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1 Introduction

Fractional Brownian motions (FBMs) with various Hurst parameters H ∈ (0, 1) have
been enticing researchers of financial mathematics for a long time, since the appearance
of [15] where such models for asset prices were suggested for the first time. Econometric
literature eagerly investigated related models, see [2] for an early survey.

In idealistic models of trading, where market imperfections are disregarded, FBMs do
not provide admissible models since they generate arbitrage opportunities (for H 6= 1/2),
see [16], hence they quickly fell out of favour. Subsequent research revealed, however,
that in the presence of market frictions, arbitrage disappears and FBMs become eligible
candidates for describing prices, see [9] and [11].

Not only prices but also volatilites were also successfully modelled using FBMs, see
e.g. [4, 7]. Note that, though market volatility is not an asset, trading so-called VIX
futures is essentially equivalent to “trading” the volatility, see [14].

In markets with instantaneous price impact the first analysis of long-term investment
for an asset price following an FBM has been carried out in [10]: the optimal growth
rate of expected portfolio wealth has been found and an asymptotically optimal strategy
has been exhibited. The robustness of such results was the next natural question: is
the particular structure of FBMs needed for these conclusions? In [10] a larger class
of Gaussian processes could also be treated where future increments are positively
correlated to the past and the covariance structure is similar to that of FBMs with
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Long-term investment for prices with negative memory

H > 1/2. The question of extending the case of FBMs with H < 1/2 to more general
models remained open.

The current paper provides such an extension, based on more involved estimates
than in the positively correlated case. For simplicity, we stay in a discrete-time setting.
We derive conclusions similar to those of [10] in the case H < 1/2, but this time for a
larger class of Gaussian processes.

These models allow negative price values. As such, they can directly describe
futures contracts. They can also be considered as stylized models reflecting important
characteristics of a more general class of processes. Our theoretical results then give
hints to approach more complex and realistic models as well. The situation is similar to
that of the Bachelier model (allowing negative prices) and the Black-Scholes model: for
many practical purposes they are equivalent, see e.g. [18].

Our results are asymptotic in the sense that conclusions are derived for long horizons,
as in several standard settings of stochastic optimal control, see e.g. [12]. It should
be noted that such long horizons indeed arise e.g. in high-frequency trading where
investment strategies are executed at every millisecond and the trading interval is
several hours long every day. In the more usual trading regime (with actions taken every
day or every hour), the simulations of [10] show that our strategies perform as expected
already on realistic time horizons (say, one year).

2 Market model

Let (Ω,F , P ) be a probability space equipped with a filtration Ft, t ∈ Z. Let E[X]

denote the expectation of a real-valued random variable X (when exists).
We will consider a financial market where the price of a risky asset follows a process

St, t ∈ N, adapted to Ft, t ∈ N. The riskless asset is assumed to have price constant 1.
Realistic modelling needs to take into account market frictions. We choose to be

working in a market model with a temporary, nonlinear price impact where portfolios
are penalized by the integral of a certain power of the trading speed. Such models were
considered in [1, 3, 6, 13, 17] in continuous time and in [5] in discrete time. These models
subsume the popular choices of linear (α = 2 in the discussion below) and square-root
(α = 3/2) price impact.

For some T ∈ N the class of feasible strategies up to terminal time T is defined as

S(T ) :=
{
φ = (φt)

T
t=0 : φ is an R-valued, adapted process

}
. (2.1)

As we will see, φt represents the change in the investor’s position in the given asset
(the “speed” of trading, to emphasize the analogy with continuous-time models). Let
z = (z0, z1) ∈ R2 be a deterministic initial endowment where z0 is in cash and z1 is in
the risky asset.

For a feasible strategy φ ∈ S(T ), the number of shares in the risky asset, with Φ0 = z1,
at any time t ≥ 1, is equal to

Φt := z1 +

t−1∑
u=0

φu . (2.2)

For simplicity, we assume z1 = 0 from now on, i.e. the initial number of shares is zero.
We will shortly derive a similar formula for the cash position of the investor. In classical,
frictionless models of trading, cash at time T + 1 equals

T+1∑
u=1

Φu (Su − Su−1) (2.3)
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when starting from a 0 initial position. Algebraic manipulation of (2.3) yields

T+1∑
u=1

Φu (Su − Su−1) = −
T∑
u=0

φuSu + ST+1

T∑
u=0

φu.

We assume that price impact is a superlinear power function of the “trading speed” φ
so we augment the above with a term that implements the effect of friction:

−
T∑
u=0

φuSu + ST+1

T∑
u=0

φu −
T∑
u=0

λ|φu|α

where we assume α > 1 and λ > 0. We wish to utilize only those portfolios where the
risky asset is liquidated by the end of the trading period so we define

G(T ) :=

{
φ ∈ S(T ) : ΦT+1 =

T∑
u=0

φu = 0

}
.

Based on the previous discussion, for φ ∈ G(T ), the position in the riskless asset at time
T + 1 is defined by

XT (φ) := z0 −
T∑
u=0

φuSu −
T∑
u=0

λ|φu|α. (2.4)

For simplicity, we also assume z0 = 0 from now on, i.e. portfolios start from nothing.
To investigate the potential of realizing monetary profits, we focus on a risk-neutral

objective: a linear utility function. Let x− := max{−x, 0} for x ∈ R. Define, for T ∈ N,

A(T ) := {φ ∈ G(T ) : E[(XT (φ))−] <∞} ,

the class of strategies starting from a zero initial position in both assets and ending at
time T + 1 in a cash only position with expected value greater than −∞. The value of
the problem we will consider is thus

u(T ) := sup
φ∈A(T )

E[XT (φ)].

The investors’s objective is to find φ which, at least asymptotically as T →∞, achieves
the same growth rate as u(T ).

3 Asymptotically optimal investment

First we introduce assumptions on the price process and its dependence structure.

Assumption 3.1. Let Zt, t ∈ Z be a real-valued, zero-mean stationary Gaussian process
which will represent price increments. Let Fn := σ(Zi, i ≤ n) for n ∈ N. Let r(t) :=

cov(Z0, Zt), t ∈ Z denote its covariance function. We assume that there exists T0 > 0 and
J1, J2 < 0 such that for all t ≥ T0,

J1t
χ ≤ r(t) ≤ J2t

χ (3.1)

is satisfied for some parameter χ ∈ (−2,−1). Furthermore,∑
t∈Z

r(t) = 0. (3.2)

Let us introduce the adapted price process defined by S0 = 0 and St = St−1 + Zt, t ≥ 1.
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Remark 3.2. Properties (3.1) and (3.2) express that Z is a process with negative memory,
see Definition 1.1.1 on page 1 of [8]. When Zt, t ∈ Z are the increments of a FBM with
Hurst parameter H < 1/2, then (3.1) is satisfied with χ := 2H − 2.

The next theorem is our main result: it provides the explicit form of an (asymptotically)
optimal strategy and determines its expected asymptotic growth rate.

Theorem 3.3. Let Assumption 3.1 be in force. If λ is small enough then maximal
expected profits satisfy

lim sup
T→∞

u(T )

T (χ2 +1)(1+ 1
α−1 )+1

<∞ (3.3)

and the strategy

φt(T, α) :=


−sgn(St)|St|

1
α−1 , 0 ≤ t ≤ 3bT/6c,

− 1
3bT/6c

∑3bT/6c
s=0 φs, 3bT/6c < t ≤ 6bT/6c,

0, otherwise

(3.4)

satisfies

lim inf
T→∞

EXT (φ(T, α))

T (χ2 +1)(1+ 1
α−1 )+1

> 0. (3.5)

Remark 3.4. The strategy above builds on the following intuition. In a market with
friction one can not sell or buy with arbitrary speeds. Such behavior is punished in
superlinear price-impact models, strategies that are not trading assets gradually can
generate losses that ruin an otherwise profitable investment. Thus, liquidation must
also be done at a careful pace. Our strategy operates as follows. On the first half of the
given timeline it trades the underlying in a contrarian manner, that is going short when
prices are high and entering long positions when low. It is intuitively clear that, due to
the superlinear nature of friction, liquidation is best done with a constant speed. This is
reflected in our strategy on the second half of the timeline.

4 Proofs

4.1 General bounds for variance and covariance

First we make some useful preliminary observations. Using stationarity of the
increments of the process S, we have

var(St) = cov(St, St) = cov(

t∑
j=1

Sj − Sj−1,

t∑
i=1

Si − Si−1)

= t · var(S1 − S0) + 2

t∑
i=2

i−1∑
j=1

cov(Sj − Sj−1, Si − Si−1)

= t · var(S1 − S0) + 2

t∑
i=2

i−1∑
j=1

cov(S1 − S0, Si−j+1 − Si−j)

= t · r(0) + 2

t∑
i=2

i−1∑
j=1

r(i− j).

(4.1)

Furthermore, for s > t we similarly have

cov(Ss − St, St) =

s∑
i=t+1

t∑
j=1

r(i− j). (4.2)
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Observe also that we can write

r(0) = −2

∞∑
j=1

r(j). (4.3)

Turning to the variances, we first obtain a convenient expression for them. Note that for
i > 1 we have

i−1∑
j=1

r(i− j) = r(i− 1) + . . .+ r(1) = r(1) + . . .+ r(i− 1) =

i−1∑
j=1

r(j). (4.4)

Using the observations (4.4), (4.1) and (4.3), we have

var(St) = −2t

t−1∑
j=1

r(j)− 2t

∞∑
j=t

r(j) + 2

t∑
i=2

i−1∑
j=1

r(j),

and algebraic manipulation of the summation operation
(
−2t

∑t−1
j=1 +2

∑t
i=2

∑i−1
j=1

)
yields

− 2t

t−1∑
j=1

+2

t∑
i=2

i−1∑
j=1

= −2t

T0−1∑
j=1

+

t−1∑
j=T0

+ 2

(
T0−1∑
i=2

+

t∑
i=T0

)
i−1∑
j=1

= −2t

T0−1∑
j=1

−2t

t−1∑
j=T0

+2

T0−1∑
i=2

i−1∑
j=1

+2

t∑
i=T0

i−1∑
j=1

= −2t

T0−1∑
j=1

−2t

t−1∑
j=T0

+2

T0−1∑
i=2

i−1∑
j=1

+2

T0−1∑
j=1

+2

t∑
i=T0+1

T0−1∑
j=1

+

i−1∑
j=T0


= −2t

T0−1∑
j=1

−2t

t−1∑
j=T0

+2

T0−1∑
i=2

i−1∑
j=1

+2

T0−1∑
j=1

+2

t∑
i=T0+1

T0−1∑
j=1

+2

t∑
i=T0+1

i−1∑
j=T0

= −2t

T0−1∑
j=1

+2

T0−1∑
i=2

i−1∑
j=1

+2

T0−1∑
j=1

+2

t∑
i=T0+1

T0−1∑
j=1

−2t

t−1∑
j=T0

+2

t∑
i=T0+1

i−1∑
j=T0

,

where the last line is only a reordering of terms. Setting C1 =
∑T0−1
j=1 r(j), C2 =∑T0−1

i=2

∑i−1
j=1 r(j) and C3 = 2(C2 − (T0 − 1)C1), the above calculation gives

var(St) = −2tC1 + 2C2 + 2C1 + 2(t− T0)C1 +

−2t

∞∑
j=t

−2t

t−1∑
j=T0

+2

t∑
i=T0+1

i−1∑
j=T0

 r(j)

= C3 +

−2t

∞∑
j=t

−2t

t−1∑
j=T0

+2

t∑
i=T0+1

i−1∑
j=T0

 r(j)

(4.5)

From now on we will work with the parameter H := χ
2 + 1 for convenience. This

parameter choice also refers back to the case of FBMs, see Remark 3.2.
Now we are ready to present three lemmas, providing a lower and an upper bound

for the variance and an upper bound for the covariance.
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Lemma 4.1. There exist T1 ∈ N and B1 > 0 such that for all t ≥ T1 we have

var(St) ≥ B1t
2H .

Proof. Using properties induced by the choice of T0 in Assumption 3.1 first note that−2t

t−1∑
j=T0

+2

t∑
i=T0+1

i−1∑
j=T0

 r(j)

≥

−2t

t−1∑
j=T0

+2(t− T0)

t−1∑
j=T0

 r(j)

= −2T0

t−1∑
j=T0

r(j) ≥ 0.

Also notice that

−2t

∞∑
j=t

r(j) ≥ −2J2t

∞∑
j=t

j2H−2 ≥ −2J2t

∫ ∞
t

u2H−2du

= −2J2t
1

2H − 1

(
−t2H−1

)
=

2J2

2H − 1
t2H .

Using these and (4.5)

var(St) ≥ C3 +
2J2

2H − 1
t2H .

The threshold T1 and the constantB1 can be explicitly calculated in terms of the constants
present in the above expression. This completes the proof.

Lemma 4.2. There exist T2 ∈ N and B2 > 0 such that for all t ≥ T2 we have

var(St) ≤ B2t
2H .

Proof. First note that algebraic manipulation of the operation
(
−2t

∑t−1
j=T0

+2
∑t
i=T0+1×∑i−1

j=T0

)
yields

− 2t

t−1∑
j=T0

+2

t∑
i=T0+1

i−1∑
j=T0

= −2(t− T0 + T0)

t−1∑
j=T0

+2

t−1∑
i=T0

i∑
j=T0

= −2

t−1∑
i=T0

t−1∑
j=T0

+2

t−1∑
i=T0

i∑
j=T0

−2T0

t−1∑
j=T0

= −2

t−1∑
i=T0

 t−1∑
j=T0

−
i∑

j=T0

− 2T0

t−1∑
j=T0

= −2

t−1∑
i=T0

t−1∑
j=i+1

−2T0

t−1∑
j=T0

.
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By Assumption 3.1, this implies−2t

t−1∑
j=T0

+2

t∑
i=T0+1

i−1∑
j=T0

 r(j) ≤ −2J1

 t−1∑
i=T0

t−1∑
j=i+1

j2H−2 + T0

t−1∑
j=T0

j2H−2


≤ −2J1

(
t−1∑
i=T0

∫ t−1

i

u2H−2du+ T0

∫ t−1

T0−1

u2H−2du

)

= − 2J1

2H − 1

(
t−1∑
i=T0

(
(t− 1)2H−1 − i2H−1

)
+ T0

(
(t− 1)2H−1 − (T0 − 1)2H−1

))

= − 2J1

2H − 1

(
t(t− 1)2H−1 −

t−1∑
i=T0

i2H−1 − T0(T0 − 1)2H−1

)

≤ 2J1

2H − 1

t−1∑
i=T0

i2H−1 +
2J1

2H − 1
T0(T0 − 1)2H−1

≤ 2J1

2H(2H − 1)
((t− 1)2H − (T0 − 1)2H) +

2J1

2H − 1
T0(T0 − 1)2H−1

≤ 2J1

2H(2H − 1)
t2H +

2J1

2H − 1
T0(T0 − 1)2H−1.

To proceed observe that, using the asymptotics in Assumption 3.1, for t > 2 we have

−2t

∞∑
j=t

r(j) ≤ −2J1t

∞∑
j=t

j2H−2 ≤ −2J1t

∫ ∞
t−1

u2H−2du

=
2J1t

2H − 1
(t− 1)2H−1 ≤ 2J1t

2H − 1
(t− t/2)2H−1

=
22−2HJ1

2H − 1
t2H .

These results yield for t > max(2, T0), using again (4.5), that

var(St) ≤ C3 +

(
2J1

2H(2H − 1)
+

22−2HJ1

2H − 1

)
t2H +

2J1

2H − 1
T0(T0 − 1)2H−1 (4.6)

The threshold T2 and the constant B2 could again be explicitly given. The proof is
complete.

We proceed with the lemma controlling the covariance cov(Ss − St, St).
Lemma 4.3. There exist T3 ∈ N and D1, D2 > 0 such that

cov(Ss − St, St) ≤ D1 for all s > t > T3.

For a fixed v > 1, define

U(v) := J2 (2H)
−1

(2H − 1)−1
(
1−

(
v2H − (v − 1)2H

))
.

Then

cov(Ss − St, St) ≤ D2 − U(v)t2H < 0 holds for all s > t > T3 satisfying
s

t
> v.

There exists K > 1 and T4 ∈ N such that

cov(Ss − St, St) ≤ 0 for all s > t > T4 satisfying s− t > K.

ECP 26 (2021), paper 21.
Page 7/12

https://www.imstat.org/ecp

https://doi.org/10.1214/21-ECP387
https://imstat.org/journals-and-publications/electronic-communications-in-probability/


Long-term investment for prices with negative memory

Proof. Let us set

C4 =

0∑
j=−T0+1

1+T0∑
i=1

r(i− j), C5 = J2

0∑
j=−T0+1

1+T0∑
i=1

(i− j)2H−2,

and define C6 = C4 − C5. Note that, for each t ∈ N, C4 =
∑t
j=t−T0+1

∑t+1+T0

i=t+1 r(i − j),
and C5 = J2

∑t
j=t−T0+1

∑t+1+T0

i=t+1 (i− j)2H−2. For t > T0, we have

cov(Ss − St, St) =

t∑
j=1

s∑
i=t+1

r(i− j)

≤ C6 + J2

t∑
j=1

s∑
i=t+1

(i− j)2H−2 ≤ C6 + J2

t∑
j=1

∫ s+1−j

t+1−j
u2H−2du

≤ C6 +
J2

2H − 1

t∑
j=1

(
(s+ 1− j)2H−1 − (t+ 1− j)2H−1

)
= C6 +

J2

2H − 1

t∑
j=1

(s+ 1− j)2H−1 − J2

2H − 1

t∑
j=1

(t+ 1− j)2H−1

≤ C6 +
J2

2H − 1

∫ s

s−t
u2H−1du− J2

2H − 1

∫ t+1

1

u2H−1du

= C6 +
J2

2H(2H − 1)

(
s2H − (s− t)2H

)
− J2

2H(2H − 1)

(
(t+ 1)2H − 1

)
= C6 +

J2

2H(2H − 1)

(
s2H − (s− t)2H −

(
(t+ 1)2H − 1

))
.

=: C6 + C7

(
s2H − (s− t)2H −

(
(t+ 1)2H − 1

))
.

(4.7)

Since s ≥ t + 1 the expression C7

(
s2H − (s− t)2H −

(
(t+ 1)2H − 1

))
is non-positive,

which yields

cov(Ss − St, St) ≤ C6,

proving the first statement of the lemma. Now, for all v > 1 the property s
t > v – together

with the previous constraint of t > T0 – further implies

cov(Ss − St, St) ≤ C6 + C7

(
s2H − (s− t)2H −

(
(t+ 1)2H − 1

))
≤ C6 + C7

(
(v2H − (v − 1)2H − 1)t2H + 1

)
= C6 + C7 + C7(v2H − (v − 1)2H − 1)t2H .

(4.8)

Obviously, for large enough t the bound becomes strictly negative, proving the second
statement. Now, assuming s− t ≥ K > 1 beside t > T0 we have

cov(Ss − St, St) ≤ C6 + C7

(
(t+K)2H −K2H −

(
(t+ 1)2H − 1

))
= C6 − C7

(
K2H − 1

)
+ C7

(
(t+K)2H − (t+ 1)2H

)
≤ C6 − C7

(
K2H − 1

)
+ C72HKt2H−1.

(4.9)

This shows that K can be chosen so large that C6 − C7

(
K2H − 1

)
< 0 and then, since

2H − 1 < 0, a threshold T4 – depending on K – for the variable t can be specified so that

C6 − C7

(
K2H − 1

)
+ C72HKt2H−1 ≤ 0

whenever t exceeds the threshold, proving the third statement, completing the proof of
the lemma.
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4.2 Key estimates

Define

ρ(s, t) :=
cov(Ss, St)

var(St)
=

cov(Ss − St, St)
var(St)

+ 1, s ∈ N, t ∈ N \ {0}.

Lemma 4.4. There exist T̄ ∈ N and constants R > 0, K > 1, η ∈ (1/2, 1) and ε > 0 such
that

1. ρ(s, t) < 1 +R, for all t < s;

2. ρ(s, t) ≤ 1, whenever T̄ < t < s and s− t > K;

3. For all T ∈ N, ρ(s, t) ≤ 1− ε, whenever T̄ < t < T
2 < ηT < s. Furthermore, one can

also guarantee T/2 +K < ηT in this case.

Proof of Lemma 4.4. Let B2, U(·), T1, T2, T3, T4, D1, D2 and K be as in Lemma 4.2
and Lemma 4.3. Choose T ′ > max{T1, T2, T3} so large that D2

B2
(T ′)−2H − U(4/3)

B2
< 0 and

set η := 2/3. Lemma 4.2 and Lemma 4.3 now show that whenever T ′ < t < T/2 and
s ∈ (ηT, T ), we have

cov(Ss − St, St)
var(St)

≤ D2

B2
t−2H − U(4/3)

B2
≤ D2

B2
(T ′)−2H − U(4/3)

B2
, (4.10)

which yields ρ(s, t) ≤ 1−ε, where ε = −D2

B2
(T ′)−2H+ U(4/3)

B2
. Lemma 4.3 shows that t > T4,

ensures that s − t > K implies ρ(s, t) ≤ 1. Finally, set T̄ = max{T ′, T4, 3K}. It is clear
– using (4.7) in the proof of Lemma 4.3 – that for fixed t, the function (s, t) 7→ ρ(s, t) is
bounded. So let D′1 = max0<t<T̄ sups≥0 ρ(s, t) and define R = max{D1, D

′
1}− 1 It remains

to guarantee T/2 + K < ηT but this follows since T̄ < t < T/2 implies T > 6K. The
quantities η, T̄ , R, K and ε constructed above fulfill all the requirements.

Proof of Theorem 3.3. First we determine the maximal expected growth rate of portfo-
lios. Let us define

Q(T ) =

T∑
t=0

E|St|
α
α−1 .

Let G(x) := λ|x|α, x ∈ R and denote its Fenchel-Legendre conjugate

G∗(y) := sup
x∈R

(xy −G(x)) =
α− 1

α
α

1
1−αλ

1
1−α |y|

α
α−1 , y ∈ R. (4.11)

By definition of G∗, for all φ ∈ G(T ),

XT (φ) ≤
T∑
t=0

G∗(−St) = C

T∑
t=0

|St|α/(α−1)

for some C > 0 and hence
EXT (φ) ≤ CQ(T ) <∞. (4.12)

Note that this bound is independent of φ. Using Lemma 4.2 it holds that

Q(T ) = C α
α−1

T∑
t=0

var(St)
α

2(α−1)

≤ C α
α−1

T2−1∑
t=0

var(St)
α

2(α−1) + C α
α−1

B2

T∑
t=T2

t
Hα

(α−1)

≤ C α
α−1 ,T2

+ Cα,H,B2
TH(1+ 1

α−1 )+1.

(4.13)
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Thus the maximal expected profit grows as TH(1+ 1
α−1 )+1 with the power of the horizon,

this proves (3.3). Now, untill further notice, let T be a multiple of 6. With the strategy
defined in (3.4), the dynamics takes the form

XT (φ) =

T/2∑
t=0

|St|
α
α−1

−
T/2∑
t=0

λ|St|
α
α−1

− 1

T/2

T∑
s=T/2+1

Ss

T/2∑
t=0

sgn(St)|St|
1

α−1

− 1

T/2

T∑
s=T/2+1

λ

∣∣∣∣∣∣
T/2∑
t=0

sgn(St)|St|
1

α−1

∣∣∣∣∣∣
α

.

In the above expression let us denote the four terms by I1(T ), I2(T ), I3(T ), I4(T ),
respectively, so that

XT (φ) = I1(T )− I2(T )− I3(T )− I4(T ).

The upper bound constructed in (4.13) for Q(T ) right away gives us an upper estimate
for EI1(T ) as EI1(T ) = Q(T/2). Using Lemma 4.1, we likewise present a lower estimate
as

Q(T/2) = E[I1(T )] = C α
α−1

T/2∑
t=0

var(St)
α

2(α−1)

≥ C α
α−1

T1−1∑
t=0

var(St)
α

2(α−1) + C α
α−1

B1

T/2∑
t=T1

t
Hα
α−1

≥ C α
α−1 ,H,B1,T1

+ C α
α−1 ,H,B1

TH(1+ 1
α−1 )+1,

(4.14)

To treat the terms I2(T ) and I4(T ), note that with α > 1 the function x 7→ |x|α is convex,
thus applying Jensen’s inequality

|EI4(T )| ≤ E|I2(T )| = λE

T/2∑
t=0

|St|
α
α−1

 = λ

T/2∑
t=0

E|St|
α
α−1 = λE[I1(T )] = λQ(T/2).

(4.15)

Controlling term I3(T ) is done via exploiting a specific property of Gaussian processes,
namely that Ss for s > t can be decomposed as Ss = ρ(s, t)St + Ws,t, where Ws,t is
independent of St and zero mean. With this, observe that

EI3(T ) =
1

T/2

T∑
s=T/2+1

T/2∑
t=0

E[ρ(s, t)Stsgn(St)|St|
1

α−1 ]

=
1

T/2

T∑
s=T/2+1

T/2∑
t=0

E[ρ(s, t)|St|
α
α−1 ].

(4.16)

Let the constants T̄ , R, K, η = 2/3 and ε be as in Lemma 4.4, and decompose the double
sum in (4.16) as

T∑
s=T/2+1

T/2∑
t=0

=

T∑
s=T/2+1

T̄−1∑
t=0

+

T/2+K∑
s=T/2+1

T/2∑
t=T̄

+

ηT∑
s=T/2+K+1

T/2∑
t=T̄

+

T∑
s=ηT+1

T/2∑
t=T̄
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Note that applying the upper bound developed in Lemma 4.4 to the double sum in (4.16),
the summand no longer depends on the running variable of the outer sum. Denoting

CT̄ :=
∑T̄−1
t=0 E|St|

α
α−1 , this implies that

EI3(T ) ≤

T/2∑
t=0

+R

T̄−1∑
t=0

+
2RK

T

T/2∑
t=T̄

−2ε

(
1− 2

3

) T/2∑
t=T̄

E|St|
α
α−1

= E[I1(T )] +

R T̄−1∑
t=0

+
2RK

T

T/2∑
t=T̄

−2ε

3

T/2∑
t=T̄

E|St|
α
α−1

= E[I1(T )] +

(R+
2ε

3
− 2RK

T

) T̄−1∑
t=0

+
2RK

T

T/2∑
t=0

−2ε

3

T/2∑
t=0

E|St|
α
α−1

=

(
1− 2ε

3

)
E[I1(T )] +

(
R+

2ε

3
− 2RK

T

)
CT̄ +

2RK

T
E[I1(T )],

so we have

E[I1(T )]− E[I3(T )] ≥ 2ε

3
E[I1(T )]−

(
R+

2ε

3
− 2RK

T

)
CT̄ −

2RK

T
E[I1(T )]

The above, using (4.15), boils down to

XT (φ) ≥ 2ε

3
Q(T/2)−

(
R+

2ε

3
− 2RK

T

)
CT̄ −

2RK

T
Q(T/2)− 2λQ(T/2)

Using (4.13) and (4.14), with λ < ε/3, dividing through with TH(1+ 1
α−1 )+1 proves the

statement in (3.5) with the constraint that the limiting operation runs through multiples
of 6. Now let T be general. The same calculations can be done as above, with minor
changes in the formulas corresponding to the upper and lower limits in summations
according to taking the appropriate floor values. That is, in the last inequality Q(3bT/6c)
appears – instead of Q(T/2) – and it grows in the order of (6bT/6c)H(1+ 1

α−1 )+1, and using
that 6bT/6c/T tends to 1 when T is large, the proof of Theorem 3.3, noting χ = 2H − 2,
is complete.
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