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Abstract

In this paper, we study the small-time asymptotic behavior of the Kingman coalescent.
We obtain the Berry-Esseen bound and the Edgeworth expansion in the central limit
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1 Introduction

The Kingman coalescent was introduced in 1982 by Kingman in [5]. It was used
to describe the genealogy of a sample from a population. Ever since its appearance,
the Kingman coalescent has found many applications in biology. It also serves as the
dual process of the Fleming-Viot process with parent-independent mutation. As a dual
process, the Kingman coalescent usually describes the backward movement in time in
population genetics. More generally, coalescent processes, the Lambda coalescence in
particular, are dual processes of some generalized Fleming-Viot processes.

Apart from describing sample genealogy, the Kingman coalescent also has other
interpretations, such as the number of surviving ancient families. Due to genetic drift
and mutation, the ancient families are lost as time moves forward. Let Dt be the
number of surviving ancient families up to time t. Then Dt is a pure-death Markov
chain with transition rates qn,n−1 =

(
n
2

)
, qnk = 0, k < n − 1, starting at ∞. Once an

ancient family disappears, the Kingman coalescent experiences a coalescing event.
These coalescing events arrive independently, and waiting times between coalescing
events follow exponential distributions. Let Tn be the arriving time of the coalescing
event, where n is the number of surviving ancient families right after Tn. Then Tn =∑∞
k=n+1 ξk/

(
k
2

)
where {ξk, k ≥ 1} are i.i.d. exponential random variables with mean 1.

Like Poisson process, Dt and Tn have a dual relationship P(Tn ≥ t) = P(Dt ≥ n). When
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Asymptotics of Kingman coalescent

we study the small-time behavior of Dt, this dual relation facilitates our computation a
lot.

As a standard coalescent model in population genetics, the Kingman coalescent
has been thoroughly studied. For instance, the law of large numbers and the central
limit theorem were summarized in [2](see also [7] for some discussion on the central
limit theorem). Some functional central limit theorem was also obtained in [9]. Large
deviation principle has been discussed in [3]. However, large deviation principle and
moderate deviation principle only aim at seeking a leading term of the logarithm of
tail probability. Therefore, polynomial correction terms will be missing if we only
consider large deviations and moderate deviations. Especially, these correction terms
play indispensable roles in statistical inference. The precise deviations, however, not
only provide the leading terms but also polynomial correction terms of the tail probability.
As far as we know, the precise large deviations and precise moderate deviations for the
Kingman coalescent are still unknown. Similarly, we have not seen any asymptotic result
like the Berry-Esseen bounds, the Edgeworth expansions and deviation inequalities
for the Kingman coalescent in the existing literatures either. Similar problems for the
Lambda-coalescents also deserve study.

In this paper, we are going to find the Berry-Esseen bound, establish the Edgeworth
expansions in the central limit theorem(CLT for short) and the local central limit theorem.
Some precise large deviations, precise moderate deviations, and deviation inequalities
are also obtained for the Kingman coalescent. Due to the dual relation P(Tn ≥ t) =

P(Dt ≥ n), we will only focus on Tn. The asymptotic behavior of Dt is only a simple
corollary of the asymptotic behavior of Tn. The main methodology is an asymptotic
analysis of the generating function in the complex domain and the mod-φ convergence
theory [4].

Our paper is organized as follows. In Section 2, will state the main results. In
section 3, we show the Berry-Esseen bound and the Edgeworth expansions in the CLT.
The Edgeworth expansions in local CLT will be presented in Section 4. Precise large
deviations and precise moderate deviations are shown in Section 5. In Section 6, we will
prove the deviation inequality.

2 Main results

Note that Tn =
∑∞
k=n+1 ξk/

(
k
2

)
, a simple computation yields

E(nTn) =

∞∑
k=n+1

{
n/

(
k

2

)}
= 2, Var(nTn) =

∞∑
k=n+1

{
n2/

(
k

2

)2}
∼ 4

3n
.

We will rescale nTn as Zn =
√
3n
2 (nTn − 2). In the following, we are going to provide

the main results on the asymptotic behavior of the rescaled quantity Zn. We will mainly
discuss the Edgeworth expansion in the CLT. The expansion involves Hermite polynomials
Hl(x) which are defined as

Hl(x) = (−1)l
1√
2π
ex

2/2 d
l

dxl

[
e−

x2

2

]
.

A notation Sk will be repeatedly used in the Edgeworth expansion. It is a set of k-tuple
(m1, · · · ,mk), where m1, . . . ,mk are non-negative integers and

1 ·m1 + 2 ·m2 + · · ·+ k ·mk = k. (2.1)

Now we are ready to state the main results.
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Asymptotics of Kingman coalescent

2.1 The Berry-Esseen bound and the Edgeworth expansion in the CLT

Theorem 2.1. (Berry-Esseen bound). There exists a constant C > 0 such that

sup
x∈R

∣∣∣∣P(Zn ≤ x)− Φ(x)

∣∣∣∣ ≤ C√
n
, n > 0. (2.2)

Theorem 2.2. (Edgeworth expansions in the CLT). For any m ≥ 2, there exists a positive
constant C, independent of n, such that

sup
x∈R

∣∣∣∣P(Zn ≤ x)− Φ(x)−
m−2∑
k=1

Qk,n(x)

∣∣∣∣ ≤ C

n(m−1)/2
, n > 0, (2.3)

where

Qk,n(x) =− 1√
2π
e−x

2/2
(√

3/n
)k∑
Sk

Hk+2(m1+···+mk)−1(x)

k∏
l=1

(al(n)/l!)ml

ml!
, (2.4)

and

al(n) =

{
3An,(l+2)l!

(l+2) , l 6= 2
3An,4

2 − nεn,2
2 , l = 2

, An,l = n2l−1
∞∑
k=n

1

[k(k + 1)]l
, εn,2 = An,2 −

1

3
.

Remark 2.3. Note that we have An,l → 1
2l−1 and nεn,2 → 1

2 as n→∞, then

al(n)→

{
3l!

(2l+3)(l+2) , l 6= 2

− 1
28 , l = 2

.

2.2 Local limit theorem

Let pn(x) be the density of Zn. By local limit theorem, we mean the asymptotic
behavior of pn(x) in uniform topology as n → ∞. First, we establish the Edgeworth
expansion in uniform topology, then the local limit theorem will be a simple corollary.

When we consider the Edgeworth expansion, the cumulative distribution P(Zn ≤ x)

is approximated by Gm,n(x) = Φ(x) +
∑m−2
k=1 Qk,n(x). It is natural to use G′m,n(x) =

φ(x) +
∑m−2
k=1 qk,n(x), where qk,n(x) = Q′k,n(x), to approximate the density pn(x) of Zn.

Theorem 2.4. (Local limit theorem). There exists a constant C > 0 such that

sup
x∈R

∣∣∣∣pn(x)− 1√
2π
e−x

2/2

∣∣∣∣ ≤ C√
n
, n > 0. (2.5)

Theorem 2.5. (Edgeworth expansions in the local limit theorem). For any m ≥ 2, there
exists a positive constant C, independent of n, such that

sup
x∈R

∣∣∣∣pn(x)− 1√
2π
e−x

2/2 −
m−2∑
k=1

qk,n(x)

∣∣∣∣ ≤ C

n(m−1)/2
, n > 0. (2.6)

Remark 2.6. When n = [ 2+
√
tx

t ], by dual relation P(Dt ≥ n) = P(Tn ≥ t), one can also
obtain the CLT the Edgeworth expansion of Dt in the CLT and its Edgeworth expansions
in the local central limit theorem.
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2.3 Precise deviations

The strong limit of nTn is 2 as n→∞(refer to [2]). Thus, for ε > 0, both {nTn > 2 + ε}
and {nTn < 2− ε} are rare events. Precise deviation principle is about the estimations
of P(nTn > 2 + ε) and P(nTn < 2− ε), where ε indicates the level of deviations from the
strong limit point 2. Large deviations correspond to the case ε = O(1), and moderate
deviations corresponds to another case ε = o(1).

Precise large deviations and moderate deviations can be obtained by mod-φ con-
vergence [4], which depends on carefully analysis of the moment generating function
Eezn

2Tn of nTn in complex domain S(−∞,1/2) := {z ∈ C; Re(z) < 1/2}. In section 4, we

will show that ψn(z) = e−nη(z)Eezn
2Tn has a uniform limit on S(−∞,1/2), where

η(z) = −
∫ ∞
1

log(1− 2z

x2
)dx. (2.7)

Here η(z) can be regarded as the analytic continuation of the limiting log-Laplace
transformation η(θ), which has been obtained in [3]. The rate function I(x) is the
Legendre transformation of η(θ), θ ∈ R, and

I(x) = θxx− η(θx) =


θxx+

∫ ∞
1

log(1− 2θx
u2

)du, if x > 0

+∞, if x ≤ 0

(2.8)

where θx <
1
2 is the unique solution of the equation x = η′(θ). Moreover, η

′
(0) = 2 and

η
′′
(0) = 4

3 . One can also show that I(2) = I ′(2) = 0, and I
′′
(2) = 1

η′′ (0)
= 3

4 .

Theorem 2.7. (Precise large deviations). For x > 2, the upper tail probability satisfies

P(nTn ≥ x) = e−nI(x)
1

θx
√

2πnη′′(θx)

(
1 + o(1)

)
as n→∞. (2.9)

For 0 < x < 2, the lower tail probability satisfies

P(nTn ≤ x) = e−nI(x)
1

θx
√

2πnη′′(θx)

(
1 + o(1)

)
as n→∞. (2.10)

For moderate deviations, we specify the deviation s = x− 2 as s =
√

η′′(0)
n βny = o(1),

where 0 < βn �
√
n. Since θx is the solution of η(θ) = x, then θx ∼ s = 2√

3n
βny as

n→∞.

Theorem 2.8. (Precise moderate deviations).

(i) If x = 2 +
√

η′′(0)
n βny, y > 0, and βn ∼ n1/2−1/m,m ≥ 3, then

P

(
nTn ≥ x

)
=

3

4
√

2πyβn
exp

{
−β2

n

y2

2
− β2

n

m+1∑
i=3

(2/
√

3)iI(i)(2)

i!
yi
(
βn√
n

)i−2}
(1 + o(1))

(2.11)

(ii) If x = 2 +
√

η′′(0)
n βny, y < 0, and βn ∼ n1/2−1/m,m ≥ 3, then

P

(
nTn ≥ x

)
=

3

−4
√

2πyβn
exp

{
−β2

n

y2

2
− β2

n

m+1∑
i=3

(2/
√

3)iI(i)(2)

i!
(−y)i

(
βn√
n

)i−2}
(1 + o(1))

(2.12)
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(iii) If x = 2 +
√

η′′(0)
n βny and βn = o(n1/6), then

P

(
nTn ≥ x

)
= Φ̄(βny)

(
1 + o(1)

)
, (2.13)

where Φ̄(y) :=
∫∞
y

1√
2π
e−x

2/2dx.

2.4 Deviation inequality

Theorem 2.9. (Deviation inequality). For any x ≥ 0, n ≥ 1, and r ∈ (0, 1), both

P

(
Zn ≥ x

)
and P

(
Zn ≤ −x

)
are bounded as follows:

P

(
Zn ≥ x

)
,P

(
Zn ≤ −x

)
≤


e−

(1−r)
2n x2

, 0 ≤ x ≤
√
nr√

3(1−r) ;

e
−
√
nxr

2
√

3 , x >
√
nr√

3(1−r) .

(2.14)

Remark 2.10.

The rescaled quantity Zn has either positive or negative deviation. When the absolute
deviation is small, the decay is of Gaussian type; when the absolute deviation is large,
the decay behaves like a Poisson tail.

3 Berry-Esseen bounds and asymptotic expansions of CLT

In this section, we are going to prove the Berry-Esseen bound and the Edgeworth
expansions in the CLT. Note that Berry-Esseen bound is only a special case of the
Edgeworth expansions in the CLT. Thus, it suffices to show the Edgeworth expansions in
the CLT. But first we need the following basic lemma (refer to [8]).

Lemma 3.1. Let F be a cumulative distribution function. Assume that G is a differen-
tiable function, satisfying G(−∞) = 0 and G(+∞) = 1, and G′ is bounded. Then for any
r > 0,

sup
x∈R
|F (x)−G(x)| ≤ 1

π

∫ r

−r

∣∣∣∣φF (s)− φG(s)

s

∣∣∣∣ds+
24

rπ
sup
x∈R
|G′(x)|,

where φF (s) :=
∫
R
eisxdF (x) is the Fourier transform of function F .

By Lemma 3.1, we can establish the Edgeworth expansions of cumulative distribution
P(Zn ≤ x) of Zn through expansion of its characteristic function φn(θ) = EeiθZn . Note

that
∫
R
eiθxdΦ(x) = e−

θ2

2 and Φ(l)(x) = (−1)l−1Hl−1(x) 1√
2π
e−

x2

2 , where Φ(x) is the cumu-

lative distribution function of the standard normal distribution and Hl−1(x) are Hermite
polynomials. By integration by parts, we have

(−iθ)le−
θ2

2 =

∫
R

eiθxdΦ(l)(x), (3.1)

which builds up a correspondence between expansions of P(Zn ≤ x) and its characteristic
function φn(θ).

Lemma 3.2. There exists positive constants δ,N,M , such that

φn(θ) = Ψn(θ) +R(θ) for n ≥ N and

√
3|θ|√
n

< δ,

where Ψn(θ) = e−
θ2

2 +
∑m−2
k=1 Ψk,n(θ),

Ψk,n(θ) = (
√

3/n)k
∑
Sk

k∏
i=1

[ai(n)/i!]mi

mi!
(iθ)

∑k
i=1(i+2)mie−

θ2

2 ,
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and |R(θ)| ≤ M
(
√
n)m−1 (

∑3(m−1)
s=0 |θ|s)e− θ

2

4 .

Due to the correspondence relation (3.1), we know

Ψn(θ) =

∫
R

eiθxdGm,n(x) = e−
θ2

2 +

m−2∑
k=1

Ψk,n(θ),

where Gm,n(x) = Φ(x) +
∑m−2
k=1 Qk,n(x). In the following, we will show that P(Zn ≤ x)

has an expansion Gm,n(x) = Φ(x) +
∑m−2
k=1 Qk,n(x).

Proof of Theorem 2.2. To apply Lemma 3.1, we take r = Cn(m−1)/2, where 0 < C <

min{
√

14/9, δ}. Then

sup
x∈R

∣∣∣∣P(Zn ≤ x)−Gm,n(x)

∣∣∣∣≤ 2

π

∫ Cn(m−1)/2

0

∣∣∣∣φn(θ)−Ψn(θ)

θ

∣∣∣∣dθ+
24

Cn(m−1)/2π
sup
x∈R
|G′m,n(x)|

=K1+K2+
24

Cn(m−1)/2π
sup
x∈R
|G′m,n(x)|,

where

K1 =
2

π

∫ Cn1/2

0

∣∣∣∣φn(θ)−Ψn(θ)

θ

∣∣∣∣dθ, K2 =
2

π

∫ Cn(m−1)/2

Cn1/2

∣∣∣∣φn(θ)−Ψn(θ)

θ

∣∣∣∣dθ.
There exists a positive constantM , independent of n, such that 24

Cn(m−1)/2π
supx∈R |G′m,n(x)| <

M , then

sup
x∈R

∣∣∣∣P(Zn ≤ x)−Gm,n(x)

∣∣∣∣ ≤ K1 +K2 +
M

n(m−1)/2
.

It remains to show that both K1 and K2 are bounded by M
n(m−1)/2 . Note that

|K2| ≤
2n(m−1)/2

π
√
n

sup
θ>C

√
n

|φn(θ)|+ 2

Cπ
√
n

∫ ∞
C
√
n

|Ψn(θ)|dθ.

It is easy to see that |Ψn(θ)| ≤ M
∑2(m−2)
l=0 |θ|le− θ

2

2 . Then by Gaussian probability esti-
mates, we know there exist two positive constants C1, C2 such that

2

Cπ
√
n

∫ ∞
C
√
n

|Ψn(θ)|dθ ≤ C1e
−C2n.

Moreover,

|φn(θ)| ≤ exp

{
−
∞∑
k=n

log
∣∣∣1− √3iθn3/2

k(k + 1)

∣∣∣} = exp

{
− 1

2

∞∑
k=n

log
∣∣∣1 +

3θ2n3

k2(k + 1)2

∣∣∣}.
So

sup
θ>C

√
n

|φn(θ)| ≤ exp

{
− 1

2

∞∑
k=n

log
∣∣∣1 +

3C2n4

k2(k + 1)2

∣∣∣}.
By inequality log(1 + x) > x− x2

2 , x > 0, we have supθ>C
√
n |φn(θ)| ≤ C1e

−C2n.
Thus, there exist two positive constants M1, M2 such that |K2| ≤ M1e

−nM2 . By
Lemma 3.2, we know

|K1| ≤
2M

π

1

n(m−1)/2

∫ C
√
n

0

3(m−1)∑
s=0

θse−
θ2

4 dθ ≤ 2DM

π

1

n(m−1)/2

where D =
∫∞
0

∑3(m−1)
s=0 θse−

θ2

4 dθ <∞. So the expansion of P(Zn ≤ x) is Gm,n(x), and its

uniform approximation error supx∈R

∣∣∣∣P(Zn ≤ x)−Gm,n(x)

∣∣∣∣ is bounded by M
n(m−1)/2 .
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Proof of Lemma 3.2. Note that φn(θ) = Ee
√

3
2 iθn

3
2 Tn · e−

√
3iθn

1
2 .

By the definition of Tn, we have Ee
√

3
2 iθn

3
2 Tn = e−

∑∞
k=n log(1−

√
3iθn

3
2

k(k+1)
). Because log(1−

x) = −
∑∞
l=1

xl

l , switching summation order yields φn(θ) = exp

{∑∞
l=2

(
√
3iθ)l

l
An,l

(
√
n)l−2

}
,

where An,l = n2l−1
∑∞
k=n

1
[k(k+1)]l

, and

An,l =

∞∑
k=n

1

( kn )2l(1 + 1
k )l

1

n
≤ 1 +

∫ ∞
1

dx

x2l
=

2l

2l − 1
.

Introducing εn,2 =An,2− 1
3 and w= i

√
3θ√
n

, we can rewrite φn(θ) as φn(θ)=e−
θ2

2 e−g(w)eR1(θ),

where R1(θ)=
∑∞
l=m+1

(
√
3iθ)l

l
An,l

(
√
n)l−2 , g(w)=

∑m−2
l=1

wl

l! θ
2al(n), and

al(n) =

{
3l!An,l+2

l+2 l 6= 2
3An,4

2 − nεn,2 l = 2.

One can also show that there exists constants N, 0 < δ < 1
8 , such that al(n) ≤

2l! + 1,∀n ≥ N , and ∀ |w| < δ,

|R1(θ)| ≤ max

{ √
3
m−1

n(m−1)/2
|θ|m+1, |θ|2/8

}
(3.2)

and

|g(w)|+ |R1(θ)| ≤ max

{
M√
n
|θ|3, |θ|2/8

}
. (3.3)

Next we will expand f(w) = e−g(w) to get the expansion of φn(θ). We claim that we
can expand f(w) as

e−g(w) =

m−2∑
k=0

bk(n)

k!
wk +R2(θ), (3.4)

where |R2(θ)| ≤ M
n(m+1)/2

∑m−1
s=1 |θ|se

θ2

8 . Indeed, the error bound of R2(θ) can be obtained
through composition of power series. By the uniqueness of Taylor expansion, we know
bk(n) = f (k)(0). To specify f (k)(0), we turn to Faá di Bruno formula(see [1] and [6]). To
this end, we define h(z) = e−z, then f(w) = h(g(w)). Applying Faá di Bruno formula to
f(w), we have

f (k)(0) =
∑
Sk

k!

1!m1 · · · k!mkm1! · · ·mk!
h(

∑k
i=1mi)(g(0))

k∏
i=1

[g(i)(0)]mi .

Note that g(0) = 0, so h(
∑k
i=1mi)(g(0)) = (−1)

∑k
i=1mi and g(i)(0) = ai(n). Thus,

b0(n) =1, bk(n) = k!
∑
Sk

(−θ2)
∑k
i=1mi

k∏
i=1

[ai(n)/i!]mi

mi!
, k ≥ 1.

Last, we can rewrite φn(θ) as

φn(θ) =e−
θ2

2 e−g(w)eR1(θ) = e−
θ2

2

[m−2∑
k=0

bk(n)

k!
wk +R2(θ)

]
eR1(θ)

=e−
θ2

2

m−2∑
k=0

bk(n)

k!
wk +R3(θ),
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where

R3(θ) = e−
θ2

2

[m−2∑
k=0

bk(n)

k!
wk
]
(eR1(θ) − 1) + e−

θ2

2 eR1(θ)R2(θ) + e−
θ2

2 R2(θ)(eR1(θ) − 1)

and
∣∣∣∑m−2

k=0
bk(n)
k! wk

∣∣∣ ≤ |e−g(w)| + |R2(θ)|. A careful computation shows that the error

term R3(θ) satisfies |R3(θ)| ≤ M
n(m−1)/2 (

∑2m
s=0 |θ|s)e−

θ2

4 .

Now we see that Lemma 3.2 is true because w = i
√
3θ√
n

, and

Ψk,n(θ) =
bk(n)

k!
wk = (

√
3/n)k

∑
Sk

(iθ)
∑k
i=1(i+2)mi

k∏
i=1

[ai(n)/i!]mi

mi!
.

4 Local limit theorems

We only need to prove Theorem 2.5 because Theorem 2.4 is a simple corollary of
Theorem 2.5. By the correspondence (3.1), one can deduce that

Ψk,n(θ) =

∫
R

eiθxqk,n(x)dx =

∫
R

eiθxdQk,n(x).

Applying inverse Fourier transform, we know∣∣∣∣pn(x)− 1√
2π
e−x

2/2 −
m−2∑
k=1

qk,n(x)

∣∣∣∣ =
1

2π

∣∣∣∣ ∫ ∞
−∞

e−iθxφn(θ)dθ −
∫ ∞
−∞

e−iθxΨn(θ)dθ

∣∣∣∣
≤I1 + I2,

where

I1 =
1

2π

∫
|θ|≤C

√
n

|φn(θ)−Ψn(θ)|dθ, I2 =
1

2π

∫
|θ|≥C

√
n

|φn(θ)−Ψn(θ)|dθ, C > 0.

By Lemma 3.2, there exist positive constants C1 and C2 such that

|I1| ≤
1

2π

∫
|θ|≤C

√
n

C1

∑3(m−1)
s=0 |θ|s

n(m−1)/2
e−θ

2/6dθ ≤ C2

n(m−1)/2

where C2 = C1

2π

∫
R

∑3(m−1)
s=0 |θ|se−θ2/6dθ <∞.

Meanwhile, in the proof of Theorem 2.2, we have already shown that there exist
positive constants D1, D2 such that |I2| ≤ D1e

−D2n. Thus we have proved Theorem 2.5.

5 Mod-φ convergence and precise deviations

In this section, we will show precise deviation principle. The key tool is the mod-φ
convergence theory. First we certify a Lemma on mod-φ convergence for Kingman
coalescent.

Lemma 5.1. (Mod-φ convergence). Let η(z) be the function defined in (2.7). Then η(z)

is the cumulant of a non-constant infinitely divisible distribution φ. Moreover, on any
compact subset of S(−∞,1/2) = {z ∈ C | Re(z) < 1

2}, we have

ψn(z) := e−nη(z)E(ezn
2Tn)

n→∞→ ψ(z) = 1 uniformly. (5.1)

Furthermore, there exists positive constant M such that

sup
|z|≤ 1

8

∣∣∣∣ψn(z)− ψ(z)

∣∣∣∣ ≤ M

n
, n ≥ 3. (5.2)
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Proof. By the definition of Tn and η(z), we know

ψn(z) = exp

{
n

∫ ∞
1

(
log(1− 2z

x2
)− log(1− 2z

[nx]
n

[nx]+1
n

)

)
dx

}
. (5.3)

where log(1− 2z
x2 ) is the principal branch. It is not difficult to see that ψn(z) is analytic

on S(−∞,1/2) because Re(1− 2z
x2 ) > 1− 2Re(z) > 0. Next, for given z ∈ S(−∞,1/2), we will

show that

logψn(z) = n

∫ ∞
1

(
log(1− 2z

x2
)− log(1− 2z

[nx]
n

[nx]+1
n

)

)
dx

n→∞−→ 0

uniformly. Indeed,

n

∫ ∞
1

(
log(1− 2z

x2
)− log(1− 2z

[nx]
n

[nx]+1
n

)

)
dx

=

∞∑
k=n

n

∫ k
n+ 1

n

k
n

(
log(1− 2z

x2
)− log(1− 2z

[nx]
n

[nx]+1
n

)

)
dx

=

∫ 1

0

∞∑
k=n

(
log(1− 2z

( kn + u
n )2

)− log(1− 2z

( kn )2
)

)
du

+

∫ 1

0

∞∑
k=n

(
log(1− 2z

( kn )2
)− log(1− 2z

k
n
k+1
n

)

)
du

Consider two parametrizations w1(s) = 2z
(k/n)2(1+ s

k )
2 , s ∈ [0, u] and w2(s) = 2z

(k/n)2(1+ s
k )
, s ∈

[0, 1]. We know

∞∑
k=n

[
log(1− 2z

( kn + u
n )2

)− log(1− 2z

( kn )2
)

]
=

1

k

∫ u

0

∞∑
k=n

4z
(k/n)2(1+ s

k )
3

1− 2z
( kn+ s

n )2

ds

=

∫ u

0

∞∑
p=0

4z(2z)p
∞∑
k=n

1

( kn + s
n )3+2p

1

n
ds,

(5.4)

and
∞∑
k=n

[
log(1− 2z

( kn )2
)− log(1− 2z

k
n
k+1
n

)

]
= −1

k

∫ 1

0

∞∑
k=n

2z
(k/n)2(1+ s

k )
2

1− 2z
( kn )2(1+ s

k )

ds

=−
∫ 1

0

∞∑
p=0

2z(2z)p
∞∑
k=n

1
k
n ( kn + s

n )2+2p

1

n
ds.

(5.5)

As functions of s in [0, 1], both
∑∞
k=n

1
k
n ( kn+ s

n )2+2p
1
n and

∑∞
k=n

1
( kn+ s

n )3+2p
1
n are positive and

increasing. It is also easy to show that both of them converge uniformly to a constant∫∞
1

dx
x3+2p = 1

2p+2 as n→∞. Then we know both (5.4) and (5.5) are uniformly convergent
in any compact subset of S(−∞, 12 ). Switching the order of summation and integration,
we know

lim
n→∞

n

∫ ∞
1

(
log(1− 2z

x2
)− log(1− 2z

[nx]
n

[nx]+1
n

)

)
dx = 0

Now we proceed to show (5.2). Since |z| < 1
8 , we have | 2zx2 | < 1 and | 2z

[k(k+1)]/n2 | < 1.

Therefore, 1
1− 2z

( k
n

)2(1+ s
k

)

, 1
1− 2z

( k
n

)2(1+ s
k

)2

, 1
(1+ s

k )
3 and 1

(1+ s
k )

2 in (5.4) and (5.5) can be expanded

as geometric series and binomial series. After integration by terms, we have

n

∫ ∞
1

(
log(1− 2z

x2
)− log(1− 2z

[nx]
n

[nx]+1
n

)

)
dx
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Asymptotics of Kingman coalescent

=

∞∑
p=1

(−1)p

np

∞∑
l=1

(2z)l+1

[ ∞∑
k=n

1

(k/n)2(l+1)+p+1

1

n

]
[(

2l + p+ 2

p

)
2

(p+ 1)(p+ 2)
−
(
l + p+ 1

p

)
1

p+ 1

]
.

When n ≥ 3, simple calculation shows that

sup
|z|< 1

8

∣∣∣∣n ∫ ∞
1

(
log(1− 2z

x2
)− log(1− 2z

[nx]
n

[nx]+1
n

)

)
dx

∣∣∣∣
≤M

∞∑
l=1

1

4l+1

∞∑
p=1

1

np

(
2l + p+ 2

p

)
≤ M

n
.

So we have sup|z|< 1
8

∣∣∣e−nη(z)E(ezn
2Tn)− 1

∣∣∣ ≤ M
n . Last, one can easily verify that η(z) is a

cumulant of an infinitely divisible distribution because

eη(iθ) = lim
n→∞

∞∏
k=n

(
1− it

k(k+1)
2n2

)−1/n
,

and

(
1− it

k(k+1)

2n2

)−1/n
is the characteristic function of Gamma distribution with parame-

ters k(k+1)
2n2 and 1

n .

By Theorem 4.2.1,Theorem 4.3.1 and Corollary 4.3.5 in [4], Theorem 2.7 and Theorem
2.8 follow immediately from Lemma 5.1.

6 Deviation inequality

In this section, we prove Theorem 2.9. Different from precise deviations, deviation
inequality is about the non-asymptotic estimations of tail probabilities P(Zn ≥ x) and
P(Zn ≤ x). We need to manipulate the moment generating function of Zn to establish
deviation inequality.
Proof of Theorem 2.9:

Note that EeθZn = e
∑∞
l=2

(
√

3θn
3
2 )l

l

∑∞
k=n(

1
k(k+1)

)l . Then for any 0 < θ < r
√
n√
3

and 0 < r < 1,
we have

∞∑
l=2

(
√

3θn
3
2 )l

l

∞∑
k=n

(
1

k(k + 1)
)l =

∞∑
l=2

(
√

3θ)l

l(
√
n)l−2

∞∑
k=n

1

[k(k + 1)/n2]l
1

n

≤3θ2

2

∞∑
l=2

(
√

3θ)l−2

(
√
n)l−2

∫ ∞
1

dx

x2l
≤ θ2

2

1

1−
√

3θ/
√
n
≤ θ2

2(1− r)
.

Applying Chernoff’s upper bound, we have

P

(
Zn ≥ x

)
≤ inf

0<θ≤r
√
n√
3

e−θxEeθZn ≤ exp

{
− sup

0<θ≤r
√
n√
3

{θx− θ2

2(1− r)
}
}

If we use substitution θ
′

= θ√
n

, then

P

(
Zn ≥ x

)
≤ exp

{
− n sup

0<θ′≤ r√
3

{
x√
n
θ
′
− (θ

′
)2

2(1− r)

}}
.
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Asymptotics of Kingman coalescent

Because the parameter x may change the shape of the function f(θ
′
) = x√

n
θ
′ − (θ

′
)2

2(1−r) , we

need to compute the supremum separately when 0 < x ≤
√
nr√

3(1−r) and x ≥
√
nr√

3(1−r) . For

0 < x ≤
√
nr√

3(1−r) , we can show that sup0<θ′≤ r√
3
f(θ

′
) = f((1 − r)x/

√
n) = (1−r)x2

2n . When

x ≥
√
nr√

3(1−r) , we have sup0<θ′≤ r√
3
f(θ

′
) = f(r/

√
3) > xr√

3n
− r

6(1−r)
x
√
3(1−r)√
n

= xr
2
√
3n
. Hence,

for r ∈ (0, 1), we have

P

(
Zn ≥ x

)
≤

exp(− (1−r)
2n x2) 0 < x ≤

√
nr√

3(1−r)

exp(−xr
√
n

2
√
3

) x ≥
√
nr√

3(1−r)

.

Meanwhile, the estimation of P

(
Zn ≤ x

)
, x < 0, can be done similarly by applying the

above procedure to −Zn.
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