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We consider the random hyperbolic graph model introduced by [KPK+10] and then
formalized by [GPP12]. We show that, in the subcritical case α > 1, the size of the
largest component is asymptotically almost surely n1/(2α)+o(1), thus strengthening a
result of [BFM15] which gave only an upper bound of n1/α+o(1).
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1 Introduction and statement of result

In the last decade, the model of random hyperbolic graphs introduced by Krioukov
et al. in [KPK+10] was studied quite a bit due to its key properties also observed in
large real-world networks. In [BnPK10] the authors showed empirically that the network
of autonomous systems of the Internet can be very well embedded in the model of
random hyperbolic graphs for a suitable choice of parameters. Moreover, Krioukov
et al. [KPK+10] gave empiric results that the model exhibits the algorithmic small-
world phenomenon established by the groundbreaking letter forwarding experiment of
Milgram from the ’60s [TM67]. From a theoretical point of view, the model of random
hyperbolic graphs has an elegant specification and is thus amenable to rigorous analysis
by mathematicians. Informally, the vertices are identified with points in the hyperbolic
plane, and two vertices are connected by an edge if they are close in hyperbolic distance.

A common way of visualizing the hyperbolic plane is via its native representation
described in [BKL+17b] where the choice for ground space is R2. Here, a point of
R2 with polar coordinates (r, θ) has hyperbolic distance to the origin O equal to its
Euclidean distance r and more generally, the hyperbolic distance d(u, u′) between two
points u = (ru, θu) and u′ = (ru′ , θu′) is obtained by solving

cosh d(u, u′) := cosh ru cosh ru′ − sinh ru sinh ru′ cos(θu−θu′). (1.1)

In the native representation, an instance of the graph can be drawn by mapping a vertex
v to the point in R2 with polar coordinate (rv, θv) and drawing edges as straight lines
(see Figure 1).
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On the largest component of subcritical RHG

Figure 1: A realization of the subcritical hyperbolic graph Poiα,ν(n) with parameters
α = 1.1, ν = 1, n = 1000. The outer circle of the figure corresponds to B(O,R), the inner
dashed circle is B(O,R/2). The size of the largest connected component, in purple, is
|L1| = 51.

The random hyperbolic model is defined as follows: for each n ∈ N, we consider a
Poisson point process on the disk B(O,R) of the hyperbolic plane. The radius is equal
to R := 2 log(n/ν) for some positive constant ν ∈ R+ (log denotes here and throughout
the paper the natural logarithm). The intensity function at polar coordinates (r, θ) for
0 ≤ r < R and 0 ≤ θ < 2π is

g(r, θ) := νe
R
2 f(r, θ),

where f(r, θ) is the density function corresponding to the uniform probability on the
disk B(O,R) of the hyperbolic space of curvature −α2. That is, θ is chosen uniformly at
random in the interval [0, 2π) and independently of r, which is chosen according to the
density function

f(r) :=


α sinh(αr)

cosh(αR)− 1
, if 0 ≤ r < R,

0, otherwise.

Construct then the following graph G = (V,E): the set of vertices V is the point set
of the Poisson process and for u, u′ ∈ V , u 6= u′, there is an edge with endpoints u and
u′ provided the hyperbolic distance d(u, u′) between u and u′ is such that d(u, u′) ≤ R,
where d(u, u′) is obtained by solving (1.1).

For a given n ∈ N, we denote this model by Poiα,ν(n). Note in particular that∫
g(r, θ)dθdr = νe

R
2 = n,

and thus E|V | = n. In the original model of Krioukov et al. [KPK+10], n points, corre-
sponding to vertices, are chosen uniformly and independently in the disk Bh(O,R) of
the hyperbolic space of curvature −α2, but since from a probabilistic point of view it is
arguably more natural to consider the Poissonized version of this model, we consider the
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On the largest component of subcritical RHG

latter one (see also [GPP12] for the construction of the uniform model). Note also that
conditional upon having exactly n points in the Poisson process we recover exactly the
uniform model.

The restriction α > 1
2 and the role of R guarantee that the resulting graph has

bounded average degree (depending on α and ν only). If α < 1
2 , then the degree

sequence is so heavy tailed that this is impossible (the graph is with high probability
connected in this case, as shown in [BFM16]). Moreover, if α > 1, then as the number of
vertices grows, the largest component of a random hyperbolic graph has sublinear order
(see [BFM15, Theorem 1.4]).

Notation: We say that an event holds asymptotically almost surely (a.a.s.), if it holds
with probability tending to 1 as n→∞. Given two sequences (an)n≥1 and (bn)n≥1 taking
values in R and such that bn 6= 0 for n large enough, we write an = o(bn) to mean that
|an|/|bn| → 0 as n → ∞. Also we write an = Θ(bn) if |an|/|bn| is bounded away from 0
and∞ as n→∞, and an = Ω(bn) if |an|/|bn| is bounded away from 0 as n→∞.

Result: In this paper we study the size of the largest component of the graph in the case
α > 1. In [BFM15, Theorem 1.4] it was shown that its size is a.a.s. at most n1/α+o(1).
The main result of this paper is the following improvement, finding the exact exponent:

Theorem 1.1. Fix α > 1 and ν > 0 and let G = (V,E) be chosen according to Poiα,ν(n),
and L1 ⊆ G be the largest connected component of G. There is a constant C > 0, such
that, a.a.s., the following holds:

n
1

2α (log n)−C ≤ |L1| ≤ n
1

2α (log n)C .

Remark 1.2. We cannot hope for Theorem 1.1 to hold for any α > 1 with probability
at least 1 − n−c for some c > 0. Indeed, the expected number of vertices v with rv ≤
(1− ε)(1− 1

2α )R (or equivalently tv ≥ R
(

1−ε
2α + ε

)
) is, by Lemma 2.3, Θ(nε(

1
2α−2α)) = o(1),

and hence the probability to have such a vertex is also of the same order. If such a
vertex exists, by Lemma 2.5, its degree is (for some constant c1 > 0) a.a.s. at least
c1n

(1−ε)/(2α)+ε = n1/(2α)+ε′ for some ε′ > 0. As before, the degree is a lower bound on
the size of the component, and therefore we get with probability n−c(ε) (where c(ε)→ 0

as ε→ 0) a component of order at least n1/(2α)+ε′ for some ε′ > 0, and we cannot hope
for stronger concentration.

Related work: The size of the largest component in random hyperbolic graphs was first
studied in [BFM15]: it was shown that for α > 1 it is at most n1/α+o(1), whereas for α < 1

the largest component is linear. In the same paper the authors also showed that for α = 1

and ν sufficiently small there is a.a.s. no linear size component, whereas for α = 1 and ν
sufficiently large a.a.s. there is a linear size component. In [FM18] the picture was made
more precise: for α = 1 there is a critical intensity such that a.a.s. a linear size component
exists iff ν is above a certain threshold. Also, for α < 1, for fixed α, the size of the largest
component is increasing in ν and, for fixed ν, it is decreasing in α. Furthermore,
in [BFM16] it was shown that for α < 1/2 the graph is connected a.a.s., whereas for
α = 1/2 the probability of being connected tends to 1 if ν ≥ π, and the probability of being
connected is otherwise a monotone increasing function in ν that tends to 0 as ν tends to
0. For the case 1/2 < α < 1, it was shown in [KM19] that a.a.s. the second component
is of size Θ((log n)1/(1−α)), whereas, for α = 1/2 and ν sufficiently small, it is Θ(log n)

with constant probability, and for α = 1 it is a.a.s. Ω(nb) for some b > 0. More generally,
starting with the seminal work of [KPK+10], further aspects of random hyperbolic graphs
have been discussed since then: the power law degree distribution, mean degree and
clustering coefficient were analyzed in [GPP12, FvdHMS21]; the diameter was computed
in [FK18, KM15, MS19], the spectral gap was analyzed in [KM18], typical distances
were calculated in [ABF17], and bootstrap percolation in such graphs was considered
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in [CF16]. The authors of [BFK16] calculated the size of balanced separators, i.e., small
subsets of vertices whose removal yields subgraphs of roughly the same size, and they
also compute the treewidth of random hyperbolic graphs. Finally, cliques in hyperbolic
graphs were studied in [BFK18] and the vertex cover problem was studied in [BFFK20].
Recently, a more general model of geometric inhomogeneous random graphs has been
introduced, see for example [BKL17a, BKL19, KL20] and the references therein.

Organization of the paper: In Section 2 we recall some well known properties of the
random hyperbolic graph. Section 3 then describes the construction of the main tool of
our proof: the separation zones. The existence of these zones shows that there is no long
path of vertices with all vertices having roughly the same radial coordinates. Finally, in
Section 4 we use the separation zones to control the size of the connected components
of the graph which leads to the result of Theorem 1.1.

2 Preliminaries

From now on, we suppose α > 1. In this section we collect some properties concerning
random hyperbolic graphs. For notational convenience, for any point v = (rv, θv) of the
ball B(O,R) we define tv = R− rv, the radial distance to the boundary circle of radius
R (instead of the distance to the origin O), and we identify a vertex v of the graph G

with the coordinate pair v = (tv, θv) (this choice was made already in previous articles,
see for example [CF16]). Moreover, the angles are defined modulo 2π, and the distance
between two angles |θ − θ′| is a short hand notation for min(|θ − θ′|, 2π − |θ − θ′|). For
simplicity, we suppose throughout the paper that R is an integer.

Define by θd(d1,d2) the angle at the origin between two points at radial distance d1

and d2 respectively from the origin, that are at hyperbolic distance d from each other
(see Figure 2).

O

d1

d2

d
θd(d1, d2)

Figure 2: The angle θd(d1,d2)

By the hyperbolic law of cosines of (1.1),

θd(d1,d2) = arccos
(cosh d1 cosh d2 − cosh d

sinh d1 sinh d2

)
.

Clearly, θd(d1,d2) = θd(d2,d1). In fact, we need only a handy approximation for θR(d2,d1):

Lemma 2.1 ([GPP12, Lemma 3.1]). If 0 ≤ min{d1,d2} ≤ R ≤ d1 + d2, then

θR(d1,d2) = 2e
1
2 (R−d1−d2)

(
1 + Θ(eR−d1−d2)

)
.

A direct consequence of this lemma is the following corollary:

Corollary 2.2. For any R > 0, there is a function

θR :
[0, R/2]2 → R+

(t1, t2) 7→ θR (t1, t2)

such that
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• θR (t1, t2) = 2e−
1
2 (R−t1−t2)

(
1 + Θ(e−(R−t1−t2))

)
• two vertices u, v ∈ V such that tu + tv ≤ R are connected by an edge iff |θu − θv| ≤
θR (tu, tv) .

Throughout, we will need estimates for measures of regions of the hyperbolic plane,
and more specifically, for regions obtained by performing some set algebra involving a
few balls. For a point p of the hyperbolic plane H2, the ball of radius ρ centered at p will
be denoted by Bp(ρ), i.e., Bp(ρ) := {q ∈ H2 : d(p, q) ≤ ρ}. Also, we denote by µ(S) the

measure of a set S ⊆ H2, i.e., µ(S) :=

∫
S

f(r, θ)drdθ.

Next, we collect a few standard results for such measures.

Lemma 2.3 ([GPP12, Lemma 3.2]). Let r ∈ (0, R] and denote t = R− r. Then

µ(BO(r)) = νe−α(R−r)(1 + o(1)) = e−αt(1 + o(1)).

We also use classical Chernoff concentration bounds for Poisson random variables.
See for instance ([BLM13] page 23).

Lemma 2.4 (Chernoff bounds). If X ∼ P(λ), then for any x > 0,

P (X ≥ λ+ x ) ≤ e−
x2

2(λ+x) and P (X ≤ λ− x ) ≤ e−
x2

2(λ+x) .

In particular, for x ≥ λ,

P (X ≥ 2x ) ≤ e− x4 .

Lemma 2.4 together with Lemma 3.2 of [GPP12] yield the following result:

Lemma 2.5. Let V be the vertex set of a graph chosen according to Poiα,ν(n), and let
v be a vertex with tv > C logR for C sufficiently large. Then, there exist constants
0 < c1 < c2, so that a.a.s. c1e

1
2 tv ≤ |V ∩Bv(R)| ≤ c2e

1
2 tv .

3 Construction of the separation zones

In this section we explain how to construct the separation zones. The high-level idea
is as follows: in sectors of about the same angle we find separating regions without
vertices at the angular boundary of the sector, whereas the zones in the middle of the
center typically contain vertices. These separating regions on the angular borders of
the sector therefore work as a natural boundary for the geometric region where the
vertices of a connected component can be. In order for a connected component to span
a very large angle, it would have to contain a vertex close to the origin, but since this
region is typically also empty of vertices, no big connected component can exist. A
similar separator concept was introduced in [BFK16]: the authors showed therein that
for the given range of α > 1, there exist subsets of vertices of constant size such that in
the remaining subgraph all components are roughly of the same size (the size of such
separators given by the authors in [BFK16] is more interesting in the regime where
there exists a large component, but their idea is similar to ours here). We explain the
concepts now in more detail: we first define the following sectors

S(θ1, θ2) = { (t, θ) | 0 ≤ t < R and θ1 ≤ θ < θ2 }

and the annuli
L(t−, t+) =

{
(t, θ) | t− ≤ t < t+ and 0 ≤ θ < 2π

}
.

We first observe that the number of vertices contained in a not too narrow annulus of a
ball centered at the origin is roughly of the same order as the total number of vertices
in the whole ball. This is formalized in the following (which is a simple consequence of
Lemma 2.3):
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Observation 3.1. For any 0 ≤ t− < t+ < R/2

E
[
|V ∩ L(t−, t+)|

]
= νe

R
2 −αt

−
(1− e−α(t+−t−) + o(1)).

Proof. By applying Lemma 2.3 and the fact that the total intensity is νeR/2 we get

E
[
|V ∩ L(t−, t+)|

]
= E

[
|V ∩BO(t−)| \ |V ∩BO(t+)|

]
= νe

R
2 −αt

−
(1 + o(1))− νeR2 −αt

+

(1 + o(1))

= νe
R
2 −αt

−
(1− e−α(t+−t−) + o(1)).

We then construct for each coordinate pair (t0, θ0) ∈ (0, R/2) × [0, 2π), a zone that
separates points to the left from points to the right in { (t, θ), t ≤ t0 }. More precisely,
define for t0 < R/2 and θ0 ∈ [0, 2π), the following separation zone (see also Figure 3):

A(t0, θ0) =
{

(t, θ) | t ≤ t0 and |θ − θ0| ≤ θR (t, t)
}
.

We thus have the following observation (angles in the following observation are
chosen to be the smaller angle with respect to the given reference angle θ0):

Observation 3.2. Suppose V ∩ A(t0, θ0) = ∅. Let v, w ∈ V ∩ L(0, t0) with θv < θ0 < θw
and max(|θv − θ0|, |θw − θ0|) ≤ |θv − θw|. Then |θv − θw| > θR(tv, tw), i.e., v and w are not
connected by an edge.

Proof. The function θR(tv, tw) is increasing in both of its arguments, hence we may
assume that tv = tw = t0. For this choice, v and w are connected by Corollary 2.2
iff |θv − θw| ≤ θR(t0, t0). However, since A(t0, θ0) = ∅ and θv < θ0 < θw, we have
|θv − θw| > 2θR(t0, t0), i.e., v and w are not connected by an edge.

•
(t0, θ0)

t0

0

A(t0, θ0)

×v
×w

Figure 3: A separation zone. The two points v and w are not close enough to be connected
by an edge.

To use the previous observation, we need separation zones which do not contain any
vertices. We prove below that this happens with high probability.

Lemma 3.3. There is a constant c > 0 which depends only on α and ν such that for any
t < R/2,

P
(
∃j ∈ {0, . . . , cR} , V ∩ A(t, 2jθR (t, t)) = ∅

)
≥ 1− e−R .

Proof. Consider the event

E =
{
∃j ∈ {0, . . . , N}, V ∩ A(t, 2jθR (t, t)) = ∅

}
ECP 26 (2021), paper 14.
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for some N that we will choose below. We recall that the set A(t, 2jθR (t, t)) is included
in the sector

S((2j − 1)θR (t, t) , (2j + 1)θR (t, t)).

For different values of j, these sectors are disjoint, and thus the random variables
|V ∩ A(t, 2jθR (t, t))| are independent, they follow a Poisson distribution with intensity
E [ |V ∩ A(t, 0)| ], and hence

P
(
E
)

= (P ( |V ∩ A(t, 0)| > 0))
N+1

=
(

1− e−E[ |V ∩A(t,0)| ]
)N+1

.

Since t < R/2, Corollary 2.2 and Observation 3.1 give

E [ |V ∩ A(t, 0)| ] ≤
∑

1≤i≤dte

2θR (i, i)

2π
E [ |V ∩ L(i− 1, i)| ]

≤
∑

1≤i≤dte

4e−
R
2 +iνeR/2e−α(i−1)(1− e−α)(1 + o(1))

= 4ν(eα − 1)
∑

1≤i≤dte

e−(α−1)i(1 + o(1))

≤ 4ν
(eα − 1)e−(α−1)

1− e−(α−1)
+ o(1).

By choosing N = cR for a constant c > 0 sufficiently large, the lemma follows (observe
that the angle θR (i, i) is small enough to have 2NθR (i, i) < 2π for large R and then such
N clearly exists).

We next introduce a helpful structure of layers that had in a similar way been
introduced in [BKL17a] for an efficient sampling of geometric inhomogeneous random
graphs. In more detail, we consider the following layers starting from the boundary of
BO(R): set

∀i ≥ 0, ti =

(
4α

α− 1
+ 3i

)
logR.

Let tmax = 1
2αR be the distance to the circle of radius R roughly corresponding to

the largest t for which we can find an element of V and set imax = min { i ≥ 0, ti ≥ tmax }.
Note that

tmax < R/2, imax ≤ R and tmax ≤ timax ≤ tmax + 3 logR.

We also set t−1 = 0 and we define, for i, j ∈ {0, . . . , imax }, the angle

θi,j = θR (ti, tj)

and the consecutive layers
Li = L(ti−1, ti).

The following observation is standard; it follows again from Corollary 2.2 and Observa-
tion 3.1. Its proof is analogous to the proof of Observation 3.1; and it is therefore left
out.

Observation 3.4. For any i, j ∈ {0, . . . , imax },

E [ |V ∩ Li| ] = νe
R
2 −αti−1(1 + o(1)) and θi,j = 2e−

1
2 (R−ti−tj)

(
1 + Θ(e−(R−ti−tj))

)
.

We now finish the construction of the separation zones. Intuitively, one may think
of separation zones as regions equally distributed over BO(R), but it seems easier to
define these regions depending on positions of vertices. On a high level, the idea is
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as follows: we first divide the disk into layers (concentric rings). Each layer is then
divided into sectors by packing separation zones as close to each other as possible (the
number of zones depends on the layer). More formally, for every i ∈ {0, . . . , imax }, set
kimax = d2π/(3cRθi,i)ewhere c is the constant given in Lemma 3.3. For every 0 ≤ k < kimax,
we find the (k + 1)-th separation zone to be the closest (to the right) empty region to the
angle 3cRkθi,i. More formally, define for 0 ≤ k < kimax,

ji,k = min {j ∈ N | V ∩ A(ti, (3cRk + 2j)θi,i) = ∅} ,

where min ∅ =∞. We assign Ai,k then to be the closest region to 3cRkθi,i:

Ai,k = A(ti, (3cRk + 2ji,k)θi,i),

where we set Ai,k = ∅ in case it turned out ji,k =∞. The set Ai,k represents the (k+1)-th
separation zone of layer i. For notational convenience, we also set Ai,kimax = Ai,0. We
could have Ai,k = Ai,k+1, and the two sets might not even be well defined. We will
thus use Lemma 3.3 to show that asymptotically almost surely none of the two things
happens.

In order to state the next lemma properly, we define the following (pseudo)distance
between separation zones:

∀A,B ⊂ BO(R), d(A,B) = inf { |θ − θ′| | (t, θ) ∈ A, (t′, θ′) ∈ B } .

As indicated before, the separation zones described indeed are well defined, i.e., they are
more or less equally distributed around the whole disk, as the following lemma shows:

Lemma 3.5. Let c be the constant given in Lemma 3.3 (depending only on α and ν).
Then the event ER defined by

ER =
{
∀0 ≤ i ≤ imax, ∀0 ≤ k < kimax, Ai,k 6= ∅ and cRθi,i ≤ d(Ai,k,Ai,k+1) ≤ 5cRθi,i

}
occurs a.a.s.

Proof. Let c be the constant given in Lemma 3.3 and consider the event

FR =
{
∀0 ≤ i ≤ imax, ∀0 ≤ k < kimax, ∃j ∈ {0, . . . , cR} , V ∩ A(ti, (3cRk + 2j)θi,i) = ∅

}
.

Clearly, FR ⊆ ER and it is sufficient to bound P
(
FR
)
. Then, for R large enough, using

the definition of kimax,

P
(
FR
)
≤

∑
0≤i≤imax

0≤k<kimax

P (∀j ∈ {0, . . . , cR} , V ∩ A(ti, (3cRk + 2j)θi,i) 6= ∅ )

=
∑

0≤i≤imax

kimaxP (∀j ∈ {0, . . . , cR} , V ∩ A(ti, 2jθi,i) 6= ∅ )

= C1

∑
0≤i≤imax

1

R
e
R
2 −tie−R

≤ C1

∑
0≤i≤imax

e
R
2 −tie−R ≤ C2e

− 1
2R.

Since the last quantity goes to zero as R tends to infinity, the lemma is proven.

Hence, a.a.s. the distance between two consecutive separation zones Ai,k and Ai,k+1

is always of the order Rθi,i. The idea is that every path of connected points from a vertex
in V ∩ Bi,k to another vertex in V ∩ Bi,` with k 6= ` has to go through an intermediate
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ti

3cRθi,i 3cRθi,i

Ai,0 Ai,1 Ai,2 Ai,k
i
max−1

Bi,0 Bi,1 Bi,2 . . . Bi,0

Figure 4: The separation zones

vertex that is closer to the origin, i.e., points cannot be connected “below”. In order
to make this more precise, define now, conditional upon ER, the area Bi,k between two
separation zones (see also Figure 4): for 1 ≤ k < kimax, let

Bi,k =
{

(t, θ) ∈ BO(R) | t ≤ ti

and sup
{
θ̃ | (t, θ̃) ∈ Ai,k−1

}
< θ < inf

{
θ̃ | (t, θ̃) ∈ Ai,k

}}

and Bi,0 =
{

(t, θ) ∈ BO(R) | t ≤ ti

and sup
{
θ̃ | (t, θ̃) ∈ Ai,k

i
max−1

}
< θ or θ < inf

{
θ̃ | (t, θ̃) ∈ Ai,0

}}
.

Rewriting Observation 3.2 we obtain the following observation, assuming that we
indeed found the separation zones, that is, we have Ai,k 6= ∅.
Observation 3.6. Suppose Ai,k 6= ∅. Let u ∈ V ∩ Bi,k and v ∈ V ∩ Bi,` with k 6= `. Then
u and v can only be connected by a path that has at least one intermediate vertex w ∈ V
such that tw > ti.

Proof. Note that tu, tv ≤ ti. Then by Observation 3.2, u and v are not connected by an
edge. Since this holds for any k 6= ` and any u, v, there can be no path between u and v
containing vertices w ∈ V such that tw ≤ ti (see also Figure 5).

ti

ti−1

ti−2

ti−3

u×

w×

v×

ũ
×

×ṽ

Figure 5: The green points are connected while the red ones are not.

4 Covering component

On a high level, the advantage of separation zones is that it is impossible to stay in the
same connected component going from right to left (or the other direction) remaining
always at the same radius or going towards the boundary. We will thus construct, starting
from a certain vertex, a covering component, that is, a component which covers a.a.s.
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the whole connected component of the vertex, if this vertex is the one closest to the
center of its connected component. Roughly speaking, it is constructed in an iterative
way and contains vertices that are ‘close’ in angular distance to a vertex already in the
covering component, where ‘close’ depends on the radial coordinate of the vertex.

We describe now in detail the iterative construction process of the covering compo-
nent. Suppose that the event ER holds. This happens a.a.s. according to Lemma 3.5.
Consider a vertex v ∈ V and let Li be the layer of v. If i = 0, we define Cv = {v }, else,
for 0 ≤ j < i ≤ imax, we set

Θi,j(v) = V ∩ Lj ∩ S(θv − 2θi,j , θv + 2θi,j)

and (see also Figure 6)

Cv = {v } ∪
i−1⋃
j=0

⋃
u∈Θi,j(v)

Cu.

Θ2,1(v)

•v
t2

t1

t0

t−1

•
u

Θ1,0(u)

Θ2,0(v)

•
w2

•
w1

Figure 6: Construction of Cv = {v, u, w1, w2}, for v ∈ L2 top-down: first u is added since
this vertex lies in Θ2,1(v), in red, then w1 since it is in Θ2,0(v), in red too, and finally w2

is added since it lies in Θ1,0(u), in blue.

Finally, denote by k the unique integer such that v ∈ Li∩Bi,k. The covering component
of v is defined as

CCv =
⋃

u∈V ∩Li∩Bi,k

Cu.

We also denote by Conn(v) the connected component of v. The following lemma
shows that the covering component of v indeed covers the connected component of v if v
is the closest vertex of the center in this component.

Lemma 4.1. A.a.s. for any v ∈ BO(R), if tv = max { tu | u ∈ Conn(v)}, the connected
component of v is included in CCv.

Proof. Suppose that the event ER holds. This happens a.a.s. according to Lemma 3.5.
By contradiction, consider a vertex u in the connected component of v that is not

contained in CCv, and a shortest path v = v0, . . . , vm = u. Hence, there exists a smallest
k ≥ 1 such that the vertex vk is not in CCv.

For any ` ∈ {0, . . . ,m}, denote by i` the index of the layer containing v` and suppose
there exists k′ < k such that ik′ > ik. Among them choose the largest k′, so that

∀` ∈ {k′ + 1, . . . , k } , i` ≤ ik (see Figure 7).
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Lik′

Lik

×
vk′+1

×
vk′

×
vk

×
v`

Bik,s

Figure 7: The whole path after vk′ is contained in a unique zone Bik,s.

By Observation 3.6, it is not possible to construct a path between vertices of different
zones of level ik if this path does not contain a vertex w such that tw > tik . Hence,
the v` are necessarily in the same zone as vk, named Bik,s in Figure 7. Therefore, the
angle between vk′ and vk cannot be larger than the angle between vk′ and vk′+1 plus the
angular width of Bik,s, that is,

|θvk′ − θvk | ≤ θik′ ik + 5cRθikik ≤ 2θik′ ik ,

and thus vk ∈ Cvk′ ⊂ CCv which is impossible. Thus necessarily v = v0 is in the same
layer as vk or in a layer closer to the boundary. Since v is by hypothesis the vertex such
that tv = max { tu | u ∈ Conn(v)}, we must have v ∈ Lik . Therefore, by Observation 3.6,
v and vk must be in the same zone Bik,s for some s and thus vk ∈ CCv.

Lemma 4.2. Define K = 128ν. A.a.s.,

∀0 ≤ j < i ≤ imax, ∀v ∈ Li, |Θi,j(v)| ≤ max(8R,Ke
ti+tj

2 −αtj−1)

Proof. For each 0 ≤ j < i ≤ imax, let di,j = max(4R, 64νe
ti+tj

2 −αtj−1) and divide

layer Lj into dπ/(2θi,j)e sectors S
(i,j)
k of angle (at most) 4θi,j . Recall that for any

k ∈ {1, . . . , dπ/(2θi,j)e}, the cardinality |S(i,j)
k ∩ V ∩ Lj | is Poisson distributed with

expectation

E
[
|S(i,j)
k ∩ V ∩ Lj |

]
≤ 4θi,jE [ |V ∩ Lj | ]

and according to Observation 3.4, if R is large enough,

4θi,jE [ |V ∩ Lj | ] ≤ 4νe
R
2 −αtj−1 · 2e− 1

2 (R−ti−tj) = 8νe
ti+tj

2 −αtj−1 ≤ di,j/2.

So, for any such sector S(i,j)
k , for any 0 ≤ j < i ≤ imax, from Lemma 2.4 we have

P
(
|S(i,j)
k ∩ V ∩ Lj | > di,j

)
≤ e−di,j/4 ≤ e−R.

By a union bound over all dπ/(2θi,j)e sectors S(i,j)
k and then over all i, j, we have

P
(
∃0 ≤ j < i ≤ imax,∃1 ≤ k ≤ dπ/(2θi,j)e, |S(i,j)

k ∩ V ∩ Lj | > di,j

)
≤

∑
0≤j<i≤imax

dπ/(2θi,j)ee−R.

Recall that for R large enough, 1/θi,j ≤ e
1
2 (R−ti−tj) ≤ eR/2 and imax ≤ R. Thus, for some

universal constant C > 0,

P
(
∃0 ≤ j < i ≤ imax,∃1 ≤ k ≤ dπ/(2θi,j)e, |S(i,j)

k ∩ V ∩ Lj | > di,j

)
≤ CR2e−R/2 = o(1).
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Hence, since for each vertex v ∈ V ∩ Li, the set Θi,j(v) can intersect at most two

adjacent sectors S(i,j)
k , we have

P (∃0 ≤ j < i ≤ imax, ∃v ∈ V ∩ Li, |Θi,j(v)| > 2di,j ) = o(1).

Lemma 4.3. There is a constant K2 > 0, such that, a.a.s.

∀0 ≤ i ≤ imax, ∀v ∈ Li, |CCv| ≤ K2e
2t0+ 1

2 ti .

Proof. Upper bound for |Cv|: recall first that Lemma 4.2 says that, for K = 128ν, the
event

A =
{
∀0 ≤ j < i ≤ imax, ∀v ∈ V ∩ Li, |Θi,j(v)| ≤ max(8R,Ke

ti+tj
2 −αtj−1)

}
happens a.a.s. We proceed by induction on i and prove that, on the event A, for any
0 ≤ i ≤ imax,

∀j ≤ i, ∀v ∈ V ∩ Lj , |Cv| ≤ 2Ke
t0+ti

2 . (4.1)

Since for any v ∈ V ∩ L0, Cv = {v }, the result is obvious for i = 0. Suppose now it is
true for some 0 ≤ i < imax. We fix some v ∈ V ∩ Li+1, and we will obtain a bound on Cv
by summing over all vertices in layers with indices below i+ 1 and take their Cu’s:

|Cv| ≤ | {v } |+
∑

0≤j≤i

∑
u∈Θi+1,j(v)

|Cu|

≤ 1 +
∑

u∈Θi+1,0(v)

1 +
∑

1≤j≤i

∑
u∈Θi+1,j(v)

2Ke
t0+ti

2

= 1 + |Θi+1,0(v)|+
∑

1≤j≤i

|Θi+1,j(v)|2Ke
t0+ti

2

≤ 1 + max(8R,Ke
ti+1+t0

2 −αt−1) +
∑

1≤j≤i

max(8R,Ke
ti+1+tj

2 −αtj−1)2Ke
t0+tj

2 .

Recall that t−1 = 0 and for i ≥ 0, ti = ( 4α
α−1 + 3i) logR. Thus, for large R,

max(8R,Ke
ti+1+t0

2 −αt−1) = Ke
ti+1+t0

2

and

max(8R,Ke
ti+1+tj

2 −αtj−1)2Ke
t0+tj

2 ≤ 2Ke
t0+ti+1

2 (8Re
tj−ti+1

2 +Ketj−αtj−1)

= 2Ke
t0+ti+1

2

(
8R

3
2 (j−i)− 1

2 +KR−α−3(α−1)j
)
.

This leads to the following bound for |Cv|:

|Cv| ≤ 1 + e
t0+ti+1

2

(
K +

16K√
R(1−R−3/2)

+ 2K2 R−4α+3

1−R−3(α−1)

)

For R large enough, we then have |Cv| ≤ 2Ke
t0+ti+1

2 for any v ∈ Li+1. This proves the
bound of (4.1) for any v by induction.

Upper bound for |CCv|: For i ∈ {0, . . . , imax }, denote by Γi the set

Γi =
{
v ∈ V ∩ Li

∣∣∣ |θv| ≤ 5cRθi,i

}
.
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According to Observation 3.4, there is a constant K depending only on ν and c such that
for R large enough and i ∈ {0, . . . , imax },

E [ |Γi| ] = 10cRθi,iE [ |V ∩ Li| ] ≤ KRe−
1
2 (R−2ti)e

R
2 −αti−1 = KReti−αti−1

Thus, E [ |Γi| ] ≤ KRet0 ≤ 1
2e

3
2 t0 . Now, since |Γi| is a Poisson variable, Lemma 2.4 says

that

P
(
|Γi| ≥ e

3
2 t0
)
≤ e−e

3
2
t0/8.

Therefore,

P
(
ER ∩

{
∃i ∈ {0, . . . , imax } , ∃k ∈

{
1, . . . , kimax

}
, |V ∩ Li ∩ Bi,k| ≥ e

3
2 t0
})

≤
imax∑
i=0

⌈
1

2cRθi,i

⌉
P
(
|Γi| ≥ e

3
2 t0
)

≤
imax∑
i=0

1

cR
e
R
2 −tie−e

3
2
t0/8 ≤ eR/2−e

3
2
t0/8,

which tends to 0 as R goes to infinity.
Finally, a.a.s., for any i ≥ 0 and any v ∈ V ∩ Li, the cardinality of CCv satisfies

|CCv| ≤ max
u∈V ∩Li

|Cu| max
k≤kimax

|V ∩ Li ∩ Bi,k| ≤ 2Ke
t0+ti

2 e
3
2 t0 = 2Ke2t0+ 1

2 ti ,

and the lemma follows by choosing K2 = 2K.

Proof of Theorem 1.1. According to Lemma 4.3, there is a constant K2 > 0 such that,
a.a.s.

max
v∈V
|Conn(v)| ≤ max

v∈V
|CCv| ≤ K2e

2t0+ 1
2 timax ≤ e2t0+ tmax+3 logR

2 = e
R
4α+( 8α

α−1 + 3
2 ) logR.

(4.2)

By Lemma 4.1 we obtain the upper bound for |L1| in the theorem.
For the lower bound, by Lemma 2.3, for any function ω tending to infinity with n

arbitrarily slowly, µ(BO(rmax + ω)) � 1/n, and hence a.a.s. we find a vertex v with
tv ≥ tmax − ω. In such case, the degree of v is, by Lemma 2.5, s a.a.s. between
c1e

1
2 (tmax−ω)) and c2e

1
2 (tmax−ω)) (for some constants c1 < c2), and thus, a.a.s. of the order

n
1

2α+o(ω/n). The degree of a vertex is a lower bound on the size of its component, and
hence Theorem 1.1 follows.
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