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Bayesian Causal Inference in Probit Graphical
Models

Federico Castelletti∗,‡ and Guido Consonni†

Abstract. We consider a binary response which is potentially affected by a set
of continuous variables. Of special interest is the causal effect on the response
due to an intervention on a specific variable. The latter can be meaningfully
determined on the basis of observational data through suitable assumptions on
the data generating mechanism. In particular we assume that the joint distribution
obeys the conditional independencies (Markov properties) inherent in a Directed
Acyclic Graph (DAG), and the DAG is given a causal interpretation through the
notion of interventional distribution. We propose a DAG-probit model where the
response is generated by discretization through a random threshold of a continuous
latent variable and the latter, jointly with the remaining continuous variables, has
a distribution belonging to a zero-mean Gaussian model whose covariance matrix
is constrained to satisfy the Markov properties of the DAG; the latter is assigned a
DAG-Wishart prior through the corresponding Cholesky parameters. Our model
leads to a natural definition of causal effect conditionally on a given DAG. Since
the DAG which generates the observations is unknown, we present an efficient
MCMC algorithm whose target is the posterior distribution on the space of DAGs,
the Cholesky parameters of the concentration matrix, and the threshold linking
the response to the latent. Our end result is a Bayesian Model Averaging estimate
of the causal effect which incorporates parameter, as well as model, uncertainty.
The methodology is assessed using simulation experiments and applied to a gene
expression data set originating from breast cancer stem cells.

Keywords: graphical model, directed acyclic graph, DAG-probit, causal
inference, DAG-Wishart, modified Cholesky decomposition.

1 Introduction

We consider a system of random quantities, which includes a binary response as well as
a collection of continuous variables, and address the problem of determining the causal
effect on the response due to an intervention on a given variable. A causal question
involves the data generating mechanism after an intervention is applied to the system,
and must be carefully distinguished from traditional conditioning of probability theory
(Pearl, 2009, Section 2.4). The gold standard for addressing causal questions is repre-
sented by randomized controlled experiments; the latter however are not always available
because they may be unethical, infeasible, time consuming or expensive (Maathuis and
Nandy, 2016). By contrast, observational data, that is observations produced without
exogenous perturbations of the system, are widely available and often plentiful. The
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challenge is then to infer causal effects based on observational data alone. To achieve
this goal, it is crucial to set up a suitable conceptual framework which is able to address
causal questions; in particular the notion of joint distribution for a collection of random
variables can only address concepts linked to association, so much so that, by converse,
“a causal concept is any relationship that cannot be defined from the distribution alone”
(Pearl, 2009, Section 2).

A very useful framework to bridge the gap between the observational and the ex-
perimental domains is represented by the Directed Acyclic Graph (DAG), or its allied
concept of Structural Equation Model (SEM); see Pearl (1995) and Pearl (2000). DAGs
have been extensively used to construct statistical models embodying conditional inde-
pendence relations (Lauritzen, 1996). Applications are numerous especially in genomics;
see for instance Friedman (2004) and Friedman and Koller (2003). With observational
data, conditional independence relations will drive inference on DAG and parameter
space. On the other hand, the additional syntax and semantics of causal DAGs (Pearl,
2000) will be instrumental to define the notion of causal effect.

As in standard probit regression (Albert and Chib, 1993), we assume that the ob-
servable binary response is the result of a discretization of a continuous latent variable.
Next, for a given DAG, we model all continuous random variables, along with the latent,
as a multivariate Gaussian family satisfying the corresponding Markov property. We call
the resulting setup a DAG-probit model, and provide a definition of causal effect on the
response which is predicated on a given DAG through the notion of interventional dis-
tribution (Pearl, 2000). However the structure of the DAG is usually unknown, and this
must be taken into account because different DAGs will typically induce distinct causal
effects; see the review paper Maathuis and Nandy (2016) and Castelletti and Consonni
(2021a) for a Bayesian approach.

In this work we extend the notion of interventional distribution and causal effect
(Pearl, 2000; Maathuis et al., 2009) to DAG-probit models. Specifically, we propose a
Bayesian method which jointly performs DAG-model determination as well as inference
of causal effects in the presence of a binary response. From a computational viewpoint we
introduce an MCMC scheme to sample from the joint posterior of models (DAGs) and
model-dependent parameters (causal effects) which we implement through an efficient
PAS algorithm (Godsill, 2012). The rest of the paper is organized as follows. In Section 2
we review Gaussian DAG-models and define the DAG-probit model. In Section 3 we
present the structure of the interventional distribution in its general form, then specialize
it to the Gaussian case, and finally extend the definition of causal effect to DAG-
probit models. Section 4 presents our Bayesian methodology with particular emphasis
on priors for model parameters. An MCMC algorithm for posterior inference on models,
parameters and hence causal effects is presented in Section 5. We evaluate the proposed
methodology through simulation studies in Section 6, and then apply it to a data set on
gene expression measurements derived from breast cancer stem cells (Section 7). Finally
a few points for discussion are presented in Section 8. Some theoretical results as well as
additional simulation outputs are reported in the Supplementary material (Castelletti
and Consonni, 2021b).
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2 Model Formulation

In this section we first provide some background material on Gaussian DAG-models
with special emphasis on their parameterization (Section 2.1). Next we present our
DAG-probit model (Section 2.2). Both sections deal with the likelihood, while choices
of prior distributions are discussed in Section 4.

2.1 Gaussian DAG-Models

Let D = (V,E) be a DAG, where V = {1, . . . , q} is a set of vertices (or nodes) and
E ⊆ V × V a set of edges whose elements are (u, v) ≡ u → v, such that if (u, v) ∈ E
then (v, u) /∈ E. In addition, D contains no cycles, that is paths of the form u0 → u1 →
· · · → uk where u0 ≡ uk. For a given node v, if u → v ∈ E we say that u is a parent of
v (conversely v is a child of u). The parent set of v in D is denoted by pa(v), the set
of children by ch(v). Moreover, we denote by fa(v) = v ∪ pa(v) the family of v in D.
Finally, we say that a DAG is complete if all vertices are joined by an edge. For further
theory and notation on DAGs we refer to Lauritzen (1996).

We consider a collection of random variables (X1, . . . , Xq) and assume that their joint
probability density function f(x) is Markov w.r.t. D, so that it admits the following
factorization

f(x1, . . . , xq) =

q∏
j=1

f(xj |xpa(j)). (1)

In this section, as well as in Section 3, we reason conditionally on a given DAG D
without an explicit conditioning in the notation we use. In Section 4 we will instead
deal with model (DAG) uncertainty and will reinstate D in our notation.

If the joint distribution is Gaussian with mean equal to zero, we write

X1, . . . , Xq |Ω ∼ Nq(0,Ω
−1), Ω ∈ PD, (2)

where Ω = Σ−1 is the precision matrix, and PD is the space of symmetric positive
definite (s.p.d.) precision matrices Markov w.r.t. D. For a Gaussian DAG-model factor-
ization (1) becomes

f(x1, . . . , xq |Ω) =

q∏
j=1

dN (xj |μj(xpa(j)), σ
2
j ), (3)

where dN (· |μ, σ2) denotes the normal density having mean μ and variance σ2. The
assumption of normality essentially guarantees that the model is faithful to the DAG,
that is no conditional independence relations other than the ones entailed by the Markov
property applied to the DAG are present in the statistical model. The word “essen-
tially”means that faithfulness may fail for particular combinations of parameters; yet
this set has Lebesgue measure zero, which translates to zero probability when the pa-
rameters are continuous. For an extensive discussion of faithfulness see Sadeghi (2017).
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For a stronger version of faithfulness in the Gaussian case which is meant to overcome
difficulties in DAG-identification in finite samples see Zhang and Spirtes (2003).

For a given DAG, we assume without loss of generality a parent ordering of the
nodes which numerically labels the variables so that i > j whenever j is a child of i.
A parent ordering always exists, although it is not unique in general. We also remark
that a parent ordering is specific to any given DAG under consideration and may change
if alternative DAGs are entertained. Importantly, it only represents a convenient device
to specify a prior on the parameter space; see Section 4. In the Supplementary material
we also show that the prior we employ under any given DAG is invariant to the choice
of the parent ordering.

Moreover, we declare node 1, which cannot have children, to be the (latent) outcome
variable. Equation (3) can be also written as a structural equation model

L�(X1, . . . , Xq)
� = ε, (4)

where because of the assumed parent ordering L is a (q, q) lower-triangular matrix of
coefficients, L = {Lij , i ≥ j}, such that Lij 	= 0 if and only if i → j and Lii = 1. More-
over, ε is a (q, 1) vector of error terms, ε ∼ Nq(0,D), where D = diag(σ2) and σ2 is
the (q, 1) vector of conditional variances whose j-th element is σ2

j = Var(Xj |xpa(j),Ω).
From (4) it follows that

Ω = LD−1L�. (5)

We refer to equation (5) as the modified Cholesky decomposition of Ω. Let now ≺ j �
= pa(j) and ≺ j ] = pa(j)× j. Representation (5) induces a re-parametrization of Ω in
terms of the Cholesky parameters

{
(σ2

j ,L≺j ]), j = 1, . . . , q
}
, where

L≺j ] = −Σ−1
≺j �Σ≺j ], σ2

j = Σjj | pa(j);

see also Cao et al. (2019). Accordingly, equation (3) can be written as

f(x1, . . . , xq |D,L) =

q∏
j=1

dN (xj | −L�
≺j ]xpa(j), σ

2
j ), (6)

with the understanding that the conditional expectation of Xj in (6) is zero whenever
pa(j) is the empty set.

2.2 DAG-Probit Models

We introduce in this section the general form of a DAG-probit model. We assume that
the joint distribution of (X1, X2, . . . , Xq) is Gaussian and Markov w.r.t. D so that its
density is as in (6). Recall thatX1 is latent and we are only allowed to observe the binary
variable Y ∈ {0, 1}. Specifically, for a given threshold θ0 ∈ (−∞,+∞), we assume that

Y =

{
1 if X1 ∈ [ θ0,+∞),

0 if X1 ∈ (−∞, θ0).
(7)



F. Castelletti and G. Consonni 1117

Combining (6) with (7), the joint density of (Y,X1, . . . , Xq) becomes

f(y, x1, . . . , xq |D,L, θ0) = f(x1, . . . , xq |D,L) · 1(θy−1 < x1 ≤ θy)

=

⎧⎨
⎩

q∏
j=1

dN (xj | −L�
≺j ]xpa(j), σ

2
j )

⎫⎬
⎭ · 1(θy−1 < x1 ≤ θy),

(8)

where θ−1 = −∞, θ1 = +∞. Equation (8) defines a (Gaussian) DAG-probit model. A re-
lated expression appears in Guo et al. (2015) who model a multivariate distribution of
ordered categorical variables through a collection of Gaussian random variables Markov
with respect to an undirected graphical model. Now recall from (6) that the conditional
distribution of the latent variable X1 is N (−L�

≺1 ]xpa(1), σ
2
1) and, as in standard probit

regression, we set σ2
1 = 1 for identifiability reasons.

Finally, by considering n independent samples (yi, xi,2, . . . , xi,q), i = 1, . . . , n, from
(8), the augmented likelihood can be written as

f(y,X |D,L, θ0) =
n∏

i=1

f(xi,1, . . . , xi,q |D,L) · 1(θyi−1 < xi,1 ≤ θyi)

=

q∏
j=1

dNn(Xj | −Xpa(j)L≺j ], σ
2
j In) ·

{
n∏

i=1

1(θyi−1 < xi,1 ≤ θyi)

}
,

(9)

where y = (y1 . . . , yn)
�, X is the (n, q) augmented data matrix, and XA is the subma-

trix of X corresponding to the set A of columns of X.

3 Causal Effects

Consider the joint density of the random vector (X1, . . . , Xq) Markov w.r.t. a DAG which
factorizes as in (1); the latter is referred to as the observational (or pre-intervention)
distribution.

We now introduce the notion of intervention. A deterministic intervention on variable
Xs, s ∈ {2, . . . , q} is denoted by do(Xs = x̃) and consists in setting Xs to the value
x̃. The post-intervention density of (X1, . . . , Xq) is then obtained using the truncated
factorization

f(x1, . . . , xq | do(Xs = x̃)) =

⎧⎨
⎩

q∏
j=1,j �=s

f(xj |xpa(j))|xs=x̃ if xs = x̃,

0 otherwise,

(10)

where, importantly, each term f(xj | ·) in (10) is the corresponding (pre-intervention)
conditional distribution of equation (1); see Pearl (2000). We emphasize that the post-
intervention density f(x1, . . . , xq | do(Xs = x̃)) is conceptually distinct from the usual
conditional density f(x1, . . . , xq |Xs = x̃), which arises out of passive observation of
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Xs = x̃. An important feature of equation (10) is that the data generating system
is “stable” under exogenous interventions, in the sense that only the local component
distribution f(xs |xpa(s)) is affected by the intervention and effectively reduces to a
point mass on x̃. All the remaining terms are immune to the intervention and thus
remain the same. The post-intervention distribution of the (latent) response X1 is then
obtained by integrating (10) w.r.t. x2, . . . , xq which simplifies to

f(x1 | do(Xs = x̃)) =

∫
f(x1 | x̃,xpa(s))f(xpa(s)) dxpa(s); (11)

see also Pearl (2000, Theorem 3.2.2).

We now move back to the Gaussian setting of Section 2.1, and assume that (X1, X2,
. . . , Xq) |Σ ∼ Nq(0,Σ), where the covariance matrix Σ is Markov w.r.t. the underlying
DAG. The post-intervention distribution of X1 can thus be written as

f(x1 | do(Xs = x̃),Σ) =

∫
f(x1 | x̃,xpa(s),Σ) · f(xpa(s) |Σ) dxpa(s)

=

∫
dN (x1 | γsx̃+ γ�xpa(s), δ

2
1) · dN (xpa(s) |0,Σpa(s),pa(s)) dxpa(s),

(12)

where δ21 = Var(X1 |Xs = x̃,xpa(s),Σ). The following Proposition gives the analytic
form of the post-intervention distribution of X1.

Proposition 3.1. Let (X1, X2, . . . , Xq) |Σ ∼ Nq(0,Σ) and consider the do operator
do(Xs = x̃), s ∈ {2, . . . , q}. Then the post-intervention distribution of X1 is

f(x1 | do(Xs = x̃),Σ) = dN
(
x1 | γsx̃,

δ21
1− (γ�T−1γ)/δ21

)
,

where

δ21 = Σ1 | fa(s),

(γs,γ
�)� = Σ1,fa(s)

(
Σfa(s),fa(s)

)−1
,

T =
(
Σpa(s),pa(s)

)−1
+

1

δ21
γγ�,

with the understanding that node s occupies the first position in the set fa(s).

Proof. See Supplementary material (Castelletti and Consonni, 2021b).

The previous reasoning considered the intervention distribution of the latent re-
sponse variable X1 following do(Xs = x̃). Typically distribution (11) is summarized
by its expected value E(X1 | do(Xs = x̃)). When Xs is continuous, one can define the
(total) causal effect as the derivative of E(X1 | do(Xs = x)) w.r.t. x evaluated at x̃: this
is especially convenient when the expectation is linear, as in the Gaussian case (12),
because the causal effect admits a simple interpretation: it corresponds to the “re-
gression parameter” γs associated to variable Xs (Maathuis et al., 2009). Our interest
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however lies in the observable response variable Y , and therefore we aim to evaluate
E(Y | do(Xs = x̃),Σ, θ0). We thus obtain

E(Y | do(Xs = x̃),Σ, θ0) = Pr(Y = 1 | do(Xs = x̃),Σ, θ0)

= Pr(X1 ≥ θ0 | do(Xs = x̃),Σ)

= 1− Φ

(
θ0 − γsx̃

τ1

)
≡ βs(x̃,Σ, θ0),

(13)

where Φ(·) denotes the c.d.f. of a standard normal and τ21 = δ21/
(
1− (γ�T−1γ)/δ21

)
.

One could then compute the partial derivative of E(Y | do(Xs = x̃),Σ, θ0) w.r.t x eval-
uated at x̃, and obtain φ(θ0 − γsx̃/τ1)γs/τ1, where φ(·) is the density function of a
standard normal. This however would still depend on x̃. For this reason, and be-
cause (13) enjoys an intuitive interpretation being a probability, we will simply de-
note Pr(Y = 1 | do(Xs = x̃),Σ, θ0) at the causal effect on Y due to an intervention
do(Xs = x̃). Finally, we remark that the causal effect of do(Xs = x̃) on Y , besides
being a function of the value x̃, depends on θ0 as well as on the covariance matrix Σ,
where the latter is constrained to be Markov w.r.t. the underlying DAG.

4 Bayesian Inference

In this section we introduce priors for (Ω, θ0,D), which we structure as p(Ω, θ0,D) =
p(Ω | D)p(D)p(θ0). Further distributional results useful for our MCMC scheme of Sec-
tion 5 are also presented. We briefly preview here the essential features.

To start with, consider p(Ω | D),Ω ∈ PD. We first proceed to the re-parameterization
Ω �→ (D,L) presented in Subsection 2.1, and specify a DAG-Wishart prior (Cao et al.,
2019) on the Cholesky parameters (D,L). We achieve this goal using a highly parsimo-
nious elicitation procedure, which we briefly detail in Section 4.1; see also our Supple-
mentary material for more information. For the unknown threshold θ0 ∈ (−∞,+∞),
we assume a uniform prior, so that p(θ0) ∝ 1 (Section 4.3). Finally, a prior on DAG D
is assigned through independent Bernoulli distributions on the elements of the skeleton
of D (Section 4.2).

4.1 Prior on the Cholesky Parameters

Consider first a DAG D = (V,E) which is complete, so that the precision matrix Ω is
unconstrained. A standard conjugate prior is the Wishart distribution, Ω ∼ Wq(a,U)
having expectation aU−1, where a > q − 1 and U is a s.p.d. matrix. In absence of
substantive prior information, a standard choice for the hyperparameter U , hereinafter
adopted, is U = g Iq, where g > 0 and Iq is the (q, q) identity matrix. The induced
prior on the Cholesky parameters consistent with the DAG parent ordering is such that
the node parameters (σ2

j ,L≺j ]), j = 1, . . . , q, are independent with distribution

σ2
j ∼ I-Ga

(
aj
2

− |pa(j)|
2

− 1,
g

2

)
,



1120 Bayesian Causal Inference in Probit Graphical Models

L≺j ] |σ2
j ∼ N|pa(j)|

(
0,

1

g
σ2
j I|pa(j)|

)
, (14)

where |A| is the number of elements in the set A, aj = a + q − 2j + 3; see Ben-David
et al. (2015, Supplemental B). The symbol I-Ga(a, b) stands for an Inverse-Gamma
distribution with shape a > 0 and rate b > 0 having expectation b/(a − 1) (a > 1). In
addition, to guarantee the identifiability of the DAG-probit model, we fix σ2

1 = 1, so
that instead of p(σ2

1 ,L≺1 ]) we need only to consider p(L≺1 ]) with L≺1 ] ∼ N|pa(1)|(0,
g−1 I|pa(1)|); see also Section 2.2. Recall that (14) applies only to a complete DAG D.

Consider now the case in which D is not complete. The idea is to leverage (14)
to set up a general method to construct a prior on (D,L), the Cholesky parameters
of Ω ∈ PD, which can then be applied to any given DAG D. To this end we follow
the procedure of Geiger and Heckerman (2002), which we detail in the Supplementary
material. For a given DAG D we show that the prior assigned to its Cholesky parameters
is

σ2
j ∼ I-Ga

(
aDj
2
,
g

2

)
,

L≺j ] |σ2
j ∼ N|paD(j)|

(
0,

1

g
σ2
j I|paD(j)|

)
, (15)

independently for j =, . . . , q, where aDj = a+ |paD(j)| − q + 1. Finally we can write

p(D,L) =

q∏
j=1

p(σ2
j ,L≺j ]), (L,D) ∈ ΘD, (16)

where ΘD is the image of the space PD under the mapping Ω �→ (D,L).

4.2 Prior on DAG Space

For a given DAG D, let AD be the (symmetric) 0-1 adjacency matrix of the skeleton of
D whose (u, v) element is denoted by AD

(u,v). Conditionally on the edge inclusion proba-

bility π, we first assign a Bernoulli prior independently to each element AD
(u,v) belonging

to the lower-triangular part, that is: AD
(u,v) |π

iid∼ Ber(π), u > v. As a consequence we
get

p(AD) = π|AD|(1− π)
q(q−1)

2 −|AD|, (17)

where |AD| denotes the number of edges in the skeleton, equivalently the number of
entries equal to one in the lower-triangular part of AD. Finally, we set p(D) ∝ p(AD),
for D ∈ Sq, where Sq is the set of all DAGs on q nodes.

4.3 Posterior Distribution of θ0

As mentioned, in absence of substantive prior information, we assign a flat improper
prior to the threshold θ0 ∈ (−∞,∞), p(θ0) ∝ 1. Accordingly, we need to prove that the
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posterior of θ0 is proper. The next proposition details under which conditions propriety
is guaranteed.

Proposition 4.1. Under the prior (14) for (D,L), p(D) as in Section 4.2 for DAG
D and the improper prior p(θ0) ∝ 1 for θ0, the posterior of θ0 is proper provided the
sample contains at least two observations with distinct values for Y , that is yi = 1,
yi′ = 0 (i 	= i′).

Proof. See Supplementary material (Castelletti and Consonni, 2021b).

Additionally, we prove in the Supplementary material that under the conditions of
Proposition 4.1 the joint posterior of (D,L,D, θ0,X1) is proper. Clearly, alternative
priors for θ0 might have been used; yet the full conditional of θ0 would not be amenable
to direct sampling. As a consequence, posterior inference on θ0 is performed through a
Metropolis Hastings step inside our MCMC scheme; see Section 5 for details.

5 MCMC Scheme

In this section we detail the MCMC scheme that we adopt to target the posterior
distribution

p(D,L,D, θ0,X1 |y,X−1) ∝ f(y,X |D,L,D, θ0) p(D,L | D) p(D), (18)

now emphasizing the dependence on DAG D, where X−1 = (X2, . . . ,Xq), and the term
p(θ0) has been omitted because it is proportional to one.

5.1 Update of (D,L,D)

From (18) the full conditional distribution of (D,L,D) is

p(D,L,D |y,X, θ0) ∝ p(X |D,L,D)p(D,L | D)p(D)

using (9), where X = (X1,X2, . . . ,Xq) is the (n, q) augmented data matrix.

To sample from p(D,L,D |X) we adopt a reversible jump MCMC algorithm which
takes into account the partial analytic structure (PAS, Godsill 2012) of the DAG-
Wishart distribution to sample DAG D and the Cholesky parameters (D,L) from their
full conditional. A similar approach was implemented in Wang and Li (2012) for Gaus-
sian undirected graphical models using G-Wishart priors. Details about the PAS algo-
rithm and its implementation in our DAG setting are reported in the Supplementary
material (Castelletti and Consonni, 2021b).

Specifically, at each iteration of the MCMC scheme, we first propose a new DAG D′

from a suitable proposal distribution q(D′ | D); see again our Supplementary material.
In particular, it is shown that when proposing a DAG D′ which differs from the current
graph D by one edge (h, j), the acceptance probability for D′ is given by

αD′ = min

{
1,

m(Xj |XpaD′ (j),D′)

m(Xj |XpaD(j),D)
· p(D

′)

p(D)
· q(D |D′)

q(D′ | D)

}
(19)
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where, for j ∈ {2, . . . , q},

m(Xj |XpaD(j),D)

= (2π)−
n
2

∣∣Tj

∣∣1/2∣∣T̄j

∣∣1/2 ·
Γ
(

aD
j

2 + n
2

)
Γ
(
aDj /2

) [
1

2
g

]aD
j /2 [

1

2

(
g +X�

j Xj − L̂�
j T̄jL̂j

)]−(aD
j +n)/2

(20)

with

Tj = gI|paD(j)|

T̄j = gI|paD(j)| +X�
paD(j)XpaD(j)

L̂j =
(
gI|paD(j)| +X�

paD(j)XpaD(j)

)−1
X�

paD(j)Xj ,

aDj = a+ |paD(j)| − q+1 and XpaD(j) denotes the (n, |paD(j)|) sub-matrix of X whose

columns belong to the set paD(j). For j = 1, because we fixed σ2
1 = 1, we have instead

m(X1 |XpaD(1),D) = (2π)−
n
2

∣∣T1

∣∣1/2∣∣T̄1

∣∣1/2 · exp
{
−1

2

(
X�

1 X1 − L̂�
1 T̄1L̂1

)}
, (21)

with T1, T̄1, L̂1 defined in analogy with the expressions appearing after (20); see the
Supplementary material (Castelletti and Consonni, 2021b) for details. Moreover, given
DAG D and X1, the full conditional of (D,L) reduces to the augmented posterior
p(D,L |X), which is conditional on the actual data (X2, . . . ,Xq) as well as the latent
values X1 and can be easily sampled from. Specifically, since

f(X |D,L) =

q∏
j=1

dNn(Xj | −XpaD(j)L≺j ], σ
2
j In) (22)

and because of (16) and conjugacy of the Normal-Inverse-Gamma prior in (14) with the
Normal density, the posterior distribution of the Cholesky parameters given X is, for
j = 2, . . . , q,

σ2
j |X ∼ I-Ga

(
aDj
2

+
n

2
,
1

2

(
g +X�

j Xj − L̂�
j T̄jL̂j

))
,

L≺j ] |σ2
j ,X ∼ N|paD(j)|

(
− L̂j , σ

2
j T̄

−1
j

)
. (23)

Moreover, for node 1 where σ2
1 = 1, we have

L≺1 ] |X ∼ N|paD(1)|
(
− L̂1, T̄

−1
1

)
. (24)

5.2 Update of X1 and θ0

Updating of X1 = (x1,1, . . . , xn,1)
� can be performed by direct sampling from the full

conditional distribution of each latent observation xi,1,

f(xi,1 | yi, xi,2, . . . , xi,q,D,L,D, θ0) ∝ f(xi,1 |xi,paD(1),L≺j ]) · 1(θyi−1 < xi,1 ≤ θyi),
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which corresponds to a N (−L�
≺1 ]xi,paD(1), 1) truncated at the interval (θyi−1, θyi ].

Finally, the cut-off θ0 is updated through a Metropolis Hastings step where, given
the current value θ0, a candidate value g0 is proposed from q(g0 | θ0) = dN (g0 | θ0, σ2

0).
We then set θ0 = g0 with probability

αθ = min {1; rθ} , (25)

where

rθ =

n∏
i=1

[
Φ
(
gyi | −L�

≺1 ]xi,paD(1), 1
)
− Φ

(
gyi−1 | −L�

≺1 ]xi,paD(1), 1
)]

n∏
i=1

[
Φ
(
θyi | −L�

≺1 ]xi,paD(1), 1
)
− Φ

(
θyi−1 | −L�

≺1 ]xi,paD(1), 1
)] ·

dN
(
θ0 | g0, σ2

0

)
dN (g0 | θ0, σ2

0)
,

and g−1 = ∞, g1 = +∞.

5.3 Algorithm

Algorithm 1 summarizes our MCMC scheme. The output is a collection of DAGs{
D(t)

}T

t=1
and Cholesky parameters

{(
DD(t)

,LD(t))}T

t=1
approximatively sampled from

the target distribution (18). In particular we can compute posterior summaries of in-
terest such as the posterior probabilities of edge inclusion, namely

p̂u→v(y,X2, . . . ,Xq) ≡ p̂u→v =
1

T

T∑
t=1

1u→v

{
D(t)

}
, (26)

where 1u→v

{
D(t)

}
takes value 1 if and only if D(t) contains the edge u → v. Moreover,

we can reconstruct the covariance matrices
{
ΣD(t)}T

t=1
using (5). The latter can be

subsequently retrieved to obtain for selected s ∈ {2, . . . , q} and intervention value x̃

the collection of causal effects
{
β
(t)
s (x̃)

}T

t=1
defined in (13), where we set β

(t)
s (x̃) ≡

βs

(
x̃,ΣD(t)

, θ
(t)
0

)
. An overall summary of the causal effect of do(Xs = x̃) on Y can be

computed as

β̂BMA
s (x̃) =

1

T

T∑
t=1

β(t)
s (x̃), (27)

which corresponds to a Bayesian Model Averaging (BMA) estimate where posterior
(DAG) model probabilities are approximated through the MCMC frequencies of vis-
its; see Garćıa-Donato and Mart́ınez-Beneito (2013) for a discussion of the merits of
frequency based estimators in large model spaces.

6 Simulations

In this section we evaluate the performance of our method through simulation studies.
Specifically, for each combination of number of nodes q ∈ {20, 40} and sample size
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Algorithm 1: MCMC scheme to sample from (18).

Input: A dataset (y,X2, . . . ,Xq)
Output: T samples from the posterior (18)

1 Initialize D(0), e.g. the empty DAG, the cut-offs θ
(0)
−1 = −∞, θ

(0)
0 = 0, θ

(0)
1 = +∞

and the latent variables x
(0)
1 , e.g. x

(0)
i,1

ind∼ N (0, 1) truncated at (θ
(0)
yi−1, θ

(0)
yi ];

2 for t = 1, . . . , T do
3 Sample D′ from q(D′ | D(t−1)) and set D(t) = D′ with probability αD (19),

otherwise D(t) = D(t−1);

4 Sample
(
DD(t)

,LD(t))
from its augmented posterior distribution (23);

5 For i = 1, . . . , n, independently sample xi,1 from N
(
−LD(t)�

≺1 ] xi,paD(t) (1), 1
)

truncated at (θ
(t)
yi−1, θ

(t)
yi ];

6 Propose a cut-off g0 from q(g0 | θ(t)0 ) and set θ
(t)
0 = g0 with probability

αθ (25), otherwise θ
(t)
0 = θ

(t−1)
0 ; set θ

(t)
−1 = −∞, θ

(t)
1 = +∞.

7 end

n ∈ {100, 200, 500}, which we call simulation scenario, we generate 40 DAGs using a
probability of edge inclusion equal to p = 3/(2q − 2) to induce sparsity; see Peters
and Bühlmann (2014). For each DAG D we then proceed as follows. We identify a
parent ordering and fix DD = Iq and then randomly sample the entries of LD in the
interval [−2,−1] ∪ [1, 2]; next we generate a dataset consisting of n i.i.d. q-dimensional
observations from the structural equation model (4) which also includes the (n, 1) vector
of latent observations; we finally fix the threshold θ0 = 0 and obtain the 0-1 vector of
responses y = (y1, . . . , yn)

� as in (7).

We apply Algorithm 1 to approximate the target distribution in (18) by setting the
number of MCMC iterations T = 25000 for q = 20, and T = 50000 for q = 40. We also
set g = 1/n and a = q in the prior on the Cholesky parameters of Ω (14) and σ2

0 = 0.25
in the proposal density for the cut-off θ0.

We begin by evaluating the global performance of our method in learning the graph
structure. To this end, we first estimate the posterior probabilities of edge inclusion
by computing p̂u→v(·) in (26) for each pair of distinct nodes u, v. Next, we consider a
threshold for edge inclusion k ∈ [0, 1] and for a given k construct a graph estimate by
including those edges (u, v) whose posterior probability exceeds k. The resulting graph
is compared with the true DAG through the sensitivity (SEN) and specificity (SPE)
indexes, respectively defined as

SEN =
TP

TP + FN
, SPE =

TN

TN + FP
,

where TP, TN, FP, FN are the numbers of true positives, true negatives, false positives
and false negatives, based on the adjacency matrix of the estimated graph.
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n = 100 n = 200 n = 500
q = 20 93.89 94.19 95.12
q = 40 90.94 94.91 97.19

Table 1: Simulations. Area under the curve (percentage values) computed from the
average ROC curves in Figure 1 for number of nodes q ∈ {20, 40} and sample sizes
n ∈ {100, 200, 500}.

The two indexes are used to construct a receiver operating characteristic (ROC)
curve. Specifically, for each scenario defined by q and n, we present a ROC curve con-
structed as follows. For each threshold k, we compute SEN and (1−SPE) under each
of the 40 DAGs used in the simulation. The point whose coordinates are the mean of
each of the two measures corresponds to one dot in Figure 1. The collection of dots
connected by lines represents an average ROC curve. We proceed similarly to compute
the 5th and 95th percentile and obtain the grey band.

To better appreciate Figure 1, we also compute, for each simulation scenario (q, n),
the area under the (average) ROC curve (AUC) whose values are reported in Table 1.
They are close or above 94% under the three sample sizes considered when q = 20.
When q = 40 AUC exceeds 90% for n = 100 and rises to over 97% for n = 500.

A more specific check on the ability of our method in recovering the structure of
the underlying DAG can be considered. Since Y is the response, interest centers on the
causal effect on Y following an intervention on a variable in the system. A natural group
of intervention variables is represented by the set of parents of the latent node X1 either
because they directly influence X1 (and hence Y ) or because they act as intermediate
nodes along a pathway originating from a variable upstream in the graph. To this
end, under each simulation scenario, we fix the threshold for edge inclusion k∗ = 0.5
and include those edges u → 1 such that p̂u→1(·) ≥ 0.5 in analogy with the median
probability model of Barbieri and Berger (2004). The resulting 0-1 vector of indicators
for edge inclusion is a = (a1,1, . . . , aq,1)

�, where a1,1 = 0 while, for u = 2, . . . , q, au,1 = 1
if u → 1 is included, 0 otherwise. Next we compute the proportion of predictors that
are correctly classified,

p∗ =
1

q − 1

q∑
u=2

1
{
au,1 = AD

(u,1)

}
,

where AD
(u,v) denotes the (u, v) element of the adjacency matrix of D. The results are

summarized in the box-plots of Figure 2 where we report the frequency distribution of
p∗ computed over the 40 true DAGs. While for n = 100 the proportion of correctly
classified edges presents some variability with a median which is nevertheless around
80% (q = 40) and 90% (q = 20), the performance greatly improves as the sample size
increases with practically all values being close to 1.

We now focus on causal effect estimation. Under each simulated DAG D and pa-
rameters (DD,LD) we first compute the (true) covariance matrix ΣD using (5). Now
recall from (13) that the causal effect on Y is a probability which also depends on the
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Figure 1: Simulations. Receiver operating characteristic (ROC) curve obtained under varying thresholds for the posterior
probabilities of edge inclusion for each combination of number of nodes q = {20, 40} (first and second row respectively) and
sample size n ∈ {100, 200, 500}. Dots and connecting line describe the (average over the 40 simulated DAGs) ROC curve, while
the grey area represents the 5th–95th percentile band.
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Figure 2: Simulations. Distribution across 40 simulated datasets of the proportion of
predictors p∗ that are correctly classified given a threshold for edge inclusion k∗ = 0.5 for
each combination of number of nodes q ∈ {20, 40} and sample size n ∈ {100, 200, 500}.

level x̃ assigned to the intervened variable Xs. For each intervened node s ∈ {2, . . . , q}
we evaluate βs(x̃,Σ

D, θ0) ≡ βtrue
s (x̃) at each observed value of Xs in the simulation

scenario, (x1,s, . . . , xn,s), and obtain the (n, 1) vector of causal effects
(
βtrue
s (x1,s), . . . ,

βtrue
s (xn,s)

)�
. Next we produce the collection of BMA estimates β̂BMA

s (x1,s), . . . ,

β̂BMA
s (xn,s) according to equation (27). To evaluate the performance of our method

in estimating the causal effect we consider the differences
(
βtrue
s (xi,s) − β̂BMA

s (xi,s)
)

and compute the mean absolute error (MAE)

MAEs =
1

n

n∑
i=1

∣∣βtrue
s (xi,s)− β̂BMA

s (xi,s)
∣∣,

for each intervened node s = 2, . . . , q. Results are summarized in the box-plots of Fig-
ure 3, where we report the distribution of the MAE (constructed across the 40 DAGs
and nodes s = 2, . . . , q) as a function of n. As expected, MAE decreases and approaches
0 as the sample size n grows for both values of q. Notice that the median value of MAE
in the worst case scenario (q = 20, n = 100) is about half of one percent.

Finally, we also explore settings where n ≤ q: in particular we include simulation
results for q = 40 and n ∈ {10, 20, 40}. Again, we generate 40 DAGs and the allied
parameters as in our first simulation study. Results are summarized in the box-plots
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Figure 3: Simulations. Distribution over 40 datasets and nodes s ∈ {2, . . . , q} of the mean
absolute error (MAE) of BMA estimates of true causal effects. Results are presented for
each combination of number of nodes q ∈ {20, 40} and sample size n ∈ {100, 200, 500}.

of Figure 4, where we report the distribution of the MAE, constructed across the 40
DAGs and nodes s ∈ {2, . . . , q} as a function of n. It appears that, even if sample sizes
are moderate, MAE decreases as n grows.

7 Analysis of Gene Expressions from Breast Cancer
Cells

In this section we apply our method to a gene expression dataset presented in Yin et al.
(2014). The aim of the original study was to evaluate the ability of a gene signature
derived from breast cancer stem cells to predict the risk of metastasis and survival
in breast cancer patients. To this end, a collection of genes which are believed to be
the main responsible for tumor initiation, progression, and response to therapy was
considered. The study was motivated by recent literature establishing the existence of
a rare population of cells, called stem-like cells, which supposedly represent the cellular
origin of cancer; see for instance O’Brien et al. (2006). Gene-expression levels were
measured on n = 198 breast cancer patients of which 62 manifested distant metastasis.

Evaluating the causal effect on Y due to an hypothetical intervention on a specific
gene which sets its expression level may help understand which genes are particularly
relevant for determining distant metastasis. This in turn can be useful to identify epige-
netic modifications capable of setting genes “on” or “off”; see for instance Abdul et al.
(2017) and Campbell et al. (2017).
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Figure 4: Simulations. Distribution over 40 datasets and nodes s ∈ {2, . . . , q} of the mean
absolute error (MAE) of BMA estimates of true causal effects. Results are presented
for number of nodes q = 40 and sample size n ∈ {10, 20, 40}.

We first implemented our method on the complete dataset which includes 41 genes
and a binary response variable Y indicating the occurrence (absence or presence, re-
spectively Y = 0 and Y = 1) of distant metastasis. For simplicity of exposition, we
disregarded those genes which appeared to be irrelevant for causal effect estimation,
because not related to the response, nor to other genes and therefore we finally included
in our analysis q = 28 genes.

We apply Algorithm 1 by fixing the number of MCMC iterations T = 120000 and
after standardizing observations from the continuous variables X2, . . . , Xq. We also set
g = 1/n and a = q in the prior on the Cholesky parameters of Ω as in the simula-
tion scenarios of Section 6. We first use the MCMC output to estimate the posterior
probability of inclusion of each directed edge u → v, that we report in the heat map of
Figure 5. Results show a substantial degree of sparsity in the underlying graph struc-
ture and only 48 edges have a posterior probability of inclusion exceeding 0.5. Moreover,
among the 28 genes, only gene IL8, for which p̂ IL8→Y (·) = 0.70, seems to directly affect
the response variable.

To evaluate the incidence of each gene on the probability of recurrence we compute
the causal effect (13) on the response due to an intervention on a specific gene. To

this end, starting from the MCMC output we produce a BMA estimate β̂BMA
s (x̃) for

each gene s = 2, . . . , q according to (27). Since the causal effect depends on the level x̃

assigned to the intervened variable Xs, we evaluate β̂BMA
s (x̃) at each observed value of

Xs, that is x1,s, . . . , xn,s. The results are reported in Figure 6, where each box-plot refers
to a gene s ∈ {2, . . . , q} and summarizes the distribution of n = 198 BMA estimates,{
β̂BMA
s (xi,s)

}n

i=1
. Because the data were standardized, the ranges of X2, . . . , Xq are

similar and we can meaningfully compare results across genes.
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Figure 5: Gene expression data. Heat map with estimated marginal posterior probabil-
ities of edge inclusion for each edge u → v.

Recall from Proposition 3.1 that γs is the covariance between Xs and X1. If γs = 0,
equation (13) shows that the causal effect on Y due to an intervention on Xs does not
vary with x̃. If prior information is weak in relation to the sample size, the estimate
of the causal effect will be close to the overall frequency of distant metastasis in the
sample (0.31). This is the situation exhibited by most genes in Figure 6. On the other
hand if γs is not zero, the collection of causal effects evaluated at xis, i = 1, . . . , n will
vary. Since the observations are centred, their average is zero and the causal effects
will be spread around the value corresponding to the average x̄s = 0 whose estimate
is 0.31 as indicated above. This is what happens for a few genes such as IL8, OAS2
and KRT6B, which exhibit a much greater variability of the causal effect across their
measurements, implying that their regulation can influence the occurrence of distant
metastasis. In particular, gene IL8 has also been identified as having a potential impact
on cancer cells in several studies (Waugh and Wilson, 2008). Other genes which stand
out in terms of variability are OAS2 and KRT6B, with the latter not directly linked to
Y (as one can see from the heat map of Figure 5) and exhibiting a moderate causal effect
on Y which is likely due to the strong association of KRT6B with IL8 (as it emerges
from the posterior probabilities of edge inclusion in Figure 5).
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Figure 6: Gene expression data. Box-plots of BMA estimate of causal effect. Each box-
plot refers to one of the 28 genes s, and represents the n = 198 BMA estimates computed
at each observed value (x1,s, . . . , xn,s) of expression for gene s.

For genes IL8 and OAS2 we also report in Figure 7 more detailed results for causal
effect estimation. In particular, each plot reports the BMA estimates

{
β̂BMA
s (xi,s)

}n

i=1
(represented by n = 198 dots), and the corresponding credible regions at level 95%
represented by the grey area. Results show that increasing expression levels of IL8
are likely to increase the presence of distant metastasis, with BMA estimates of the
probability of recurrence ranging in the interval [0.18; 0.54]. This is consistent with
results we have obtained showing that most of the mass of the distribution of the
coefficient γs for these genes is assigned to the positive half-line; see also the discussion
after (13). Moreover, more extreme levels of IL8 are associated with larger credible
regions. A similar behavior, although less pronounced, is observed for gene OAS2 with
BMA estimates ranging between [0.25; 0.41].
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Figure 7: Gene expression data. BMA estimates (dots) and credible regions at level 95%
(grey area) for two selected genes, IL8 and OAS2.

8 Discussion

We consider a system of real-valued variables together with a binary response; interest
lies in the evaluation of the causal effect on the response due to an external intervention
on a variable. Given observational data, this goal can be pursued by introducing some
causal assumptions on the data generating mechanism; see for instance Maathuis and
Nandy (2016). In particular, we assume that multivariate observations are generated
from an unknown DAG without latent variables (causal sufficiency) and that the obser-
vational distribution is faithful to the DAG. These assumptions, coupled with the notion
of intervention and the do-calculus, lead to a post-intervention DAG factorization that,
being based on observational node-conditional distributions, allows to estimate causal
effects from nonexperimental (observational) data; see also Pearl (2009).

Our DAG-probit model assumes that the binary response is generated by standard
thresholding applied to a continuous latent variable, and that the joint distribution
of all continuous variables belongs to a zero-mean Gaussian Directed Acyclic Graph
(DAG) model. We then proceed by assigning a prior to the DAG-constrained covari-
ance matrix through a DAG-Wishart distribution on the corresponding Cholesky pa-
rameters. Our elicitation procedure only requires to set the hyperparameters of a single
unique Wishart distribution and guarantees score equivalence, meaning that marginal
likelihoods of Markov equivalent DAG models are all equal (Geiger and Heckerman,
2002). This feature will have a useful implication, as we discuss at the end of this
section.

Because the structure of the data-generating DAG is unknown, we construct an
MCMC sampler whose target is the joint posterior distribution of the DAG and the
allied Cholesky parameters. This is achieved by carefully tailoring a Partial Analytic
Structure (PAS) algorithm to our DAG setting. As a by-product, we recover the MCMC
sequence of causal effects corresponding to each visited DAG; this represents the input
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to our final Bayesian Model Averaging (BMA) estimate, which naturally accounts for
model uncertainty on the underlying graph structure.

The assumption of jointly normally distributed random variables can be a source of
concern whenever one faces a concrete data analysis. With regard to our application
the Gaussian assumption has been often used to analyse gene expression data; see for
instance Dobra et al. (2004) and Markowetz and Spang (2007). In addition, it allows to
easily incorporate the binary outcome through a latent component, and results in an
efficient algorithm, because of closed-form expressions both for the posterior distribution
of parameters, as well as for the marginal likelihood of models.

Besides the assumption of normality, our model posits a unique, yet unknown, graph-
ical structure as the generating mechanism of all observations. Nevertheless, some prob-
lems may suggest to partition the units into groups each having a specific graphical
structure which can be however related to the other ones, as in gene expressions col-
lected on multiple tissues from the same individual (Xie et al., 2017). In this setting a
multiple graphical model setup would be more appropriate to encourage similarities be-
tween group graphical structures; see for instance Peterson et al. (2015) for a Bayesian
analysis of multiple Gaussian undirected graphical models. The latter could be a useful
starting point for an extension of our DAG-probit model to multiple groups.

In this work we consider causal effects as obtained from interventions on single nodes.
However in practice an exogenous intervention may affect many variables (genes) simul-
taneously and accordingly one may want to predict for instance the effect of a double
or triple gene knockout on the response. Causal effect estimation from joint interven-
tions is carried out in a Gaussian setting by Nandy et al. (2017) using a frequentist
approach. Their results show that the causal effect of Xs on the response in a joint
intervention on a given set of variables can be still expressed as a function of the covari-
ance matrix Markov w.r.t. D. The same problem can be tackled by adopting a Bayesian
methodology which combines DAG structural learning and causal effect estimation and
is currently under investigation by ourselves. In addition, an extension to DAG-probit
models should be feasible along the lines of this paper.

The methodology adopted in this work revolves around DAGs. However, it is known
that in the Gaussian setting DAGs encoding the same conditional independencies
(Markov equivalent DAGs) are not distinguishable using observational data (Verma and
Pearl, 1990) and can be collected into Markov equivalence classes (MECs). Accordingly,
when the goal of the analysis is structural learning (model selection) MECs represent
the appropriate inferential object (Andersson et al., 1997). However, if the objective
is causal effect estimation, this is no longer so, because Markov equivalent DAGs may
return distinct causal effects. An inspection of (13) reveals the reason: a causal effect
depends on the parent set of the intervened node, and this may differ among DAGs
within the same MEC. Yet MECs can be exploited also for causal inference, as we now
detail. In a frequentist setting, Maathuis et al. (2009) first estimate a MEC using the
classic PC algorithm (Spirtes et al., 2000), and then provide an estimate of the causal
effect under each DAG within the estimated equivalence class. Alternatively, a Bayesian
methodology would first determine the posterior distribution on MEC space, and then,
conditionally on a given MEC, compute the posterior of each causal effect within the
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class (one for each DAG). A single MEC causal effect estimate can be obtained by
averaging effects across DAGs, using uniform weights on equivalent DAGs. Finally, an
overall Bayesian Model Averaging (BMA) estimate can be obtained by averaging MEC-
conditional estimates using posterior probabilities of MECs as weights; for details see
(Castelletti and Consonni, 2021a). We remark that the above strategies require an ex-
haustive enumeration of all DAGs belonging to a MEC, which is not feasible even for
a moderate number of nodes. Accordingly one considers only the distinct causal effects
within a given MEC, because these values can be efficiently recovered (Maathuis et al.,
2009, Algorithm 3) even in high-dimensional settings. In this work we seemingly ignore
the issue of DAG Markov equivalence, and propose a causal inference procedure which
directly focuses on DAG space, rather than MEC space. However, as already remarked
at the beginning of this section, our method for parameter prior construction across
DAG models guarantees score equivalence for DAGs within the same MEC. This, to-
gether with a uniform prior on DAGs within the same MEC, ensures that causal effects
associated to Markov equivalent DAGs will be assigned equal weights in the resulting
BMA estimate.

Supplementary Material

Supplement to Bayesian causal inference in probit graphical models
(DOI: 10.1214/21-BA1260SUPP; .pdf). The Supplementary material contains the proof
of Propositions 3.1 and 4.1, a detailed exposition of the PAS algorithm adopted in
Section 5, additional simulation results and comparisons and an investigation of the
computational time of our algorithm.
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