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Quantifying Observed Prior Impact∗

David E. Jones†, Robert N. Trangucci‡, and Yang Chen§,¶

Abstract. When summarizing a Bayesian analysis, it is important to quantify
the contribution of the prior distribution to the final posterior inference because
this informs other researchers whether the prior information needs to be carefully
scrutinized, and whether alternative priors are likely to substantially alter the
conclusions drawn. One appealing and interpretable way to do this is to report
an effective prior sample size (EPSS), which captures how many observations
the information in the prior distribution corresponds to. However, typically the
most important aspect of the prior distribution is its location relative to the data,
and therefore traditional information measures are somewhat deficit for the pur-
pose of quantifying EPSS, because they concentrate on the variance or spread
of the prior distribution (in isolation from the data). To partially address this
difficulty, Reimherr et al. (2014) introduced a class of EPSS measures based on
prior-likelihood discordance. In this paper, we take this idea further by propos-
ing a new measure of EPSS that not only incorporates the general mathematical
form of the likelihood (as proposed by Reimherr et al., 2014) but also the specific
data at hand. Thus, our measure considers the location of the prior relative to
the current observed data, rather than relative to the average of multiple datasets
from the working model, the latter being the approach taken by Reimherr et al.
(2014). Consequently, our measure can be highly variable, but we demonstrate
that this is because the impact of a prior on a Bayesian analysis can intrinsi-
cally be highly variable. Our measure is called the (posterior) mean Observed
Prior Effective Sample Size (mOPESS), and is a Bayes estimate of a meaningful
quantity. The mOPESS well communicates the extent to which inference is deter-
mined by the prior, or framed differently, the amount of sampling effort saved due
to having relevant prior information. We illustrate our ideas through a number of
examples including Gaussian conjugate and non-conjugate models (continuous ob-
servations), a Beta-Binomial model (discrete observations), and a linear regression
model (two unknown parameters).

Keywords: effective prior sample size, statistical information, Wasserstein
distance, Bayes estimate, sensitivity analysis.

1 Introduction

Prior knowledge and assumptions are central to many statistical problems, and in prac-
tice it is important to assess their impact on the final inference. When such an as-
sessment is missing, it can be difficult to tell whether the results could be reproduced
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with a different prior, or whether similar studies could be made more efficient by in-
corporating existing information that was neglected. Of course, each researcher chooses
whichever prior seems most appropriate to them, but reporting the impact of the prior
allows others, and even the original researchers, to better interpret the results. These
considerations are important in many scientific studies. For example, Chen et al. (2019)
propose a Bayesian analysis of the brightnesses of a large collection of stars based on
a multi-telescope astronomical dataset, and highlight that scientific prior distributions
provide key information about each of the specific instruments and play a substantial
role in the final inference. For both the scientists directly involved in the study, and
also others who rely on their work, it is important to understand the role of the prior
distributions used, e.g., do the priors associated with one particular instrument have a
much greater impact on the inference than those for other instruments?

One appealing and interpretable way to assess prior impact is to provide a measure
of the effective prior sample size (EPSS), i.e., the approximate number of observations
to which the information in the prior is equivalent. Gaussian conjugate models offer a

canonical example: with observed data yi
iid∼ N(μ, σ2), for i = 1, . . . , n, and conjugate

prior distribution μ ∼ N(μ0, σ
2/r), the posterior distribution of μ is N(wnȳn + (1 −

wn)μ0, σ
2/(n+r)), where wn = n/(n+r). Based on the denominator n+r in the expres-

sion for the posterior variance, the effect of the prior appears to be equivalent to that of
r samples, so we say that the EPSS is r. However, this formulation faces two challenges:
(a) it is not immediately clear how to generalize beyond conjugate models; and more
importantly, (b) when μ0 is arbitrarily different to ȳn, the prior impact on the posterior
mean is arbitrarily large, and is therefore clearly not equivalent to that of r samples.

EPSS measures have gained substantial attention in the literature, and a number
of strategies have been proposed in response to the two challenges above, e.g., Clarke
(1996), Morita et al. (2008), and Morita et al. (2010). Most of the strategies proposed
rely on a comparison between the actual prior π and a default or baseline prior πb, e.g.,
the improper prior πb(μ) ∝ 1 would be a natural choice for the baseline prior in the
Gaussian conjugate model above. This comparative information approach is necessary
because there is no universal “non-informative” prior against which to measure prior im-
pact, and Bayesian inference cannot be conducted without a prior. Early generalizations
along these lines sought to match the prior π to a hypothetical posterior distribution
constructed using the baseline prior πb and some hypothetical previous samples, that is,
they interpreted the prior π as the posterior from a previous analysis. The EPSS is then
defined as the number of observations used in the hypothetical posterior distribution,
e.g., Clarke (1996) and Morita et al. (2008). These approaches successfully generalize
the notion of EPSS, but do not address concern (b) regarding the real impact of the
prior when the data mean and prior mean differ substantially. Indeed, these methods
do not consider the observed data or the real posterior distribution at all.

Reimherr et al. (2014) instead suggested minimizing the discrepancy between two
posterior distributions, one using the real prior π and the other using the baseline prior
πb. In this case the EPSS is defined as the difference in the number of samples used by
the two posteriors. Similar ideas have also been proposed in slightly different contexts,
e.g., see Lin et al. (2007) and Wiesenfarth and Calderazzo (2019). The Reimherr et al.
(2014) method offers many improvements over early approaches and goes beyond simply
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capturing the variance of the prior; it also partially quantifies the impact of the prior
location. However, it averages over the data using the bootstrap, and therefore does not
quantify the impact of the prior for the specific analysis carried out with the observed
data at hand, which is of most interest in practice.

Another recent approach introduced by Neuenschwander et al. (2020) defines the
EPSS as the expected local-information-ratio (ELIR), i.e., the prior mean of the ratio of
the prior information and Fisher information (of a single observation). This approach has
the elegant property that a sample of size n from the posterior predictive distribution has
an effective sample size of n plus the EPSS. However, similarly to the strategies already
mentioned, this method does not take into account the observed data and therefore does
not fully capture the impact of the prior on the Bayesian analysis at hand.

In this paper, we follow a similar approach to Reimherr et al. (2014) but propose
a new EPSS measure which addresses the above limitations by conditioning on the
observed data, and thereby directly quantifies the prior impact for the actual analy-
sis performed. Our measure is called the mean Observed Prior Effective Sample Size
(mOPESS), where ‘Observed’ indicates that the observed data is treated as fixed, and
‘mean’ refers to an average over additional future samples drawn from the posterior
predictive distribution (the purpose of which will become clear). This new measure
was inspired by the work of Efron and Hinkley (1978) which highlighted that observed
Fisher information is sometimes more useful than expected Fisher information. By pro-
viding an explicit definition of the mOPESS in terms of future observations, we also
identify the real-world estimand of interest, which we call the Observed Prior Effective
Sample Size (OPESS), i.e., a quantity that would be realized if future samples were ac-
tually collected. The interpretation of the OPESS is essentially the number of additional
samples that must be combined with the baseline prior πb in order to obtain similar
inference to that under our actual prior π. In other words, the OPESS communicates
how much sampling effort is saved by having access to the information in the prior π,
rather than only the default information captured by πb. Further appealing properties
of our mOPESS measure include a Bayes estimate interpretation and no lower limit on
the observed data sample size n. The latter property is important because prior impact
is often most pronounced, and therefore of most interest, when the sample size is small.
In contrast, Reimherr et al. (2014) require n to be large because their method relies on
the bootstrap and an accurate estimate of the “true parameter” value, see Section 2.2
for a review. In summary, our approach represents a substantially improved method
for quantifying prior impact in practice, and its real-world interpretation makes it a
valuable tool for clearly reporting the contribution of priors in Bayesian analyses.

One possible limitation of our approach is the need for a baseline or default prior
against which to compare the prior at hand. However, in our opinion, a key purpose
of an EPSS measure is to communicate the impact of a prior, and for this objective
comparing to a standard prior that many researchers are already familiar with is in fact
a strength rather than a weakness. Of course, if necessary our mOPESS measure could
be computed for several different baseline priors, but we suspect one version will usually
provide a sufficient summary of prior impact. As mentioned above, most of the existing
literature on EPSS measures has similarly concluded that comparing against a baseline
prior is desirable or necessary or both.
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This paper is organized as follows. Section 2 briefly overviews some topics from the
broader literature connected to EPSS measures and their uses, then summarizes the
EPSS methods on which we build, and lastly provides a motivating Gaussian example
to illustrate our mOPESS measure. Section 3 defines the mOPESS and discusses its
computation, first in general and then in the specific case of the motivating Gaussian
example introduced in Section 2.3. Section 4 provides intuition and theory supporting
our method. Section 5 provides additional numerical results in the form of non-conjugate
Gaussian, Beta-Binomial, and regression model examples. Section 6 provides a summary.
Proofs are given in the appendices.

2 Connections with Existing Work and a Motivating
Example

2.1 EPSS and the Broader Literature on Prior Distributions

To provide greater context for the importance of EPSS measures, we now briefly discuss
several concepts that have been studied in the literature on prior distributions, and
highlight their connections to EPSS measures.

Prior-likelihood conflict, e.g., Evans et al. (2006); Bousquet (2008); Walter and Au-
gustin (2009); Nott et al. (2020, 2021). The topic of prior likelihood-data conflict is very
much related to EPSS measures in the sense that such conflict can indicate that the
prior distribution has a large influence on the final analysis. On the other hand, mea-
sures of EPSS are not restricted to quantifying prior-likelihood conflict: in the case of
prior-likelihood alignment or weakly informative priors, the mOPESS measure proposed
here gives non-zero values which describe the extent to which the prior is facilitating
the inference, e.g., by increasing posterior concentration.

Sample size determination, e.g., Wang et al. (2002); Sahu and Smith (2006); Clarke
et al. (2006); Gupta et al. (2016). In clinical trials, a classical problem is to determine
the sample size needed to achieve a certain power when performing a hypothesis test
for the presence of a treatment effect, see Sahu and Smith (2006) for more detailed
discussion and examples. In its classical form this line of research does not usually
emphasize prior impact and is not closely related to our work. However, the concepts
of prior-likelihood conflict and EPSS are important for sample size determination in
adaptive clinical trials, where priors are typically constructed from an interim analysis,
e.g., Hobbs et al. (2013) uses effective historical sample size (EHSS) to determine a
randomization procedure for allocating patients. Similarly, Wiesenfarth and Calderazzo
(2020) compare EPSS measures that quantify prior information in terms of histori-
cal/external samples (e.g., Morita et al., 2008) or current/new samples (e.g., Reimherr
et al., 2014); and tailor the method in Reimherr et al. (2014) to the adaptive design set-
ting. Wiesenfarth and Calderazzo (2020) specifically investigates priors that adaptively
discard prior information in the case of prior-data conflict, e.g., robust mixture (Berger
et al., 1986), power (Ibrahim et al., 2015) and commensurate (Hobbs et al., 2012) pri-
ors. Our mOPESS measure could be applied in such studies to identify other similarly
“adaptive” priors and to better quantify their impact in Bayesian clinical trials.
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Bayesian prior sensitivity analysis, e.g., Berger (1990); Weiss (1996); Roos et al.
(2011, 2015). This line of work is aimed at assessing the impact on the posterior inference
when the prior distribution is perturbed, thus possibly identifying parameters for which
the posterior inference is highly sensitive to changes in the prior. In our work, we only
assess the impact of the given prior on the current inference, as compared to a baseline
prior, and do not consider whether this impact would be different for other similar
priors. On the other hand, if posterior inference substantially varied across a group of
priors, then our mOPESS measure would likely be high for some or all of the priors in
question, and so our measure could be used to detect this type of sensitivity.

Prior construction for objective Bayes, e.g., Kass and Wasserman (1996); Ghosh
et al. (2011b); Berger et al. (2015); Consonni et al. (2018); Leisen et al. (2020). For
example, Ghosh et al. (2011a) constructs “objective priors” by maximizing an approx-
imate expression for the distance between the prior and the posterior under a general
divergence criterion. In general this line of research focuses on constructing priors in
such a way as to avoid the subjective nature of Bayesian inference, e.g., ensuring the
prior has little influence in cases where the data contain substantial information. Our
approach is about assessing the prior influence and giving an intuitively quantitative
measure of the impact of an informative prior or subjective prior. Moreover, as opposed
to approximate measures based on asymptotic expansions (e.g., Ghosh et al., 2011a), our
method works on the exact posteriors and is particularly designed for finite sample set-
tings, in which prior impact is potentially substantial. In our approach, reference priors
(typically, but not necessarily, non-informative) are only used as a baseline to compare
our working priors against. On the other hand, our mOPESS measure could likely be
used to assess whether a prior is a suitable alternative to the current non-informative
prior of choice.

2.2 Some Existing Methods of Measuring EPSS

Suppose that π is our prior distribution for a collection of unknown parameters of
interest θ ∈ Θ. Let πb be a baseline prior and x = {x1, . . . , xn} be unknown hypothetical
previous data with probability density f(x|θ). Imagine that our real prior π is the
posterior distribution qb(·|x) ∝ f(x|·)πb(·) computed using the unknown hypothetical
dataset x. Under this formulation, Clarke (1996) considers

x∗ = argmin
x∈X

KL(qb(·|x), π(·)), (2.1)

where KL(g, h) denotes the Kullback-Leibler divergence (KL divergence) defined as∫
Θ
log(g(θ)/h(θ))g(θ)dθ, and X is the support of f (for simplicity we assume X to

be the same for all θ ∈ Θ). In words, the approach of Clarke (1996) is to find the
hypothetical dataset x∗ that, when combined with the baseline prior πb, produces the
posterior distribution qb(·|x∗) with minimum KL divergence from our true prior π. The
EPSS can then be quantified as the number of individual observations contained in x∗.
Note that the density f is a user specified hypothetical distribution for prior data, and
is not necessarily the same as the model for any actual data.
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The above approach is distinguished from most other methods (such as those men-
tioned below) in that it gives a specific dataset x∗ which represents the information
in the prior. An advantage of this approach is that x∗ can potentially capture other
aspects of the information contained in π in addition to the EPSS. However, x∗ has no
concrete relation to the likelihood or data at hand, which we consider to be a drawback,
at least when the impact of the prior on a specific analysis is of primary interest.

Morita et al. (2008) adopt a similar approach but measure distance using the differ-
ence of the second derivative of the log densities rather than KL divergence. Further-
more, to avoid the peculiarity of reporting a specific dataset x∗, and to take account
of uncertainty regarding the hypothetical dataset; they take an expectation over x,

i.e., they compute E[ ∂2

∂θ2 log q
b(·|X)]. This treatment of the hypothetical previous data

x may be preferable to that of Clarke (1996). But for the purpose of assessing prior
impact on a specific analysis, the Morita et al. (2008) method suffers from the same
fundamental problem of not taking the likelihood of any actual data into account.

To address this limitation, Reimherr et al. (2014) introduced the notion of prior-
likelihood discordance and incorporated it in their measures of EPSS. The key change
they proposed was to compare two posterior distributions rather than comparing a
prior to a (hypothetical) posterior. To make the comparison, under each prior π, they
consider the expected mean squared error (MSE) when a draw from the posterior is
used to estimate the true parameter θT , i.e.,

Uπ,θT (I) = EθT [MSE(π,XI)] =

∫
XI

MSE(π,xI)f(xI |θT )dxI ,

where the “posterior MSE”, as defined in Reimherr et al. (2014), is

MSE(π,xI) = Varπ(θ|xI) + (Eπ[θ|xI ]− θT )
2
.

Reimherr et al. (2014) use I to indicate the information contained in the hypothetical
data xI and in their main examples it represents the sample size (because the samples
are assumed to be independent and identically distributed). Let n be the sample size
of the real data, denoted by y. For hypothetical sample size k � n, Reimherr et al.
(2014) estimate the EPSS of an informative prior π relative to a baseline prior πb by
the smallest integer r such that

Ûπ,θ̂(k) ≈ Ûπb,θ̂
(k + r),

where θ̂ is the maximum likelihood estimate of θT based on y, and Û is computed
by averaging over datasets of size k drawn from the empirical distribution (hence the
constraint that k � n). By a slight abuse of terminology, we refer to their averaging
method as bootstrapping (as they do). One of the novel aspects of this formulation
is that their estimate of EPSS, r, is allowed to be negative. This is helpful when, for
example, we are trying to assess if π is a low-information prior and therefore might
feasibly have less impact than πb.

The approach of Reimherr et al. (2014) described above has a number of advantages
over earlier methods: (i) it focuses on the impact of the prior on posterior inference;
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(ii) it incorporates the likelihood, although for reduced data size; and (iii) it proposes
a potentially reasonable method for generating datasets to combine with π and πb

(bootstrapping). There are however still some limitations of their approach. Firstly,
their method averages over the data and therefore their measure of EPSS does not tell
us what the impact of the prior is on the inference using the observed data y, which
is of most interest in practice. Secondly, their approach relies on bootstrapping the
data and estimating θT which both require n to be large, but the impact of a prior is
usually greatest and of most interest when n is small. Lastly, their use of MSE is not
necessarily the best way of quantifying the difference between two posterior distributions
and therefore the prior impact. Indeed, there is in fact no reason to introduce the notion
of a true parameter value θT in order to measure prior impact.

2.3 Motivating Gaussian Example

Suppose that we have observed data yi
i.i.d.∼ N (μ, σ2), for i = 1, . . . , n. Assume that σ2 is

known, that our prior for μ is a conjugate prior, denoted π(μ) ≡ N (μ0, λ
2
0), and that the

baseline prior is πb(μ) ∝ 1. Suppose that μ = μ0 = 0, σ2 = 1, and λ2
0 = 0.1. We now use

this example to illustrate the behavior of our EPSS measure, which is called the mean
Observed Prior Effective Sample Size (mOPESS). All mathematical and computational
details are deferred to Section 3.

The top left panel of Figure 1 shows the mOPESS plotted against the data mean
ȳn. It can be seen that the mOPESS increases with the difference |ȳn−μ0| between the
prior mean and data mean, which is a key feature of our proposed measure of EPSS.
The top right panel of Figure 1 shows the quantiles of the Observed Prior Effective
Sample Size (OPESS), i.e., it summarizes the distribution of which the mOPESS is
the mean for any given ȳn. The OPESS represents a real-world quantity (defined in
Section 3.1) which captures the impact of the prior, and can in principle be observed
by collecting more samples. Variability in the OPESS for a fixed value of ȳn indicates
genuine uncertainty about the future observations. The mOPESS (i.e., the mean of the
OPESS distribution) averages over this uncertainty and is our preferred single number
summary of prior impact.

The bottom left panel of Figure 1 corresponds to the point indicated by a “+”
symbol in the top left panel, i.e., one of two points with the largest value of |ȳn −
μ0|. In particular, the bottom left panel shows the priors π and πb, as well as the
corresponding posterior distributions denoted qn and qbn, respectively. Note that the
posterior distribution qn is pulled towards zero by the informative conjugate prior π.
The top left panel shows that in this case the mOPESS is larger than for values of ȳn
that are closer to the prior mean μ0 = 0. In particular, the mOPESS has a value of
about 14.5, which has the interpretation that on average an investigator using qbn would
need to collect 14.5 additional samples to obtain similar inference to an investigator
using π, for the specific value of ȳn currently at hand, i.e., for ȳn ≈ −0.6.

The bottom right panel of Figure 1 illustrates the case where |ȳn − μ0| is smallest
across the points plotted in the top left panel, i.e., the point indicated by a cross in
the top left panel. From the bottom right panel we can see that in this case both
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Figure 1: (Left top) mOPESS as a function of ȳn. The solid curve shows a LOESS
(LOcal polynomial regrESSion) fit to the points. (Right top) 95% quantile (long dash
curve), median (short dash curve), and 5% quantile (dash-dot curve) of the OPESS as a
function of ȳn. The solid curve is the same as in the left panel. (Left and right bottom)
posteriors qn and qbn (dashed lines) and priors π and πb (solid lines) for the dataset
indicated by a green “+” symbol and a cross, respectively, in the top left plot.

posteriors are centered very close to zero. Specifically, the posteriors have substantial
overlap because the conjugate prior π is centered at μ = μ0 = 0 ≈ ȳn and so does not
cause qn to have a substantially different mean to qbn, only a smaller variance. Returning
to the top left panel we can see that this case corresponds to a mOPESS value of around
10.5, which is one of the smallest among the points plotted.

In conclusion, we can see that the mOPESS is larger the further ȳn is from μ0 = 0
and that this is because the prior has more impact on the posterior in these cases.
Thus, at least in this simple example, our mOPESS measure of EPSS seems to have an
intuitive interpretation that well captures the way the prior impact changes with the
observed data.

3 mOPESS Definition and Computation

3.1 mOPESS Definition

Our guiding intuition is that we want to know how many extra samples are needed
to obtain similar inference under the baseline prior as that under our informative
prior. To that end, for each m = n + r, where r ∈ Z≥0, we introduce a hypotheti-
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cal expanded dataset x(m) = {x(m)
1 , . . . , x

(m)
m } ≡ y ∪ {x(m)

n+1, . . . , x
(m)
m }, i.e., x(m)

i = yi,
for i = 1 . . . , n. The superscripts ‘(m)’ are necessary because we do not assume that
x(m+1) = x(m) ∪ {xm+1}, for reasons to be explained in Section 3.2. If x(m) was known
for all m then intuitively we would choose the EPSS to be r = m − n for the m that
minimizes the distance between the two posterior distributions qn ≡ q(·|y) ∝ f(y|·)π(·)
and qbm ≡ qb(·|x(m)) ∝ f(x(m)|·)πb(·), where π is our real prior whose EPSS is to be
measured, πb is the baseline prior, and f is the model. We denote the distance for a
given m by D(qb(·|x(m)), q(·|y)). The collection of expanded datasets is denoted by xL

= {x(n),x(n+1), . . . ,x(L)}, where L is the maximum feasible value of m, or in other
words L− n is the maximum feasible magnitude of the EPSS associated with π.

We must account for the possibility that our prior π is in fact less impactful than
the baseline prior πb. This happens when the prior π is more diffuse than the baseline
πb or is similarly diffuse but has greater location agreement with the data than πb.
Thus, we also consider the alternative distance D(qb(·|y), q(·|x̃(m))), where the extra
hypothetical samples are combined with our real prior π rather than with the baseline πb.
Again we do not assume that x̃(m) = x(m), for reasons to be explained in Section 3.2.
We write xall

L = xL ∪ x̃L = {x(n), x̃(n),x(n+1), x̃(n+1), . . . ,x(L), x̃(L)} to denote all
the future samples combined, and for conciseness introduce the notation D(m) and

D̃(m) as shorthand for the distances D
(
qb(·|x(m)), q(·|y)

)
and D

(
qb(·|y), q(·|x̃(m))

)
,

respectively. We can now define the underlying quantity of interest.

Definition 3.1. For a given realization of xall
L , the Observed Prior Effective Sample

Size (OPESS) is

Mn(x
all
L ) =

{
argminn≤m≤L {D(m)} − n if Sn(x

all
L ) = 1,

n− argminn≤m≤L

{
D̃(m)

}
if Sn(x

all
L ) = −1,

(3.1)

where

Sn(x
all
L ) =

⎧⎨⎩ 1 if minn≤m≤L {D(m)} ≤ minn≤m≤L

{
D̃(m)

}
,

−1 if minn≤m≤L {D(m)} > minn≤m≤L

{
D̃(m)

}
.

The OPESS is negative when Sn(x
all
L ) = −1 because this suggests that π is less

informative than the baseline prior πb. In practice, the future samples xall
L are unknown

and therefore the OPESS must be estimated. The mOPESS defined in Definition 3.2
below is simply the posterior mean of the OPESS, and as such provides a convenient
estimate of the OPESS. Posterior quantiles of the OPESS distribution and other sum-
maries could also be reported to provide a measure of uncertainty.

Definition 3.2. The theoretical (posterior) mean Observed Prior Effective Sample Size
(mOPESS) is

M
T

n =

∫
X
Mn(x

all
L )p(xall

L |y, π)dxall
L , (3.2)

where X is the domain of xall
L and p(·|y, π) is the corresponding posterior predictive

distribution.
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3.2 Discussion of the General mOPESS Definition and
Computation

In practice, it makes sense for the posterior predictive distribution in Definition 3.2 to
factorise, i.e.,

p(xall
L |y, π) =

∫
Θ

p(xL|y, θ)p(x̃L|y, θ)q(θ|y)dθ (3.3)

=

∫
Θ

L∏
m=n

p(x(m)|y, θ)
L∏

m=n

p(x̃(m)|y, θ)q(θ|y)dθ, (3.4)

as we now explain. A researcher who does not want to use π would not collect many
additional samples and then attempt to find the m to minimize the distance between
their posterior and q(·|y). Instead, the researcher would simply collect a fixed number of
additional samples r = m−n (fixed in the sense that no minimization of the distance to
q(·|y) is performed). Therefore the correct question to ask when trying to estimate the
OPESS of π is as follows: if there are multiple independent researchers each of whom
chooses a different value of r, then whose inference will most closely agree with our
inference? This is why, for the mOPESS to correspond to normal scientific procedure,
the hypothesized future samples x(m) (and x̃(m)) need to be conditionally independent
across values of m, given θ. We avoid assuming that x̃L = xL for essentially the same
reason: for the interpretation of the mOPESS to correspond to normal scientific proce-
dure, we cannot assume that each individual researcher computes both qb(·|x(m)) and

q(·|x(m)) and then decides which to use depending on whether D(m) or D̃(m) is smaller.
We instead assume there are two researchers in the population for each value of m, one
who computes qb(·|x(m)) and one who computes q(·|x̃(m)), and since the researchers

will likely have different laboratories it is natural to assume that x(m) and x̃(m) are
independent. Unconditionally, all the future samples are dependent, which corresponds
to the real-world in that all additional samples collected would be generated using the
same underlying, but unknown, value of θ.

In this paper we set the discrepancy measure D to be the 2-Wasserstein distance,
and from hereon replace “D” by “W2” in our notation. For p ≥ 1, let u and v be
probability measures defined on M with finite pth moment. The p-Wasserstein distance
between u and v is defined as

Wp(u, v) =

(
inf

γ∈Γ(u,v)

∫
M×M

d(x, y)p dγ(x, y)

)1/p

, (3.5)

where Γ(u, v) denotes the set of measures onM×M with marginals u and v respectively,
and d is a metric on M. Conveniently, in the case of multivariate Gaussian distributions
the 2-Wasserstein distance can be computed in closed form, and more generally there are
efficient software packages for approximating it given samples from the two distributions
at hand, e.g., Schuhmacher et al. (2019). On the other hand, our framework is general
and other measures of posterior discrepancy could also be used, e.g., Kullback-Leibler
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Algorithm 1: General procedure for computing the mOPESS.

Step 1: Compute qbn ≡ qb(·|y) and qn ≡ q(·|y).
Step 2: For j = 1, . . . S:

Part a: Generate extra samples xall
L = xL ∪ x̃L from (3.3)–(3.4).

Part b: Compute qbm ≡ qb(·|x(m)) and qm ≡ q(·|x̃(m)), for m = n+ 1, . . . , L.

Part c: Compute the distances W2(m), W̃2(m), for m = n, . . . , L.

Part d: Calculate the OPESS M
(j)
n given by (3.1).

Step 3: Report the (estimated) mOPESS: Mn = 1
S

∑S
j=1 M

(j)
n .

(KL) divergence or mean squared error as adopted by Clarke (1996) and Reimherr et al.
(2014), respectively. General f -divergences (Ali and Silvey, 1966; Sason and Verdú,
2016), of which KL divergence is a special case, provide further options.

Algorithm 1 summarizes how to estimate the mOPESS in practice. In Step 2, S
denotes the number of realizations of the OPESS simulated. The procedure is widely
applicable and can be implemented for a large family of models beyond the specific
cases considered in this paper. Naturally, we use analytical forms of the posterior distri-
butions and the Wasserstein distances when available; otherwise, we use approximation
strategies such as importance sampling or Markov chain Monte Carlo (MCMC) meth-
ods (e.g., Marin and Robert, 2007; Liu, 2008; Brooks et al., 2011). For convenience,
in Algorithm 1 and the remainder of this paper, we use mOPESS to refer to the esti-

mate Mn = 1
S

∑S
j=1 M

(j)
n , as opposed to the theoretical posterior mean of the OPESS,

denoted M
T

n in (3.2).

3.3 Implementation and Discussion for the Gaussian Example

Algorithm 2 provides a detailed version of Algorithm 1 for the case of the Gaussian
example introduced in Section 2.3. We applied Algorithm 2 to 300 simulations of ȳn,
and set S = 10,000 in Step 2, i.e., for each value of ȳn, the value of Mn was computed
via 10,000 Monte Carlo samples of xall

L .

The left panel of Figure 2 shows the posteriors qn and qbn (dashed lines) for a single
example observed value of ȳn, with n = 20. The priors π and πb are also plotted (solid
lines). The right panel of Figure 2 shows the distribution of the mOPESS, i.e., of Mn,
across 300 datasets. Interestingly, in the current context Mn is quite variable and is
always higher than the nominal EPSS of 10 (vertical line). The nominal EPSS is 10
because of the following three information based analogies between the prior and data:
(i) if n = 10 then the Fisher information is n/σ2 = 1/λ2

0 = 10, (ii) if n = 10 then
ȳn ∼ π, and (iii) for any n, the posterior distribution is N (0, σ2/(n+ 10)).

In Section 4.1 we illustrate that there is a good explanation for this disagreement
with the nominal EPSS: classical information measures consider the prior in isolation
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Algorithm 2: mOPESS computation for Gaussian example.

Step 1: Compute the initial posterior distributions

qbn ≡ qb(·|y) = N
(
yn,

σ2

n

)
, (3.6)

qn ≡ q(·|y) = N
(
μn = (1− wn)μ0 + wnyn,

σ2

n+ z

)
, (3.7)

where wu = u/(u+ z), z = σ2/λ2
0.

Step 2: For j = 1, . . . S:

Part a: Generate extra samples xall
L = xL ∪ x̃L by drawing μ∗ ∼ qn and then

drawing xall
L from

p(xall
L |y, μ∗) =

L∏
m=n+1

m∏
i=n+1

N (x
(m)
i |μ∗, σ2)

m∏
i=n+1

N (x̃
(m)
i |μ∗, σ2).

Part b: For m = n+ 1, . . . , L, compute

qbm ≡ qb(·|x(m)) = N
(
xm,

σ2

m

)
, (3.8)

qm ≡ q(·|x̃(m)) = N
(
μm = (1− wm)μ0 + wmx̃m,

σ2

m+ z

)
. (3.9)

Part c: For m = n, . . . , L, compute the distances

W2(m) ≡ W2

(
qbm, qn

)
= Dm,n +

(
σ√
m

− σ√
n+ z

)2

, (3.10)

W̃2(m) ≡ W2

(
qm, qbn

)
= D̃n,m +

(
σ√
n
− σ√

m+ z

)2

, (3.11)

where Du,v = (x̄u − μv)
2, for u, v ∈ {m,n}, and x̄u = u−1

∑u
i x

(u)
i , μv =

(1− wu)μ0 + wux̄u, wu = u/(u+ z) (and D̃u,v is analogously defined).

Part d: Calculate the OPESS M
(j)
n given by (3.1).

Step 3: Report the (estimated) mOPESS: Mn = 1
S

∑S
j=1 M

(j)
n .

and can typically only correspond to the prior impact if there is no data. As soon
as some data are collected there is always some disagreement between the prior and
the data and therefore Mn is usually greater than the nominal EPSS, at least in the
current Gaussian conjugate model example. On the other hand, in the right panel of
Figure 1, the 5% quantile of Mn(x

all
L ) (dash-dot curve) shows that there often exist
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Figure 2: (Left) posteriors qn and qbn (dashed lines) and priors π and πb (solid lines)
for a single simulated dataset y. (Right) distribution of the mOPESS (Mn) across 300
simulated datasets. The vertical line shows the nominal EPSS of 10.

some realizations of xall
L such that the value of the OPESS Mn is less than the nom-

inal EPSS. Indeed, qbm may by chance be closest to qn after m − n < 10 additional
samples.

4 Method Justification and Theory for the Gaussian
Example

In this section we focus on the Gaussian conjugate model introduced in Sections 2.3
and 3.3, for which we derive theoretical results to justify our proposed method. These
results can be seen as general in the sense that the Bernstein von Mises Theorem
ensures that the posterior distribution is asymptotically Gaussian under mild conditions,
see Van der Vaart (2000) and references therein. On the other hand, the main role of
these results is to provide a foundation for understanding and developing the mOPESS,
and we emphasize that our method does not rely on asymptotic posterior normality
or consistency of the MLE (Maximum Likelihood Estimate). Indeed, our approach is
distinguished from many existing methods in that it is designed for small or moderate
sample size settings, in which the prior can substantially impact the inference.

4.1 Justification of Sampling Distribution for Extra Observations

Let r = m − n and denote the additional samples collected by s
(m)
1 , . . . , s

(m)
r , i.e.,

{x(m)
1 , . . . , x

(m)
m } = {y1, . . . , yn, s(m)

1 , . . . , s
(m)
r }. We write s̄r to denote 1

r

∑r
i=1 s

(n+r)
i .

Returning to the Gaussian conjugate model introduced earlier, we have

W2(m) =
(
μn − n

m
ȳn − r

m
sr

)2

+

(
σ√
m

− σ√
n+ z

)2

, (4.1)

W̃2(m) =

(
ȳn − n+ z

m+ z
μn − r

m+ z
s̄r

)2

+

(
σ√
n
− σ√

m+ z

)2

. (4.2)
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Recall that in our approach described in Section 3.1 the future samples are drawn from
the posterior predictive distribution (3.3)–(3.4) under π, meaning that

s̄r|ȳn, π ∼ N

(
μn,

(
1

r
+

1

n+ z

)
σ2

)
. (4.3)

In contrast to our approach, Morita et al. (2008) sample from the distribution of hy-
pothetical previous data and Reimherr et al. (2014) bootstrap the observed data. Our
proposed sampling method is therefore not the only option and in order to provide
justification for our choice it is instructive to consider the behavior of Mn under several
sampling methods. To investigate this, Proposition 4.1 below considers the case where
the empirical mean of the future samples s̄r is exactly equal to its theoretical mean,
denoted γ, e.g., γ = μn (the posterior mean) under our approach of sampling the future
observations from the posterior predictive distribution. If the behavior of Mn for s̄r= γ
does not make sense then there is little hope that the corresponding sampling method
is useful, and if it does make sense then the investigation may offer valuable insights.
The proof of Proposition 4.1 is given in Appendix A by Jones et al. (2021).

Proposition 4.1. Consider the conjugate Gaussian example, and suppose that s̄r = γ.
Let z denote the nominal EPSS. Under these settings we have the following results:

(a) (Posterior predictive sampling) If γ = μn, then Mn ≥ z.

(b) (Bootstrap sampling) If γ = ȳn, then there exists εl > εs > 0, such that Mn = z
whenever |ȳn − μn| < εs, and Mn < 0 whenever |ȳn − μn| > εl.

(c) (Prior sampling) If γ = μ0, then Mn = z.

Result (a) of Proposition 4.1 corresponds to our proposed method of sampling the
future samples from the posterior predictive distribution (3.3)–(3.4). The result is con-
sistent with the top right panel of Figure 1 in Section 2.3, which shows that the median
(dashed curve) value ofMn is always equal to or greater than z. To gain further intuition
consider the distance W2(m) under the conditions of Proposition 4.1:

W2(m) =
( n

m

)2

(μn − ȳn)
2
+

(
σ√
m

− σ√
n+ z

)2

. (4.4)

Inspecting (4.4) reveals that the second term captures the nominal EPSS: setting m =
n + z makes the standard deviation of the baseline posterior πb

m match that of the
conjugate posterior qn, so the second term of (4.4) equals zero, and thus giving z extra
samples to the baseline prior minimizes the second term. However, the first term of
(4.4) reveals that there is an intuitive reason for the value of Mn to often be larger

than z: disagreements between the prior and the data as captured by (μn − ȳn)
2
=

(z/(z + n))
2
(μ0 − ȳn)

2
mean that the two posteriors will not be centered in the same

location, and the (n/m)2 term in (4.4) suggests that greater agreement is expected to
be obtained by adding further samples to the baseline prior, i.e., by increasing m. Thus,
our definition of Mn correctly identifies that simply reporting the classical information
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content of the prior as determined by its standard deviation is not sufficient: we must
also take into account the impact of the prior location relative to the data. Of course,
the results in Proposition 4.1 also take account of W̃2(m), see Appendix A by Jones
et al. (2021) for details.

Bayesian methodology stipulates that the extra samples must be drawn from the
posterior predictive distribution, as above, but results (b) and (c) of Proposition 4.1
additionally reveal that several other natural approaches do not work well. Result (b)
supposes that γ = ȳn which corresponds to the case where the future observations are
sampled from the empirical distribution (bootstrap) or from the baseline posterior pre-
dictive distribution, i.e., the posterior predictive distribution under πb and conditional
on only y. The first part of result (b), Mn = z for ȳn ≈ μn, is similar to what is seen in
Figure 1. However, the second part of result (b), Mn < 0 for large |ȳn − μn|, does not
make sense in the current scenario firstly because z > 0 and secondly because intuitively
the prior impact is large when ȳn is far from μn. Reimherr et al. (2014) avoided this
problem by defining the EPSS so that negative values convey a disagreement between
the prior and the data, but there are limitations of their approach as discussed in Sec-
tion 2.2. Furthermore, there is always some disagreement between the data and the
prior so we find it conceptually more appealing to always have positive prior impact
(unless our prior is less informative than the baseline).

Result (c) of Proposition 4.1 corresponds to the case where the additional samples
are drawn from the conjugate prior distribution π: just as some might argue that the
future data sampling method should not be “contaminated” by the prior, others may
argue that it should not be “contaminated” by the data! Under the scenario of the
proposition, this sampling scheme yields Mn = z, which is at least never negative.
However, simply recovering the nominal EPSS regardless of the magnitude of |μ0 − ȳn|
does not convey differences in the impact of the prior, which is the purpose of having
a measure of prior impact. In summary, drawing the extra samples from the posterior
predictive distribution (3.3)–(3.4) seems to yield the most reasonable behavior.

4.2 Theoretical Posterior Distribution of the OPESS

To study the variation in the OPESS for a given observed dataset, we now derive
the theoretical distribution of the OPESS conditional on y for the Gaussian conjugate
posterior example discussed in Sections 2.3 and 3.3. More generally, the distribution of
the OPESS will typically be hard to derive, but it can be empirically approximated, see
Algorithm 1 Step 2.

Lemma 4.1 below gives the distribution of the distances W2(m) and W̃2(m) condi-
tional on ȳn and μ (drawn from qn, given by (3.7) in Algorithm 2). The proof is given
in Appendix B by Jones et al. (2021). We condition on both ȳn and μ because then the
two distances are independent which facilitates derivation of the OPESS distribution.
The distance distributions conditional on only ȳn are given in Appendix D by Jones
et al. (2021). Lemma 4.1 states that both distances follow shifted non-central χ2 dis-
tributions, whose non-centrality parameters depend on μ through λm and δm (given in
the lemma statement).
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Lemma 4.1. Conditional Distribution of Distances. Using the same notation as in

Algorithm 2, assume that xi
i.i.d.∼ N (μ, σ2), for i = n+ 1, . . . ,m. Then we have[

W2

(
qbm, qn

) ∣∣∣∣ȳn, μ] ∼ τmχ2
1

(
λm

τm

)
+ c2m,

where

c2m =

(
σ√
n+ z

− σ√
m

)2

, τm =
r

m2
σ2,

λm =

((
z

n+ z
− r

m

)
(ȳn − μ) + (1− wn)(μ− μ0)

)2

;

and [
W2

(
qm, qbn

) ∣∣∣∣ȳn, μ] ∼ κmχ2
1

(
δm
κm

)
+ c̃2m,

where

c̃2m =

(
σ√

m+ z
− σ√

n

)2

, κm = w2
mτm,

δm =

(
r + z

m+ z
(ȳn − μ) + (1− wm)(μ− μ0)

)2

.

Furthermore, conditional on ȳn and μ, W2

(
qbm, qn

)
and W2

(
qm, qbn

)
are independent.

Theorem 4.1 below gives the posterior distribution of the OPESS conditional on ȳn.

The proof is given in Appendix C by Jones et al. (2021). In the theorem statement, v

denotes a possible value of Mn (e.g., in the notation P (Mn = v|ȳn)), and t is a dummy

variable for the distance corresponding to Mn = v, i.e., the distance W2(n + v), if

v ≥ 0, and the distance W̃2(n + |v|), otherwise. The result gives a separate expression

for the case Mn = 0 because when m = n the distance between the posteriors (i.e.,

W2(n)) is not random, meaning that an integral over the distance dummy variable t

is not required. In the case v ∈ Z/{0}, the integrands specified are tractable because

the products are truncated at M(t) and M̃(t) (defined in Appendix C by Jones et al.

(2021)), which are finite for all values of t ≤ σ2/(n+ z).

Theorem 4.1. OPESS distribution. Let Fm,μ and F̃m,μ denote the cumulative distribu-

tion function of χ2
1

(
λm

τm

)
and χ2

1

(
δm
κm

)
, respectively. Furthermore, let hm,μ and h̃m,μ de-

note the conditional probability density function of W2(m) = W2

(
qbm, qn

)
and W̃2(m) =

W2

(
qm, qbn

)
, respectively, as given in Lemma 4.1. Lastly, let g(t, μ, v,M, M̃) denote the

function that gives P (min
m

(W2(m), W̃2(m)) > t|ȳn, μ) multiplied by the appropriate den-
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sity for t, i.e.,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

M(t)∏
m=n+1
m �=v+n

(1− Fm,μ(tm))

M̃(t)∏
m=n+1

(1− F̃m,μ(t̃m))hv+n,μ(t), if v ∈ Z>0;

M(t)∏
m=n+1

(1− Fm,μ(tm))

M̃(t)∏
m=n+1
m �=|v|+n

(1− F̃m,μ(t̃m))h̃|v|+n,μ(t), if v ∈ Z<0;

M(t)∏
m=n+1

(1− Fm,μ(tm))

M̃(t)∏
m=n+1

(1− F̃m,μ(t̃m)), if v = 0,

where tm = (t − c2m)/τm and t̃m = (t − c̃2m)/κm, and M and M̃ are known functions
(see Appendix C by Jones et al. (2021)). Then P (Mn = v|ȳn) is given by⎧⎪⎪⎪⎨⎪⎪⎪⎩

∫
R

∫
Tv

1{W2(n),W̃2(n),σ2/(n+z)≥t}g(t, μ, v,M, M̃)dt q(μ|ȳn)dμ, if v ∈ Z/{0},

1{W2(n)≤σ2/(n+z)}

∫
R

g(W2(n), μ, 0,M, M̃)q(μ|ȳn)dμ, if v = 0,

where Tv is R≥c2m
if v > 0 and R≥c̃2m

otherwise, and M(t) and M̃(t) are finite integers
for all values of t ≤ σ2/(n+ z).

Figure 3 shows two examples of the conditional posterior distribution of the OPESS
given ȳn and μ, where ȳn = μ = 0 in the left panel and ȳn = μ = 0.45 = 2σ/

√
n in the

right panel. We plot the conditional posterior distribution to gain intuition about how
the particular draw of μ from π impacts the conditional distribution of the OPESS.
This is important because in reality the value of μ is fixed but unknown, and it is
therefore valuable to understand how the distribution of the OPESS changes when we
simulate the future samples based on different fixed choices of μ. In Figure 3, the line-
dot density is a close Monte Carlo approximation to the theoretical conditional density
of the OPESS given ȳn and μ, and was obtained by simulating from the theoretical
conditional distributions of W2(m) and W̃2(m) and averaging the resulting values of
the integrand given in Theorem 4.1 (except in the case P (Mn = 0) for which no Monte
Carlo approximation is needed). The red crosses show the empirical distribution of the
OPESS obtained by directly applying the first two steps of Algorithm 1, except with
the modification that μ is fixed in Step 2(a). Figure 3 illustrates that for ȳn (and μ)
farther from the prior mean μ0 = 0 (right panel) the conditional OPESS distribution
has larger mean and is more right-skewed. This corroborates the numerical results seen
in Figure 1. For some values of ȳn and μ the conditional posterior distribution of the
OPESS is bi-modal, with one mode at positive values and one at negative values (not
shown). For other ȳn and μ, there is a mode at Mn = 0, which is prominent in examples
where the mOPESS is less than the nominal EPSS. Such scenarios are discussed further
in Section 5.2.
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Figure 3: Conditional OPESS distribution given ȳn = μ = 0 (left panel) and ȳn =
μ = 0.45 = 2σ/

√
n (right panel). The line-dot line shows the theoretical and empirical

distributions, respectively (see the main text for full details). The solid vertical line
shows the nominal EPSS (10), and the dash-dot and dashed vertical lines show the
mean conditional OPESS based on the theoretical and empirical distributions plotted,
respectively.

5 Examples Beyond the Gaussian Conjugate Case

5.1 Non-Conjugate Gaussian Model

We now investigate the properties of Algorithm 1 when using a non-conjugate prior
distribution for μ. The setting is identical to that outlined in Section 2.3, except that
we set the informative prior to be a t-distribution, πt(μ) ≡ T (μ|ν, μ0, λ

2
0). The degrees-

of-freedom parameter, ν, controls the heaviness of the tails, and μ0 and λ0 are location
and scale parameters, respectively. We set μ0 = 0 and λ2

0 = 0.1, and investigate two
choices of ν, namely, ν = 4, 100. As ν → ∞ the t-distribution density converges to a
Gaussian density, so for large ν we expect the relationship between the mOPESS and ȳn
to be similar to that seen in the top left-hand panel of Figure 2. However, for relatively
small values of ν, we expect the relationship between the mOPESS and ȳn to be different,
because in such cases both the posterior variance and the posterior skewness have non-
negligible dependence on ȳn − μ0 (in contrast to the conjugate Gaussian example of
Section 2.3).

The top-left panel of Figure 4 shows the relationship between the mOPESS and
ȳ, for the t-distribution prior πt. As in Section 2.3, the values of ȳ were chosen to
be the quantiles (k − 0.5)/100, for k = 1, . . . , 100, of its distribution, namely a zero
mean Gaussian with variance 1

n . The relationship for ν = 100, indicated by a solid red
line, mimics the quadratic curve shown in the top-left panel of Figure 1, but we see a
concave relationship for ν = 4, represented by a dashed black line. The latter pattern
shows that, for ν = 4, the mOPESS is smaller when |ȳn − μ0| is larger. This result can
be explained by the fact that the posterior variance of μ increases with |ȳn − μ0|, see
the upper right-hand panel of Figure 4 (dashed black line). We computed the posterior
variance for each (ν, ȳn) pair with Monte Carlo integration using 5×105 posterior draws
generated by RStan (Stan Development Team, 2020b,a). In the case of ν = 100 (solid
red line), the posterior variance of μ is nearly constant for all values of |ȳn − μ0|, and
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Figure 4: (Top left) mOPESS for πt ∝ T (μ|ν, 0, 0.1) with yi ∼ N (μ, 1), i ∈ [1, . . . , 20].
(Top right) Posterior variance for μ under πt. (Bottom left) Nominal EPSS of the
equivalent conjugate Gaussian prior for μ. (Bottom right) Excess mOPESS under πt.
In all plots the black points and dashed line correspond to ν = 4, while the red points
and solid line corresponds to ν = 100. The blue dotted line corresponds to a conjugate
normal prior with nominal prior sample size of 10.

tracks the constant posterior variance under the prior π(μ) ≡ N (μ|0, 0.1), shown by the
blue dotted line.

To gain further insight, we define the equivalent nominal EPSS of the t-distribution
prior by matching posterior variances, i.e., we define it to be the nominal EPSS of the
conjugate Gaussian prior π which yields the same posterior variance as under the t-
distribution prior πt. The bottom left panel of Figure 4 shows that when ν = 4 and
ȳn = −0.6, the equivalent nominal EPSS is 4 (dashed black line), whereas for ȳn near 0
it is 10. In contrast, the equivalent nominal EPSS of a t-distribution prior with ν = 100
(solid red line) is 10 for all ȳn ∈ [−0.6, 0.6], as in the case of a conjugate Gaussian prior
with z = 10 (shown as a dotted blue line overlapping with the solid red line).

The pattern described above suggests that subtracting the equivalent nominal EPSS
from the mOPESS might shed more light on the comparison between the cases ν = 4
and ν = 100. We call the quantity resulting from this subtraction the excess mOPESS.
The bottom right-hand panel in Figure 4 shows the excess mOPESS, and reveals that
the excess increases with |ȳn − μ0|. Indeed, the relationship is now seen to be what we
may have initially expected: a t-distribution prior with ν = 4 (dashed black line) has a
qualitatively similar, but smaller, impact than a t-distribution prior with ν = 100 (solid
red line).
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A third factor that is unexplored in the tetraptych above is the posterior skewness
of μ under the two values of ν. As |ȳn − μ0| increases, so too does the skewness of the
posterior for μ. Furthermore, the sensitivity of the posterior skewness to the quantity
ȳn − μ0 is a function of the degrees of freedom parameter ν. Skewness of the posterior
also impacts the OPESS. If we generate a μ from the tail of πt

n, thenMn is nearly certain
to be negative. For example, suppose that ȳn < μ0. Then our posterior πt

n will be right-
skewed. Consequently, Algorithm 1 will tend to generate more posterior draws from
the region μ � E[μ|ȳn, πt] than from the region μ � E[μ|ȳn, πt]. In the former region,

P (W2(m) < W̃2(m)|μ, ȳn, πt) is small because the extra samples generated from the
predictive distribution will decrease W2(qm, qbn), but will increase W2(q

b
m, qn), leading to

a negative value of Mn. Because the magnitude of the skewness decreases with |ȳn−μ0|,
smaller values of |ȳn − μ0| yield fewer negative Mn values.

5.2 Beta-Binomial Model

Suppose {yi, 1 ≤ i ≤ n} are independent observations taking values in the set {0, 1}. The
unknown parameter θ is the probability that yi = 1. We set the informative prior to be
π(θ) ≡ Beta(α, β), where α, β are known hyperparameters, and the baseline prior to be

πb(θ) ≡ Beta(1, 1). As before, x
(m)
i = yi for i = 1, . . . , n, and x

(m)
i | θ i.i.d.∼ Bernoulli(θ) for

i = n+1, . . . ,m (but since θ is unknown it is drawn from its posterior distribution when
computing the mOPESS, see Algorithm 1 Step 2(a)). Let qAn and qBm denote the posterior
distribution using the original data y = (y1, . . . , yn)

T and the expanded dataset x(m),
respectively, under priors A and B. Also define (FA

n )−1 and (FB
m )−1 to be the quantile

functions associated with these posterior densities. Then it can be shown that the 2-

Wasserstein distance between qAn and qBm is
(∫ 1

0
((FA

n )−1(u)− (FB
m )−1(u))2du

)1/2

, see

Theorem 2 in Cambanis et al. (1976). Unfortunately, this distance cannot be expressed
in closed form in the case of Beta distributions, but it can be approximated to high
precision using numerical integration, which is the approach we take.

In our simulations we set α = β = 5, which corresponds to a nominal EPSS of
α + β − 2 = 8. The subtraction of 2 highlights that the standard nominal EPSS is
relative to the prior sample size of the flat prior Beta(1, 1), which is also our baseline
prior πb. To investigate the prior impact across different datasets, we sample 1,000
datasets of size n = 20 with replacement from the sex ratio dataset presented in Section
2.4 of Gelman et al. (2013). The sex ratio dataset consists of the biological sexes of 980
babies born to mothers with placenta previa: 437 of the babies are female, a proportion
of 0.446 of the total.

The top left panel of Figure 5 shows the mOPESS values obtained across the 1,000
simulated datasets. The Mn estimates have a similar pattern as in the Gaussian conju-
gate model of Section 2.3, except that Mn is less than the nominal EPSS for datasets
with ȳn = 0.5. The top right panel of Figure 5 shows that the median of the posterior
distribution of Mn is similar to the mean. It also shows that the posterior distribution is
much wider for datasets with means near 0.1. This is due to the fact that the posterior
distribution of θ is strongly right skewed when ȳn is much less than the prior mean of
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Figure 5: (Top left) mOPESS as a function of ȳn. Each point corresponds to one of the
1,000 simulated datasets. (Top right) Quantiles of the posterior distribution of Mn as
a function of ȳn including the median (dashed black curve), 95% quantile (long dash
green curve), and 5% quantile (dash-dot blue curve). The horizontal solid line shows
the nominal EPSS of 8. (Bottom left and right) Comparison of the posteriors qn and
qbn and their respective priors in the case where ȳn = 0.1 and ȳn = 0.5, indicated in the
top left panel by a green “+” and cross, respectively.

0.5. The skewness is in turn reflected in the future observations xall
L , which are simulated

conditional on a draw of θ, and this results in large posterior uncertainty for Mn. In
particular, the right-skewness of qbn means that a large number of future samples can be
needed to move the distribution to the right, resulting in some large OPESS values, and
the right-skewness of qn means that future samples to the left can substantially shift
it, which results in some negative OPESS values. That posterior skewness is reflected
in the resulting OPESS distribution is a strength of our approach. Indeed, the large
spread in the posterior distribution of Mn corresponds to genuine uncertainty about
the number of extra samples that need to be collected in order to minimize the distance
between qn and qn (or qm and qbn).

Next, we examine the relationship between the mOPESS and the nominal EPSS in
two cases, namely, those where the prior mean and ȳn are highly discrepant and perfectly
aligned, respectively. The top left panel of Figure 5 indicates a simulated dataset for
which ȳn = 0.1 (green “+”), and the bottom left panel shows the corresponding initial
posterior distributions qn and qbn (as well as the prior distributions). In this case, the
mOPESS value is high (around 12) because the initial posteriors are very different. The
bottom right panel of Figure 5 shows an analogous plot for a dataset with ȳn = 0.5, i.e.,
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that labeled with green cross in the top left panel. In this case, the initial posteriors are
very similar, which is why the mOPESS value is low (approximately 7.5, the variation
across datasets is due to Monte Carlo error). In particular, the mOPESS value is less
than the nominal EPSS of 8, a phenomenon that did not occur in the Gaussian conjugate
model example of Section 2.3 for any of the datasets considered.

The low mOPESS value occurs here due to circumstances that arise, in this case,
due to the discreteness of the data and the future data, as we now explain. The data
mean ȳn exactly matches the mean of the prior π, which in turn makes the means of qn
and qbn exactly equal. Thus, qn and qbn are very similar to begin with, and it is unclear
whether adding more samples to one of these posteriors will further reduce the distance
between them. Adding more samples to the baseline posterior qbn could reduce the width
of the distribution, and therefore may lead to greater agreement with qn. However, the
discrete nature of the data means that one additional sample with value one or zero
will necessarily move the posterior mean away from 0.5, therefore potentially increasing
the 2-Wasserstein distance between the two posteriors. Of course, if we draw an even
number of extra samples then their average may be close to 0.5, so a reduction in the
width of the baseline posterior qbn may be achieved without any substantial change in
the mean. However, based on the nominal EPSS value, the approximate number of
extra samples needed for matching the posterior widths is 8, but the probability of
achieving an average of 0.5 (or very close to this) when drawing around 8 samples is not
sufficiently high, and consequently the distance W (n) is often smaller than W2(m) and

W̃2(m) for all m > n. Thus, for many simulations of xall
L , we have Mn = 0, meaning

that the mOPESS Mn is shrunk towards zero.

In summary, the mOPESS may be less than the nominal EPSS when the means of the
initial posteriors qn and qbn are very similar relative to the size of z. In particular, adding
extra samples to one posterior may not reduce the 2-Wasserstein distance between the
two posteriors because: (i) if few extra samples are added then the variability in their
mean can introduce discrepancies between the posterior means, and (ii) adding many
extra samples will introduce discrepancies in the spreads since the initial discrepancy
will be over-corrected. Thus, the smallest distance between the posteriors may often be
achieved when Mn = 0, in which case Mn will be small in magnitude. Note that this
phenomenon can occur in the Gaussian conjugate model example if n � z (whereas in
Section 2.3 we set n = 2z).

5.3 Simple Linear Regression Model

We now consider the setting of a simple linear regression model:

Yi|β, ωi ∼ N (β1 + β2ωi, σ
2), ωi ∼ N (0, 1), (5.1)

for i = 1, . . . , n, where σ2 is known, and β = (β1, β2)
′ are the unknown model param-

eters. We note that in simple linear regression models, distributional assumptions on
covariates are typically not made. We assume that the distribution of the covariates ωi

is known in order to simplify the algorithm for generating hypothetical samples. Let
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Figure 6: (Left) mOPESS as a function of ‖β̂n − η0‖2, where η0 = 0. Each point
corresponds to one of the 1,000 simulated datasets. (Right) Quantiles of the posterior
distribution of Mn as a function of the L2-norm including the median (dashed curve),
95% quantile (long-dashed curve), and 5% quantile (dash-dot curve). The solid red line
is the same as in the left panel and the horizontal line shows the nominal EPSS (10).

our informative prior π(β) be:

π(β) = N (η0,Σ0) , where Σ0 =

[
τ21 0
0 τ22

]
,

and η0 = (μ0, γ0)
′ and τ1, τ2 are known hyperparameters. Thus, the nominal EPSS

for βi is given by σ2/τ2i = zi, for i ∈ [1, 2]. We set the baseline prior to be πb(β) ∝
1. Define the mth set of hypothetical samples as {(y(m)

i , ω
(m)
i ), i ∈ {1, . . . ,m}} with

{(y(m)
i , ω

(m)
i ) = (yi, ωi), i ∈ {1, . . . , n}} for all m. For i > n, the hypothetical samples

(y
(m)
i , ω

(m)
i ) are generated from (5.1) conditional on a draw of β from the posterior

distribution qn. Given that the model is composed of Gaussian conjugates, the posteriors
{πu(β), π

b
u(β), n ≤ u ≤ L} are also Gaussian. Closed expressions for the posterior

distributions and corresponding Wasserstein distances are given in Appendix E by Jones
et al. (2021). Thus, it is straightforward to apply Algorithm 1 to compute the mOPESS.

Our linear regression model simulation study is similar in design to that for the
Beta-Binomial model in Section 5.2. We observe n = 20 samples from the model (5.1),
with σ2 = 1, and β1 = β2 = 0. We set z1 = z2 = 10, so the nominal EPSS of π is 10.

As can be seen in Figure 6, the mOPESS increases with ‖β̂n−η0‖2, i.e., the L2-norm
of the ordinary least squares estimator less the prior mean. We use a one-dimensional
summary of the two-dimensional measure β̂n−η0 to ease visualization, and to account

for the fact that the joint prior can be influential even if only one element of β̂n disagrees
with the corresponding marginal prior.

Indeed, Figure 7 shows how the mOPESS can vary even when conditioning on a
small interval of (β̂n)[1] − μ0, or (β̂n)[2] − γ0. In the left panel, we see that for values

of (β̂n)[1] − μ0 that are near zero, there is still quite a range of mOPESS values. Thus

the mOPESS is influenced not only by (β̂n)[1] − μ0, but also the disagreement between

γ0 and (β̂n)[2]. For example, the maximum mOPESS value in the left panel, indicated

by the cross, occurs at a value of (β̂n)[1] − μ0 which is not extreme. Turning to the
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Figure 7: (Left) mOPESS as a function of the of (β̂n)[1] − μ0 (in this case μ0 = 0).

(Right) mOPESS (Mn) as a function of (β̂n)[2] − γ0 (in this case γ0 = 0). Each point
corresponds to one of the 1,000 simulated datasets. The cross symbol indicates the
maximum observed mOPESS across all 1,000 simulation studies, ≈ 19.

right panel in Figure 7, which shows the mOPESS versus (β̂n)[2] − γ0, we see that the

maximum mOPESS occurs at the maximum observed value of (β̂n)[2] − γ0 (because

the maximum value of this discrepancy is large compared to that for (β̂n)[1] − μ0). In
summary, the mOPESS generalizes to two dimensions as we would expect it to, with
joint dependence on β̂n − η0.

6 Summary
In this paper, we have proposed the mean Observed Prior Effective Sample Size
(mOPESS) as a measure of the impact of the prior distribution on the Bayesian analysis
at hand. Our measure is different from other methods proposed in literature in that we
condition on the observed data, instead of averaging over the data. Furthermore, we do
not rely on asymptotic results, meaning that our method can be applied to small or
moderate sample size settings, where the prior impact is largest and of most interest in
practice.

Supplementary Material
Appendix for “Quantifying Observed Prior Impact” (DOI: 10.1214/21-BA1271SUPP;
.pdf).
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