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On Bayesian inference for the Extended
Plackett-Luce model

Stephen R. Johnson∗, Daniel A. Henderson†, and Richard J. Boys‡

Abstract. The analysis of rank ordered data has a long history in the statistical
literature across a diverse range of applications. In this paper we consider the
Extended Plackett-Luce model that induces a flexible (discrete) distribution over
permutations. The parameter space of this distribution is a combination of po-
tentially high-dimensional discrete and continuous components and this presents
challenges for parameter interpretability and also posterior computation. Partic-
ular emphasis is placed on the interpretation of the parameters in terms of ob-
servable quantities and we propose a general framework for preserving the mode
of the prior predictive distribution. Posterior sampling is achieved using an effec-
tive simulation based approach that does not require imposing restrictions on the
parameter space. Working in the Bayesian framework permits a natural represen-
tation of the posterior predictive distribution and we draw on this distribution to
make probabilistic inferences and also to identify potential lack of model fit. The
flexibility of the Extended Plackett-Luce model along with the effectiveness of the
proposed sampling scheme are demonstrated using several simulation studies and
real data examples.

Keywords: Markov chain Monte Carlo, MC3, permutations, predictive inference,
rank ordered data.

1 Introduction

Rank ordered data arise in many areas of application and a wide range of models have
been proposed for their analysis; for an overview see Marden (1995) and Alvo and Yu
(2014). In this paper we focus on the Extended Plackett-Luce (EPL) model proposed
by Mollica and Tardella (2014); this model is a flexible generalisation of the popular
Plackett-Luce model (Luce, 1959; Plackett, 1975) for permutations. In the Plackett-Luce
model, entity k ∈ K = {1, . . . ,K} is assigned parameter λk > 0, and the probability
of observing the ordering x = (x1, x2, . . . , xK)′ (where xj denotes the entity ranked in
position j) given the entity parameters (referred to as “support parameters” in Mollica
and Tardella (2014)) λ = (λ1, . . . , λK)′ is

Pr(X = x|λ) =
K∏
j=1

λxj∑K
m=j λxm

. (1)
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We refer to (1) as the standard Plackett-Luce (SPL) probability. This probability is
constructed via the so-called “forward ranking process” (Mollica and Tardella, 2014),
that is, it is assumed that a rank ordering is formed by allocating entities from most
to least preferred. This is a rather strong assumption. It is easy to imagine a scenario
where an individual ranker might assign entities to positions/ranks in an alternative
way. For example, it is quite plausible that rankers may find it easier to identify their
most and least preferred entities first rather than those entities they place in the middle
positions of their ranking (Mollica and Tardella, 2018). In such a scenario rankers might
form their rank ordering by first assigning their most and then least preferred entities
to a rank before filling out the middle positions through a process of elimination using
the remaining (unallocated) entities, that is, they use a different ranking process. The
Extended Plackett-Luce model relaxes the assumption of a fixed and known ranking
process.

It is somewhat natural to recast the underlying ranking process in terms of a “choice
order” where the choice order is the order in which rankers assign entities to posi-
tions/ranks. For example, suppose a ranker must provide a preference ordering of K
entities; a choice order of σ = (1,K, 2, 3, . . . ,K−1)′ corresponds to the ranking process
where the most preferred entity is assigned first, followed by the least preferred entity
and then the remaining entities are assigned in rank order from second down. Note that
the choice order σ is simply a permutation of the ranks 1 to K and is referred to as the
“reference order” in Mollica and Tardella (2014).

Whilst the EPL model is motivated in terms of a choice order as described above, this
justification is not always appropriate. For example, the notion of a choice order clearly
does not apply in the analysis of the Formula 1 data in Section 6, where the data are
simply the finishing orders of the drivers in each race. We prefer to view the EPL model
as a flexible probabilistic model for rank ordered data; ultimately all such probabilistic
models induce a discrete distribution Px over the set of all K! permutations SK and we
wish this distribution to provide a flexible model for the observed data.

We adopt a Bayesian approach to inference which we find particularly appealing and
natural as we focus heavily on predictive inference for observable quantities. We also
make three main contributions, as outlined below. When the number of entities is not
small, choosing a suitable prior distribution for σ, the permutation of the ranks 1 to K,
is a somewhat daunting task. We therefore propose to use the (standard) Plackett-Luce
model to define the prior probability of each permutation, although we note that our in-
ference framework is sufficiently general and does not rely on this choice. We also address
the thorny issue of specifying informative prior beliefs about the entity parameters λ
by proposing a class of priors that preserve the modal prior predictive rank ordering
under different choice orders σ. Constructing suitable posterior sampling schemes for
the Extended Plackett-Luce model is challenging; the parameters (λ,σ) ∈ R

K
>0 × SK

reside in a complicated mixed discrete-continuous space that must be effectively ex-
plored. This is made more challenging by the multi-modality of the marginal posterior
distribution for σ, with local modes separated by large distances within permutation
space. We overcome the difficult sampling problem by appealing to Metropolis coupled
Markov chain Monte Carlo (MC3). To the best of our knowledge, the algorithm we
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outline is the only one currently capable of sampling from the posterior distribution
under the Extended Plackett-Luce model when the full parameter space is considered.
Unfortunately the recent algorithm proposed by Mollica and Tardella (2020) relies on
a rescaling of the entity parameters that does not preserve the target distribution; the
solution given by Mollica and Tardella (2018) considers a restricted parameter space
for σ and suffers from the same issue.

The remainder of the paper is structured as follows. In Section 2 we outline the
Extended Plackett-Luce model and our associated notation, and in Section 2.2 we pro-
vide some guidance on interpreting the model parameters. In Section 3 we propose
our Bayesian approach to inference. In particular we discuss suitable choices for the
prior distribution and describe our simulation based scheme for posterior sampling.
A simulation study illustrating the efficacy of the posterior sampling scheme and the
performance of the EPL model over a range of values for the number of entities and
number of observations is considered in Section 4; with further details also given in
Section 2 of the supplementary material (Johnson et al., 2021). Section 5 outlines how
we use the posterior predictive distribution for inference on observable quantities and
for assessing the appropriateness of the model. Two real data analyses are considered
in Section 6 to illustrate the use of the (unrestricted) EPL model. Section 7 offers some
conclusions.

2 The Extended Plackett-Luce model

We now present the Extended Plackett-Luce model along with our associated notation
and also discuss the interpretation of the model parameters in terms of the preferences
of entities.

2.1 Model and notation

Recall that there are K entities to be ranked and that the collection of all entities
is denoted K = {1, . . . ,K}. The Extended Plackett-Luce model we consider is that
proposed by Mollica and Tardella (2014) and, in its current form, is only appropriate
for complete rank orderings in which all entities are included. Thus a typical observation
is xi = (xi1, . . . , xiK)′ where xij denotes the entity ranked in position j in the ith rank
ordering. The choice order is represented by σ = (σ1, . . . , σK)′, where σj denotes the
rank allocated at the jth stage. Conditional on σ, each entity has a corresponding
parameter λk > 0 for k = 1, . . . ,K; let λ = (λ1, . . . , λK)′. Crucially, the meaning and
interpretation of λ depends on σ and this is addressed shortly.

The probability of a particular rank ordering under the Extended Plackett-Luce
model (Mollica and Tardella, 2014) is defined as

Pr(Xi = xi|λ,σ) =
K∏
j=1

λxiσj∑K
m=j λxiσm

. (2)

Therefore, the Extended Plackett-Luce probability (2) is simply the standard Plackett-
Luce probability (1) evaluated with entity parameters λ and “permuted data” x∗

i =
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xi ◦σ where ◦ denotes composition of permutations which, in terms of vectors, implies
that if z = x ◦ y then zi = xyi . Here x∗

ij denotes the entity chosen at the jth stage of
the ith ranking process and therefore receiving rank σj .

Indeed, both the (forward ranking) standard Plackett-Luce model and (backward
ranking) reverse Plackett-Luce model are special cases of (2) and are recovered when
σ = (1, . . . ,K)′ ≡ I, the identity permutation, and σ = (K,K − 1, . . . , 1)′, the reverse
of the identity permutation, respectively. We use the notation Xi|λ,σ ∼ EPL(λ,σ)
to denote that the probability of rank ordering i is given by (2). Note that here and
throughout we have adopted different notation from that in Mollica and Tardella (2014)
however the essential components of the model remain unchanged.

It is clear that the EPL probability (2) is invariant to scalar multiplication of the
entity parameters λ, that is, Pr(X|λ,σ) = Pr(X|cλ,σ) for any positive constant c > 0.
From a Bayesian perspective this type of identifiability issue is straightforwardly resolved
by placing a non-uniform prior on λ. In this case, although the likelihood function may
be constant for multiple (scaled) λ values, the posterior distribution is not. That said,
this issue can still lead to potential mixing problems for MCMC algorithms (Caron and
Doucet, 2012) and thus an inefficient sampling scheme; this is revisited in Section 3.3.

2.2 Interpretation of the entity parameters λ

A key aspect of analysing rank ordered data using Plackett-Luce type models is the
interpretation of the entity parameters λ. Moreover, it is essential to understand the
interpretation of the λ parameters if one is to specify informative prior beliefs about
the likely preferences of the entities.

For the Extended Plackett-Luce model, λk is proportional to the probability that
entity k is selected at the first stage of the ranking process and therefore ranked in
position σ1 of the rank ordering x. Then, conditional on an entity being assigned to
position σ1 in the rank ordering, the entity with the largest parameter of those remaining
is that most likely to be assigned to position σ2, and so on. For the standard Plackett-
Luce model, arising from the forward ranking process with σ = I, we have that λk

is proportional to the probability that entity k is assigned rank σ1 = 1 (and is thus
the most preferred entity), and so on. Therefore, for the standard Plackett-Luce model,
entities with larger values are more likely to be given a higher rank. In other words, the λ
parameters for the standard Plackett-Luce model correspond directly with preferences
for entities. A consequence is that ordering the entities in terms of their values in λ,
from largest to smallest, will give the modal ordering x̂, that is, the permutation of the
entities which yields the maximum Plackett-Luce probability (1), given λ. Specifically,
x̂ = order↓(λ), where order↓(·) denotes the ordering operation from largest to smallest.
This makes specifying a prior distribution for λ, when σ = I, relatively straightforward
based on entity preferences. The interpretation of the λ parameters directly in terms
of preferences can also be achieved in a straightforward manner with the backward
ranking process (σ = (K, . . . , 1)′) of the reverse Plackett-Luce model. Apart from these
special cases, however, the interpretation of the λ parameters in terms of preferences is
not at all transparent for other choices of σ. For example, suppose that λi > λj and
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σ = (2, 3, 1)′. Here entity i is more likely to be ranked in second position than entity j.
Further, if another entity � �= i, j, is assigned to rank 2 then entity i is preferred for
rank 3 (σ2) over entity j.

Understanding the preference of the entities under the Extended Plackett-Luce
model based on values of λ and σ can be made more straightforward if we first in-
troduce the inverse of the choice order permutation σ−1. This is defined such that
σ ◦ σ−1 = σ−1 ◦ σ = I, the identity permutation. Here σ−1

j denotes the stage of the
ranking process at which rank j is assigned. We can then obtain directly the modal
ordering of the entities under the EPL(λ,σ) model, x̂(σ,λ), and thus obtain a repre-

sentation of the preference of the entities. Here x̂(σ,λ) is obtained without enumerating
any probabilities by permuting the entries in x̂ (the modal ordering under the standard

Plackett-Luce model conditional on λ), by σ−1, that is x̂(σ,λ) = x̂◦σ−1. In other words,

if x̂ = order↓(λ) then x̂
(σ,λ)
j = x̂σ−1

j
, for j = 1, . . . ,K. Let x̂−1 represent the ranks as-

signed to the entities under the standard Plackett-Luce model; this is obtained as the
inverse permutation corresponding to x̂, that is, the permutation such that x̂−1◦x̂ = I.
Now define η(σ) = x̂(σ,λ) ◦ x̂−1; this represents the permutation of the entities ranked
under the EPL model at the stage corresponding to the rank assigned to entities 1
to K under the standard Plackett-Luce model. It follows that, if λ(σ) has jth element

λ
(σ)
j = λ

η
(σ)
j

, where η
(σ)
j is the jth element of η(σ), then x̂(σ,λσ) ≡ x̂ for all σ ∈ SK ,

and the modal preference ordering is preserved.

Some simplification is possible if we first order the entities in terms of preferences.
Clearly, with x̂ = I we have x̂(σ,λ) = σ−1 and so the modal ordering is given by the
inverse choice order permutation. Moreover, if x̂ = I then x̂−1 = I and so η(σ) = σ−1.

It follows that choosing λ(σ) such that its jth element is λ
(σ)
j = λσ−1

j
, then x̂(σ,λσ) ≡ I

for all σ ∈ SK . Therefore if the entities are labelled in preference order then permuting
the λ parameters from the standard Plackett-Luce model by the inverse of the choice
order permutation will preserve the modal permutation to be in the same preference
order. This suggests a simple strategy for specifying prior distributions for the entity
parameters which preserves modal preferences under different choice orders; we revisit
this in Section 3.1.

3 Bayesian modelling

Suppose we have data consisting of n independent rank orderings, collectively denoted
D = {x1,x2, . . . ,xn}. The likelihood of λ,σ is

π(D|λ,σ) =
n∏

i=1

Pr(Xi = xi|λ,σ)

=

n∏
i=1

K∏
j=1

λxiσj∑K
m=j λxiσm

. (3)

We wish to make inferences about the unknown quantities in the model σ,λ as well
as future observable rank orderings x̃. Specifically we adopt a Bayesian approach to
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inference in which we quantify our uncertainty about the unknown quantities (before
observing the data) through a suitable prior distribution.

3.1 Prior specification

We adopt a joint prior distribution for σ and λ of the form π(σ,λ) = π(λ|σ)π(σ)
which explicitly emphasizes the dependence of λ on σ.

Prior for σ

For the choice ordering σ we need to define a discrete distribution Pσ over the K!
elements of SK . If K is not small, perhaps larger than 4, then this could be a rather
daunting task. Given the choice order parameter σ is a permutation, or equivalently
a complete rank ordering, one flexible option is to use the Plackett-Luce model to
define the prior probabilities for each choice order parameter. More specifically we let
σ|q ∼ PL(q) where q = (q1, . . . , qK)′ ∈ R

K
>0 are to be chosen a priori and

Pr(σ|q) =
K∏
j=1

qσj∑K
m=j qσm

.

If desired, it is straightforward to assume each choice order is equally likely a priori
by letting qk = q for k = 1, . . . ,K. Furthermore, the inference framework that follows
is sufficiently general and does not rely on this prior choice. In particular, if we only
wish to consider a subset of all the possible choice orderings R ⊂ SK , as in Mollica and
Tardella (2018), then this can be achieved by making an appropriate choice of prior
probabilities for all σ ∈ R and letting Pr(σ) = 0 for all σ ∈ SK \ R.

Prior for λ|σ

It is natural to wish to specify prior beliefs in terms of preferences for the entities.
However, we have seen in Section 2.2 that the interpretation of the entity parameters λ
in terms of preferences is dependent on the value of σ. It follows that specifying an
informative prior for the entity parameters is problematic unless the choice order σ is
assumed to be known. We therefore consider separate prior distributions for λ condi-
tional on the value of σ. Since the entity parameters λk > 0 must be strictly positive,
a suitable, relatively tractable, choice of conditional prior distribution is a gamma dis-

tribution with mean a
(σ)
k /b

(σ)
k , that is λk|σ

indep∼ Ga(a
(σ)
k , b

(σ)
k ) for k = 1, . . . ,K and

σ ∈ SK . Without loss of generality we set b
(σ)
k = b = 1, for all k and σ since b is not like-

lihood identifiable. Our proposed strategy for specifying the hyper-parameters a(σ) is to
first consider the prior distribution for λ under the standard Plackett-Luce model with
σ = I. If we specify a = (a1, . . . , aK)′ then x̂, the modal preference ordering from the
prior predictive distribution, is obtained by simply ordering the ak values from largest
to smallest and so x̂ = order↓(a). Then, following the arguments of Section 2.2, we can
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preserve our beliefs about the modal preference ordering for all values of σ by construct-

ing η(σ) = x̂ ◦ σ−1 ◦ x̂−1 and letting a
(σ)
k = a

η
(σ)
k

for k = 1, . . . ,K and σ ∈ SK . Again

some simplification of notation is achievable if we first relabel the entities in terms of
our a priori preferences. Specifically if we label the entities such that our most preferred
entity is labelled 1, second most preferred labelled 2, and so on then a1 > a2 > · · · > aK
and x̂ = I. In this case η(σ) = σ−1 and so a

(σ)
k = aσ−1

k
for k = 1, . . . ,K. Section 8 of

the supplementary material contains two simple numerical examples to help illustrate
the issues with prior specification and our proposed mode-preserving solution.

Whilst the framework above gives us a relatively straightforward way to encode
information if we have a clear prior preference of the entities, additional complications
arise in settings where preferences for some (or all) of the entities are exchangeable a
priori. More specifically, if we wish to specify no (prior) preference between two distinct
entities j �= k then, for the standard Plackett-Luce model, this can be achieved by
setting aj = ak. Such choice gives rise to a multi-modal prior predictive distribution
and so x̂ = order↓(a), and thus η(σ) = x̂◦σ−1◦x̂−1, is not uniquely defined. Thankfully
this issue can be straightforwardly resolved as part of our simulation-based inference
approach. In particular if we let X denote the set of modes of the prior predictive
distribution (under the SPL model) then we can simply sample (uniformly at random) x̂
from X at each iteration of our MCMC scheme. A formal discussion is provided in
Section 4 of the supplementary material. Note that if we are unwilling to favour any
particular preference ordering a priori then this can be achieved by letting ak = a (for
all k) as this choice induces a uniform prior predictive distribution over all preference
orders. Formally X = SK , however given that a(σ) is formed by permuting the elements
of a it follows that a(σ) = a for all x̂,σ ∈ SK and so sampling x̂ from X is redundant
in this special case.

3.2 Bayesian model

The complete Bayesian model is

Xi|λ,σ
indep∼ EPL(λ,σ), i = 1, . . . , n,

λk|σ,a
indep∼ Ga(a

(σ)
k , 1), k = 1, . . . ,K,

σ|q ∼ PL(q).

That is, we assume that our observations follow the distribution specified by the Ex-
tended Plackett-Luce model (2) and the prior distribution for (λ,σ) is as described in
Section 3.1.

The full joint density of all stochastic quantities in the model (with dependence on
fixed hyper-parameters suppressed) is

π(σ,λ,D) = π(D|λ,σ)π(λ|σ)π(σ).

From which we quantify our beliefs about σ and λ through their joint posterior density

π(σ,λ|D) ∝ π(D|λ,σ)π(λ|σ)π(σ),
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which is obtained via Bayes’ Theorem. The posterior density π(σ,λ|D) is not available
in closed form and so we use simulation-based methods to sample from the posterior
distribution as described in the next section.

3.3 Posterior sampling

Due to the complex nature of the posterior distribution we use Markov chain Monte
Carlo (MCMC) methods in order to sample realisations from π(σ,λ|D). The structure
of the model lends itself naturally to consider sampling alternately from two blocks of
full conditional distributions: π(σ|λ,D) and π(λ|σ,D).

Sampling the choice order parameter σ from π(σ|λ,D)

Given the choice order parameter σ is a member of SK it is fairly straightforward to
obtain its (discrete) full conditional distribution; specifically this is the discrete distri-
bution with probabilities

Pr(σ = σj |λ,D) ∝ π(D|λ,σ = σj)π(λ|σ = σj) Pr(σ = σj)

for j = 1, . . . ,K!. Clearly sampling from this full conditional will require K! evaluations
of the EPL likelihood π(D|λ,σ = σj) and so sampling from Pr(σ = σj |λ,D) for
j = 1, . . . ,K! (a Gibbs update) is probably only plausible if K is sufficiently small;
perhaps not much greater than 5. Of course, the probabilities Pr(σ = σi|λ,D) and
Pr(σ = σj |λ,D) are conditionally independent for i �= j and so could be computed in
parallel which may facilitate this approach for slightly larger values of K.

So as to free ourselves from the restriction to the case where K is small we instead
consider a more general sampling strategy by constructing a Metropolis-Hastings pro-
posal mechanism for updating σ. Our investigation into the likelihood of the Extended
Plackett-Luce model given different choice orders in Section 3 of the supplementary
material revealed that π(D|λ,σ) is likely to be multi-modal. Further, local modes can
be separated by large distances within permutation space. In an attempt to effectively
explore this large discrete space we consider 5 alternative proposal mechanisms; each of
which occurs with probability p� for � = 1, . . . , 5. The 5 mechanisms to construct the
proposed permutation σ† are as follows.

1. The random swap: sample two positions φ1, φ2 ∈ {1, . . . ,K} uniformly at random
and let the proposed choice order σ† be the current choice order σ where the
elements in positions φ1 and φ2 have been swapped.

2. The Poisson swap: sample φ1 ∈ {1, . . . ,K} uniformly at random and let φ2 =
φ1 + m where m = (−1)τf , τ ∼ Bern(0.5) and f ∼ Poisson(t). Note that t is
a tuning parameter and φ2 → {(φ2 − 1) mod K} + 1 as appropriate. Again the
proposed choice order σ† is formed by swapping the elements in positions φ1

and φ2 of the current choice order σ.
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3. The random insertion (Bezáková et al., 2006): sample two positions φ1 �= φ2 ∈
{1, . . . ,K} uniformly at random and let the proposed choice order σ† be formed
by taking the value in position φ1 and inserting it back into the permutation so
that it is instead in position φ2.

4. The prior proposal: here σ† is simply an independent draw from the prior distri-
bution, that is, σ†|q ∼ PL(q).

5. The reverse proposal: here σ† is defined to be the reverse ordering of the current
permutation σ, that is, σ† = σK:1 = (σK , . . . , σ1)

′.

Note that performing either of the swap or insertion moves (1–3) above may result in
slow exploration of the set of all permutations as the proposal σ† may not differ much
from the current value σ. To alleviate this potential issue we propose to iteratively
perform each of these moves S times, where S is to be chosen (and fixed) by the
analyst. More formally (when using proposal mechanisms 1–3) we construct a sequence

of intermediate proposals σ†
s from the “current” choice order σ†

s−1. In particular we

let σ†
0 = σ and generate σ†

s|σ†
s−1 for s = 1, . . . , S; the proposed value for which we

evaluate the acceptance probability is σ† = σ†
S . Further, for moves 1 and 2 it may

seem inefficient to allow for the “null swap” φ1 = φ2, however this is done to avoid only
proposing permutations with the same (or opposing) parity as the current value. Put
another way, as S → ∞ we would expect Pr(σ†|σ) > 0 for all σ†,σ ∈ SK and this only
holds if we allow for the possibility that φ1 = φ2. Finally we note that each of these
proposal mechanisms is “simple” in the respect that Pr(σ†|σ) = Pr(σ|σ†) and so the
proposal ratio cancels in each case. The full acceptance ratio is presented within the
algorithm outline in Section 3.4.

Sampling the entity parameters λ from π(λ|σ,D)

Bayesian inference for variants of standard Plackett-Luce models typically proceeds by
first introducing appropriate versions of the latent variables proposed by Caron and
Doucet (2012), which in turn facilitate a Gibbs update for each of the entity parameters
(assuming independent Gamma prior distributions are chosen). However we found that,
when coupled with a Metropolis-Hastings update on σ, this strategy does not work well
for parameter inference under the Extended Plackett-Luce model (not reported here);
this observation was also noted by Mollica and Tardella (2020). We therefore propose
to use a Metropolis-Hastings step for sampling the entity parameters, specifically we
use (independent) log normal random walks for each entity parameter in turn and so

the proposed value is λ†
k

indep∼ LN(log λk, σ
2
k) for k = 1, . . . ,K. We also implement an

additional sampling step in the MCMC scheme, analogous to that in Caron and Doucet
(2012), in order to mitigate the poor mixing that is caused by the invariance of the
Extended Plackett-Luce likelihood to scalar multiplication of the λ parameters. Note
that this step does not equate to an arbitrary rescaling of the λ parameters but rather
corresponds to a draw of Λ =

∑
k λk from its full conditional distribution. Full details

are given in Section 3.4.
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Metropolis coupled Markov chain Monte Carlo

Unfortunately the sampling strategy described above in the previous two subsections
proves ineffective with the Markov chain suffering from poor mixing, particularly for σ
where the chain is prone to becoming stuck in local modes (results not reported here).
In an attempt to resolve these issues, and therefore aid the exploration of the posterior
distribution we appeal to Metropolis coupled Markov chain Monte Carlo, or parallel
tempering.

Metropolis coupled Markov chain Monte Carlo (Geyer, 1991), is a sampling technique
that aims to improve the mixing of Markov chains in comparison to standard MCMC
methods particularly when the target distribution is multi-modal (Gilks and Roberts,
1996; Brooks, 1998). The basic premise is to consider C chains evolving simultaneously,
each of which targets a tempered posterior distribution π̃c(θc|D) ∝ π(D|θc)1/Tcπ(θc),
where, for each chain c, Tc ≥ 1 denotes the temperature and θc = {σc,λc} is the
collection of unknown quantities. Note that the posterior of interest is recovered when
Tc = 1. Further note that we have only considered a tempered likelihood component as
we suggest that any prior beliefs should be consistent irrespective of the model choice.
Now, as the posteriors π̃c(θc|D) are conditionally independent given D, we can consider
them to be targeting the joint posterior

π(θ1, . . . , θC |D) =

C∏
c=1

π̃c(θc|D). (4)

Suppose now we propose to swap θi and θj for some i �= j within a Markov chain
targeting the joint posterior (4). If we let Θ = {θ1, . . . , θC} denote the current state

and Θ† = {θ†1, . . . , θ
†
C} the proposed state where θ†i = θj , θ

†
j = θi and θ†� = θ� for

� �= i, j, then, assuming a symmetric proposal mechanism, the acceptance probability
of the state space swap is min(1, A) where

A =
π(D|θj)1/Tiπ(D|θi)1/Tj

π(D|θi)1/Tiπ(D|θj)1/Tj
.

Of course, if the proposal mechanism is not symmetric then the probability A must
be multiplied by the proposal ratio q(Θ|Θ†)/q(Θ†|Θ). Further, it is straightforward to
generalise the above acceptance probability to allow the states of more than 2 chains
to be swapped. However, this is typically avoided as such a proposal can result in poor
acceptance rates. Our specific Metropolis coupled Markov chain Monte Carlo algorithm
is outlined in the next section.

3.4 Outline of the posterior sampling algorithm

A parallel Metropolis coupled Markov chain Monte Carlo algorithm to sample from the
joint posterior distribution of the parameters λ and the choice order parameter σ is as
follows.
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1. Tune:

• choose the number of chains (C); let T1 = 1 and choose Tc > 1 for c =
2, . . . , C

• choose appropriate values for the MH proposals outlined in Section 3.3

2. Initialise: take a prior draw or alternatively choose σc ∈ SK and λc ∈ R
K
>0 for

c = 1, . . . , C

3. For c = 1, . . . , C perform (in parallel) the following steps:

• For k = 1, . . . ,K

– draw λ†
ck|λck ∼ LN(log λck, σ

2
λck

)

– let λck → λ†
ck with probability min(1, A) where

A =

{
π(D|λc,−k, λck = λ†

ck,σc)

π(D|λc,σc)

}1/Tc

×
(
λ†
ck

λck

)a
(σc)
k

e(λck−λ†
ck)

• Sample � with probabilities given by Pr(� = i) = pi,c for i = 1, . . . , 5

– propose σ†
c using proposal mechanism �

– let σc → σ†
c with probability min(1, A) where

A =

{
π(D|λc,σ

†
c)

π(D|λc,σc)

}1/Tc

× π(λc|σ†
c)

π(λc|σc)

Pr(σ†
c)

Pr(σc)

• Rescale

– sample Λ‡
c ∼ Ga

(
K∑

k=1

a
(σc)
k , 1

)

– calculate Σc =
K∑

k=1

λck

– let λck → λck Λ‡
c/Σc for k = 1, . . . ,K

4. Sample a pair of chain labels (i, j) where 1 ≤ i �= j ≤ C

• let (λi,σi) → (λj ,σj) and (λj ,σj) → (λi,σi) with probability min(1, A)
where

A =
π(D|λj ,σj)

1/Tiπ(D|λi,σi)
1/Tj

π(D|λi,σi)1/Tiπ(D|λj ,σj)1/Tj

5. Return to Step 3.
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Tuning the MC3 algorithm

The Metropolis coupled Markov chain Monte Carlo scheme targets the joint density (4)

by simultaneously evolving C chains; each of which targets an alternative (tempered)

density π̃c(θc|D). Given the data D, these chains are conditionally independent and

should therefore be individually tuned to target their respective density in a typical

fashion. Of course, it may not be possible to obtain near optimal acceptance rates within

the posterior chain (and other chains with temperatures  1) however the analyst should

aim to ensure reasonable acceptance rates; even if this results in small moves around

the parameter space. Tuning the between chain proposal (Step 4 of the MC3 algorithm)

can be tricky in general. The strategy we suggest, also advocated by Wilkinson (2013),

is that the temperatures are chosen such that they exhibit geometric spacing, that is,

Tc+1/Tc = r for some r > 1; this eliminates the burden of specifying C−1 temperatures

and instead only requires a choice of r. We also suggest only considering swaps between

adjacent chains as intuitively the target densities are most similar when |Tc − Tc+1|
is small. It is generally accepted that between chain acceptance rates of around 20%

to 60% provide reasonable mixing (with respect to the joint density of θ1, . . . , θC); see,

for example, Geyer and Thompson (1995); Altekar et al. (2004). A suitable choice of

the temperature ratio r can be guided via pilot runs of the MC3 scheme and individual

temperatures can also be adjusted as appropriate.

Monitoring convergence

The target (4) of our algorithm is a complicated mixed discrete-continuous distribution

that means traditional convergence checks applied to each stochastic quantity are of

little use. Indeed the unique samples of the discrete parameter (σ) could be arbitrarily

relabelled which may give a false impression of good mixing and convergence. Further,

the natural dependence between the parameters (λ,σ) means that inspecting trace-

plots of the continuous (λ) components is not sensible as these parameters may make

fairly large jumps around the parameter space when the choice order parameter (σ)

changes. These issues are akin to those that arise when fitting Bayesian mixture models

and so following the approach used in that setting we choose to perform convergence

checks with respect to the joint distribution. More specifically we apply the conver-

gence diagnostic of Geweke (1992) to the (log) target distribution (4) as advocated

by Cowles and Carlin (1996) and Brooks and Roberts (1998). Additionally we also per-

form this procedure on samples of the (log) posterior distribution of interest, that is,

the marginal distribution π(λ,σ|D) that corresponds to the chain with Tc = 1, and also

the (log) observed data likelihood π(D|λ,σ) evaluated at the posterior draws. Geweke-

Brooks plots are also used to determine whether there is any evidence to suggest that

a longer burn-in period may be required; these diagnostics are readily available within

the R package coda (Plummer et al., 2006). To alleviate potential concerns about the

sampling of the discrete choice order parameter (σ) we also check that the marginal

posterior distribution π(σ|D) is consistent under multiple (randomly initialised) runs

of our algorithm.
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4 Simulation study

To investigate the performance of the posterior sampling algorithm outlined in Sec-
tion 3.4 we apply it on several synthetic datasets in which the values of the parameters
used to simulate these data are known. We consider K ∈ {5, 10, 15, 20} entities and
generate 1000 rank orderings for each choice of K. Further we subset each of these
datasets by taking the first n ∈ {20, 50, 200, 500, 1000} orderings thus giving rise to 20
(nested) datasets. The parameter values (λ′,σ′) from which these data are generated
are drawn from the prior distribution outlined in Section 3.1 with ak = qk = 1 for
k = 1, . . . ,K. That is, all choice orders and entity preferences (specified by the (λ′,σ′)
pair) are equally likely. The values of the parameters for each choice of K are given
in Section 2 of the supplementary material. For each dataset, posterior samples were
obtained via the algorithm outlined in Section 3.4. We choose to use C = 5 chains
in each case, with both the temperatures and tuning parameters chosen appropriately.
Convergence is assessed as outlined in Section 3.4 and the raw posterior draws are
also thinned to obtain (approximately) 10K un-autocorrelated draws from the posterior
distribution.

The aim of the simulation study is to investigate whether our algorithm is capable
of generating posterior samples, for different (n,K) pairs. To this extent we would like
to see that the values (λ′,σ′) used to simulate these data look plausible under the
respective posterior distributions. This can be judged by inspecting the marginal pos-
terior distributions π(σ|D) and π(λk|D). However, with space in mind, here we provide
some key summaries and refer the interested reader to Section 2 of the supplemen-
tary material for a more detailed discussion. Table 1 shows the posterior probability
Pr(σ′|D) of the choice order parameter used to generate each respective dataset. Per-
haps unsurprisingly we see that for each K ∈ {5, 10, 15, 20} the posterior support for
the choice order parameter used to generate the data increases with the number of

n

K 20 50 200 500 1000

5 Pr(σ′|D) 0.294∗ 0.716∗ 1.000∗ 1.000∗ 1.000∗

pk ∈ (0.36, 0.78) (0.38, 0.73) (0.36, 0.61) (0.40, 0.60) (0.54, 0.60)

10 Pr(σ′|D) 0.156∗ 0.604∗ 1.000∗ 1.000∗ 1.000∗

pk ∈ (0.19, 0.78) (0.11, 0.67) (0.28, 0.64) (0.30, 0.59) (0.42, 0.59)

15 Pr(σ′|D) 0.000 0.006 0.072 0.548∗ 0.999∗

pk ∈ — (0.40, 0.81) (0.41, 0.73) (0.44, 0.65) (0.45, 0.64)

20 Pr(σ′|D) 0.000 0.000 0.035 0.313∗ 0.994∗

pk ∈ — — (0.30, 0.74) (0.35, 0.83) (0.38, 0.66)

Table 1: Posterior probability Pr(σ′|D) of the choice order used to generate each dataset
along with range of tail area probability pk = Pr(λk > λ′

k|σ = σ′,D). ∗indicates that σ′

is also the (posterior) modal observed choice order.
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Figure 1: Synthetic data: heat maps of Pr(σj = k|D) for those analyses where σ′ was
not observed; the crosses highlight Pr(σj = σ′

j |D) in each case.

observations (rank orderings) considered. Interestingly we observe reasonable posterior

support for σ′ when only considering n = 20 preference orders of K = 10 entities.
However for some of the analyses, those where n is relatively small in comparison to K,

the choice order σ′ is not observed in any of the 10K posterior draws. Further in-

spection reveals that the posterior draws of σ are reasonably consistent with the σ′

used to generate the respective datasets; this can be seen by considering the marginal

posterior distribution for each stage in the ranking process, that is, Pr(σj = k|D) for
j, k ∈ {1, . . . ,K}. Figure 1 shows heat maps of Pr(σj = k|D) for those analyses where σ′

was not observed; the crosses highlight Pr(σj = σ′
j |D) in each case. These figures re-

veal that, even with limited information, we are able to learn the final few entries

in σ fairly well and much of the uncertainty resides within the earlier stages of the

ranking process. Section 2.2 of the supplementary material presents the Pr(σj = k|D)
from Figure 1 in tabular form along with the image plots for the remaining analy-

ses.

For the Extended Plackett-Luce model we are trying to quantify our uncertainty not

only about the choice order parameter but also about the entity parameters. As dis-

cussed in Section 2 the entity parameter values λ only have a meaningful interpretation
for a given choice order parameter σ. Section 2 of the supplementary material contains

boxplots of the marginal posterior distributions π(λk|σ = σ′,D), that is, the marginal

posterior distribution of λk where we only consider posterior draws with σ = σ′. To sum-

marise the results we compute the tail area probabilities pk = Pr(λk > λ′
k|σ = σ′,D)

of λk under its respective marginal distribution for k = 1, . . . ,K. The range of these
values, that is, (min pk, max pk) for each analysis is given in Table 1 and these indicate

that there is reasonable posterior support for λ′, even when n is small relative to K.

In other words, the parameters λ′ look plausible under the posterior distribution. Of

course, we can not compute these quantities for those analyses where σ′ is not ob-

served. However, although prohibitive for λ inference, this does not prohibit inferences
on observable quantities (rank orders) as this is achieved via the posterior predictive

distribution; this is the topic of the next section.
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5 Inference and model assessment via the posterior
predictive distribution

In this section we consider methods for performing inference for the entities by appealing
to the posterior predictive distribution which will also provide us with a mechanism for
detecting lack of model fit. Obtaining the posterior predictive distribution, and, more
generally, predictive quantities of interest, is computationally burdensome when the
number of entities is not small and so we also outline Monte Carlo based approximations
that can be used to facilitate this approach for larger values of K.

5.1 Inference for entity preferences

The Extended Plackett-Luce model we consider is only defined for complete rankings
and so the posterior predictive distribution is a discrete distribution defined over all
possible observations x̃ ∈ SK . These probabilities can be approximated by taking the
sample mean of the EPL probability (2) over draws from the posterior distribution

for λ and σ, that is Pr(X = x̃|D)  N−1
∑N

i=1 Pr(X = x̃|λ(i),σ(i)) where λ(i),σ(i)

for i = 1, . . . , N are sampled from the distribution with density π(λ,σ|D). We can
then use this posterior predictive distribution, for example, to obtain the marginal
posterior predictive probability that entity k is ranked in position j, that is, Pr(x̃j =
k|D) for j, k ∈ {1, . . . ,K}. The posterior modal ordering x̂ is also straightforward to
obtain and is simply that which has largest posterior predictive probability. However,
when the number of entities is larger than say 9, this procedure involves enumerating
the predictive probabilities for more than O(106) possible observations. Clearly this
becomes computationally infeasible as the number of entities increases; particularly
as computing the posterior predictive probability also involves taking the expectation
over many thousands of posterior draws. When the number of entities renders full
enumeration infeasible we suggest approximating the posterior predictive distribution
via a Monte Carlo based approach as in Johnson et al. (2020). In particular we obtain

a collection P = {x̃(m)
� : m = 1, . . . ,M, � = 1, . . . , L} of draws from the posterior

predictive distribution by sampling L rank orderings at each iteration of theM iterations
of the posterior sampling scheme. We can then approximate Pr(x̃j = k|D) by the
empirical probability computed from the collection of rankings P , that is Pr(x̃j =

k|D) = 1
ML

∑M
m=1

∑L
�=1 I(x̃

(m)
�j = k), where I(x) denotes an indicator function which

returns 1 if x is true and 0 otherwise. If desired the mode of the posterior predictive
distribution can be obtained via an efficient optimisation algorithm based on cyclic
coordinate ascent (Johnson et al., 2020).

5.2 Model assessment via posterior predictive checks

In the Bayesian framework assessment of model fit to the data can be provided by
comparing observed quantities with potential future observations through the posterior
predictive distribution; the basic idea being that the observed data D should appear
to be a plausible realisation from the posterior predictive distribution. This approach
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to Bayesian goodness of fit dates back at least to Guttman (1967) and is described
in detail in Gelman et al. (2014), for example. Several methods for assessing goodness
of fit for models of rank ordered data were proposed in Cohen and Mallows (1983)
and more recently similar methods have been developed in a Bayesian framework by,
amongst others, Yao and Böckenholt (1999), Mollica and Tardella (2017) and Johnson
et al. (2020). In the illustrative examples on real data in Section 6 we propose a range
of diagnostics tailored to the specific examples. For example, one generic method for
diagnosing lack of model fit is to monitor the (absolute value of the) discrepancy between
the marginal posterior predictive probabilities of entities taking particular ranks with
the corresponding empirical probabilities computed from the observed data. That is,
we consider djk = |Pr(x̃j = k|D) − Pr(xj = k)| where Pr(xj = k) = 1

n

∑n
i=1 I(xij =

k) denotes the empirical probabilities computed from those x ∈ D and the posterior
predictive probabilities Pr(x̃j = k|D) are computed as described in Section 5.1. These
discrepancies djk for j, k ∈ {1, . . . ,K} can then be depicted as a heat map where
large values could indicate potential lack of model fit. By focusing on the marginal
probabilities Pr(xj = k) we obtain a broad-scale “first-order” check on the model, but,
as described in Cohen and Mallows (1983), we could also look at finer-scale features
such as pairwise comparisons, triples and so on. Of course, if the full posterior predictive
distribution over all K! possible observations is available (that is, if K is small) then
we could also check that the observed data look plausible under this distribution.

6 Illustrative examples

We now summarise analyses of two real datasets which together highlight how valuable
insights can be obtained by considering the Extended Plackett-Luce model as opposed
to simpler alternatives. With no direct competitor for Bayesian analyses of the Extended
Plackett-Luce model we compare our conclusions to those obtained under standard and
reverse Plackett-Luce analyses. For the standard and reverse Plackett-Luce analyses
posterior samples are obtained using the (partially collapsed) Gibbs sampling scheme
of Caron and Doucet (2012) as this algorithm has been shown to be very efficient for
these models. Of course, our algorithm is also capable of targeting these much simpler
posterior distributions. This could be achieved by considering a single chain (C = 1)
and repeatedly performing the MH update of λ followed by the rescaling step with
σ = I or σ = (K, . . . , 1)′ fixed throughout.

6.1 Song data

For our first example we consider a dataset with a long standing in the literature that
was first presented in Critchlow et al. (1991). The original dataset was formed by asking
ninety-eight students to rank K = 5 words, (1) score, (2) instrument, (3) solo, (4)
benediction and (5) suit, according to the association with the target word “song”.
However, the available data given in Critchlow et al. (1991) is in grouped format and
the ranking of 15 students are unknown and hence discarded. The resulting dataset
therefore comprises n = 83 rank orderings and is reproduced in the supplementary
material.
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Posterior samples are obtained via the algorithm outlined in Section 3.4 where the
prior specification is as in Section 3.1 with qk = 1 and ak = 1 (for k = 1, . . . ,K) and so
all choice and preference orderings are equally likely a priori. The following results are
based on a typical run of our (appropriately tuned) MC3 scheme initialised from the
prior. We performed 1M iterations, with an additional 10K discarded as burn-in, which
were thinned by 100 to obtain 10K (almost) un-autocorrelated realisations from the
posterior distribution. The algorithm runs fairly quickly, with C code on five threads
of an Intel Core i7-4790S CPU (3.20GHz clock speed) taking around 9 minutes. The
results of the convergence diagnostics described in Section 3.4, along with the tuning
parameter values, are given in Section 5 of the supplementary material.

Investigation of the posterior distribution reveals there is no support for the standard
(or reverse) Plackett-Luce model(s) with Pr(σ = (3, 2, 1, 4, 5)′|D) = 0.9983, Pr(σ =
(5, 4, 1, 2, 3)′|D) = 0.0015 and the remaining posterior mass (0.0002) assigned to σ =
(2, 3, 1, 4, 5)′. It is interesting to see that, although it receives relatively little posterior
support, the 2nd most likely choice order parameter value is that given by reversing the
elements of the posterior modal value. It is also worth noting that the posterior modal
choice order (σ = (3, 2, 1, 4, 5)′) is not contained within the restricted set considered by
Mollica and Tardella (2018).

Inference for the Extended Plackett-Luce model is substantially more challenging
than for the simpler standard/reverse Plackett-Luce models and so it is important to
question whether this additional complexity allows us to better describe the data. Put
another way, does the EPL model give rise to improved model fit? To this extent we
investigate the discrepancies djk = |Pr(x̃j = k|D) − Pr(xj = k)|. For comparative
purposes we also compute the discrepancies obtained from under both standard and
reverse Plackett-Luce analyses of these data; Figure 2 shows these values as a heat
map for j, k ∈ {1, . . . ,K}. Visual inspection clearly suggests that the observed data
look more plausible under the EPL model when compared to the simpler models. In
particular, there are rather large discrepancies between the predictive and empirical
probabilities that entity k = 1 (Score) is ranked in position j = 3 under the SPL (0.34)
and RPL (0.40) analyses. The superior fit of the EPL model is further supported by

Figure 2: Song data: heat maps showing djk = |Pr(x̃j = k|D) − Pr(xj = k)| for the
extended, standard and reverse Plackett-Luce analyses.
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Figure 3: Song data: heat maps showing Pr(x̃j = k|D) for the extended, standard and
reverse Plackett-Luce analyses.

the Watanabe-Akaike information criterion (Watanabe, 2010) with values of 464.12,
546.84 and 654.21 for the extended, standard and reverse PL models respectively. Note
that these values are on the deviance scale and the effective number of parameters
is computed as in Gelman et al. (2014). Given we have a mixed discrete-continuous
parameter space we suggest that the WAIC is preferable to other popular information
criteria such as AIC, DIC or BIC due to their reliance on point estimates and/or the
assumption of a (multivariate) Gaussian posterior which may not be appropriate.

Turning now to inference for observable quantities we again appeal to the posterior
predictive distribution. More specifically we can now use the (predictive) probabili-
ties Pr(x̃j = k|D) to deduce the likely positions of entities within rankings. Figure 3
shows these probabilities as a heat map for j, k ∈ {1, . . . ,K}. Focusing on the Extended
Plackett-Luce analysis, it is fairly clear that “Suit” (5) is the least preferred entity and
“Benediction” (4) is the 4th most preferred, with relatively little (predictive) support
for any other entities in these positions. There is perhaps more uncertainty on those
entities that are ranked within positions j = 1, 2, 3, although the figure would sug-
gest that the preference of the entities is (Solo, Instrument, Score, Benediction, Suit).
Indeed this is the modal predictive ranking and has predictive probability 0.232. In-
terestingly the same modal (predictive) ranking is obtained under the RPL analysis,
although it only receives predictive probability 0.07, whereas for the SPL analysis the
modal (predictive) ranking is (Instrument, Solo, Score, Benediction, Suit) and occurs
with probability 0.122. Figure 3 also shows there to be much more uncertainty, partic-
ularly for the top 3 entities, under the SPL and RPL analyses; this is perhaps more
naturally seen through Figure 4 that shows the (full) posterior predictive distribution
for each possible future observation x̃ ∈ SK . The crosses (×) show the empirical proba-
bilities of the observed data (those x̃ ∈ D). Figure 4 illustrates that the observed modal
ranking is (Solo, Instrument, Score, Benediction, Suit).

6.2 Formula 1 data

We now analyse a dataset containing the finishing orders of drivers within the 2018
Formula 1 (F1) season and so we have n = 21 rank orderings of the K = 20 drivers.
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Figure 4: Song data: Full posterior predictive distribution for each of the 5! = 120 possi-
ble observations x̃ ∈ SK under the EPL (left), SPL (right) and RPL (bottom) analyses.
Crosses (×) show the empirical probabilities of the observed data (those x̃ ∈ D).

It will be interesting to see whether we are able to gain more valuable insights using
the EPL model when compared to the simpler variants. In particular whether we are
able to gain any information about the choice order parameter σ in this setting as K is
fairly large, relative to n. The rank orderings considered here were collected from www.

espn.co.uk and are reproduced in Section 7 of the supplementary material.

Numerous variants of the Plackett-Luce model have previously been developed for
the analysis of F1 finishing orders; see Henderson and Kirrane (2018) and the discus-
sion therein. In general, models derived from the reverse Plackett-Luce (RPL) model
appear to perform better than the standard Plackett-Luce model in the sense that they
give rise to better model fit. We choose to incorporate this prior information by letting
q = (1, . . . ,K)′ and so a priori the modal choice ordering is σ̂ = (K, . . . , 1)′, that is,
the choice ordering corresponding to the reverse Plackett-Luce model. Figure 5 (right)
shows the (log) prior probabilities Pr(σj = k) for j, k ∈ {1, . . . ,K}. Regarding the
drivers, although their individual ability no doubt plays a part, ultimately Formula 1 is
a team sport and the performance of a particular driver within a race is often limited by
the quality of the car their respective team is able to produce. To this extent we suppose
that teams with larger budgets, and hence more capacity to invest in research and devel-
opment, are more likely to produce a superior car and thus improved race performance.
We therefore let the ak value be equal to the team budget for each of the K drivers
and then rescale the ak values such that the smallest value is 1. The implication is that,
under the standard Plackett-Luce model, an individual who drives for any particular
team is twice as likely to win a race when compared to another driver who is part of
a team with half of the budget. The budgets were obtained from www.racefans.net

and the ak values for each driver are given in Section 7 of the supplementary material.
Because this prior specification does not lead to a unique prior predictive mode under
the SPL model, we use a slight modification of our mode preserving procedure which
preserves all modes when averaged over the prior for σ; details of this modification are

www.espn.co.uk
www.espn.co.uk
www.racefans.net
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Figure 5: F1 data: heat maps showing the prior predictive distribution (left) and the
prior distribution of the choice order parameter (right).

provided in the supplementary material. Of course, for the EPL model there is also
additional uncertainty on the choice order parameter and the resulting prior predic-
tive distribution is shown in Figure 5 (left). Here the prior (predictive) probabilities
Pr(x̃j = k) are obtained via a Monte Carlo based approach akin to that outlined in Sec-
tion 5 where the (λ,σ) draws are obtained from the prior as opposed to the posterior.
Section 6 of the supplementary material provides posterior summaries from alternative
analyses with a = 1 (a uniform prior predictive distribution) and q = 1 (a uniform
prior distribution for σ). These analyses reveal that the posterior distribution is not
particularly sensitive to the choices of prior distribution considered here.

The following results are based on a typical run of our (appropriately tuned) MC3

scheme initialised from the prior. We allow a burn-in period of 100K iterations after
which we perform a further 2M iterations, with these thinned by 200 to obtain 10K
(almost) un-autocorrelated realisations from the posterior distribution. This analysis
takes around an hour using C code on five threads of an Intel Core i7-4790S CPU
(3.20GHz clock speed). Section 6 of the supplementary material contains the results of
the convergence diagnostics and the tuning parameter values used for this analysis.

First, to address the model selection issue, the estimated WAIC values for the ex-
tended, standard and reverse PL models are (on the deviance scale) 1501.58, 1672.49
and 1507.32 respectively. These values suggest the marginal superiority of the EPL
model over the RPL model, with the SPL model a distant third.

Focusing now on the EPL analysis, investigation of the posterior distribution reveals
that there is a large amount of uncertainty on the choice order parameter σ and also
potential bi-modality within certain ranking stages. That said, further inspection of
the marginal posterior distributions given by Pr(σj = k|D) reveals that there is a
surprisingly small amount of uncertainty on the ranks allocated in the 13th–20th stages;
see Figure 6 (right). Further within these positions (σ13, . . . , σ20) the ranks allocated
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are consistent with the choice order parameter corresponding to the reverse Plackett-
Luce model which suggests why previous authors may have found the RPL model to be
preferable to the SPL model for modelling F1 results. We also note that, although there
is some uncertainty within certain ranking stages, it is clear that these data are rather
informative about the likely values of σ in the sense that the posterior distribution is
not that similar to the prior; see Figure 5 (right).

Again we can turn to the posterior predictive distribution to deduce the likely posi-
tions of entities within rankings. Note that here complete enumeration of the posterior
predictive probabilities for each x̃ ∈ SK is computationally infeasible asK! is ofO(1018).
Figure 6 (left) therefore shows the (log) probabilities Pr(x̃j = k|D) as a heat map for
j, k ∈ {1, . . . ,K}; the corresponding figures for RPL and SPL analyses are provided
within the supplementary material. Note that the predictive probabilities Pr(x̃j = k|D)
are computed based on synthetic data simulated from the predictive distribution as
discussed in Section 5 with L = 10. This figure shows that, perhaps unsurprisingly,
there is a fairly large amount of uncertainty about the finishing positions of some of
the drivers. That said, this does not mean that useful inferences cannot be made based
on these predictive probabilities. For example, the figure would suggest that Stoffel
Vandoorne (column 7) is most likely to place somewhere between 11th–15th (probabil-
ity 0.46) whereas the probability of this driver finishing within the top-10 positions is
only 0.21. In contrast, Fernando Alonso (column 8) is much more likely to obtain a top-
10 finish (probability 0.43) and we would only expect Alonso to finish within positions
11 to 15 in around 25% of the races. This is particularly interesting given that both of
these individuals drove for the same team (McLaren Renault) within the 2018 season
and hence were exchangeable a priori under our model. It is also clear that the first
6 drivers are those most likely to perform well during a race. However, a particularly
interesting aspect is the bi-modality of the distribution for some of these drivers. Take,

Figure 6: F1 data: heat maps showing the posterior predictive distribution (left) and the
marginal prior distribution of the choice order parameter (right). Crosses (×) highlight
the probabilities corresponding to σ = (K, . . . , 1)′, the reverse Plackett-Luce model.
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for example, Sebastian Vettel (column 1); we can see that although most of the prob-
ability is assigned to this driver finishing within the top-10 positions, there is also an
increased chance of finishing within the bottom 5 when compared to the middle (11–15)
positions. Although perhaps counter-intuitive this result is perhaps not as surprising as
it first seems. Indeed, although the drivers in the top cars are likely to do well, there is
also a chance they could suffer from a mechanical issue, or perhaps be involved in an
accident, and hence obtain a surprisingly low finishing position within any given race.
We also note that this particular aspect is not captured by either the standard or reverse
Plackett-Luce analyses. The corresponding heat maps can be found in Section 6 of the
supplementary material and these show that the distribution of the finishing position of
each driver, that is, the distribution within each column, is uni-modal and this perhaps
explains why the Extended Plackett-Luce model is favoured here.

We can also look at other quantities of interest, for example, the number of times
we would expect each of the top 6 drivers to win a race, feature on the podium (top 3),
and also obtain a points (top 10) finish based on the predictive probabilities. More
specifically Table 2 shows n ×

∑p
k=1 Pr(x̃j = k|D) for p = 1, 3, 10 along with the

observed number of times computed from those x ∈ D. It is interesting to see that
both the extended and reverse Plackett-Luce models are able to capture these aspects
of the distribution fairly well. Further the expected number of points (top 10) finishes
under the standard Plackett-Luce model is also fairly consistent with the observed data.
However, the shortcomings of the more simple standard Plackett-Luce model become
clear if we instead consider the expected number of wins and podiums. For example,
we observed that Hamilton won 11 races and the SPL model suggests that he would be
expected to win around 5 races within an F1 season whereas the EPL model suggests 10
wins which is much more consistent with the observed data. Again, additional insight
into the question of model fit can be obtained via heat maps showing the discrepancies
djk = |Pr(x̃j = k|D)−Pr(xj = k)| for j, k ∈ {1, . . . ,K}; these are provided in Section 6
of the supplementary material. The total discrepancies for each model, that is

∑
jk djk,

are 13.35, 17.33 and 14.14 for the extended, standard and reverse PL models respectively.
These values support the conclusion from the comparison of the WAIC values; the EPL
model provides the best fit out of the three models.

Finally, whilst the number of wins, podium and points finishes is clearly of interest,
ultimately the F1 Drivers’ Championship is determined by the number of points each

Observed EPL SPL RPL
Driver Name W Pod Pts W Pod Pts W Pod Pts W Pod Pts

Lewis Hamilton 11 17 20 10.31 16.47 20.21 4.74 11.89 20.52 10.45 16.55 20.33
Sebastian Vettel 5 12 20 4.27 12.68 19.46 3.06 8.68 19.46 4.31 12.72 19.66
Max Verstappen 2 11 17 2.20 9.61 18.74 1.41 4.43 15.20 2.15 9.59 19.00
Daniel Ricciardo 2 2 13 0.61 4.83 16.90 0.83 2.67 11.21 0.55 4.76 17.37
Kimi Räikkönen 1 12 17 1.92 9.07 18.58 1.47 4.58 15.50 1.79 8.84 18.82
Valtteri Bottas 0 8 19 1.64 8.41 18.37 2.34 6.95 18.42 1.71 8.68 18.77

Table 2: F1 data: Observed number of wins (W), podiums (Pod) and points (Pts)
finishes and also the expected numbers under the predictive distributions for the EPL,
SPL and RPL analyses for the top six drivers in the 2018 season.
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Expected points Pr (observed position)
Driver Name Points EPL SPL RPL EPL SPL RPL
Lewis Hamilton 408 395.68 310.20 399.05 0.94 0.85 0.95
Sebastian Vettel 320 308.63 251.29 311.24 0.69 0.62 0.73
Kimi Räikkönen 251 250.45 158.02 246.54 0.28 0.11 0.24
Max Verstappen 249 259.74 152.79 259.31 0.29 0.32 0.28
Valtteri Bottas 247 240.91 216.02 245.02 0.37 0.04 0.33
Daniel Ricciardo 170 185.34 101.34 183.98 0.81 0.17 0.83
Nico Hülkenberg 69 65.12 59.29 62.70 0.40 0.03 0.37
Sergio Perez 62 52.22 93.70 52.47 0.16 0.12 0.18
Kevin Magnussen 56 46.63 70.26 45.13 0.13 0.07 0.13
Carlos Sainz Jr 53 48.40 100.28 58.17 0.14 0.08 0.11
Fernando Alonso 50 51.22 59.34 43.03 0.11 0.07 0.13
Esteban Ocon 49 45.22 67.19 40.47 0.12 0.08 0.13
Charles Leclerc 39 37.33 61.63 35.58 0.14 0.08 0.13
Romain Grosjean 37 34.99 65.78 30.87 0.14 0.08 0.14
Pierre Gasly 29 27.34 62.07 31.17 0.16 0.08 0.13
Stoffel Vandoorne 12 15.01 78.41 23.63 0.14 0.05 0.16
Marcus Ericsson 9 16.94 63.00 19.44 0.16 0.08 0.17
Lance Stroll 6 11.48 57.91 13.40 0.18 0.09 0.21
Brendon Hartley 4 14.19 45.42 12.61 0.19 0.15 0.24
Sergey Sirotkin 1 14.15 47.02 7.16 0.19 0.19 0.50

Table 3: F1 dataset: 2018 Drivers’ Championship final standings, expected points and
posterior predictive probabilities of finishing in the observed final position under the
EPL, SPL and RPL analyses.

driver is able to accrue over an F1 season. Given the amount of points awarded is simply
a deterministic function of the finishing orders we can straightforwardly compute the
expected number of points each driver obtains by simulating synthetic F1 seasons D̃ =
{x̃1, . . . , x̃n} from the posterior predictive distribution. Table 3 shows the observed
number of points in addition to the expected number under each model considered. We
can also use D̃ to compute the (predictive) probability that each driver finishes within
their respective (observed) position; these values are given in Table 3 (right).

7 Conclusion

We have considered the problem of implementing a Bayesian analysis of rank ordered
data using the Extended Plackett-Luce model. In particular we have considered care-
fully the problem of prior specification, proposing a Plackett-Luce model as the prior
for the choice order parameter σ and proposing a prior distribution on the entity pa-
rameters that preserves the modal ordering under the prior predictive distribution. We
have also tackled the challenging issue of posterior sampling of a potentially highly
multi-modal posterior distribution with both discrete and continuous components via
a Metropolis coupled Markov chain Monte Carlo scheme. This has enabled efficient
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posterior sampling which potentially facilitates further analyses based on the Extended
Plackett-Luce model and further extensions of the model. Finally, we have focused on
predictive inference for observable quantities that naturally facilitates the assessment
of model adequacy.

Reproducibility

With reproducibility in mind, the code to run the algorithm outlined in Section 3.4 can
be found at the GitHub repository https://github.com/srjresearch/ExtendedPL.
In addition, C code for performing a standard Plackett-Luce analysis along with each
of the synthetic and real datasets presented are also provided.

Supplementary Material

Supplementary material of “On Bayesian inference for the Extended Plackett-Luce
model” (DOI: 10.1214/21-BA1258SUPP; .pdf). The supplementary material contains
details of the data generating mechanism, further discussion of our mode preserving
prior specification and additional simulation and real data results.
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