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Abstract

Ballisticity of a continuous self avoiding walk on hyperbolic spaces Hd is established.
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1 Introduction

Consider the continuous n-step random walk on the hyperbolic d-space, denoted Hd,
where the next step is chosen uniformly and independently on the (d− 1)-dimensional
sphere around the current location. Condition this uniform product measure on se-
quences in which the distance between any pair of vertices is bigger than c, for some
fixed 0 < c < 1.

We will write Pn for this measure, which will be called the SAW measure, and En for
the expectation with respect to this measure. We denote by x0, x1, . . . , xn the vertices of
the walk in order of appearance and d(·, ·) the distance function.

Theorem 1.1. There is a constant C = C(d, c) > 0 such that End(x0, xn) > Cn for every
n ≥ 1.

For background on hyperbolic geometry see e.g. [4]. For background on self avoiding
walks see [1]. The papers [2, 5, 7, 9, 8, 10] contain results on the speed of self avoiding
walk.

The self avoiding walk model has been primarily studied on graphs. The most well-
studied cases are the hypercubic lattice Zd and other Euclidean lattices. In this setting,
the self avoiding walk is known to be sub-ballistic and the model is well-understood
in dimensions d ≥ 5 [5, 6]. Recently, the study of self avoiding walk on non-Euclidean
lattices has received increasing attention. Madras and Wu [9] proved that the SAW is
ballistic for some regular tessellations of the hyperbolic plane of large enough degree.
The second author [10] extended this result to all regular tessellations of the hyperbolic
plane. The main idea of the latter paper is to use percolation on the underlying graph as
a tool for obtaining upper bounds for the number of ‘closed’ self avoiding walks of length
n, namely self avoiding polygons. This method utilises the fact that in 2 dimensions,
a self avoiding polygon encloses a bounded region, to associate to each self avoiding
polygon a notion of inner boundary. Then a certain isoperimetric inequality is obtained
which compares the length of a self avoiding polygon with the size of its inner boundary.

*Weizmann Institute of Science, Israel. E-mail: itai.benjamini@gmail.com
†Université de Genève, Switzerland. E-mail: christoforos.panagiotis@unige.ch

https://doi.org/10.1214/21-ECP388
https://imstat.org/journals-and-publications/electronic-communications-in-probability/
https://ams.org/mathscinet/msc/msc2020.html
mailto:itai.benjamini@gmail.com
mailto:christoforos.panagiotis@unige.ch


Hyperbolic self avoiding walk

A direct counting argument provides lower bounds for the total number of self avoiding
walks of length n, and proves that the self avoiding walk is ballistic. See [7, 8] for more
results on the speed of self avoiding walk on non-Euclidean lattices.

The aforementioned argument makes strong use of planarity and the combinatorial
structure of the model in the graph case, and it is not clear how to modify it in order to
make it work in our context. Our approach is more geometric in nature, and the current
paper replaces a paper [2] regarding self avoiding walk on the 7-regular triangulation
of the hyperbolic plane by the first author. Since our space has constant negative
curvature, for every self avoiding walk x, a constant proportion of its points are close to
the boundary of the convex hull of x. The abundance of local symmetries allows us to
modify the trajectory of x between xi and xn, where xi is a point close to the boundary
of the convex hull, to obtain a self avoiding walk x′ such that x′i is at bounded distance
from the geodesic between x′0 and x′n. As it turns out, this local modification happens
with probability bounded away from 0, and allows us to obtain that in expectation, a
constant proportion of vertices of x are at bounded distance from the geodesic between
x0 and xn. This implies that the length of the geodesic is proportional to n, as desired.

After proving the main result of this paper, we mention some open problems regarding
the behaviour of the model once we make the steps of the walk tend to 0. These problems
are motivated by related open problems regarding self avoiding walk on Rd.

2 Proof

Proof. Let us first recall that there is a constant δ > 0 fixed throughout such that for
every geodesic triangle inHd with sides α, β, γ, we have that α lies in the δ neighbourhood
of β ∪ γ.

We will start by proving the following geometric lemma.

Lemma 2.1. There is a constant c1 > 0 such that for every finite set A of vertices in Hd

with the property that the distance between any two of its points is at least c, at least
c1|A| vertices of A are at distance at most (1− c)/2 from the boundary of the convex hull
of A.

Proof. Notice that the convex hull K of A coincides with the convex hull of A ∩ ∂K.
According to [3], there is a constant t = t(d) such that the volume of K is at most
t|A ∩ ∂K|. For every x in B := {x ∈ A | d(x, ∂K) > (1− c)/2}, the ball of radius (1− c)/2
around x is contained in K, hence the volume of K is greater than t′|B| for a certain
constant t′ > 0. The assertion follows now easily.

For a set of vertices A, we will write H(A) for the convex hull of A. It follows from
Lemma 2.1 that for every large enough M > 0 and for every SAW x of length n, the
number of indices i with d(xi, ∂H(x)) ≤ (1− c)/2 and d(xj , ∂H(x)) ≤ (1− c)/2 for some
i+ 1 ≤ j ≤ i+M is proportional to n. As there are finitely many choices for j − i, there
is some 1 ≤ r = r(x) ≤M such that the number of indices i with d(xi, ∂H(x)) ≤ (1− c)/2
and d(xi+r, ∂H(x)) ≤ (1− c)/2 is proportional to n. In fact, we can assume that r is as
large as we want at the expense of possibly increasing M and reducing the constant of
proportionality. In particular, we can always choose r > 3δ + 1− c. We fix an M > 0 for
which this is always possible. The reason for making this choice will become clear later.

For any number C > 0, we define Ai(C) to be the event that xi has distance at
most C from the geodesic between x0 and xn. We also define Bi,r to be the event that
d(xi, ∂H(x)) ≤ (1− c)/2 and d(xi+r, ∂H(x)) ≤ (1− c)/2, and we let Bi be the event that
Bi,r occurs for some r such that M ≥ r > 3δ + 1 − c. Our aim is to utilize the above
observation in order to modify the SAWs of Bi to construct SAWs that satisfy Ai(C).
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In order to do this, we would like to use some simple facts of hyperbolic geometry
that are easy to see once we fix a model. Let us consider the Poincaré ball model for Hd,
which is defined as the unit ball in Rd equipped with the following metric:

ds2 = 4
dx21 + . . .+ dx2d

(1− x21 − . . .− x2d)2
.

We recall that geodesics consist of all arcs of Euclidean circles contained within the unit
ball that are orthogonal to the boundary of the unit ball, plus all diameters of the unit
ball. As a consequence, a hyperbolic hyperplane lies either in a Euclidean sphere or a
Euclidean hyperplane passing through the origin. Moreover, a hyperbolic ball is also
a Euclidean ball. The hyperbolic and Euclidean centres are, in general, not the same,
but they coincide in case one of them is the origin. The model has also the advantage of
being conformal, i.e. hyperbolic angles coincide with Euclidean angles.

In the following lemma, we will write xy for the geodesic between points x and y in
Hd and d(A,B) := infx∈A,y∈B d(x, y) for the distance between subsets of Hd.

Lemma 2.2. There are universal constants 0 < C < 1, C > 0 such that Pn(Ai(C)) ≥
CPn(Bi) for every large enough n and every i ≥ 1.

Proof. Consider some M ≥ r > 3δ + 1 − c and a SAW x ∈ Bi,r. Our aim is to define a
family of walks x′ for which the event Ai(C) occurs for a certain constant C > 0, while
{x′0, . . . , x′i} coincides with {x0, . . . , xi}, and {x′i+r, . . . , x′n} coincides with the image of
{xi+r, . . . , xn} under an isometry of Hd. We will say that {x′i+r, . . . , x′n} and {xi+r, . . . , xn}
have the same relative position.

To this end, let zi, zi+r be the points in the boundary of H(x0, . . . , xi), H(xi+r, . . . , xn)
closest to xi, xi+r, respectively. Consider two separating hyperplanes H1 and H2 that
pass through zi and zi+r, respectively. Notice that H1 and H2 divide Hd into two half
spaces. Let S1 be the half space with ∂S1 = H1 that contains H(x0, . . . , xi) and S2 be the
half space with ∂S2 = H2 that contains H(xi+r, . . . , xn).

Consider an isometry f of Hd such that the distance between zi and f(zi+r) is equal
to

m := r − d(xi, zi)− d(xi+r, zi+r) ≥ r + c− 1 > 3δ.

We can find a rotation g around f(zi+r) so that the geodesic connecting zi to (g ◦ f)(zi+r)
is normal to the hyperplane (g◦f)(H2). Then we can find a rotation h around zi so that the
geodesic connecting zi to T (zi+r) is normal to the hyperplane H1, where T := h◦g◦f , and
at the same time, S1 and T (S2) are disjoint. We claim that d(S1, T (S2)) = d(zi, T (zi+r)) =

m. Indeed, the distance d(S1, T (S2)) is attained by some p0 ∈ S1, q0 ∈ T (S2), because
the Euclidean distance of S1 and T (S2) in our model is positive, hence the hyperbolic
distance d(p, q), p ∈ S1, q ∈ T (S2) becomes larger than m when p or q are close enough
(in the Euclidean sense) to the ideal boundary of our model. The hyperbolic ball of
radius d(S1, T (S2)) around p0 must contain only one point of T (S2), hence p0q0 is normal
to T (S2). Similarly, p0q0 is normal to S1. Unless p0 = zi and q0 = T (zi+r), the points
p0, q0, zi, T (zi+r) define either a quadrilateral with angles that add up to 2π or a triangle
with angles that add up to a number larger than π. This is impossible in a hyperbolic
space, hence p0 = zi and q0 = T (zi+r). This proves the claim.

Notice that d(xi, T (xi+r)) = r. Consider now the geodesic walk yi = xi, yi+1, . . .,
yi+r = T (xi+r) of length r that connects xi to T (xi+r), where d(yj , yj+1) = 1 for every
j = i, . . . , i+r−1. Adding this geodesic walk to x0, . . . , xi and T (xi+r), . . . , T (xn) results in
a walk x′ of length n. Notice that this walk is self avoiding because each yi+1, . . . , yi+r−1
is at distance at least 1− (1− c)/2 > c from both S1 and T (S2).

Modifying slightly the steps of x′, we can construct a lot of SAWs with the desired
properties. Indeed, let k := min{ 1−c2 , r+c−1−3δ2 }. Let W be the set of walks wi+1, . . . , wi+r
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for which d(wi+1, yi+1) < k, . . . , d(wi+r, yr) < k and the following holds. For every
j = i + 1, . . . , i + r, wj lies in the unit sphere around wj−1, where for convenience, we
defined wi := yi. It follows from the definitions that x0, . . . , xi, wi+1, . . . , wi+r is a SAW
and that d(wi+r, S1) >

r+3δ
2 . Now arguing as above, we see that we can find a suitable

isometry S of Hd such that S(xi+r) = wi+r and

d(S1, S(S2)) = d(wi+r, S1)−
1− c
2

>
r + c− 1 + 3δ

2
.

Now let R be the set of rotations around wi+r with the property that for every R ∈ R,
we have d((R ◦ S)(S2), S1) > 3δ and d((R ◦ S)(S2), wi+1) > c, . . . , d((R ◦ S)(S2), wi+r) > c.
We claim that for every SAW x and every w ∈W , the set {(R ◦ S)(xi+r+1) | R ∈ R} has
probability under the uniform measure in the unit sphere which is bounded away from 0.
Indeed, after applying a hyperbolic isometry, we can assume that wi+r coincides with
the origin of Rd. It is clear that the claim holds for Euclidean rotations around the origin.
But a Euclidean rotation around the origin is also a hyperbolic one. This proves the
claim.

It follows from the next lemma that all the SAWs constructed in this way satisfy
Ai(C) for a certain constant C. Consider now the conditional probability of Ai(C) given
x0, . . . , xi and the relative position between the points xi+r, . . . , xn and notice that it is
bounded away from 0, whenever x ∈ Bi,r. Taking expectation and using the fact that r
takes only finitely many values, we obtain the desired assertion.

We now prove the lemma mentioned above.

Lemma 2.3. Consider two bi-infinite geodesics A, B in Hd with d(A,B) > 3δ. Then for
any x0, x ∈ A and y0, y ∈ B we have d(xy, x0y0) < 2δ.

Proof. Let x ∈ A, y ∈ B and write γ, γ′ for the infinite geodesics that start at x0 and
contain x, y, respectively, parametrized by arc-length.

Consider some R > 0 such that d(γ(R), γ′(R)) = 2δ. Notice that γ′(R) ∈ x0y. We
claim that d(γ′(R), xy) ≤ δ. Indeed, suppose to the contrary that d(γ′(R), xy) > δ.
Since d(γ′(R), γ ∪ xy) < δ, there exists some t ∈ γ such that d(γ′(R), t) < δ. Hence
R− δ < d(x0, t) < R+ δ, which implies that d(γ(R), t) < δ. Thus d(γ(R), γ′(R)) < 2δ and
this contradiction proves the claim.

Now for the triangle with vertices x0, y0, y, we have that d(γ′(R), x0y0 ∪ y0y) < δ.
But d(γ′(R), y0y) > δ because d(γ(R), γ′(R)) = 2δ and d(A,B) > 3δ. This shows that
d(γ′(R), x0y0) < δ and completes the proof.

Using Lemma 2.2 and the fact that on any SAW of length n, the number of indices
i such that Bi occurs is of order n, we obtain that in a SAW of length n, the expected
number of indices i, for which xi is within distance C to the geodesic between x0 and
xn is of order n. Since the open balls of radius c/2 around the vertices of the SAW are
disjoint, we get that the C-neighbourhood of the geodesic has expected area of order n.
But the area of the C-neighbourhood of a geodesic of length k is of order k for any k ≥ 1.
This completes the proof of the theorem.

3 Open problems

In this section we will state some open problems. Given some ε = ε(n) > 0, we
consider continuous n steps SAWs on Hd, where now the steps are chosen uniformly
from the sphere of radius ε and we condition on sequences in which the distance between
any pair of vertices is bigger than cε, for some fixed 0 < c < 1. We are interested in
the behaviour of these SAWs as ε tends to 0. We will refer to the n step model as the
(n, ε)-SAW. Let us write En,ε for the expectation with respect to this measure.
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Conjecture 3.1. limn→∞En,1/n(d(x0, xn)) = 0

Conjecture 3.2. There exists a constant 1 > β = β(d, c) > 0 such that

lim
n→∞

En,n−β (d(x0, xn))

exists and is not zero (possibly up to logarithmic factors).

We expect that β is increasing in c because when the self-avoidance restrictions are
stronger, the walk tends to move further away from the origin.

Let us mention the observation motivating these conjectures. Given ε > 0, let 1
εH

d

denote Hd with the metric scaled by 1
ε . It is clear that the (n, ε)-SAW on Hd coincides

with the (n, 1)-SAW on 1
εH

d. Moreover, d(x0, xn) = εdε(x0, xn), where dε is the distance
function on 1

εH
d. As ε tends to 0, the curvature of 1

εH
d tends to 0 as well and 1

εH
d looks

more and more like Rd. This indicates that for certain values of n and ε, the (n, ε)-SAW
on Hd behaves like (n, 1)-SAW on Rd. In fact, we can make a more precise prediction
for the values of n and ε for which this holds. On balls of size smaller than 1

ε , 1
εH

d looks
similar to Rd, while on balls of size larger than 1

εH
d, the two spaces look different. If the

(n, 1)-SAW on Rd is typically at distance nβ, then this indicates that the (n, 1)-SAW on
n−βHd behaves like the (n, 1)-SAW on Rd. This reasoning leads naturally to the above
questions.

As c tends to 0, we expect that β tends to 1/2 because in the limit we obtain a random
walk. Also, for d ≥ 5, we expect that β is always equal to 1/2, as in this case, the scaling
limit of SAW on Zd is the Brownian motion [6].
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