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Abstract

We prove that every reversible Markov semigroup which satisfies a Poincaré inequality
satisfies a matrix-valued Poincaré inequality for Hermitian d× d matrix valued func-
tions, with the same Poincaré constant. This generalizes recent results [ABY19, Kat20]
establishing such inequalities for specific semigroups and consequently yields new
matrix concentration inequalities. The short proof follows from the spectral theory of
Markov semigroup generators.
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1 Introduction

There is a long tradition in probability theory (see e.g. [GM83, Led99]) of using func-
tional inequalities on a probability space (Ω,Σ,P) to derive concentration inequalities
for nice (e.g. Lipschitz) functions f : Ω → R on that space. The most basic of these
inequalities is the Poincaré inequality, which postulates that:

αE(f, f) ≥ Var(f), (1.1)

for an appropriately large class of f , where E(·, ·) is an appropriate Dirichlet form and
α > 0 is the Poincaré constant.

Recently there has been growing interest in extending this phenomenon to matrix-
valued functions [CH16, CHT17, CH19, ABY19, Kat20]. The last two of these works in
particular (independently) studied the notion of matrix Poincaré inequality, in which
(1.1) is required to hold for Hd-valued f , E , and Var, with the inequality replaced by
the Loëwner ordering on Hd, the space of d× d Hermitian matrices. They showed that
a matrix Poincaré inequality generically implies concentration bounds in the operator
norm similar to those in the scalar case1. They then proceeded to prove matrix Poincaré
inequalities for several interesting classes of measures (product [ABY19], Gaussian
[ABY19], Strongly Rayleigh [ABY19, Kat20]) on a case by case basis, often mimicking the
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scalar proofs but requiring significant additional work to handle the noncommutativity
of matrices.

In this note, we show that the second step above can also be made generic, and
that matrix Poincaré inequalities follow automatically from their scalar counterparts in
the full generality of arbitrary reversible Markov semigroups (see the excellent book
[BGL13] for a detailed introduction).

Let L2(Ω, µ) be a separable complex Hilbert space, and let Cd×d be the Hilbert space
of complex d× d matrices with the Hilbert-Schmidt inner product. To state our theorem,
we define a “matrix-valued inner product” 〈·, ·〉d on the Hilbert space tensor product
L2(Ω, µ)⊗ Cd×d ∼= L2(Ω, µ;Cd×d) as:

〈f, g〉d :=

∫
Ω

f(x)∗g(x)dµ(x) ∈ Cd×d, (1.2)

noting that the integral converges for all f, g ∈ L2(Ω, µ)⊗ Cd×d since∫
Ω

‖f(x)∗g(x)‖op dµ(x) ≤
∫

Ω

‖f(x)‖HS‖g(x)‖HS dµ(x) ≤ ‖f‖L2(µ)⊗Cd×d‖g‖L2(µ)⊗Cd×d .

Theorem 1.1. Let (Xt)t≥0 be a reversible Markov process on a probability space
(Ω,Σ,P) with stationary measure µ and densely defined self-adjoint infinitesimal genera-
tor L : D(L)→ L2(Ω, µ). Suppose L satisfies a Poincaré inequality with constant α > 0,
i.e.,

αE(f, f) := α〈f,−Lf〉 ≥ 〈f, f〉

for all f ∈ D(L) with Eµf = 0. Then

αEd(f, f) := α〈f, (−L⊗ ICd×d)f〉d � 〈f, f〉d (1.3)

for all f ∈ D(L)⊗ Cd×d with Eµf = 0.

The domain D(L) is always dense in the Dirichlet domain D(E) [BGL13, Section
3.1.4], so Theorem 1.1 implies the more conventional form of the inequality for functions
in D(E)⊗ Cd×d. Note that for Hd-valued functions f , (1.3) is precisely:

α

∫
Ω

f(x)(−Lf)(x)dµ(x) �
∫

Ω

f(x)2dµ(x),

which is identical to the matrix Poincaré inequality considered in [ABY19, Kat20].
Theorem 1.1 replaces the computations in [ABY19, Sections 5-6], and when combined

with [ABY19, Theorem 1.1], implies that any reversible Markov semigroup satisfying a
Poincaré inequality satisfies an exponential matrix concentration inequality. In other
words, [ABY19, Theorem 1.1] holds with the “matrix Poincaré” assumption replaced by
“Poincaré”. This also allows us to deduce all of the matrix Poincaré inequalities derived
in [ABY19, Kat20] from their known scalar counterparts, and yields new matrix Poincaré
and concentration inequalities, notably for Completely Log Concave (i.e., Lorentzian
[BH19]) measures via [ALGV19, Theorem 1.1].

The proof of Theorem 1.1 relies on the spectral theorem for unbounded self-adjoint
operators on a complex separable Hilbert space. The only property of Markov generators
that is used is self-adjointness on an appropriate domain orthogonal to the constant
function. Before presenting this proof in Section 3, we give an elementary linear
algebraic proof of the finite-dimensional case in Section 2, which is already enough for
several important applications (such as all finite reversible Markov chains and strongly
log-concave measures) and avoids any analytic subtleties.
Remark. Theorem 1.1 was recently independently observed in [HT20, Proposition 2.3],
where it was credited to Ramon van Handel.
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2 Finite dimensional case

Here we prove Theorem 1.1 when Ω is finite with |Ω| = n. Let H = {f : Ω → C :

Eµf = 0}. Let A : H → H be the operator A := −L. Consider an orthonormal eigenbasis
g1, . . . , gn−1 of A (with respect to the inner product 〈f, g〉 =

∑
x∈Ω µ(x)f(x)g(x)). Let λi

be the eigenvalue corresponding to gi. By the assumption of Theorem 1.1, λi ≥ 1/α for
all i ∈ [n− 1]. Now consider any

f =
∑
i≤n−1

gi ⊗Mi ∈ H ⊗ Cd×d.

Notice that 〈·, ·〉d is bilinear and 〈f ⊗M, g ⊗N〉d = 〈f, g〉M∗N for f, g ∈ H and M,N ∈
Cd×d. Applying these facts,

Ed(f, f) =
〈
f, (A⊗ ICd×d)f

〉
d

=

〈
n−1∑
i=1

gi ⊗Mi, (A⊗ ICd×d)

n−1∑
j=1

gj ⊗Mj

〉
d

=

n−1∑
i=1

n−1∑
j=1

λj〈gi ⊗Mi, gj ⊗Mj〉d

=

n−1∑
i=1

λiM
∗
iMi �

1

α

n−1∑
i=1

M∗iMi

=
1

α

n−1∑
i=1

n−1∑
j=1

〈gi ⊗Mi, gj ⊗Mj〉d =
1

α
〈f, f〉d.

3 Proof of Theorem 1.1

Theorem 1.1 follows from the following proposition by taking A = −L, H = L2(Ω, µ)∩
{f : Eµf = 0}, and D(A) = D(L) ∩ {f ∈ H : Eµf = 0}.
Proposition 3.1. Let A : D(A) → H be a densely defined self-adjoint operator on a
separable complex Hilbert space H satisfying 〈y,Ay〉 ≥ c‖y‖2 for all y ∈ D(A). Then

〈f, (A⊗ ICd×d)f〉d � c〈f, f〉d ∀f ∈ D(A)⊗ Cd×d.

Proof. For any v ∈ Cd, define the linear map (·)v : H ⊗ Cd×d → H ⊗ Cd by

fv(x) := f(x)v.

Observe that for any f, g ∈ H ⊗ Cd×d:

v∗〈f, g〉dv =

∫
Ω

v∗f(x)∗g(x)v dµ(x) = 〈fv, gv〉

where the last inner product on H ⊗ Cd is the standard one (i.e., 〈fv, gv〉 =∫
Ω
fv(x)∗gv(x)dµ(x)). Thus, we have for every f ∈ D(A)⊗ Cd×d:

v∗〈f, (A⊗ ICd×d)f〉d v = 〈fv, ((A⊗ ICd×d)f)v〉 = 〈fv, (A⊗ ICd)fv〉. (3.1)

Note that A⊗ ICd is self-adjoint with domain D(A)⊗Cd ⊂ H⊗Cd and fv ∈ D(A)⊗Cd.
Applying the spectral theorem for unbounded operators (e.g., [RS80, Theorem VIII.6])
and noting that by our assumption the spectrum of A ⊗ ICd is contained in [c,∞), we
obtain that for some projection valued measure {Eλ}λ∈[c,∞):

〈fv, (A⊗ ICd)fv〉 =

∫ ∞
c

λ d〈fv, Eλfv〉 ≥ c
∫ ∞
c

d〈fv, Eλfv〉 = c‖fv‖2 = c v∗〈f, f〉d v, (3.2)
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where the integrals are Riemann-Stieltjes integrals. Since (3.1), (3.2) hold for every
f ∈ D(A)⊗ Cd×d and every v ∈ Cd, the theorem follows.
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