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On Global-Local Shrinkage Priors for Count
Data∗

Yasuyuki Hamura†, Kaoru Irie‡, and Shonosuke Sugasawa§

Abstract. Global-local shrinkage priors have been recognized as a useful class
of priors that can strongly shrink small signals toward prior means while keep-
ing large signals unshrunk. Although such priors have been extensively discussed
under Gaussian responses, in practice, we often encounter count responses. Pre-
vious contributions on global-local shrinkage priors cannot be readily applied to
count data. In this paper, we discuss global-local shrinkage priors for analyzing
a sequence of counts. We provide sufficient conditions under which the posterior
mean is unshrunk for very large signals, known as the tail robustness property.
Then, we propose tractable priors to satisfy those conditions approximately or
exactly and develop a custom posterior computation algorithm for Bayesian infer-
ence without tuning parameters. We demonstrate the proposed methods through
simulation studies and an application to a real dataset.

Keywords: heavy tailed distribution, Markov Chain Monte Carlo, Poisson
distribution, tail robustness.

1 Introduction

High-dimensional count data appear in various scientific fields, including genetics, epi-
demiology, and social science. Frequently, in such data, many counts are moderate except
for some outliers (very large counts). For example, in crime statistics, the number of
occurrences of a specific crime is likely to be small or moderate in many regions. Yet, one
observes several regions with unexplained high crime rate. Detecting such “hotspots”
is undoubtedly of interest in crime statistics. In this context, using a Poisson-gamma
model is inappropriate as the gamma prior shrinks all observations uniformly, includ-
ing the large signals. Hence, meaningful regions with large signals may be overlooked.
A desirable prior should therefore account for both small and large signals, and realize
flexible shrinkage effects on Poisson rates.

This type of priors has been studied as global-local shrinkage priors for Gaussian ob-
servations. Most notably, the horseshoe prior (Carvalho et al., 2010) has been proposed
to detect sparse signals in high-dimensional continuous observations. In hierarchical
models, these priors have been adopted for random effect distributions in small area
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estimation (Tang et al., 2018) or default Bayesian analysis (Bhadra et al., 2016). For
recent developments, see Bhadra et al. (2019) and the references therein.

While extensively studied for Gaussian data, global-local shrinkage priors have not
been fully developed for count data. This is despite the wide usage of hierarchical
Poisson models in applications such as disease mapping (e.g., Wakefield, 2006; Lawson,
2013). The theory related to the Poisson likelihoods has been well developed (e.g.,
Brown et al., 2013; Yano et al., 2018), but not necessarily from the viewpoint of global-
local shrinkage. The conjugate gamma priors for the Poisson rate parameters have been
routinely adopted in practice: the global-local shrinkage is modeled via hyperpriors
for the gamma scale parameters (e.g., Zhu et al., 2019). In this context, Datta and
Dunson (2016) studied the use of the generalized hypergeometric distribution for the
scale parameter and its shrinkage effect, focusing on the analysis of zero-inflated count
data. In contrast, our research is concerned with the heavy-tail property of global-local
shrinkage priors, which ensures large signals are exempt from being shrunk.

Our objective is to consider the effect of the hyperprior on the posterior means of
Poisson rates in terms of their robustness. To do this, we first define the mathematical
concept of tail-robustness for the Bayes estimators. A robust Bayes estimator should
keep large signals unshrunk while strongly shrinking the small signals toward prior
means. We formally define this concept as tail-robustness in equation (2.3). Sufficient
conditions for tail-robustness are given in Theorem 2.1 and Corollary 1.

Our class of priors to be utilized is restricted by the tail-robustness requirement
for the Bayes estimators. The conditions in Theorem 2.1 reveal the importance of lo-
cal shrinkage induced by the individual scale parameter of the gamma distribution
customized for each Poisson rate. The theorem supports the use of two classes of hy-
perpriors proposed in Section 3: the inverse-gamma prior and the newly introduced
extremely heavy-tailed prior. The inverse-gamma prior is a well-known distribution and
can be easily integrated into the model. The asymptotic bias for large signals is shown
to be negligible. Hence, the inverse-gamma prior is “approximately” tail-robust. The ex-
tremely heavily tailed prior is a new class of probability distributions that, in contrast
to the inverse-gamma prior, satisfies the conditions for tail-robustness and is exactly
tail-robust. Both priors are conditionally conjugate for most parameters in the model.
This allows for a fast and efficient posterior analysis using the Gibbs sampler.

In the numerical study of our paper, we demonstrate the theoretically guaranteed
properties of tail-robustness for those priors in a setting where the standard Poisson-
gamma model suffers from over-shrinkage of the Bayes estimators in the presence of
outliers. We empirically show the differences between the two proposed priors: the
inverse-gamma prior is better in the point estimations for small signals and has a greater
shrinkage effect toward the prior mean; meanwhile, the extremely heavy-tailed prior is
successful in quantifying the uncertainty for large counts, as shown in the coverage
rates of posterior credible intervals. Despite this difference, both priors perform almost
equally in the analysis of the actual crime data in Japan by detecting the crime hotspots
that are overlooked by the Poisson-gamma models.

The rest of the paper is organized as follows. In Section 2, we define the model
and tail-robustness, and derive sufficient conditions for local priors to satisfy the tail-
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robustness. In Section 3, we propose two local priors and provide efficient posterior
computation algorithms using Gibbs sampling. We further discuss some properties of
the implied marginal priors and posteriors of the Poisson rate. Section 4 describes the
numerical experiments for the extensive comparison of the proposed priors and other
commonly used priors/estimators under various settings. Section 5 presents an appli-
cation using the real crime data of the Tokyo metropolitan area in Japan. The R code
implementing the proposed method is available at our GitHub repository (https://
github.com/sshonosuke/GLSP-count).

2 Tail-robustness under count responses

2.1 Hierarchical models for count data

Our model has the following hierarchical representation, wherem observations y1, . . . , ym
are conditionally independent and modeled as,

yi|λi ∼ Po(ηiλi), λi|ui ∼ Ga(α, β/ui), ui ∼ π(ui), (2.1)

for i = 1, . . . ,m, where Po(ηiλi) is the Poisson distribution with rate ηiλi, and
Ga(α, β/ui) the gamma distribution with shape α and rate β/ui whose (conditional)
mean is uiα/β. In addition, ηi ∈ (0,∞) is a known offset, (α, β) ∈ (0,∞)2 are the
hyperparameters, and ui ∈ (0,∞) is a local scale parameter. The offset term, ηi, can
be a structured part characterizing dependence on covariates, as we will examine in
Section 5. Next, we set ηi = 1 for simplicity. The two rate parameters of the gamma
prior, β and u−1

i , control the global and local shrinkage effects, respectively. Under this
model, the Bayes estimator of Poisson rate λi is the posterior mean

λ̃i = E
[ ui

β + ui
(α+ yi)

∣∣∣yi]
= yi − E

[ β

β + ui

(
yi −

αui

β

)∣∣∣yi], (2.2)

where the expectation is taken with respect to the marginal posterior of ui so that the
conditional posterior mean of λi shrinks yi toward the prior mean αui/β. Throughout
the paper, we consider proper priors for ui only. The use of improper priors for ui results
in an improper marginal of λi. Furthermore, the posterior distribution of λi will not
successfully reflect the prior information and will fail to produce a satisfactory Bayes
estimator.

2.2 Tail-robustness of the posterior mean

We consider the appropriate choice of the prior π(ui) in terms of the shrinkage effect

realized in the Bayes estimator λ̃i. As stated in the introduction, the estimator should
not shrink toward the prior mean when a large signal is observed. This property is named
as tail-robustness (e.g., Carvalho et al., 2010). The tail-robustness is mathematically
defined by the following condition:

lim
yi→∞

|λ̃i − yi| = 0. (2.3)

https://github.com/sshonosuke/GLSP-count
https://github.com/sshonosuke/GLSP-count
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This means that the (mean) absolute error loss tends to zero as yi → ∞. For fixed ui,
the Bayes estimator (α+yi)/(1+β/ui) clearly loses the tail-robustness. This motivates
the hierarchical model with the prior π(ui) on ui. Throughout this paper, our primary
interest is in the property defined in equation (2.3). Nevertheless, there are other defini-
tions of tail-robustness related to various loss functions. We discuss this issue in detail
in Section S3 of the Supplementary Materials (Hamura et al., 2021).

To consider the tail-robustness, the next theorem is useful in evaluating the asymp-
totic bias limyi→∞(λ̃i− yi) for a variety of priors. The proof is given in Sections S1 and
S2 of the Supplementary Materials.

Theorem 2.1. Assume that π(·) is strictly positive and continuously differentiable.
Suppose that π(·) satisfies the following two conditions:∫ 1

0

|uπ′(u)|du < ∞, (A1)

ξ ≡ lim
u→∞

uπ′(u)

π(u)
exists in [−∞,∞]. (A2)

Then the asymptotic bias of λ̃i is 1 + ξ, that is,

lim
yi→∞

(λ̃i − yi) = 1 + ξ.

The asymptotic bias of λ̃i under yi → ∞ can be characterized by the tail behavior
of the mixing distribution π(·). This condition is similar to but significantly different
from that of Gaussian response (e.g., Tang et al., 2018). From Theorem 2.1, it follows
that ξ = −1 is the sufficient condition for the estimator to be tail-robust, and this is
summarized in the following corollary.

Corollary 1. Under the conditions (A1) and

lim
u→∞

uπ′(u)

π(u)
= −1, (A3)

the Bayes estimator λ̃i is tail-robust and satisfies |λ̃i − yi| → 0 as yi → ∞.

The crucial assumption in the above corollary is (A3). This describes the desirable
tail behavior of the prior distribution of ui. In fact, (A3) is sufficient for ψ(u) = uπ(u)
to be slowly varying as u → ∞, that is, limu→∞ ψ(κu)/ψ(u) = 1 for all κ > 0 (e.g.,
see Seneta, 1976, equation (1.11)). This implies that, for the marginal prior p(λi) =∫ ∞
0

Ga(λi|α, β/ui)π(ui)dui, we have λip(λi) ∼ λiπ(λi) as λi → ∞ under the regularity
condition that justifies the interchange of the limit and integral. In other words, under
this assumption, the marginal densities of λi and ui are asymptotically equivalent in
their tails.

An example of priors that satisfies assumption (A3) is π(u) ∝ 1/u. In many cases,
(A3) requires priors to be of this form; see Section S4 of the Supplementary Materials
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for more details. However, this prior is improper. In other words, π(·) must be extremely

heavy-tailed for λ̃i to be tail-robust. In contrast, (A1) is merely a technical requirement
for the proof.

One notable feature imposed by Corollary 1 is that the sufficient conditions for
the tail-robustness, (A1) and (A3), are independent of the values of hyperparameters
α and β. This setting about the hyperparameters greatly differentiates our proposed
approach from those in other studies, for example, Proposition 1 of Datta and Dunson
(2016), where the tail-robustness is discussed for the limiting values of hyperparameters,
that is, β → ∞ or β → 0.

3 Global-local shrinkage priors for count data

3.1 Proposed priors

Under the hierarchical model (2.1), we propose two families of priors for ui. Each is
indexed by a hyperparameter γ ∈ (0,∞), which can be estimated in practice.

The first prior is the inverse gamma (IG) prior given by following density:

πIG(ui; γ) =
γγ

Γ(γ)

1

ui
1+γ

e−γ/ui , (3.1)

where γ > 0. This prior is denoted by IG(γ, γ). It is proper and conditionally conjugate,
which simplifies the posterior computation by Markov Chain Monte Carlo (MCMC)

methods. From Theorem 2.1, it follows that limyi→∞(λ̃i−yi) = −γ. This indicates that
the IG prior approximately satisfies the tail-robustness when γ is small. Both shape and
rate parameters of the proposed IG prior are γ, so that we have E[1/ui] = 1 and the
parameter β in equation (2.1) is identified as the global shrinkage factor.

Next, we introduce the extremely heavy-tailed (EH) prior, defined by the following
density

πEH(ui; γ) =
γ

1 + ui

1

{1 + log(1 + ui)}1+γ
, (3.2)

for γ > 0. The EH prior can be seen as a modification of the scaled-beta prior (Arma-
gan et al., 2011); the details on the connection to the scaled-beta prior are discussed in
Section S4 of the Supplementary Materials. The additional logarithm function in equa-
tion (3.2) contributes to the integrability of the density function. The use of log-terms
is often seen in the literature on decision-theoretic statistical theory (for example, see
Maruyama and Strawderman 2020, Remark 4.1). This prior is proper because∫ ∞

0

πEH(u; γ)du =
[
− {1 + log(1 + u)}−γ

]∞
0

= 1.

The notable property of the EH prior is that this distribution is exactly tail-robust.
This is because it satisfies the condition of Corollary 1 since

uπEH
′(u; γ)

πEH(u; γ)
= u

{
− 1

1 + u
− 1 + γ

1 + log(1 + u)

1

1 + u

}
→ −1,

as u → ∞.
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The densities and tail-behaviors of the proposed priors are summarized in Table 1
together with those of the Gauss hypergeometric (GH) prior considered in Datta and
Dunson (2016). The GH prior is dependent on the global rate parameter β, but its
density tail (the asymptotic functional form of the density as ui → ∞) is independent
of β and identical to that of the half-Cauchy prior (Carvalho et al., 2010). The density
tail of the EH prior is heavier than those of the GH and IG priors regardless of γ. This
difference originates from the log-term in the EH density and is essential for the exact
tail-robustness of the EH prior.

Density kernel of ui Density tail as ui → ∞
GH(1/2, 1/2, γ, 1/β) u

−1/2
i (1 + ui)

−γ(β + ui)
γ−1 u

−3/2
i

IG(γ, γ) u
−(γ+1)
i e−γ/ui u

−(γ+1)
i

EH(γ) (1 + ui)
−1{1 + log(1 + ui)}−(1+γ) u−1

i (log ui)
−(1+γ)

Table 1: Densities of GH, IG, and EH priors.

Finally, we note the parametrization by κ = 1/(1 + u) ∈ (0, 1), which also clarifies
the difference between the proposed priors and others. The implied density of the EH
prior in the scale of κ is πEH(κ) = γκ−1/{1 + log(1/κ)}1+γ . This expression shows
that the EH prior can be viewed as an extension of the improper beta prior, Be(0, 1).
The resulting EH prior is proper; the additional log-term in the density of the EH prior
ensures the propriety. The other priors, including the half-Cauchy prior, remain in the
class of beta distributions in κ-scale and do not have log-terms in their densities.

3.2 Posterior computation

The computation of the Bayes estimator is based on MCMC methods. Because the
proposed priors are mostly conditionally conjugate, sampling from most conditional
posterior distributions is straightforward. Here, we outline the posterior sampling pro-
cedure with the proposed priors. The detailed step-by-step Gibbs sampler algorithm
(partially collapsed Gibbs sampler, van Dyk and Park, 2008) is described in Section S7
of the Supplementary Materials.

We first discuss the parameters (λ1:m, α, β), which are included in all models regard-
less of the choice of priors for ui. In practice, we assign prior distributions for α and β in
practice. Here, we consider the gamma priors; α ∼ Ga(aα, bα) and β ∼ Ga(aβ , bβ). We
set aα = bα = aβ = bβ = 1 as default and will use this choice of the hyperparameters in
the numerical studies in Sections 4 and 5. While the gamma prior for β is conditionally
conjugate, the gamma prior for α is not. However, using the augmentation technique by
Zhou and Carin (2013), we can derive an efficient Gibbs sampling method as described
in Section S7 of the Supplementary Materials.

For the model with the IG prior, the scale parameter ui has a known conditional
posterior, while the conditional posterior of the hyperparameter γ is difficult to di-
rectly sample from. Several computationally sophisticated options are available for the
sampling of γ. However, we simply use the random-walk Metropolis-Hastings method
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with the uniform prior γ ∼ U(ε1, ε2) for fixed small ε1 > 0 and large ε2 > 0. We set
ε1 = 0.001 and ε2 = 150 as default.

The new EH prior is not conditionally conjugate for ui, despite its simple closed
form density function in equation (3.2). To develop an efficient sampling algorithm, we
introduce a novel augmentation approach using two positive valued latent variables vi
and wi, given by the following integral formula:

πEH(ui; γ) =

∫∫
(0,∞)2

πEH(ui, vi, wi; γ)dvidwi,

where

πEH(ui, vi, wi; γ) = Ga(ui|1, vi)Ga(vi|wi, 1)Ga(wi|γ, 1)

=
wγ−1

i vwi
i

Γ(γ)Γ(wi)
exp {−wi − vi(1 + ui)} .

Using the above expression, we see that the full conditional distribution of ui is the
generalized inverse Gaussian (GIG) distribution. We can also obtain familiar forms of
the conditional posterior distributions of the other parameters, (vi, wi). Further details
are in Section S7 of the Supplementary Materials. For the shape parameter γ in the EH
prior, we use the gamma prior γ ∼ Ga(aγ , bγ) which is conditionally conjugate. We set
aγ = bγ = 1 for simplicity.

3.3 Marginal prior distributions for λi

Here, we consider the behavior of the marginal density of λi in the limit of λi → ∞ and
λi → 0. Note that information on the behavior of the marginal density of λi around
zero is also important to understand the amount of shrinkage effect toward zero. We
discuss this here.

Under a general prior π(ui; γ), the marginal prior distribution for λi is given by

p(λi;α, β, γ) =

∫ ∞

0

βα/ui
α

Γ(α)
λi

α−1e−(β/ui)λiπ(ui; γ)dui

=
βα

Γ(α)

∫ ∞

0

1

xα
e−β/xπ(λix; γ)dx.

We continue the computation of this density for the two classes of priors: πIG and πEH .

For the IG prior π(ui; γ) = πIG(ui; γ), we have

p(λi;α, β, γ) =
(β/γ)α

B(α, γ)

λi
α−1

{1 + (β/γ)λi}α+γ
.

This implies the beta distribution, namely, (β/γ)λi/{1 + (β/γ)λi} ∼ Beta(α, γ). Re-
garding the tail property of the marginal density, we have p(λi;α, β, γ) = O(λi

−1−γ) as
λi → ∞. For a sufficiently small γ, the marginal prior of λi can be heavily tailed and
almost equivalent to λ−1

i in the tail. This observation is coherent with the γ-dependent

asymptotic bias of the Bayes estimator, limyi→∞(λ̃i − yi) = −γ.
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Note that due to the heavy tail of this density, the prior mean of λi does not exist if
γ ≤ 1, as is easily verified by the direct computation. In this situation, it is difficult to
interpret the prior from the viewpoint of shrinkage. This is because the prior mean (to
which the estimator is shrunk) does not exist. For those who prefer priors with finite
means, we recommend the modification of the IG prior to IG(γ + 1, γ), γ > 0. This
instead increases the asymptotic bias slightly to −γ − 1. In contrast, the density at the
origin depends on the value of α. In particular, limλi→0 p(λi;α, β, γ) = ∞ for α < 1,
while the limit becomes a positive constant for α = 1 and zero for α > 1. This helps in
interpreting the choice of, or the posterior inference for, hyperparameter α.

For the EH prior, the marginal density is evaluated around zero as follows. For
π(ui; γ) = πEH(ui; γ), we have

p(λi;α, β, γ) =
βαγ

Γ(α)

∫ ∞

0

e−β/x

xα

1

1 + λix

1

{1 + log(1 + λix)}1+γ
dx

→ βαγ

Γ(α)

∫ ∞

0

e−β/x

xα
dx

=

{
(α− 1)−1βγ if α > 1

∞ if α ≤ 1

as λi → 0, by the monotone convergence theorem. Thus, limλi→0 p(λi;α, β, γ) > 0 and
non-decreasing as α → 0, implying the stronger shrinkage of small signals toward the
global prior mean for small α. For the tail property, we have

lim
λi→∞

p(λi;α, β, γ)

πEH(λi; γ)
=

βα

Γ(α)

∫ ∞

0

e−β/x

xα

[
lim

λi→∞

1 + λi

1 + λix

{ 1 + log(1 + λi)

1 + log(1 + λix)

}1+γ]
dx

=
βα

Γ(α)

∫ ∞

0

e−β/x

xα+1
dx = 1.

Therefore, p(λi;α, β, γ) ∼ πEH(λi; γ) ∼ γλi
−1(log λi)

−1−γ as λi → ∞. This means that
the marginal prior p(λi;α, β, γ) is proper but has a sufficiently heavy tail so that the
model can accommodate large signals. For the computations verifying these results, see
Section S5 of the Supplementary Materials.

The marginal distributions of λi with α = β = 2 under the proposed IG and EH
priors with γ = 1 and γ = 0.5, and the GH prior with γ = 1 are visually illustrated in
Figure 1. The IG prior with γ = 0.5 has the almost same tail-behavior as the GH prior.
This is because the tail-behavior of the density of ui under the IG prior with γ = 1 is
equivalent to that of GH as shown in Table 1. Moreover, the density tail under the EH
prior is heavier than those under the IG and GH priors, which is also consistent with
Table 1.

3.4 Marginal posterior distributions for λi

We briefly describe the flexibility of the proposed prior distributions compared with the
conventional gamma prior for λi. The conditional posterior distribution of λi given ui is
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Figure 1: Left: Marginal densities of λi with α = β = 2 under the Gauss hypergeometric
prior (GH) with γ = 1, inverse-gamma priors with γ = 1 (IG1) and γ = 0.5 (IG2), and
extremely heavily-tailed priors with γ = 1 (EH1) and γ = 0.5 (EH2). The GH and EH
densities are evaluated by the Monte Carlo integration. Right: The marginal densities
of the five prior distributions in the tail. The vertical axis is logarithmic.

Ga(yi+α, 1+β/ui) under the model (2.1). Therefore, the marginal posterior distribution
of λi is obtained as the mixture of the gamma distribution with respect to the marginal
posterior distribution of ui. Note that the use of the gamma prior distribution for λi with
no hierarchical prior (and ui = 1) leads to the posterior distribution Ga(yi + α, 1 + β).
We set α = β = 2 and show the marginal posterior density of λi with several values
of yi in Figure 2. Notably, under a moderate signal, such as yi = 1, the posterior
distributions of λi are almost the same among the conventional gamma prior and the
proposed global-local shrinkage priors. In contrast, under large values of yi, the posterior
densities of the proposed methods are significantly different from the one based on the
gamma prior. The proposed priors flexibly shift the posterior location toward large
signals, while the gamma prior over-shrinks the posterior density toward zero. As noted
in the previous section, the hyperparameter γ in the inverse gamma (IG) distribution is
directly related to the asymptotic bias. Furthermore, Figure 2 shows that the IG prior
with the smaller γ produces heavier-tailed posterior density functions than that with
the larger γ.

4 Simulation study

We here investigate the finite sample performance of the proposed method together
with some existing methods. We generated the independent sequence of counts from
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Figure 2: Marginal posterior distributions for λi with α = β = 2 based on the con-
ventional gamma prior (PG), the proposed inverse gamma prior with γ = 1 (IG1) and
γ = 0.5 (IG2), and the proposed extremely heavy-tailed prior with γ = 1 (EH1) and
γ = 0.5 (EH2). Each row corresponds to a difference value of yi ∈ {1, 5, 10, 15}.
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yi ∼ Po(λiηi) for i = 1, . . . ,m with m = 200. The adjustment term ηi was generated
from U(1, 5), and assumed to be known. For the generating process for λi, we considered
this mixture: λi ∼ (1−ω)f0+ωf1, where f0 and f1 denote distributions of moderate and
large signals, respectively. Note that ω denotes the proportion of large signals (outliers).
For the settings of f0 and f1, we adopted the following four scenarios:

(I) f0 = Ga(2, 2), f1 = Ga(10, 2)

(II) f0 = 0.75Ga(2, 2) + 0.25δ(1), f1 = Ga(10, 2)

(III) f0 = 0.5Ga(2, 2) + 0.5δ(1), f1 = Ga(10, 2)

(IV) f0 = U(0, 2), f1 = 4 + |t3|,

where δ(1) is the point mass on 1, U(0, 2) is the uniform distribution on [0, 2], and t3 is
the t-distribution with 3 degrees of freedom. In scenarios (II) and (III), the moderate
signals are more concentrated around 1 and have less variation compared to the contin-
uous prior Ga(2, 2) in scenario (I). We define the outlying and non-outlying values of
λi as those generated from f1 and f0, respectively. In each scenario, we considered two
values of ω, namely, 0.05 and 0.1.

We considered the estimation of λi using the following six priors/methods:

• IG: The proposed method with the inverse gamma prior for ui.

• EH: The proposed method with the extremely heavy-tailed prior for ui.

• GH: The Gauss hypergeometric prior proposed by Datta and Dunson (2016).

• PG: The gamma distribution for λi with ui = 1, or the Poisson-gamma model.

• KW: Nonparametric empirical Bayes method (Kiefer and Wolfowitz, 1956; Koen-
ker and Mizera 2014).

• ML: Maximum likelihood (non-shrinkage) estimator, that is, yi.

We assigned prior distributions for the hyperparameters in the two proposed meth-
ods, as illustrated in Section 3.2. In the GH method, the hyperparameters were es-
timated by the empirical Bayes method recommended in Datta and Dunson (2016).
Then, 3,000 posterior samples were generated directly from the posterior distribution
of λi. We assigned the gamma priors for the hyperparameters in the PG method and
used the prior distributions given in Section 3.2 for the hyperparameter in the IG and
EH methods. The three methods require computations by the MCMC method; for
each dataset, we generated 3,000 posterior samples after discarding 500 samples as a
burn-in period. We computed point estimates of λi, where we used the posterior mean
as point estimation in the first four methods. The performance of these point esti-
mators is evaluated by the mean squared error (MSE) and mean absolute percentage

error (MAPE) defined as the averaged values of (λ̂i − λi)
2 and |λ̂i − λi|/λi, respec-

tively. Since MAPE for extremely small λi can take extremely high values, MAPE is
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evaluated without samples that satisfy λi < 0.001. These measures were calculated
separately for outlying and non-outlying values of the true λi’s. We also computed
95% credible intervals of λi based on the first four Bayesian methods and evaluated
the performance using the coverage probability (CP) and average length (AL). We re-
peated the experiment 1,000 times and report the averages of MSE, MAPE, CP, and
AL below.

In Table 2, we present the averaged values of the MSEs and MAPEs in all scenarios.
For non-outlying values, the IG, PG, and KW methods are quite comparable and better
than the other methods in MSE. Meanwhile, the EH and GH methods perform better
in MAPE. The GH method suffers from the worse MSE for non-outlying values in all
scenarios; its strong shrinkage effect simply mismatches the design of our simulation
study where the observations are not zero-inflated.

For outlying values, the point estimates of the PG method tend to be worse than ML
in MSE. This is clearly due to the over-shrinkage problem of the PG method discussed
earlier. However, other than this, there is no clear structure in the comparison of the EH,
IG, and GH methods. The EH method, for which we verified the exact tail-robustness
in Theorem 1, should perform better than the other models in MSE for outliers. Un-
expectedly, in our simulation study, the GH method outperforms the EH method in
several scenarios. The difference between the two methods may be emphasized if we
consider larger λi (or yi) and/or increase the MCMC iterations.

In terms of MAPE for outliers, the IG, EH, and GH methods are almost indistin-
guishable. In fact, another concept of tail-robustness can be considered for the MAPE-
type loss function to explain this result. The Poisson-gamma model with any proper
prior for scale ui, including the IG, EH, and GHmodels, can achieve such tail-robustness.
We name this property weak tail-robustness. Further details are in the Supplementary
Materials (S3).

In Table 3, we report averaged values of the CPs and ALs of 95% credible intervals
of the four Bayesian methods. For outliers in all experiments, the PG method has the
narrowest intervals with the lowest empirical coverage rates, while the GH method
obtains the widest intervals with the highest coverage rates. In comparison, the results
of the IG and EH methods are moderate; they improve the coverage with narrower
credible intervals. We also find that the coverage performance of the EH method is
better than that of the IG method.

We checked the performance of the MCMC algorithm for the IG, EH, and IG meth-
ods under scenario (I) with ω = 0.1. The averaged values of the inefficiency factors of
λ1, . . . , λm under the IG, EH, and PG methods were 1.17, 4.39, and 1.01, respectively.
This shows that the resulting inefficiency factors seem acceptable, but that of the EH
method is slightly higher than those of the other methods. This is partly because the
number of latent parameters used in the Gibbs sampling of the EH method is large
compared with the other methods. In Section S6 of the Supplementary Materials, we
report the additional simulation studies with large sample size, namely, m = 400, and
computation time of the four Bayesian methods.
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Scenario ω IG EH GH PG KW ML

(I) 0.05

MSE-n 0.24 0.28 0.42 0.25 0.26 0.40
MSE-o 3.30 2.86 2.80 3.86 3.08 2.84
MAPE-n 0.64 0.57 0.65 0.63 0.67 0.62
MAPE-o 0.21 0.19 0.19 0.23 0.21 0.19

(I) 0.1

MSE-n 0.26 0.29 0.42 0.28 0.28 0.40
MSE-o 2.99 2.76 2.69 3.01 2.58 2.73
MAPE-n 0.64 0.58 0.65 0.63 0.67 0.61
MAPE-o 0.20 0.19 0.19 0.20 0.19 0.19

(II) 0.05

MSE-n 0.22 0.27 0.43 0.23 0.23 0.40
MSE-o 3.46 2.90 2.80 4.31 3.06 2.84
MAPE-n 0.58 0.52 0.61 0.57 0.60 0.58
MAPE-o 0.22 0.20 0.19 0.24 0.21 0.19

(II) 0.1

MSE-n 0.24 0.28 0.43 0.27 0.24 0.40
MSE-o 3.05 2.79 2.78 3.13 2.60 2.81
MAPE-n 0.59 0.54 0.62 0.59 0.62 0.58
MAPE-o 0.20 0.19 0.19 0.20 0.19 0.19

(III) 0.05

MSE-n 0.19 0.26 0.43 0.21 0.18 0.40
MSE-o 3.79 3.03 2.90 5.02 3.17 2.94
MAPE-n 0.50 0.47 0.57 0.50 0.48 0.55
MAPE-o 0.23 0.20 0.19 0.26 0.21 0.20

(III) 0.1

MSE-n 0.22 0.28 0.44 0.26 0.20 0.41
MSE-o 3.09 2.78 2.80 3.25 2.54 2.82
MAPE-n 0.53 0.50 0.58 0.53 0.51 0.55
MAPE-o 0.20 0.19 0.19 0.21 0.19 0.19

(IV) 0.05

MSE-n 0.21 0.27 0.40 0.21 0.20 0.40
MSE-o 2.38 1.97 2.01 2.71 2.52 2.07
MAPE-n 1.43 1.03 0.95 1.35 1.33 0.63
MAPE-o 0.25 0.22 0.22 0.27 0.25 0.22

(IV) 0.1

MSE-n 0.23 0.28 0.42 0.24 0.23 0.40
MSE-o 2.12 1.95 2.02 2.14 2.03 2.07
MAPE-n 1.40 1.06 0.98 1.30 1.35 0.63
MAPE-o 0.23 0.22 0.22 0.23 0.21 0.22

Table 2: Averaged values of mean squared errors (MSE) and mean absolute percentage
errors (MAPE) in non-outlying (-n) and outlying (-o) areas under four scenarios with
m = 200 and ω ∈ {0.05, 0.1}. The best results among the model-based methods (other
than ML) are highlighted in bold.

5 Data analysis

We apply the proposed methods to the analysis of crime data using the generalized
linear model with Poisson likelihood and random effects. This model has been adopted
for various datasets in applied statistics; for example, in areal count data in disease
mapping (Lawson, 2013). In such an application, the Poisson rate λi (defined below)
is not merely an adjustment of areal effects. Rather, it is an important parameter
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CP AL
Scenario ω IG EH GH PG IG EH GH PG

(I)
0.05

n 96.0 96.2 95.6 96.6 1.93 2.01 2.32 1.99
o 88.1 91.7 94.3 80.8 5.57 5.81 6.27 4.83

0.1
n 96.3 96.4 95.7 96.6 2.01 2.05 2.33 2.10
o 90.7 92.4 94.8 88.7 5.71 5.83 6.25 5.20

(II)
0.05

n 96.2 96.3 95.5 96.9 1.90 2.02 2.36 1.98
o 87.0 91.7 94.6 77.0 5.49 5.75 6.23 4.65

0.1
n 96.4 96.4 95.5 96.8 2.00 2.07 2.37 2.12
o 90.2 92.3 94.8 87.3 5.71 5.83 6.28 5.12

(III)
0.05

n 96.7 96.4 95.4 97.3 1.88 2.04 2.40 1.97
o 84.8 90.9 94.1 69.9 5.42 5.73 6.23 4.47

0.1
n 96.9 96.5 95.3 97.1 1.98 2.09 2.40 2.12
o 89.8 92.2 94.8 86.0 5.69 5.82 6.27 5.03

(IV)
0.05

n 93.9 95.6 95.4 95.2 1.89 2.01 2.29 1.91
o 84.5 91.4 94.3 77.5 4.35 4.83 5.33 3.80

0.1
n 94.7 95.8 95.5 95.7 1.99 2.05 2.33 2.04
o 88.0 91.6 94.6 85.8 4.51 4.85 5.32 4.13

Table 3: Coverage probabilities (CP) and average lengths (AL) of 95% credible intervals
in non-outlying (n) and outlying (o) areas under four scenarios with m = 200 and
ω ∈ {0.05, 0.1}.

interpreted as the intrinsic relative risk of the region i (e.g., Li et al., 2010). Here, we
incorporate the idea of covariate adjustment into crime risk modeling.

The dataset consists of the numbers of police-recorded crimes in the Tokyo metropoli-
tan area (provided by the University of Tsukuba and publicly available online; “GIS
database of the number of police-recorded crime at O-aza, chome in Tokyo, 2009–2017,”
available at https://commons.sk.tsukuba.ac.jp/data_en). We focused on the num-
ber of violent crimes in m = 2855 local towns in the Tokyo metropolitan area in 2015.
For auxiliary information about each town, we used area (km2), population densities
at noon and night, the density of foreign people, the percentage of single-person house-
holds, and the average duration of residence. These help adjust the crime risk. Let yi
be the observed count of violent crimes, ai be the area, and xi be the vector of the
standardized auxiliary information of the ith local town. We are interested in the crime
rates after adjusting the risk using the auxiliary information. We employed the following
Poisson regression model:

yi|λi ∼ Po(λiηi), ηi = exp(log ai + xt
iδ), (5.1)

independently for i = 1, . . . ,m, where δ is a vector of unknown regression coefficients.
Under the model (5.1), the random effect for local town i, denoted by λi, can be inter-
preted as an adjustment risk factor that is not explained by the auxiliary information.
For most local towns, the offset term explains the variation of crime rates. Hence, the ad-
justment risk factor is expected to be small. Yet, the adjustment risk might be extremely
high in some local towns that we want to detect. This is precisely where global-local

https://commons.sk.tsukuba.ac.jp/data_en
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shrinkage priors fit, for which we employed the proposed IG and EH priors for λi. We
adopted N(0, 100) as a prior distribution of each component of δ; we found that the
following result was robust to the choice of prior variance. For posterior inference, we
simply used Gibbs sampling in which posterior samples of (λ1, . . . , λm) and δ are it-
eratively drawn from their full conditional distributions. Conditional on δ, we can use
the posterior computation algorithm for λi provided in Section 3.2. Meanwhile, given
λi’s, the full conditional distribution of δ is not of a familiar form. The detailed algo-
rithm customized for the sampling of δ is based on the independent Metropolis–Hasting
method (given in Section S7 of the Supplementary Materials). For comparison, we also
applied the gamma distribution for λi as considered in Section 4 (again denoted by
PG hereafter). We did not consider the GH prior in this example since the empirical
Bayes method in Datta and Dunson (2016) is not available under the generalized linear
model in equation (5.1). Similarly, we did not apply the KW method. In each Gibbs
sampler, we generated 20,000 posterior samples after discarding 3,000 posterior samples
as burn-in.

We first computed posterior means of risk factor λi by using the three methods. The
spatial pattern of the estimates is shown in Figure 3. Notably, the proposed two methods,
IG and EH, provide similar estimates of λi in most areas and successfully detect several
local towns whose risk factors are extremely high. In contrast, such extreme towns
are less emphasized, or not detected at all, by the PG method because it significantly
underestimates the true risk factors. In Figure 4, we plotted the estimates of λi based
on the proposed methods against that of the PG method. This clearly highlights the
underestimation of outlying signals caused by the PG method.

Next, we detected ten local towns with the largest posterior means of λi. For these
towns, we computed 95% credible intervals of λi, as shown in the left panel of Figure 5.
This panel again shows the over-shrinkage problem of the PG method in both point
and interval estimations (posterior means and credible intervals). The posterior credible
intervals computed by the PG method are narrower, suggesting the underestimation of
posterior uncertainty. We also randomly selected another ten local towns with moderate
estimates of λi and 95% credible intervals, as shown in the right panel of the same figure.
The difference between the three methods is almost negligible for these towns. These
observations exemplify that the proposed methods can avoid the over-shrinkage problem
for large signals while their performance in the other towns is almost the same as the
standard PG method.

6 Discussion

The Poisson-gamma model is a convenient tool, but can be restrictive since the observa-
tional mean and variance given λi must always be equal. Furthermore, both conditional
prior mean and variance of λi are controlled by the common local parameter ui un-
der the gamma prior Ga(α, β/ui) for λi. This affects both the baseline and amount of
shrinkage. This property is not seen in the Gaussian case, where the local parameter
appears in the prior variance and controls only the amount of local shrinkage. This
makes the role of local parameters clear. In this sense, the local parameter in equation
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Figure 3: Posterior means of risk factors λi based on IG, EH, and PG methods.

(2.1) might be less interpretable. Meanwhile, this setting also enables us to carry out
posterior computation easily and has been studied intensively in the literature (e.g.,
Datta and Dunson, 2016). Future research could pursue an alternative setting for hier-
archical modeling of a sequence of counts under which the role of the local parameters
is properly restricted and interpreted.

From the viewpoint of methodological research, this paper is primarily focused on
the point and interval estimation of the Poisson rate. The estimation of high-dimensional
counts can be cast as other statistical problems such as multiple testing. Detailed inves-
tigation in such directions would have extended the scope of this paper; thus, we leave
it to a valuable future study.
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Figure 4: Scatter plot of posterior means of risk factors λi based on IG, EH, and PG
methods.

Figure 5: 95% credible intervals for areas with highest 10 posterior means (left) and
for 10 randomly selected areas with moderate posterior means (right) of adjusted risk
factors.

The newly introduced EH prior represents the probability distributions that satisfy
the conditions for tail-robustness given in Theorem 2.1. However, the class of priors
that satisfy those conditions is not limited to the EH prior. In theory, we can con-
sider a general class of priors with the following density which is also proper and tail-
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robust:

π(ui) ∝
ui

γ1−1

(1 + γ2ui)γ1

1

{1 + γ3 log(1 + γ4 + ui)}1+γ5
.

The hyperparameters (γ1, γ2, γ3, γ4, γ5) increase the flexibility of the model and could
improve the EH prior equipped with a single parameter γ. However, the posterior
inference under this prior is challenging due to the intractable normalizing constant
that involves those hyperparameters. The full-Bayes inference for the hyperparameters
is not as straightforward as that of the EH prior. The inference with fixed hyperpa-
rameters is feasible by utilizing the same parameter augmentation in Section 3.2, but
raises the problem of hyperparameter tuning. We leave the development of this ex-
tension to future work, which could be useful in more structured models for count
data.

Supplementary Material

Supplementary Materials for “On Global-local Shrinkage Priors for Count Data” (DOI:
10.1214/21-BA1263SUPP; .pdf). Supplementary Materials for “On Global-local Shrink-
age Priors for Count Data” include technical details regarding the proofs of Theorem 2.1
(S1 and S2), the related tail-robustness properties (S3), the derivation of the EH prior
(S4), and the evaluation of the marginal prior distribution of λi with the EH prior
(S5). It also provides additional simulation results (S6) and computational details of
the MCMC algorithm (S7)
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