorated graphs G® and G°®

Consider an isoradial graph G, its dual G* in the infinite case and its restricted dual G*
in the finite case. The double graph G” is embedded so that the black vertices are those
of G and G* and the white vertices are at the crossing of the diagonals of the rhombi of
G°, see Figure 6 (left).

Figure 6: Left: isoradial embedding of the graph GP (black lines). Right: isoradial
embedding of the graph G® (black lines). In both cases is also pictured the diamond
graph G°/2 (grey lines), a boundary rhombus pair of R? and the root pair (light grey).

In the infinite case and in the finite non-boundary case, consider the embedding of
the bipartite graph G® where external edges have length-0 and their endpoints become
a single vertex in the middle of the rhombus edges of G°, see Figure 6 (right, inner
vertices); then, inner quadrangles of G are rectangles. Note that although external
edges are embedded as single vertices, they still consist of two vertices joined by (a
length-0) edge, i.e., the combinatorics of the graph does not change.

When the graph G© is finite, the procedure along the boundary is different. Consider
a boundary rhombus pairs of R?, the following notation will be used throughout the
paper and is illustrated in Figure 7 below. Let v‘,v°,v" be the vertices of G in cw
order and let f¢ be the vertex of G*; note that v° is the additional vertex on the edge
v’v" of the original graph. Denote by w’, w” the white vertices of the double graph G°
and by w’, b’, w¢, b”, w” the vertices of G®. Then, taking the same convention as in the
infinite case for the embedding gives Figure 7 (left); but it turns out that the appropriate
embedding to obtain Theorem 4.2 is that of Figure 7 (center), see also Figure 6 (right),
where the boundary quadrangle edge b‘w¢ has length-0 and is “replaced” by the external
edge w'b’. This change of embedding preserves the combinatorics of the graph; it has
the effect of exchanging the colors of the bipartite coloring of G in the left rhombus of
the rhombus pair.

We will often be using the fact that vertices/edges of the boundary rhombus pairs of
R? encode: boundary vertices/edges of G, boundary vertices of the restricted dual G*,
where a boundary vertex of G* is defined to be a vertex adjacent to the vertex o in G*;
boundary quadrangle vertices/edges of G?, where recall that boundary quadrangles are
degenerate and reduced to edges in bijection with boundary edges of G. We will use
the notation {v* € R?} for the set of vertices of type v’ belonging to boundary rhombus
pairs, and similarly for other vertices or edges of R°.
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Figure 7: Notation for vertices of boundary pairs of rhombi of R°. Left: isoradial
embedding of G% under the convention that external edges have length 0. Center:
isoradial embedding used in this paper. Right: rhombus vectors of G°/? and half-angle
assigned to the edges (v, w"), (v°, w") of GP.

The embeddings of G° and G® are both isoradial with circumcircles having common
radius 1. Consider the graph obtained from the diamond graph G° by cutting rhombi
into four equal length-1 rhombi. Denote this graph by G°/2 in the infinite case and, in the
finite case, let G°/? be this graph where the boundary quarter rhombi crossed by no edge
of GP are removed. Then G°/? is the diamond graph of G°. Note that G°/? is nearly the
diamond graph of G®: it is slightly extended along the boundary and one should think of
it as having flat rhombi associated to length-0 edges of G<. We will nevertheless refer to
it as the diamond graph of G or G®. An example of graph G°/? is given in Figure 6 (left
and right, grey).

Consider a boundary rhombus pair of R?, and let €@, ¢, resp. €@ ¢, be the
rhombus vectors of the diamond graph G°/? assigned to the edge (v¢,w*), resp. (v¢,w"),

of GP see Figure 7 (right). By definition we have # BT;V € (6,3 —¢), and by

construction the two rhombi have the same half-angle denoted 6° = B e;‘ie = ﬁr;‘ir. We
further impose that 3¢ = a” + 2x or equivalently that aggﬂr € (2e,m — 2¢).

Amongst the boundary rhombus pairs of R? the one containing the fixed vertexr, i.e.
the one for which v =r, plays a special role; it will be referred to as the root-boundary
rhombus pair or simply root-pair, see Figure 6 where the root pair is highlighted in light
grey. We denote by R?" the set R? without the root pair. The isoradial embedding of the
graph GP is obtained from G° by removing the vertex r and the edges w'r, w"r of the
root pair. Whenever needed, we add a superscript r to the notation of Figure 7 to specify
vertices of the root pair.

2.5.3 Train-tracks

A train-track of a finite isoradial graph G, also known as a de Bruijn line [26, 27] or
a rapidity line [5] is a maximal chain of edge-adjacent rhombi of the diamond graph
G°, such that when entering a rhombus one exits along the opposite edge [48]; each
train-track 7 has a parallel direction +2e’® . Consider the simply connected domain
D(G) obtained by taking the union of the faces of G. Then a train-track 7 enters
and exits D(G), and there are exactly two parallel edges of 7 outside of D(G), see
Figure 5, (right). The boundary rhombus vectors {267, 268" € R?}, {2618 2678 ¢ R?}
come in parallel pairs, and all the parallel directions of the train-tracks are encoded in
{£265 £268° € RO} = {£2¢70" £2618" € R},

2.5.4 Elliptic angles

Consider an elliptic modulus k, then k' = (1 —k?2)2 is the complementary elliptic modulus.
Suppose that k is such that (k’)? € (0,00). The complete elliptic integral of the first kind,
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denoted K = K (k) is

K %71 d
_/0 (1 —Ek2%sinT) T

and for later purposes we also need K’ = K(k’). Asin [11, 12], we need the following
linear transformation of rhombus angles and vectors of the diamond graph G® associated
to edges:

9:5%’ a:@g’ ﬂzﬂ_%.
™ T ™

2.5.5 Z-invariant Ising model and corresponding dimer models

Underlying Z-invariance is the star-triangle transformation, also known as the Y-A move,
on isoradial graphs. Suppose that an isoradial graph G has a triangle, then this triangle
can be transformed into a three-legged star while preserving isoradiality. This amounts
to performing a cubic flip in the underlying diamond graph G°; the embedding of the
additional vertex of the triangle is given by the cubic flip, see Figure 8.

> *

Figure 8: A star-triangle transformation of an isoradial graph.

Z-invariance [4, 5] phrased in the context of the Ising model requires that when
decomposing the partition function according to the 22 possible spin configurations at
the three vertices bounding the star/triangle, it only changes by an overall constant
when performing a Y-A move, and this constant is independent of the choice of spin
configuration. This yields a set of equations for the coupling constants, known as the
Ising Yang-Baxter equations, see also [65]. Extending the form of the solutions to
the whole of the graph naturally leads to introducing isoradial graphs: the solution is
parameterized by the rhombus half-angles assigned to edges and by the elliptic modulus
k, where k is such that (k’)?2 = 1—k? € (0, 0), see [6]. The Z-invariant coupling constants
are explicitly given by:

L /1 +sn(0.]k)
E, J,=cn (- o20elb)) 2.
VecE, J. 5 n< (@, ]k) (2.6)

where sn, cn are two of the twelve Jacobi elliptic trigonometric functions. We refer the
reader to [1, 54] for more on elliptic and related functions.

Suppose that the Z-invariant coupling constants are chosen for the Ising model. Then,
the dimer weight function p’ on the Fisher graph G* arising from Fisher’s correspondence
is given by, for every edge e of G¥,

cn(, k) (2.7)

, )1 if e is an internal edge
He = if e is an external edge arising from an edge e* of G*.

1+sn(0c|k)

The dimer weight function v’ on the bipartite graph G arising from the XOR-Ising
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model is given by, for every edge e of G,

1 if e is an external edge
1 if e is a boundary quadrangle edge in the finite case
v, = ¢ sn(f.|k) if eis a quadrangle edge/non-boundary quadrangle edge (2.8)
in the infinite/finite case, parallel to an edge e of G

cn(f.|k) if e is parallel to a dual edge e* of an edge e of G.

Recall that the dimer model on G? corresponds to a free-fermion, zero-field 6-vertex
model [62, 76, 32]. Then, the weights (2.8) also correspond to the 6-vertex version of
the elliptic parameterization of the Z-invariant 8-vertex model weights, computed by
Baxter [4, 6].

2.5.6 The Z-invariant massive Laplacian

In the paper [11], we consider an infinite, isoradial graph G and introduce conductances
and masses defining the Z-invariant massive Laplacian operator or simply Z-massive
Laplacian, related to Z-invariant rooted spanning forests. Recall that every edge (v,v’)
of G is assigned two rhombus vectors 2¢'*, 2¢% and a half-angle # of the diamond graph
G°. Denote by v1, . .., v4 the neighbors of a vertex v of degree d, and for every edge (v, v;)
use the notation 2e?®7, 2e?®i+1, 9} for the associated rhombus vectors and half-angle. Fix
an elliptic modulus k such that (k')? € (0,00). Then, for every edge (v,v’') and every
vertex v of G, the conductances p* and masses m* of [11] are defined by:

d
pﬁ,'u’ = SC(9|k)7 mf} = Z[A(0]|k) - SC(9j|k)]a

j=1

where sc = % and

o E-K
A(ulk) = (K 1(Dc(u|k)+ - u),

Dc(ulk) = [;"dc®(v|k)dv, and E = E(k) = fog(l — k%sin?(7))2dr, is the complete
elliptic integral of the second kind. Note that m”* > 0, by Proposition 6 of [11].

The corresponding Z-massive Laplacian matrix A”(%) has non-zero coefficients given
by:

Vo,o' €V, A (2.9)

v,v’

mk) ) —sc(0]k) if (v,v’) is an edge of G
S AGlk) i =,

The dual graph G* is also isoradial, we denote by p**, m** the associated conductances
and masses, and by 6* the half-angle of a dual edge. We let A™(¥)* be the corresponding
Z-massive Laplacian operator and refer to it as the dual Z-massive Laplacian.

The inverse of the Z-massive Laplacian A™) ig the Z-massive Green function; it is
denoted G™(*), In [11], we prove the following explicit Iocal expression for coefficients
of G™(); for every pair of vertices z,y of G,

!/
Gamk) — f—w /1“ €(a,y) (ulk)du, (2.10)

where IT'; , is a vertical contour on the torus T(k) = C/(4KZ + 4iK'Z), and e(-|k) :
V xV x C — C is the massive exponential function defined in [11]. To compute e(, ,)(u|k),
consider a path x = z1, ..., x, = y of the diamond graph G® from z to y, let 2¢'* be the
rhombus vector corresponding to the edge z;x;;1, then

n—1
€(ayay40) (Ulk) = i(K')? sc(uq,|k), and eq ) (ulk) = [] e, ) (ulk), (2.11)
j=1
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U—Qy

where Un, = —

Up to an explicit multiplicative constant G"(*) (z,y) is the expected number of visits
to y of the associated massive random walk on the infinite graph G started at x, see for
example Appendix D4 of [11].

From now on, we consider k such that (k')? € (0, 00) as fixed and omit all reference
to k in the notation.

2.5.7 Bipartite dimer models on isoradial graphs

When considering a dimer model on a bipartite isoradial graph G = (W U B, E) with
weight function v, instead of a Kasteleyn orientation, one can multiply edge-weights by a
complex phase [53, 45]. This defines the complex, bipartite Kasteleyn matrix, denoted
K in the context of this section, whose non-zero coefficients are given by:
V edge wb of G, K, = e Ty

where eio_‘e,eiBc are the rhombus vectors of G°® associated to the edge ¢ = (w,b). The
real and complex bipartite Kasteleyn matrices satisfy the alternating cycle condition
around every inner face of G and are gauge equivalent, see Section A.2 of Appendix A.
The results of [41, 42, 44] recalled in Section 2.2 also hold with the complex, bipartite
Kasteleyn matrix. In the sequel the graph G will be the double graph G® or the bipartite
graph G°.

3 Z“-Dirac and Z-massive Laplacian operators

We let G be an infinite/finite isoradial graph; its dual graph is G*/G*, and in the finite
case G* is its restricted dual. We consider the isoradial embedding of the double graph
GP = (VP EP) given in Section 2.5.2, see also Figure 6. Fix an elliptic parameter k. Recall
the definition of the torus T(k) = C/(4KZ+4iK'Z), and of the subset C = C(k) := R/4KZ
of T(k).

In Section 3.1 we introduce a family of bipartite Kasteleyn matrices/operators
(K(u))uec on the double graph G, referred to as the Z*-Dirac operators. Fixing u € C, a
function F' € CZ is said to be Z"-holomorphic if, K(u)F' = 0. When k = 0, the dependence
in u disappears and we recover the discrete Dirac operator 0 introduced in [45], see
Remark 3.4. As a consequence of Theorem 3.6 of Section 3.3, we have that if F'is a Z%-
holomorphic function, then F)y is massive harmonic on G and Fy- is massive harmonic
on G*, for the Z-massive Laplacian A™ and its dual A™* of [11]; explaining the part
Dirac of the terminology. In the finite case, we moreover introduce the operator K?(u)
with specific boundary conditions arising from the forthcoming Theorem 4.2 related to
the Ising model, that are different from the natural dimer ones.

In Section 3.4 we restrict to the finite case. Theorem 3.8 proves that, for every u € C,
the determinant of the Z*-Dirac operator K(u) is equal, up to an explicit multiplicative
constant, to the determinant of the dual massive Laplacian A™*; we show a similar result
for the operator K?(u) and the massive Laplacian A™?(u), where A™?(u) has specific
boundary conditions and depends on u along the boundary only. Interpreting these
determinants as partition functions, this proves that the weighted sum of pairs of dual
directed spanning trees is equal, up to an explicit constant, to the weighted sum of rooted
spanning forests. In the case k£ = 0, pairs of directed spanning trees become undirected
and rooted spanning forests are un-rooted so that this theorem is a consequence of
Temperley’s bijection [71] and of the matrix-tree theorem [50]. For k # 0, this result is
non-trivial; the proof uses gauge equivalences on bipartite Kasteleyn matrices and on
weighted adjacency matrices of directed graphs (digraphs), see Appendix A.
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For every u € C, the operator K(u) is gauge equivalent to an operator K&(u) associated
to a model of directed spanning trees. In Proposition 3.13 of Section 3.5, we prove that
this model of directed spanning trees is Z-invariant, thus explaining the part “Z“” in the
terminology Z“-Dirac operator.

Using Theorem 3.6, in Corollary 3.15 of Section 3.6, we express the inverse Z“-Dirac
operator using the Z-massive Green function G™ and its dual G™* of [11] in the infinite
case. This proves in Theorem 3.19 an explicit local expression for a Gibbs measure
for the dimer model on G with operator K(u), generalizing to the full Z-invariant case
the results of [45] proved in the case k£ = 0. In Corollary 3.17, we explicitly express
the inverse of the Z“-Dirac operator K?(u) as a function of the finite versions of the
Z-massive Green functions. Theorem 3.19 is a planar, directed version of the transfer-
impedance theorem of [14], where probabilities of pairs of dual directed spanning trees
are computed using the Green functions of massive non-directed random walks. Apart
from the locality property which is specific to Z-invariance, a similar result is obtained
by Chhita [20] in the case of the square lattice with a specific choice of weights. Sun [70]
expresses probabilities of directed spanning trees using the Green function of directed
random walks, and Kenyon [46] proves that probabilities of rooted spanning forests are
determinantal, without connecting them to directed spanning trees. It might be that
the techniques of this paper, in particular gauge transformations on weighted adjacency
matrices of digraphs, extend in some respect and allow to relate probabilities of pairs of
dual directed spanning trees to massive non-directed Green functions.

3.1 Family of Z“-Dirac operators (K(u)),cc

We will be using Section 2.3.1 on the double graph and Temperley’s bijection. Recall
that vertices of the double graph GP" are partitioned as V° = BU W, where B =V U V*
and W <« E. The diamond graph of G" is G°/2, see Section 2.5.2 and Figure 6. Let u € C
be fixed; we now define the Z“-Dirac operator, first in the infinite case, then in the finite
case.

Infinite case. Consider the weight function ¢(u) on edges of G defined by, Vw €
W, Vx € VUV* such that wz is an edge of G®,

f(ua., ifzeV
(W) = | e UBe) o (3.1)
f((ua.)" (ug,)*) ifz eV,
where ¢i@, ¢if are the rhombus vectors of G°/? associated to the edge e = (w, x);
Uy = 5%, u* = K —u, and

(U, ug) = [sc(uq — ug) dn(uq) dn(u/g)]%.

Remark 3.1. The function dn is periodic in two directions and naturally defined on the
torus C/(2KZ + 4iK'Z) [1]. Since dn(u + 2iK’) = —dn(u), and since the function c(u)
involves products of two dn’s and half arguments, it is defined on the torus T(k). This
argument is similar to that used in [11] to define the domain of the massive exponential
function.

We restrict to u € C because the weight function ¢(u) is then positive; indeed the
function dn is, and «, 8. are such that B%E‘ € (e, 5 —¢). Also, on C the (pure imaginary)
poles of c(u) are avoided and the weights are thus finite. Results in the sequel which use
elliptic trigonometric identities actually hold for all v € T(k); it is when considering the
corresponding dimer model that we use positivity of the weights.

Let K(u) be the complex, bipartite Kasteleyn matrix defined in Section 2.5.7 corre-
sponding to the weight function ¢(u), with rows indexed by white vertices of G°. Non-zero
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coefficients of K(u) are given by

Vedge wz of G°, K(u)y . = et () we- (3.2)

Recall that this Kasteleyn matrix can also be interpreted as an operator mapping C?
to C. We refer to this matrix/operator as the Z“-Dirac operator. As an example, we
explicitly compute K(u) around a white vertex w of GP.

Example 3.2. Figure 9 below sets the notation. A white vertex w of G" is adjacent to
the black vertices v1, f1,v2, f2 of G® defining a rhombus of the diamond graph G°, such
that v, v, belong to G and f, f> to G*. Denote by 2¢'®, 2¢*# the rhombus vectors of G°
associated to the edge (v1,v), and by 0 = % the rhombus half-angle of this edge.

. s
2¢'P
i(Gt) eth
’U1. \9 .’U2 ’Ul. \9 .’U2
i(B+m) w i
peie 770
f1 f1

Figure 9: Rhombus vy, f1, v2, fo of the diamond graph G°® (left) and rhombi of the diamond
graph G°/? associated to the edges wuvy,wf;, wvy, wfs, with corresponding rhombus
vectors and half-angles.

Then, we have:

Ky = —€ % [5c(6) dn(uaor) dn(ugar)]F = — 5 [(K')? sc(6) nd(uq) nd(ug)]
K(W)w.ey = 5 [sc(6) dn(ug) dn(ug))?

K(tuy = —ie' 2 [(K)? 5¢(0%) nd(us—ax) nd(ua)]* = —ie' 3" [es(0) dn(us) nd (u,)]
K()u, g, = ie’ Eﬁ [(K)? 5¢(6") nd(ug) nd (tap2rc )] = iet % [es(6) nd(ug) dn(uq)] 2,

using that, sc(0*) = sc(K — 0) = (k') "L es(0), dn(u — K) = k' nd(u), dn(u + 2K) = dn(u).
Definition 3.3. A function I € CF is said to be Z"-holomorphic if

K(u)F = 0.
With the notation of Figure 9, this is equivalent to asking that the function F' satisfies,

VweW, K(U)wml - Fyy + K(u)w,vz By, + K(u)w,ﬁ - Fy, + K(U)w,fz “Fy, =0
& YweW, scf)? ([dn(ua) dn(ug)]? - Fo, — [(K')? nd(uq) nd(us)]? F) n

+iles(0)]? (Ind(ug) dn(ua)]? - Fr, = [dn(ug) nd(ua)}? - Fr, ) = 0.
Remark 3.4. When k = 0, then £/ = 1, dn = 1, sc = tan, and the Z“-Dirac operator is

the discrete Dirac operator 0 introduced in [45]. A Z%“-holomorphic function is then a
holomorphic function as defined in [33, 59, 45, 17]:

VYweW, tan(d)? (F,, — F,,) +ilcot(8)]? (Fy, — Fy,) = 0.

Finite case. We will be using Sections 2.3.1 and 2.5.2: the graph G"" is obtained from
GP by removing the vertex r and its incident edges; the set of black vertices of G is
B" = V" UV*, the set of white vertices is W" = W « E, and |B'| = |W'|,
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(left) for an example. The set of boundary rhombus pairs of the diamond graph G° is R?;
R?" is the set R? without the root pair containing the vertex r. For boundary rhombus
pairs of R?, we use the notation of Figure 7, which we recall here for convenience of the
reader.

Figure 10: Notation for vertices of G" in a boundary rhombus pair of R?, and rhombus

iat  if ia”  iB" °/2 agsi c wt c w”
vectors e'®, e, resp. €'“ , e’ , of G®/? assigned to the edge (v¢,w"), resp. (v¢,w").
When this pair is not the root one, the marked black edge is where the operator K?(u)
differs from K(u).

We introduce two version