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Bayesian Dependent Functional Mixture
Estimation for Area and Time-Indexed Data:
An Application for the Prediction of Monthly

County Employment

Terrance D. Savitsky∗ and Matthew R. Williams†

Abstract. The U.S. Bureau of Labor Statistics (BLS) publishes employment to-
tals for all U.S. counties on a monthly basis. BLS use the Quarterly Census of
Employment and Wages, where responses are received on a 6–7 month lagged basis
and aggregated to county, and apply a time series forecast model to each county
and project forward to the current month, which ignores the dependence among
counties. Our approach treats these by-county employment time series as a col-
lection of area indexed noisy functions that we co-model. Our model includes pre-
dictor, trend and seasonality terms indexed by county. This application is among
the first in the U.S. Federal Statistical System to address the joint modeling of
a collection of time series expressing heterogenous seasonality patterns between
them. We demonstrate that use of a Fourier basis to model seasonality outper-
forms a locally-adaptive, intrinsic conditional autoregressive construction on our
collection of time series where the degree of expressed seasonality varies. County-
indexed parameters of the 3 terms are drawn from a dependent Dirichlet process
(DDP) prior to allow the borrowing of information. We show that employment of
both spatial and industry concentration predictors into the prior probabilities for
co-clustering among the counties produces better prediction accuracy. Our DDP
prior accounts for the possibility that nearby counties may express distinct un-
derlying economic structures. A feature of our joint modeling framework is that it
computes efficiently to support the monthly BLS production cycle. We compare
the performances of alternative formulations for the dependent Dirichlet process
prior on monthly, county employment data from 2002–2016.

Keywords: spatio-temporal modeling, Gaussian Markov Random Field, Dirichlet
process, Bayesian hierarchical models, latent models, nonparametric statistics,
functional data estimation, survey sampling.
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1 Introduction

The Local Area Unemployment Survey (LAUS) program of the U.S. Bureau of Labor
Statistics (BLS) publishes employment and unemployment totals for local areas, in-
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cluding counties, across all states in the U.S. in coordination and partnership with the
states. BLS administers the Current Employment Statistics (CES) survey, on a monthly
basis, to business establishments in relatively large metropolitan statistical areas. While
covering much of the U.S. population, the CES survey excludes 1751 relatively sparsely
populated counties of the total 3108 counties in the continental U.S. The LAUS program
utilizes the Quarterly Census of Employment and Wages (QCEW), a census instrument
administered to all business establishments by BLS, for the purpose of collecting work-
place employment information for the 1751 counties not covered by the CES, which we
label “non-CES counties”. There is, however, a 6–7 month availability lag for county
estimates from the QCEW due to reporting requirements for establishments and subse-
quent internal BLS processing to flag and correct errors in these responses. As a result,
the LAUS program applies a time series forecasting model to each non-CES county,
separately, to project forward the QCEW employment to the current month. This ap-
proach ignores the dependence among the collection of county time series induced by
similarities in their economic structures.

We devise a single model for all of the county time series and use this model to
perform a 7-month prediction for all 3108 counties, simultaneously, in a fashion that
allows the data to learn a dependence structure among the county time series.

Fixing a county, the time series for that county is modeled as the addition of trend,
seasonality and predictor functional terms. We configure a nonparametric conditional
autoregressive (CAR) (Rue and Held, 2005) prior for each of the trend and seasonality
terms. The CAR prior is an equivalent to a smoothing spline model that utilizes local
nearest neighbors to perform the smoothing, rather than shrinking to a global mean. The
latent trend term is allowed to express a non-linear shape and the magnitude and shape
of the seasonality may vary over the months. The noise is composed of measurement
errors induced in the by-establishment reporting process.

The generating prior hyperparameters of each of the trend, seasonality and predictor
coefficients are indexed by county. We allow the data to discover dependence among the
counties by performing probabilistic clustering of these county-indexed parameters to
achieve a non-parametric mixture distribution for each of the time series terms where
we mix over counties. We employ a dependent Dirichlet process (DDP) prior framework
of Müller et al. (2011) that uses a subset of predictors to construct a prior formulation
for county co-clustering that increases the prior probability for the assignment of two
counties to the same cluster to the extent that they express similar predictor values
relative to the Dirichlet process (DP).

1.1 Introducing the QCEW Employment Data

Figure 1 renders time series for 6 randomly-selected counties over T = 180 months,
from January, 2002–December, 2016. Years in 5-year increments are labeled on the hor-
izontal axis (displayed in 2-digits), where we observe some level of pause or decline
in employment around the period of 2008 during the so-called, “great recession”. We
expect the patterns expressed across the county-indexed collection of employment time
series to demonstrate correlation with one another primarily based on their similarities
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in economic composition or structure and the overall health of their economies, rather
than based on spatial adjacency. Our modeling goal is to capture these dependencies
among the collection of non-CES county time series in order to improve the bias and
efficiency properties of predictions for the missing 6–7 months as compared to the mod-
eling of each county in a separate model. Simultaneously, we wish to construct our joint
model for the collection of county time series to allow sufficient estimation flexibility to
capture features that take place for a subset of months and a subset of counties, like the
great recession. We utilize the full set of n = 3108 counties in our modeling, rather than
the 1751 non-CES counties, in order to facilitate the borrowing of information for pre-
diction of by-county employment totals. Our modeling approach must computationally
scale with sufficiently fast turnaround to support the BLS monthly production cycle.
The modeling of 3108 county times series, simultaneously, is facilitated by our use of
probabilistic clustering over county-indexed model parameters described in the sequel.
The clustering reduces the effective dimensionality of the 3108 sets of county-indexed
parameters to the total number of estimated clusters.

Figure 1: Randomly-selected by-county time series of employment total, from Jan, 2002–
Dec, 2016. The horizontal axis denotes year in 5-year increments (labeled with the last
2-digits of the year). Employment totals reflect the reported number of employees for
employers in each county, which is a place-of-work, rather than a place-of-residence
measure.

The QCEW data are characterized by both evolving trends and 12-month seasonal
patterns. Figure 2 displays the time series for Albany County, NY, where we observe
both a long-term trend, including the downturn and recovery from the great recession,
as well as a recurring 12-month seasonality.
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Figure 2: A single county time series of the employment total, from Jan, 2002–Dec, 2016.
The horizontal axis denotes year in 5-year increments (labeled with the last 2-digits of
the year). Employment totals reflect the reported number of employees for employers
in each county, which is a place-of-work, rather than a place-of-residence measure.

The QCEW by-county data includes predictors that we use in both our fixed effects
term and for our predictor-dependent clustering. The key predictor type that drives
the prior distribution of co-clustering of county-indexed parameters is the “location
quotient” (lq), defined as an index ∈ [0, 1] that quantifies the relative employment
concentration of a particular industry in a county as compared to the national aver-
age. We use location quotients for industries constructed from the first 2-digits of the
6-digit detailed industry code assigned to each establishment under the North Ameri-
can Industry Classification System (NAICS) (which we denote as “economic sectors”).
Economic sectors include; Construction, Transportation, Services, Leisure, Public, Min-
ing, Manufacturing, Information, Education. We assemble the unemployment insurance
(UI) claims in each month for each county from data provided by the states. The trend
of the UI claims reveals provides a measure of the changes in the relative economic
health of a county. We also utilize longitude and latitude as spatial predictors in the
fixed effects term and also for our predictor-dependent clustering to capture residual
spatial dependence not accounted for by the lq predictors.

We introduce our probability model in Section 2 that employs terms to capture
seasonality, trend and incorporate predictors into county-indexed regression models, tied
together in a predictor-dependent Dirichlet process mixture. We outline computations
for the full conditional posterior distributions in Section 3, where we introduce the two
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fit statistics we use to compare performances of our suite of models applied to prediction
of QCEW in Section 4. We conclude with a discussion in Section 5.

2 Model for Collection of Time Series

We construct our data matrix of county employment totals as n × T, Y, which we
treat as a collection of county-indexed latent functions of time with additive noise. Our
approach contrasts with a model that defines a spatially-indexed process that may evolve
over time. We select the former modeling approach due to the presence of seasonality,
which is more difficult to capture with the latter approach in a flexible, nonparametric
construction. We do, however, later compare our approach to one implementation of a
time evolving spatial process.

2.1 Model for Single County Time Series

We begin by fixing a county in some row of Y and constructing our additive functional
priors specification for the 1× T county time series.

Our likelihood is formulated as,

yj |
p×1
xj ,β,γ1j ,γ2j

ind∼ N
(
x

′

jβ + γ1j + γ2j , τ
−1
y

)
, (1)

τy ∼ G (1, 1) , (2)

where N (·) and G(·) denote the normal and gamma distributions, respectively, with the
latter parameterized with (shape, rate) hyperparameters. The first term, xjβ, includes
the influence of predictors for the county estimated function for month, j ∈ (1, . . . , T ).
The 2 random effect terms, (γ1j ,γ2j), capture residual trend and seasonality patterns
(not explained by the predictor term), respectively.

2.2 Multivariate Gaussian Mixture for Fixed Effects Term

The p× 1 vector of predictors, xj , includes latitude and longitude, by-industry location
quotients, and the level of unemployment insurance claims for each county and month.
Regression coefficients, β, are, in turn, drawn from,

p×1

β |μ,Λ ind∼ Np

(
μ,Λ−1

)
. (3)

2.3 Conditional Autoregressive Prior for Random Effects Terms

We implement a conditional prior formulation for the trend and seasonal random effects
that induces local smoothing with,

γmj |γm,−j , τγ,m ∼ N
(
γ̄mij , [dmjτγ,m]

−1
)
, (4)
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γm,−j =
(
γm1, γm2, . . . , γm(j−1), γm(j+1), . . . , γmT

)′
, (5)

γ̄mj =
1

dmj

∑
r∼j

ωmjrγmr. (6)

Fixing a random effects term,m ∈ (1, 2), the prior specification for (γmj)j=1,...,T in (4) is
intrinsic conditional autoregressive (Rue and Held, 2005) over the T months to capture
the autocorrelation in the time series for each county. The intrinsic conditional autore-
gressive prior (ICAR) encodes a sparse precision matrix through a T × T adjacency
matrix, Ωm = (ωmjr), where ωmjr = 1 indicates j ∼ r, (which is shorthand for j is a
“neighbor of” or “communicates with”, r), for random effect term, m ∈ (1, 2); other-
wise, ωmjr = 0. The diagonal entries of Ωm are set to 0; e.g., ωmjj = 0, ∀j ∈ (1, . . . , T ).
The mean in the conditional distribution of γmj is proportional to an neighbor-weighted
average of the (γmr) over all r ∼ j for each month, j, and the average is normalized by
dmj =

∑
r∼j ωjr, which denotes the number of neighbors of γmj . Since ωjj = 0, ∀j ∈

(1, . . . , T ) and ωjr = 0, ∀r � j, we may re-express γ̄mj in (6) as the inner product,
1

dmj
ω

′

mj

1×T
γm

T×1. The T × T matrix, Cm := D−1
m Ωm, provides a shorthand notation

for the weighted average, γ̄mj = Cmj
1×T γm

T×1 where T×T, Dm = diag(dm1, . . . , dmT ).

We note that our prior constructions for (γm) are a priori and a posteriori inde-
pendent over terms, m = 1, 2, given the parameters of the conditional autoregressive
models.

We utilize 2 random effects terms: 1. A trend term; 2. A 12-month seasonality term.
Both are defined on a line of T = 180 months. The intrinsic conditional autoregressive
prior for the seasonal term constructs, Ω2, with seasonal increments, (γ2j , γ2(j+1), . . . ,
γ2(j+O−1)), for j = 1, . . . , T − O + 1, which produces a joint density for T × 1, γ2

proportional to,

p (γ2|τγ,2) ∝ τ
T−O+1

2
γ,2 exp

⎛
⎝−τγ,2

2

T−O+1∑
j=1

(
γ2j + γ2(j+1) + · · ·+ γ2(j+O−1)

)2⎞⎠ , (7)

where O = 12 denotes the period of seasonality. The bandwidth of seasonal adjacency
matrix, Ω2, is O (Rue and Held, 2005). Our construction for seasonality is nonparametric
where the data are able to learn a varying or evolving seasonal pattern over time.

The trend term (m = 1) employs a so-called “random walk of order 1” (RW1)
construction, with increments, γ1j − γ1(j−1) and γ1j − γ1(j+1), where for each month
j, Ω1 is constructed such that the month before, γ1,(j−1) and the month following,
γ1(j+1) are deemed neighbors of γ1j . The beginning and last months of the time series
communicate with only a single neighbor. Both conditional autoregressive terms induce
probabilistic local smoothing within increments defined by first differences for the trend
term and by the sum of O months for the seasonal term. The structure of the (Ωm) are
band diagonal with widths proportional to the lengths of the increments. (See Rue and
Held (2005) for more details.)

The implied joint distribution for term m ∈ (1, 2), γm = (γm1, . . . , γmT )
′
=

NT (0, Q
−1
m = [τm(Dm − Ωm)]−1), where precision matrix, Qm, is rank deficient such
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that the joint distribution is improper. Under our RW1 prior for the trend term, γ1, the
overall mean level is undefined, since the prior is constructed on increments specified
as differences of random effect values for neighboring time periods (on a line), which
produces rank T −1 for Q1. Similarly, the O = 12 order of seasonality term produces Q2

to be of rank T −O+1 since the joint prior is defined up to any repeated seasonal pat-
tern, (c1, . . . , cO), that sums to 0 (

∑O
o=1 co = 0) in each sequence of O values. The rank

deficiencies arise because the ICAR prior is defined locally on neighboring values in a
moving average construction, rather than globally across the T months for each county.
Even though the ICAR prior produces an improper joint distribution, the conditional
distributions are, nevertheless, proper.

A general Bayesian dynamic linear model (DLM) is specified with yt = xt + νt,
xt = F

′

t γt and γt = Gtγt−1 + εt, where Ft is a predictor matrix and Gt denotes an
evolution matrix and νt and εt are independent noise processes with global scale pa-
rameters (West, 2013; Prado and West, 2010). For a trend term, the Gt is diagonal
with each parameter bounded ∈ (−1, 1), which induces a global (as contrasted with a
local neighborhood of time points) shrinking of all γt. Our trend term under the CAR
prior is equivalent to setting the diagonals of Gt to 1, which induces a nonparametric
random walk neighborhood smoother. Our choice of the first difference under our CAR
formulation uses time points immediately following and after each focus time point for
smoothing γt. Seasonality under a DLM specifies Gt = φHa, where Ha is a sinusoidal
term for angle, a ∈ (0, 2π) and φ ∈ (0, 1). Ha encodes a parametric, fixed seasonal
smoothing pattern. Our CAR prior for seasonality is more flexible as the seasonality
pattern is permitted to evolve over time, though we see in the sequel that this flexibility
confounds the clustering of seasonal term patterns over counties and induces undesired
spiky artifacts. In contrast to local seasonal smoothing, our use of the Fourier basis for
modeling seasonality provides a semi-parametric global estimate of seasonality that we
later introduce as an alternative to the CAR prior.

We adjust the ICAR prior for the modeling of the seasonality term, γ2, by includ-
ing a global parameter, ρm ∈ [0, 1), that we intend to allow better estimation of low
seasonality expressed as a dampened (longer) wavelength or length scale.

γ̄mj = ρm × 1

dmj

∑
r∼j

ωmjrγmr (8)

which produces the joint distribution for γ = (γm1, . . . , γmT )
′

= NT (0, Q
−1
m =

[τm(Dm−ρmΩm)]−1), where precision matrix, Qm, is of full rank for ρm ∈ [0, 1). Fixing
ρm = 1 parameterizes the rank-deficient improper joint distribution of the ICAR prior.
The parameter, ρm, is often interpreted as a strength-of-correlation parameter (Baner-
jee et al., 2003) because the dependencies indexed in Ωm are included in proportion to
the value of ρm. Another way that we may interpret ρm is as a length scale adjustment
parameter that determines the degree of smoothness in the estimated T × 1 function,
γm (Mukherjee et al., 2011). The maximum length scale is hard-coded based in the
bandwidth of T × T Ωm and ρm allows the data to adjust the length scale in the T × 1
function to be larger. Values of ρ2 closer to 1 will produce the minimum length scale
that estimates a higher level of seasonality. The introduction of ρm, however, induces
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a global behavior over the T × 1 time series for joint shrinking of all of the (γ2t)
T
t=1,

which is a similar behavior to the DLM where for a uni-dimensional γt, ρ2 is equivalent
to φ, though the seasonality pattern is still more flexible than for a DLM. We label this
model as a proper conditional autoregressive model (PCAR) in order to distinguish it
from the ICAR model. Note that we also use ρ1 for prior on trend term, γ1, under the
PCAR option for ease of implementation, though the data estimate ρ1 ≈ 1, so it makes
no difference in the modeling of the trend term.

2.4 Fourier Basis Alternative for the Seasonal Effects Term

The PCAR alternative dampens the expression of seasonality in the predictions for
low-seasonality counties, but we later show that it also tends to dampen estimated
seasonality for high-seasonality counties, which is an undesired effect. The length scale
adjustment parameter, ρm, is difficult to estimate because each ρm parameterizes a
precision matrix and the degree of estimated seasonality is very sensitive to its value.
By contrast, the ICAR prior does the opposite by over-amplifying seasonality in the
predictions for low-seasonality counties due to its local smoothing properties that use a
subset of time points to estimate each monthly seasonal coefficient. While the modeling
of seasonality is well-understood in application to a single time series, there is little
guidance on prediction of seasonalities for a collection of time series in a single model.

We are motivated to construct a sinusoidal basis to augment our predictors to pro-
vide a more stable estimator for seasonality that can accommodate both high and low
expressions of seasonality. The Fourier basis employs predictors, zj , constructed as an
orthogonal trigonometric basis,

(O−1)×1
zj =

{
cos

(
2πk1j

O

)
, sin

(
2πk2j

O

)}′

k1=1,...,O/2, k2=1,...,(O/2−1)

(9)

for an even value of O, the periodicity of our repeated pattern, which is O = 12 months
for our QCEW time series. This set-up constructs a basis of oscillating functions that,
together with a global intercept, spans any repeated pattern of periodicity with order, O.

Wei (2006) propose the use of Fourier functions as an orthogonal basis in the time
domain for modeling of periodic functions (e.g., seasonality) that contrasts with the
usual use of Fourier functions to transform from the time to the frequency domain
(which we do not do). Montesinos-López et al. (2018) compare B-spline and Fourier
bases for the modeling of seasonality in functional data regression and conclude that
the Fourier basis performs best.

Our analysis suggests to us that best results are achieved by incorporating the
Fourier basis, zj , into an augmented predictor vector, xj ← (xj , zj) (in contrast to
creating a separate term for Fourier basis), and modeling them as part of the fixed
effects term in (3). The Fourier basis construction estimates seasonality, globally in time,
across each county time series. While less flexible than the ICAR prior and more similar
to a DLM, we expect this approach to better adapt to variations in the amplitude of
seasonality across counties. We retain the ICAR parameterization for the trend effects,
γ1, but drop the γ2, under this alternative Fourier basis set-up.
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Prediction of seasonality in the presence of our predictors in an augmented xj induces
a moderate amount of over-shrinkage in the prediction of seasonality. The over-shrinkage
is completely eliminated by replacing the predictor matrix with its principal components
where we discard any redundant components (with zero eigenvalues). This step is similar
to the Moran’s I basis construction (Hughes and Haran, 2013) used for the modeling
of spatial association (which we discuss, in detail, in the sequel as a competitor for our
modeling framework). Both approaches employ a spectral rotation.

We have defined 3 alternatives for the modeling of seasonality among the collection
of time series: 1. ICAR prior on random effects, γ2; 2. PCAR prior on random effects,
γ2; Fourier basis (FB), zj , incorporated into the fixed effects term with coefficients β,
in lieu of γ2.

2.5 Dependent Dirichlet Process

We now expand our model from a single county model of (1), to the collection of 3108
counties by indexing our observed response, yj and the fixed effects, βj , and our trend
and seasonality terms, (γ1j , γ2j), by county, i ∈ (1, . . . , n) in the expanded likelihood,

yij |
p×1
xij ,βi,γ1ij ,γ2ij

ind∼ N
(
x

′

ijβi + γ1ij + γ2ij , τ
−1
y

)
. (10)

We collect the county-indexed generating hyperparameters for the predictor, trend
and seasonality terms into θi := (μi,Λi, (τγ,1i, ρ1i)) (in the case we use a Fourier basis
to model seasonality). The indexing of θi by county, i ∈ (1, . . . , n) induces a mixture
formulation over county-indexed θi for each of the random effect terms. We cluster the
county-indexed generating distribution hyperparameters by using a nonparametric mix-
ing measure. We index the generating parameters for all of the Fourier basis seasonality,
fixed effects coefficients and trend terms by county because there is a substantial hetero-
geneity among the expressed time series patterns across the 3108 counties of the U.S.,
as we see in the illustrations of Figure 1, such that we seek a joint prior distribution
that provides a large support over time series patterns. (In the case we use an ICAR
or PCAR prior for seasonality in lieu of the Fourier basis, their generating patterns are
also indexed by county.) To make this choice intuitive, we note that if we fail to index
the generating parameters of the seasonality term (for any of the Fourier basis, PCAR
or ICAR alternatives) we would fail to account for the massive heterogeneity in the
presence of and patterns for expressed seasonality over the counties.

The predictors in the fixed effects term may capture some dependence among the
counties induced by similarities in industries, spatial location or economic conditions.
The use of location quotients may be especially useful to avoid over-smoothing based
on spatial location; for example, two nearby counties (one rural and the other urban)
may express very different economic structures, despite their spatial adjacency. Trend
and seasonality components are expressed to varying degrees among the counties. We
index the 3 terms by county, i ∈ (1, . . . , n), in order to capture heterogeneity among
the counties, regulated by a partition model (clustering) prior that allows the data to
learn additional dependence among the collection of county time series. We show in
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the sequel that using the lq and spatial predictors to influence the prior probabilities
of co-clustering among the counties, in addition to their use in the fixed effects term,
substantially improves prediction accuracies. Each time series, yi = (yi1, . . . , yiT )

′
, is

scaled to variance 1 in order to allow the basis of clustering to be the shape of the
functions, rather than their magnitudes.

Our use of a nonparametric prior to be next introduced for clustering county-indexed
functional generating parameters is of a similar idea to that of Gelfand et al. (2005),
but they impose the Dirichlet process prior directly on the function parameters (e.g.,
on (βi,γ1i,γ2i)), so that co-clustered functions must be exactly the same, which we
find to be too restrictive for working with our QCEW employment data application.
Instead, we impose our nonparametric clustering prior on the generating parameters,
θi, of the prior distributions for the functions such that functions which are co-clustered
are drawn from the same distribution, but are not required to be exactly equal.

Our mixing measure, F , is used to draw θ1, . . . ,θn|F ∼ F . F is not subscripted by
a parameter to indicate that we will, in turn, sample the unknown distribution, F , from
a nonparametric Dirichlet process (DP) prior, F |α, F0 ∼ DP (αF0). The DP may be
specified by expressing F in a discrete, stick-breaking construction (Sethuraman, 1994),

F =

∞∑
k=1

pkδθ∗
k
, (11)

where F is a countably infinite mixture of weighted point masses (or “spikes”) with
“locations”, θ∗

1 , . . . ,θ
∗
K , in the support of F indexing the unique values for the (θi),

where K ≤ n. We record cluster memberships of counties with s = (s1, . . . , sn) where
si = k denotes θi = θ∗

k so that {s, (θ∗
k)} provides an equivalent parameterization to (θi)

and we recover θi = θ∗
si . The DP is induced by placing priors on the weights, pk, and

the locations, θ∗
k. Each location is drawn from θ∗

k ∼ F0. Under the alternative using the
Fourier basis, F0 is constructed as:

F0 = Huang-Wand (Λi|δ, a1, . . . , ap)×
Np

(
μi

∣∣m, P−1
1

)
×

G (τγ,1i|a = 1, b = 1)× U (ρ1i|0, 1) ,
(12)

where Huang-Wand (Λ|δ, a1, . . . , ap) denotes the prior of Huang and Wand (2013) de-
fined for covariance matrices that generalizes the inverse Wishart prior to produce
marginally noninformative half t-distributed priors with δ degrees of freedom for the
variances. Choosing δ = 2, produces U(−1, 1) priors for the correlations. The prior
for a precision matrix is constructed by forming Q = 2δdiag (a1, . . . , ap) with a� ∼
G (1/2, 1) , � = 1, . . . , p. We proceed to draw Λ ∼ Wp (ν,Q) where ν = δ + p − 1. By
contrast, the usual Wishart prior would fix the diagonals of Q. We set δ = 2 to produce
a weakly informative prior for the variances.

The weight, pk ∈ (0, 1) is composed as pk = vk
∏k−1

h=1 (1− vh) where vk is drawn
from the beta distribution, Be (1, α). This construction provides a prior penalty on the
number of mixture components, but we also see that a higher value for α will produce
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more clusters (unique locations). Since the locations are drawn from F0, as the number
of unique locations increases, the estimated F approaches the base distribution, F0.
Under this construction, E (F ) = F0.

The joint prior for cluster assignments under the DP prior is stated with,

f (s1, . . . , sn) ∝ αK−1
K∏

k=1

(nk − 1)!, (13)

after marginalizing out the random measure, F , where, nk =
∑n

�=1 I (si = k) denotes the
number of counties assigned to cluster, k. We note that the DP prior assigns counties,
i ∈ 1, . . . , n to cluster, k ∈ (1, . . . ,K) proportionally to the popularity of cluster, k, as
measured by its size, nk.

We, next, generalize the above-specified DP formulation. We induce predictor-as-
sisted clustering by, first, jointly modeling our response variable, yij , along with a subset
of selected predictors, ξij ⊂ xij . We specify the additional likelihood,

q×1

ξij |μξ,i,Λξ,i
ind∼ Nq

(
μξ,i,

(
q×q

Λξ,i

)−1
)
, (14)

and, second, include the parameters of this likelihood in an augmented, θi := (μi,Λi,
(τγ,1i, ρ1i),μξ,i,Λξ,i) on which we, third, impose prior F that, in turn, receives a DP
prior. Our intent is to increase the a priori probability for co-clustering of coun-
ties, i and �, proportionally to how similar are the values for the q × T , predictors,
Ξi = (ξi1

q×1, . . . , ξiT ) and Ξ�. Augmenting θi to include the mixing parameters of (14)
adjusts (13) to incorporate information about the predictors that produces,

f

(
s1, . . . , sn|

q×T

Ξ1 , . . . ,Ξn

)
∝ αK−1

K∏
k=1

g(Ξ∗
k)(nk − 1)!, (15)

where,

g(Ξ∗
k) =

∫ ∏
i:si=k

T∏
j=1

f
(
ξij

∣∣μ∗
ξ,k,Λ

∗
ξ,k

)
f
(
μ∗

ξ,k,Λ
∗
ξ,k

)
dμ∗

ξ,kdΛ
∗
ξ,k, (16)

such that g(Ξ∗
k) constructs the similarity function of Müller et al. (2011). If counties i

and � share similar values for their predictors then there is a higher prior probability that
they will be co-clustered and (μξ,i,Λξ,i) = (μξ,�,Λξ,�) = (μ∗

ξ,k,Λ
∗
ξ,k). The integration

outlined in (16) is numerically performed in our Markov Chain Monte Carlo (MCMC)
posterior sampling algorithm.

The integration of (16) and incorporation of g(Ξ∗
k) into (15) is accomplished by

simply including (μξ,i,Λξ,i) ∈ θi, under the DP prior construction. Augmenting θi in
this way may be viewed as a computational device to produce (15). We don’t believe
that the predictors, Ξi, are random, but treat them as such in order to insert the simi-
larity functions, (g(Ξ∗

k))k=1,...,K into the prior for s. By doing so, we have estimated a
complicated predictor-dependent Dirichlet process mixture model with a much simpler
Dirichlet process model through imposing a probability model on our target predictors.
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The insertion of predictor information into the prior for cluster assignments can reduce
prior uncertainty for the cluster assignments of establishments who share similar pre-
dictor values with a large number of other establishments; nevertheless, as the number
of predictors grows, the prior uncertainty will grow because it is defined on the space of
predictor values. So care is warranted in the choice of which and how many predictors
to use for indexing the prior for cluster assignments.

Augmenting θi to include the generating parameters, (μξ,i,Λξ,i), extends F0 to,

F0 = Huang-Wand (Λi|δ, a11, . . . , a1p)×
Np

(
μi

∣∣m, P−1
1

)
×

G (τγ,1i|a = 1, b = 1)× U (ρ1i|0, 1)×
Huang-Wand (Λξ,i|δ, a31, . . . , a3q)×Nq

(
μξ,i

∣∣0, P−1
3

)
.

(17)

There are similar approaches to ours that construct spatial- or predictor-dependent
DP priors that could be used to induce clustering over counties; for example, the probit
stick breaking construction of Rodŕıguez and Dunson (2011) specifies a stick-breaking
breaking construction as do we for F in (11) with weights, pk(s) = Φ(αk(s))

∏
r<k(1−

Φ(αr(s))), where Φ(·) denotes the cdf of a Gaussian distribution, for each spatial lo-
cation, s. They then suggest using a Gaussian process prior over the {αk(si)}ni=1 to
encode a spatial dependence (over counties). Hossain et al. (2013) similarly utilize the
stick breaking construction to induce a dependence among the weights with pki =
qkihki

∏
�<k(1 − q�ih�i), where h�i ∼ β(1, α) and qki = exp(xkiδki)/

∑K
�=1 exp(x�iδ�i),

where xki are general predictors and δki are regression coefficients. Rodŕıguez and Dun-
son (2011) note that the incorporation of by-county dependence through the weights,
rather than the atoms/locations in the stick-breaking construction (as we do in our
method), has the notable advantage that it places some prior mass on an independent
prior (whereas our formulation does not in that there is always some non-zero prob-
ability of co-clustering, no matter how far apart are predictor values). Since Hossain
et al. (2013) allow incorporation of any predictors, not just spatial locations, it could
accommodate our use of the lq predictors (which we know from experience are more
relevant than are spatial locations for our class of economic data). Yet, we do not pursue
these weight-dependent approaches because they are simply computationally infeasible
for an application of our size. The elegance of our approach is that while it constructs
a predictor-dependent Dirichlet process, it is estimated as an ordinary DP simply by
augmenting θi with predictor model hyperparameters of Ξi. So we are able to utilize
efficient DP estimation algorithms, such as Algorithm 8 of Neal (2000b).

Another class of alternatives model a smooth spatial dependencies among the col-
lection of county time series. Nobre et al. (2011) generalize the DLM setup with xt(s) =∑p

�=1 φ�(s)xt−� + εt(s) for spatial location, s where |φ�(s)| < 1 where here p denotes
the autoregressive (AR) order. The restriction on φ�(s) makes estimation difficult, so
they reparameterize the set-up using the characteristic polynomial, H�(s), and the back-
shift operator, B, to achieve,

∏p
�=1(1 − BH�)(s)xt(s) = εt(s). While they accomplish

efficient estimation, their focus is confined to modeling spatial associations among the
time series, which is insufficient for our application to economic, employment data. Our
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industry-indexed lq predictors are much more powerful for this purpose in predicting
both association and heterogeneity. Our computation is also expected to be even more
efficient than is theirs because clustering induces a dimension reduction over county-
indexed parameters.

2.6 Summary of our Joint Model over Counties

We summarize the probability model for the joint likelihood (yij , ξij) for our response
and subset of predictors, ξij ⊂ xij . We co-model ξij in order to extract the county-
indexed parameters and include them in the prior probability for cluster assignments
of counties to induce a higher prior probability of co-clustering among counties sharing
similar predictor values. This procedure is used to estimate the conditional distribution
for yij |xij in a fashion that utilizes predictors in both the fixed effects term and in the
prior probabilities of co-clustering.

Likelihood for response, (yij)i,j , with i = 1, . . . , (n = 3108) counties and j =
1, . . . , (T = 180) months.

yij |
p×1
xij ,βi, γ1ij , γ2ij

ind∼ N
(
x

′

ijβi + γ1ij + γ2ij , τ
−1
y

)
, (18)

τy ∼ G (1, 1) (19)

Likelihood for predictors used for clustering, ξij ⊆ xij

q×1

ξij |μξ,i,Λξ,i
ind∼ Nq

(
μξ,i,

(
q×q

Λξ,i

)−1
)

(20)

Gaussian Mixture prior for fixed effects coefficients (may include FB), βi

p×1

βi |μi,Λi
ind∼ NP

(
μi,Λ

−1
i

)
(21)

Mixture formulations for random effects terms, (γmi), m = (1, 2)

Proper CAR prior on both Trend and Seasonality terms

Employ seasonal term, (γ2i), in lieu of Fourier basis in augmented xij

The ICAR prior alternative is achieved from PCAR by removing ρmi

γmij |γmi,−j , τγ,mi, ρmi ∼ N
(
γ̄mij , [dmjτγ,mi]

−1
)
, (22a)

γmi,−j =
(
γmi1, γmi2, . . . , γmi(j−1), γmi(j+1), . . . , γmiT

)′
, (22b)

γ̄mij = ρmi ×
1

dmj

∑
r∼j

ωmjrγmir, (22c)

=
ρmi

dmj

1×T

ω
′

mj

T×1
γmi, (22d)

= ρmi × Cmjγmi (22e)
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Dependent Dirichlet process (DDP) prior for measure, F

Construction of θi under PCAR prior on Seasonal term

θi :=
(
μi,Λi, (τγ,mi, ρmi)m=1,...,2 ,μξ,i,Λξ,i

)
(23)

Construction of θi under Fourier Basis construction of Seasonal term

θi := (μi,Λi, (τγ,1i, ρ1i) ,μξ,i,Λξ,i) (24)

DDP prior

θ1, . . . ,θn|F ∼ F, (25a)

F
∣∣∣α, F0 ∼ DP(α, F0), (25b)

F0 = Huang-Wand (Λi|δ, a11, . . . , a1p)×
Np

(
μi

∣∣m, P−1
1

)
×

G (τγ,1i|a = 1, b = 1)× U (ρ1i|0, 1)×
Huang-Wand (Λξ,i|δ, a21, . . . , a2q)×Nq

(
μξ,i

∣∣0, P−1
2

)
(25c)

3 Computation

We utilize a sequential Gibbs scan to construct our MCMC (posterior) sampler for
all of our models, under which each parameter set is sampled from its full conditional
posterior distribution. Random effects, (γmij), are drawn from conjugate univariate
normal conditional distributions over the T time points for each county, i ∈ 1, . . . , n.
Coefficients, (βi), of the predictor term (including the Fourier basis) are sampled from
conjugate multivariate Gaussian conditional distributions. The n×1 cluster assignment
parameter vector, s, is sampled from a nonconjugate posterior conditional distribution
using the well-known algorithm 8 of Neal (2000b), which nominates new cluster loca-
tions ahead of sampled observations that may be selected on each posterior draw in the
cluster assignment, si, for each county, i = 1, . . . , n. The posterior probability for cluster
assignment of each county multiplies the prior distributions for each of the parameters
in θi into the prior probability for cluster assignment. Parameter locations, (Λ∗

ξ,k,μ
∗
ξ,k),

associated with predictors, (ξij), use the predictor likelihood for (14) to achieve our
predictor dependent Dirichlet process construction. Conditioned on the (a�q) parame-
ters of the Huang-Wand priors, the precision matrix locations, (Λ∗

k,Λ
∗
ξ,k), are sampled

from Wishart distributions. The locations for length scale parameters of the PCAR
model, (ρ∗mk) ∈ [0, 1), are sampled from the univariate slice sampler of Neal (2000a).
The remaining parameters are precision parameters and are sampled from conjugate
univariate gamma conditional distributions.

All of our models are implemented in R Core Team (2014) using C++ (for fast
computation) wrapped into easy-to-use R functions, which we will make available on
request. Each model is run for 50,000 iterations and half are discarded as burn-in.
Convergence of the MCMC sampler is assessed by employing a fixed width estimator
with Monte Carlo standard errors (MCSE) computed using the consistent batch means
(CBM) method (Jones et al., 2006).
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The Fourier basis DPP model (DDP-FB) takes approximately 63 hours or 2.6 days
to complete the 50,000 iterations over our n = 3108 counties, each observed for T = 180
months, in a single thread of an Intel Core i7 processor. The ICAR DDP (DDP-ICAR)
and PCAR DDP (DDP-PCAR) models take about 10% longer than DDP-FB. This
computation time readily supports the BLS monthly production cycle and we note in
the sequel that our chosen model provides high quality uncertainty quantification, which
is important information that the LAUS program provides to the States to accompany
the predictions.

We employ two prediction error criteria to compare the relative performances of
our models: 1. The root mean-squared prediction error (RMSPE) based on the squared
difference between the predicted values (obtained from the model posterior predictive
distribution) and true values for yij for the 7 predicted months over all 3108 counties;
2. A mean absolute prediction error percentage (MAPE-C), separately computed for
each county, and then averaged over all of the counties. This criterion equally weights
a 5% error in a tiny county, like Loving County, TX (with population of about 133)
with a 5% error in Harris County, TX (which contains the city of Houston). On the
one hand, accurate estimation of employment totals in every county is important to the
States and it is for this reason that the LAUS program chose this criterion for assessing
prediction accuracy. On the other hand, perhaps a state would accept a relatively small
increment in error for a relatively less populated county in exchange for a decrement
in the predicted error for a relatively more populated county. This criterion intends to
highlight the uniform prediction performance of the models across all of the counties
estimated by the LAUS program. The LAUS survey program restricts computation of
the MAPE-C to the 1751 subset of non-CES counties, which are smaller and more
heterogeneous than the larger CES counties. They make this restriction to non-CES
counties for computating MAPE-C because they use the available survey estimates for
the CES counties, which are much more stably estimated due to their relatively large
sample sizes. The computations of MAPE-C for the model alternatives in this paper
are performed by the LAUS survey program.

4 Application to Employment Prediction for QCEW

We apply our dependent functional mixture model alternatives to the prediction of
county employment from the QCEW during the lag period. QCEW employment levels
from January, 2002–December, 2016 are used for this purpose, where we exclude the last
7 months (June–December, inclusive) for model estimation and subsequently conduct
predictions for the excluded, last 7 months of 2016 by drawing (yij)i=1,...,n;j=174,...,180

from its posterior predictive distribution (which marginalizes over the posterior samples
for the model parameters). The prediction for each county and month is formulated
as the mean its posterior predictive distribution. Our fixed effects, xj include the 9
industry-indexed lq predictors, UI claims and latitude and longitude, the latter two
predictors capture residual spatial dependence. The subset of predictors, ξij , use for
our predictor-assisted DDP formulation are the location quotients and the latitude
and longitude. Using location quotients in the DDP assigns a higher probability for
co-clustering to two counties where the underlying economic structures are similar.
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We begin by comparing the relative performances in the predictions of seasonality
for both counties that well express seasonality (high-seasonality counties) and coun-
ties that express little seasonality (low-seasonality counties) because this comparison
determined our model selection. The green, short-dashed line in Figure 3 during the
7-month prediction period corresponds to predictions using the ICAR prior (which sets
the (ρ2i) = 1). We label this model as “DDP-ICAR”, where “DDP” indicates that
the ICAR prior is embedded in the predictor-dependent Dirichlet process prior. The
DDP-ICAR induces spikiness in many of the counties where seasonality is lightly and
irregularly expressed due to the local, moving average manner in which seasonality is
estimated where only a subset of months is used to estimate each seasonality coefficient,
γ2ij . Most low-seasonality counties are highly irregular in their expressions of season-
ality. The clustering appears to confound the estimation because co-clustered counties
that express even small differences in seasonality amplitudes may induce a spike in the
county whose data expresses a smaller seasonality amplitude. For example, the observed
time series counties like Uintah County, UT, displayed in Figure 1 express highly irreg-
ular patterns. There is essentially too much flexibility in the estimation of seasonality
under the DDP-ICAR model with the result that misclustering induces large local (for
a subset of months) spikes. Though most of response values in the prediction interval
are well-predicted, the spike induces a large error on one or two data points.

Figure 3: Comparing the prediction performance of the ICAR prior (green, short-dashed
line) to a PCAR prior (blue, long-dashed line) and to the Fourier basis prior (pink,
solid line) for a county where seasonality is less expressed for the 7-month prediction
period. The hollow circles represent the data points. The shading represents 95% credible
intervals.
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As we expected, allowing the data to estimate the (ρ2i) < 1 in the PCAR construc-
tion allocated the low-seasonality counties to clusters of with ρ∗2k ≈ 0.7, which produced
more smoothing and eliminated the spike as seen in the blue, long-dashed line. We label
this model as “DDP-PCAR”. There is, however, a bit of oversmoothing of the seasonal
term under the PCAR model relative to the simpler FB model, shown in the pink, solid
line. The degree of estimated seasonality is particularly sensitive to ρ2i because ρ2i mul-
tiplies by a sparse adjacency matrix that fully determines the seasonal amplitude and
pattern. While we achieve good mixing in our MCMC for ρ2i using a single parameter
to determine the degree of seasonality allowed into the model, the adjustment is too
coarse.

The FB model appears to perform relatively the best in terms of capturing small
magnitude month-to-month variations, a performance advantage that holds across low-
seasonality counties. The shaded regions in each plot panel represent the 95% credible
intervals and we note that DDP-FB is relatively more efficient in uncertainty quantifi-
cation than are the other two models. The FB uses a fixed set of oscillating predictors
and the coefficients are global across months. It represents the best balance between
the coarse PCAR and the overly flexible ICAR.

Comparing the same models for a typical high-seasonality county in Figure 4 reveals
that the DDP-PCAR dramatically oversmooths seasonality, which is, by contrast, very
well predicted by both the DDP-ICAR and DDP-FB, though the DDP-FB expresses a
slightly higher degree of smoothness, which likely accounts for its prediction stability
on low-seasonality counties. The DDP-FB model dominates the other two in predic-
tion accuracy over both low- and high-seasonality counties such that it achieves both
the lowest Mean Squared Prediction Error (MSPE) and MAPE-C, as shown in Ta-
ble 1. Figure 4 also reveals that prediction uncertainty is more efficient for the DDP-FB
model. Accurate uncertainty quantification is important because it provides the states
with valuable inputs on the relative confidence in the predictions that helps focus di-
alogue between the LAUS program and states regarding state judgments about their
economic conditions. Even the DDP-PCAR achieves lower prediction fit statistics than
does the DDP-ICAR because the spikes induced in low-seasonality counties by DDP-
ICAR induce large errors and because there are relatively more counties that expressed
relatively weak seasonality patterns. The ρ∗k for the length scale adjustment location pa-
rameter for clusters containing high-seasonality counties are estimated at ≈ 0.9, which
produces dramatically attenuated seasonal patterns, even though the value is close to
1. Mixing is very good for clusters with high values of ρ∗k, which suggests a limitation of
the model construction, in practical application. As mentioned, the parameterization is
overly coarse.

The above comparison between the three models encourages our selection of a model
with FB to perform the by-county prediction of employment totals. Figures 5, 6, 7 com-
pare use our predictor-assisted dependent Dirichlet process (DDP) clustering prior to
use of a simple Dirichlet process prior (that excludes predictor information in the prior
probabilities of co-clustering), both under the Fourier basis construction for seasonal-
ity. We label the latter model as “DP-FB”. We used all of the predictors, including the
by-industry location quotients, the latitude and longitude (computed on population cen-
troids) and level of unemployment insurance claims to influence the prior probabilities
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Figure 4: Comparing the prediction performance of the ICAR prior (green, short-dashed
line) to a PCAR prior (blue, long-dashed line) and to the Fourier basis prior (pink,
solid line) for a county where seasonality is highly expressed for the 7-month prediction
period. The hollow circles represent the data points. The shading represents 95% credible
intervals.

of co-clustering for the counties. The figures readily reveal that the DDP-FB uniformly
outperforms the DP-FB, as confirmed by prediction error statistics in Table 1. It is
interesting to note, however, that DP-FB outperforms DDP-ICAR, which highlights
the importance of the Fourier basis construction for the prior on the seasonality term.
We additionally tested all subsets of predictors for the DDP and found that including
them all, together, performed best. It also bears mention that including only the spatial
predictors in the DDP also reduced the prediction performance of DDP-FB, indicating
that the non-spatial predictors are important to improve the clustering performance.

All of our models enumerated in Section 2 configure our data as a collection of time
series that are spatially linked through our dependent Dirichlet process prior construc-
tion that is indexed by latitude and longitude (as well as other predictors). In other
words, our models are parameterized as spatially-indexed time series. By contrast, we
may also model these data as a time evolving spatial process by proposing a spatial
model over counties that is allowed to evolve over time. We accomplish the latter mod-
eling framework with,

yij |
p×1
xij ,βi, (γmij)m=1,...,M

ind∼ N
(
x

′

ijβi +

nH∑
�=1

Hij�η�j , τ
−1
y

)
, (26)
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Figure 5: Comparing the prediction performance of predictor-assisted DDP clustering
(pink, solid line) to a simple DP prior (turquoise, dashed line) plan for a county where
seasonality is less expressed for the 7-month prediction period. The hollow circles rep-
resent the data points. The shading represents 95% credible intervals.

nH×1
ηj |τη,Hj ,Ωη

ind∼ NnH

(
0,

[
H

′

jQηHj

]−1
)
, (27)

where we have replaced the time series random effects terms,
∑M

m=1 γmij , used in (1)
with a spatial basis construction, where the n×nH basis matrix, Hj = (Hij�)i,�, encodes
the spatial dependence among the counties. It is multiplied by nH × 1 coefficients, ηj .
The ηj are indexed by month, j ∈ 1, . . . , T , so they are allowed to evolve the spatial
process over time. We next briefly introduce the construction for the basis matrix, Hj ,
below, where each column represents a spatial contrast that we label as a “harmonic”; for
example, the first two low resolution contrasts (from left-to-right) include north-south
and east-west. Please see Hughes and Haran (2013) for a more detailed explanation.
We construct and implement this model (also available in our R Core Team (2014)
implementation) as an alternative to our approach.

We utilize the generalized Moran’s I operator for n × p design matrix, Xj , that
projects an adjacency indexed spatial basis onto the space orthogonal to that defined
by Xj in order to avoid confounding and inflating estimates of posterior uncertainty
(Hughes and Haran, 2013). The Moran’s I operator is defined on a graph, G = (V,E),
where V denotes the n vertices and E the edges between pairs, (i, i

′
) ∈ (1, . . . , n)

counties. Define the n×n adjacency matrix, Ωη = (ωii′ ), where ωii′ = 1(i, i
′ ∈ E, i �= i

′
),

with diag(Ωη) = 0. The associated spatial conditional autoregressive formulation for the
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Figure 6: Comparing the prediction performance of predictor-assisted DDP clustering
(pink, solid line) to a simple DP prior (turquoise, dashed line) plan for a county where
seasonality is more expressed for the 7-month prediction period. The hollow circles
represent the data points. The shading represents 95% credible intervals.

n×n precision matrix is accomplished with, Qη = Ωη1−Ωη, where each diagonal entry
of Qη counts the number of neighboring counties for that county. Construct Pj =

Xj(X
′

jXj)
−1X

′

j to be the projection onto the space defined by Xj and its orthogonal

complement, P⊥
j = In−Pj . Hughes and Haran (2013) formulate the generalized Moran’s

I operator with,

IXj (Ωη) = P⊥
j ΩηP

⊥
j =

n×n

Hj ΛH
′

j (28)

where the n × n eigenmatrix, Hj , is employed as a spatial basis matrix. The columns
of Hj are harmonics that express the frequencies of spatial association, with higher
frequencies corresponding to rougher dependence structures. The frequency of the con-
trasts and resulting resolution of spatial smoothing increase from left-to-right in Hj , so
it is typical (Hughes and Haran, 2013) practice to select 10% of the columns to achieve a
high quality estimation with substantial dimension reduction to facilitate computation.
We follow this practice, so nH = 0.1× n denotes the number of columns or harmonics
used for estimation. We label this model as “MI-T” to denote that it is a Moran’s I
spatial model for the counties that is allowed to evolve over the months.

Figure 8 demonstrates that MI-T is both biased and less efficient in prediction
relative to DDP-FB, even on this relatively low seasonality county where, perhaps,
we would expect a model constructed as a time-evolving spatial process (like MI-T)
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Figure 7: Comparing the prediction performance of predictor-assisted DDP clustering
(pink, solid line) to a simple DP prior ((turquoise, dashed line)) plan for a tiny, idiosyn-
cratic county for the 7-month prediction period. The hollow circles represent the data
points.

to perform relatively well. We, additionally, configured models that employed both a
Moran-I’s basis,

∑nH

�=1 Hij�η�j and the time series random effects terms,
∑M

m=1 γmij

(including both seasonality and trend as one alternative and solely seasonality as another
alternative). The fit of the expanded model was very similar to the models employing
only time series terms and the prediction accuracy was worse.

Table 1 compares the root mean squared predictions errors for our suite of models.
We see that DDP-FB performs the best on the predicted months, both for RMSPE
computed on all 3108 counties and MAPE − C, computed on the 1751 CES counties.
We recall that MAPE-C computes a percentage absolute error on each county and the
score averages over the counties, so it treats relatively smaller counties as equivalently
important to larger ones. Table 2 presents the distribution of MAPE-C by size of county
for each of the DDP-FB and DDP-ICAR models. Firstly, we see how DDP-FB performs
uniformly better across counties of different sizes. Secondly, we see how the two models
converge as the county size category increases. So DDP-ICAR performs particularly
badly on small counties, due to the instability in estimation of seasonality on low-
seasonality counties, which are predominant among smaller-sized counties, as discussed
above.

We propose to provide state analysts with the posterior predictive mean value for
each county and month under the DDP-FB model as the predicted point estimate for
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Figure 8: Comparing the prediction performance of predictor-assisted DDP clustering
(pink, solid line) to a time varying Moran’s I spatial process (turquoise, dashed line) for
the 7-month month prediction period. The hollow circles represent the data points.

Model RMSPE MAPE-C
DDP-FB 919 1.29%

DDP-PCAR 1688 2.45%
DDP-ICAR 2103 2.71%

DP-FB 1570 2.11%
MI-t 2987 3.37%

Table 1: Root mean squared prediction errors (RMSPE) and mean absolute percent-
age error (MAPE-C) over the 7 predicted models across the n = 3108 counties for
comparison models.

each non-CES county. We additionally provide the associated 95% credible interval as
an indicator of our confidence in each predicted value. The LAUS program work with
the states to produce an unemployment rate estimate for each county and month using
the employment prediction (in the denominator of the unemployment rate statistic).
The estimate for the unemployment level (used in the numerator of the unemployment
rate statistic) is derived by applying a county-to-state ratio to a state-level estimator
(obtained from the Current Population Survey) in each month to obtain the county-
level estimate of unemployment. An overall measure of uncertainty is not currently
published for the resulting unemployment rate statistic due to this ratio estimation of
the unemployment level for each county.
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County Size Models
# Employees # Counties DDP-FB DDP-ICAR DDP-PCAR DP-FB MI-t

0–250 23 3.57% 11.95% 10.20% 8.41% 12.23%
250–500 48 2.90% 6.40% 5.32% 3.26% 6.51%
500–1000 116 2.30% 4.50% 3.95% 4.27% 6.31%
1000–2000 342 1.59% 3.12% 2.69% 2.39% 4.09%
2500–5000 392 1.24% 2.63% 2.45% 2.21% 3.01%
5000–10000 373 1.03% 2.17% 2.23% 1.68% 2.67%
10000+ 457 0.8% 1.69% 1.70% 1.19% 2.21%

Table 2: Mean absolute percentage error distribution by county employment size cate-
gory for comparator models.

5 Discussion

We constructed a suite of functional mixed effects models for an area-indexed collection
of U.S. county time series that are designed to perform prediction for employment totals
over multiple months. The last month of the prediction period is reported by the U.S.
Bureau Labor Statistics (BLS) after consultation with the states. Our modeling frame-
work is characterized by terms for trend, seasonality and the incorporation of predictors;
in particular, measures of concentration across industry and spatial location centroids.
These terms are specialized to county, but tied together with a predictor-dependent
Dirichlet process partition model that allows the borrowing of strength among coun-
ties that express similar patterns in their time-indexed functions. We demonstrate that
the incorporation of predictors into the estimation of partitions/clusters sharpens the
prediction accuracy.

While there are many models in use in the U.S. Federal Statistical System that in-
corporate seasonality for a single time series, ours is among-the-first applications of a
modeling approach for a collection of dependent time series where the degree of seasonal-
ity expressed varies among them. We have shown that use of a relatively simple Fourier
basis under a flexible (Huang-Wand) prior for the covariance matrix of the county-
indexed vector of coefficients performs robustly over both low- and high-seasonality
counties. These strong results for our DDP-FB model suggest a modeling template for
general use on collections of area-indexed time series. The semi-parametric framework
allows for quick adaptation of model predictions during shifts in underlying economic
conditions.

Future research will further explore opportunities to combine additional informa-
tion during the prediction period, such as current month employment estimates for
CES counties (since the CES survey estimates are available), into a model to predict
employment for non-CES counties.

This case study application is particularly relevant because actual current month
employment for U.S. counties is released to the public based on look-ahead predictions,
rather than current month data (which are unavailable) and because this class of time-
and spatially-indexed data is broadly representative of that published by government
statistical agencies. It has been particularly challenging in this study to model a collec-
tion of time series under heterogenous patterns for seasonality and it is hoped that this
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paper may catalyze the further development of Bayesian methods because they offer
robust uncertainty quantification for smaller counties, which is important to data users.
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