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Abstract: This article is a survey of results concerning an inequality,
which may be seen as a versatile tool to solve problems in the domain of
Applied Probability. The inequality, which we call BRS-inequality, gives a
convenient upper bound for the expected maximum number of non-negative
random variables one can sum up without exceeding a given upper bound
s > 0. One valuable property of the BRS-inequality is that it is valid with-
out any hypothesis about independence of the random variables. Another
welcome feature is that, once one sees that one can use it in a given problem,
its application is often straightforward or not very involved.

This survey is focussed, and we hope that it is pleasant and inspiring to
read. Focus is easy to achieve, given that the BRS-inequality and its most
useful versions can be displayed in five Theorems and their proofs. We try
to present these in an appealing way. The objective to be inspiring is harder,
and the best we can think of is offering a variety of applications. Our exam-
ples include comparisons between sums of i.i.d. versus non-identically dis-
tributed and/or dependent random variables, problems of condensing point
processes, awkward processes, monotone subsequence problems, knapsack
problems, online algorithms, tiling policies, Borel-Cantelli type problems,
up to applications in the theory of resource dependent branching processes.

Apart from our wish to present the inequality in an organised way,
the motivation for this survey is the hope that interested readers may see
potential of the inequality for their own problems.
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1. Introduction

Let X7, X5, -+ be a sequence of non-negative random variables (possibly depen-
dent) that are jointly continuously distributed and which all have the same ab-
solutely continuous marginal distribution function F. Forn € {1,2,...} and s €
R* let N(n,s) be the maximum number of observations among X1, Xa, -+, X;,
that one can sum up without exceeding s. More generally, we will study as well
the case where the X are not identically distributed, and where each X} has
an absolutely continuous marginal distribution function F}.

The focus of this paper is to find a good upper bound for the expected value
E(N(n,s)), and to show its versatility for applications. The inequality which
yields such an upper bound is what we call the BRS-inequality. The reader may
find a memory aid for the meaning of BRS by reading it as

Budget-Restrained-Sum.
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Indeed, one may interpret X7, Xo,---,X,, as prices for n items, all having
the same utility, offered for sale, and may ask what is the maximum number of
them one can expect to be able to buy with a budget limit s.

Clearly one cannot do better than looking at the complete list of prices and
first select the smallest price, then add the second smallest price, and so on,
as long as the current accumulated bill does not exceed s. Hence we can de-

fine N(s,n) equivalently via the increasing order statistics of X1, Xs, -+, X,
denoted by X, < X5, <--- < X, 5, namely
0, if X1, > s,
N(n,s) = © e =9 . (1)
max{k e N: Xy, + X5, + -+ + Xg.n < s}, otherwise.

Throughout this paper we will call the difference
R(nv S) =8—= Xl,n - X2,n - XN(n,s),n

the residual of the budget, which, by definition, equals s if X;, > s. Corre-
spondingly, we call the difference

O(”? S) = Xl,n + XZ,n + -+ XN(n,s)+1,n - S,

provided that N(n,s) < n, the overshoot of the budget.

2. The BRS-inequality

The following gives a simple and useful bound on the expectation of the ran-
dom variable N(n,s) defined in (1). Moreover, we add a result of almost-sure
convergence for the case that the X} are also independent:

Theorem 1. Let all X1, Xo,--- , X, be identically distributed non-negative ran-
dom variables with absolutely continuous distribution function F. Then we have

Part (i)
E(N(n,s)) <nF(t), (2)

where t := t(n, s) solves the equation

n/ot xdF(z) = s. (3)

Part (ii)
If the random wvariables are moreover independent, and the budget s := s,
tends to infinity in such a way that lim, ... n~'s, exists, then

n"IN(n,s,)/F(t(n,s,)) — 1 a.s., asn — oco. (4)



BRS-inequality 47

The first proofs of Part (i) and Part (ii) of Theorem 1 appeared in Bruss and
Robertson (1991). (From now on we abbreviate this reference by B. & R. (1991).)
We will use Part (ii) of Theorem 1 later on in several places to strengthen
certain results of interest we obtain from Part (i), provided that we also have
independence. Our main interest in this survey is however the inequality of Part
(i) and its generalisation.

As we shall see in Subsection 2.2, Part (i) was elegantly generalised in Steele
(2016) by accommodating non-identically distributed random variables as well.
Before we present this, we first clarify when and where an independence hy-
pothesis is needed.

2.1. The role of the independence hypothesis

Clearly, the result (4) of almost sure convergence in Part (ii) requires indepen-
dence of the random variables X1, Xs,--- , X,,, and so do all theorems in B. & R.
(1991). Since these authors were motivated by a specific problem in the domain
of branching processes in which the random variables were naturally i.i.d., they
assumed that the X are i.i.d. random variables.

As both referees of the present survey pointed out independently, the present
survey should avoid any possible confusion and make clear whether the proof of
Part (i) in B. & R. (1991) is complete without the independence hypothesis.

The answer is yes, it is. This is stated and proved in Lemma 4.1 on page 622 of
B. & R. (1991). This Lemma is singled out at the end of their article for this very
reason, namely, no independence hypothesis is needed. The short proof links for
two sets of positive real numbers, their number of elements with the respective
sums of the elements in these sets and obtains a central inequality. The second
step, which applies this inequality to functions of our random variables, then
only uses the linearity of the expectation operator. This requires, of course, no
independence, and B. & R. (1991) pointed out in line 10 of their proof of Lemma
4.1 that the inequality is always true.

As section 3 in Steele (2016) shows, Steele had overlooked Lemma 4.1. in
B.&R. (1991). We will show after Theorem 2, in Remark 1, that the proof of
Lemma 4.1 in B.&R. (1991) and the first part of the proof of Steele (2016),
are, apart from notation, identical. This oversight has no consequences whatso-
ever for the present survey. Moreover, the author highly praises the important
contributions of Steele (2016).

2.2. Generalised BRS-inequality
Theorem 2 (Steele (2016)). Let X1, Xo, -+, X, be positive random variables

that are jointly continuously distributed and such that each X, has an absolutely
continuous distribution function Fy. If N(n,s) is defined as in (1), then

E(N(n,5) < 3 Filt), (5)
k=1
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where t .= t(n, s) is the unique solution of the equation

3 / 2dFy(z) = 5. (6)
k=170

Clearly, if all random variables X;, i € {1,2,---,n} have the same marginal
distribution F, then (6) recaptures (3), and (5) recaptures (2). Hence Theorem 2
is a full-scale generalisation of Theorem 1 (i).

The proofs of Theorem 1 (i) and (ii) and of Theorem 2 are in two different
journals. Our first goal is to offer here a single combined proof, including relevant
remarks in view of possible applications.

The second objective is to present two new refined BRS-inequalities (Theo-
rem 3 and Theorem 4), and to briefly discuss other possible directions of refine-
ments.

Our third goal is to give several examples from different domains of Applied
Probability, showing the versatility of the inequality for applications.

Proof of Theorem 2. We start with the proof of Part (i) of Theorem 1, and we
do this in a way that leads almost directly to the proof of Theorem 2.

By the continuity of the joint distribution of (X; : 1 < i < n), there is clearly
a unique set of selected indices A C {1,2,--- ,n} of the variables that attains the
maximum in the definition of N(n,s) in (1). We denote this subset by A(n, s).
Note that #A(n, s) = |A(n, s)| = N(n, s).

Further let

B(n,s)={ie{1,2,--- ,n}: X; <t(n,s)}, (7)

where t(n, s) is the threshold value determined by the implicit relation (3).
The idea is now to compare the sets A(n,s) and B(n, s), together with their
associated sums,

SA(n,s) = Z X; and SB(n,s) = Z Xi. (8)

i€A(n,s) i€B(n,s)

From these definitions, one immediately gets by definition two useful relations,
namely

t(n,s)
Sam,s) <s and E[Spnm.s)] = n/o xdF(z) = s. (9)

By its definition, S (,,s) is a partial sum of order statistics. The summands of
SB(n,s) consist precisely of the values X, ; with X;, ; <t(n,s). We can think of
the latter as also being listed in increasing order, of course, so that Sp(, ) is also

equal to a partial sum of order statistics of X7, X5, ..., X,,. These observations
will help us with estimations of the relative sizes of the two sums Sy, s and
SB(ms)-

First, we note that we have either A C B or B C A. More specifically, if
SB(n,s) < Sa(n,s) then we have B(n,s) C A(n,s). Moreover, the summands X
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in the difference set, that is, with i € A(n,s) \ B(n, s), these summands are all
bounded below by t(n, s). Hence we have the bound

SB(n,s) + t(nv 5) (‘A(Tl, S)| - ‘B(nﬂ S)D < SA(n,s)a if SB(n,s) < SA(n,s)-

Similarly, if Sam,s) < SB(n,s) then A(n,s) C B(n,s) and the summands X;
with i € B(n,s) \ A(n, s) are all bounded above by t(n, s); so, in this case,

SB(n,s) < SA(n,s) + t(”a S) (|B(’I’L, S)‘ - |A(1’L, S)Dv if SA(n,s) < SB(n,s)-

Taken together, the last two relations tell us that whatever the relative sizes of
SA(n,s) and Sp(y, ) may be, one always has the key inequality

t(n,s) (|A(n, s)| = |B(n, 8)[) < Sa(n,s) = SB(n.s)- (10)

Here t(n,s) > 0 is a constant. We recall that |A(n,s)| = N(n,s), and we see
from (9) that the right-hand side has non-positive expectation. Hence, taking
the expectations in the key inequality (10) gives us

E(N(n,s)) <E(|B(n,s)|) =E (Z 1{X; <t(n, S)}> =nF(t(n,s)),

and the proof of the upper bound (2) is complete.

Now, to prove its more general form as given in Theorem 2, we again define
the set B(n,s) by (7). Additional care is here needed with the definition of
A(n, s). (As we shall see in the subsequent Remark 2, this care provides at the
same time a non-negligible benefit.)

Specifically, we first define a total order on the set {X; : i € {1,2,--- ,n}}
by writing X; < X if either condition (A) or condition (B) holds, where

(A) Xi < Xj,
With this order, there is a unique permutation 7 : {1,2,--- ;n} = {1,2,--- ,n}
such that
Xr) < Xr2) < < Xam),
and we can then take A(n,s) to be largest set A C {1,2,--- ,n} of the form

A= {7‘{'(2) : X7r(1) + Xﬂ.(z) + -+ Xﬂ'(k) < S} (11)

We can now proceed with the proof of key inequality (10) in the same way.

We use the identical definitions in (7) and (8) for the sums S, 5) and Sp(y,s)
because these definitions are not affected by the fact that the variables may now
stem from different distributions. Hence, by the new definition of ¢(n, s), we now
have

n t(n,s)
E (Sg(n,s)) = Z/o xdF;(x) = s.
i=1
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Since we still have Sy, ) < s, the expectation on the right side of inequality
(10) is again non-positive.

But then, since all the following arguments in the proof of Part (i) of Theo-
rem 1 are valid independently of the number of different distributions functions
F}. which are involved, the proof of Theorem 2 is also complete. O

Remark 1. As announced in Subsection 2.1, we now show that the proof of
Lemma 4.1 of B.&R. (1991) and the first part of the preceding proof of The-
orem 2 are, apart from notation, identical. Indeed, inequality (4.1) of B. & R.
(1991) reads after multiplication with ¢,, = t(n,s) > 0,

tn(Nn 7Ntn) S SNH — Stn, S S 75‘7&”7 Vn = ].,2,."' 5

where N,, = N(n,s) = |A(n,s)|, J\Aftn = |B(n,s)|, gNn = SA(n,s) and Stn =
SB(n,s)- Therefore

t(n75)(|A(n75)| - ‘B(TI,, S)D < SA(n,s) - SB(n,s)7

which is the key inequality (10). It suffices to take expectations to obtain the
result.

Remark 2. Steele’s insight (Steele (2016)) that this full-scale generalisation
of the Bruss-Robertson inequality should be true, was remarkable. Also, his
introduction of the total order induced by (A) and (B) above was a powerful
trick, since X; and X, with absolute continuous distributions may now coincide
for j # k with positive probability. The inequality gains additional interest,
knowing that, here again, no independence is needed.

2.2.1. Terminology

As we have seen, none of the required calculations require more on the joint
distribution of the variables X; : i € {1,2,--- ,n} than the joint continuity.
The argument just uses point-wise bounds and the linearity of expectation. In
the following we will therefore call invariably (2), respectively (5), the BRS-
inequality, and (3), respectively (6), the corresponding BRS-equation. It will
always be evident from the context of the problem when (6) and (5) are meant.
Note also that the notions of budget-residual, respectively, budget-overshoot,
carry over unchanged for Theorem 2.

As announced already, we will also present (Subsections 2.4 and 2.5) two
refinements of Theorem 2. These refinements are in the same spirit as Theorem 2,
and, in particular, they do not require to revise the definitions in any way.
Therefore we may and will call them, without a risk of any confusion, also
BRS-inequalities.

2.3. Independence and almost-sure convergence

The asymptotic result (4) is proved in section 2 of B.& R. (1991). Note that
the general setting of Theorem 2 does not allow to include (4) directly, where
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independence of the variables is needed. The convergence in (4) in Part (ii) has
its interest on its own as we shall see later on in several examples. Therefore
we recall here the proof, but in a slightly different way, namely in terms which
make the result very intuitive:

Proof of Theorem 1, Part (ii). First we note from the definition of N(n,s) in
(1) that, although the random time N (n, s) is not a stopping time with respect
to the usual filtration generated by the random variables X, the random time
N(n,s) + 1 is a stopping time on the filtration (F}), where

Fio=0(X1, Xom, - Xiw), k=1,2,---n.

If we sum up all those observations which are smaller than t,, say, then Wald’s
equality can be applied for the expected stopping time since, in Theorem 1, all
variables follow the same distribution and thus have the same mean. Moreover,
by independence, the unordered variables not exceeding ¢(n, s) are continuous
i.i.d. random variables on the interval [0,¢(n,s)]. Letting n — oo, the Strong
Law of Large Numbers implies then that the average of these terms satisfies

n t(n,s)
ZXk 1{ X} §t(n,s)}—>/ zdF(z) a.s., as n — 0o,
k=1 0

S|

that is, the sum of these selected variables converges almost surely to the trun-
cated integral defined in (3).

Finally, if s := s,, grows with n, and if we let the threshold become t :=
t(n, sp) then the same argument remains valid provided that s, /n tends to a
limit. Then (3) yields (4), and the proof is complete. O

2.4. Refining the BRS-inequality

We now refine the BRS-inequality by exploiting more carefully the key inequality
(10). This will be rather straightforward, and the reader may ask why we did
not do this right away. We will shall shortly discuss the reason after Theorem 3
and its proof.

Theorem 3. Under the conditions of Theorem 2 we have

- s = E(SA(n s))
E(N < F; - 12
(Vo) < 32 Bl ) = 60, (12)
where t(n, s) satisfies (6), and where Su(s ) is the sum defined in (8).
Proof. The key inequality (10) can be written in the form
SB n,s) — SA n,s
[B(n,s)| — [A(n, s)| = =22l (13)

t(n,s) ’
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where (n, s) solves the BRS-equation (6). Recall again that S4(,,s) defined in (8)
is the sum of the N(n, s) smallest order statistics, and thus |A(n, s)| = N(n, s).
Further, since Sp(, 4 is the sum of all those variables not exceeding t(n, s), we
have for the number of terms in B(n,s)

n

Zl{Xk<tn s)} and E(Spn,s)) = s,
=1

where the second equality was shown in (9) for identically distributed random
variables. For different distribution functions it follows correspondingly from the
arguments given at the end of the proof of Theorem 2.

Using these equalities we obtain from (13) by taking expectations on both
sides

S — E(SA(n,s))
t(n,s)

ZFk(t(n, s)) —E(N(n,s)) >

k=1

(14)

Subtracting in the last inequality the sum term on both sides, and then changing
signs, yields the proof of the statement of Theorem 3. U

Now we should motivate our order of the theorems. Theorem 1 Part (i) as
well as Theorem 2 are corollaries of Theorem 3. Hence, following the tradition in
Mathematics, Theorem 3 should be entitled to be stated and proved first. Note
however that it would have been necessary to explain already in the hypotheses
for the inequality the meaning of the sets A(n,s) and B(n,s), and also how
the expected residual sum intervenes. This may distract from the main interest
of the inequality, and the reader may agree with our preferred order of the
theorems.

2.5. Interest of refinements

Theorem 3 is of interest as soon as we have additional information.

Recall that s — Sa(,,s) is the residual of the available budget. If we have
sufficient information to give easy bounds for its expectation E(s—S4(n,s)), then
Theorem 3 may give us a convenient more precise bound. This is (independently)
true if s and n are such that P(N(n,s) < n) is very close to 1 so that the
SA(n,s) T XN(n,s)+1,n — § represents the very probable positive overshoot. We
mention that, in specific examples, such as for instance when all F}’s have similar
bounded supports, Theorem 3 help us to understand why the bounds we obtain
are sometimes tight.

The latter type of arguments allows us also to defend the attitude that any
strengthening of the BRS-inequality is always of interest, at least in some special
cases.

Using standard arguments about conditional expectations, we obtain a ver-
sion of the BRS-inequality which, depending on properties of the distributions,
may have advantages. It hardly earns the name “Theorem” since it is almost
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a corollary of Theorem 3, but, to be consistent on the list of BRS-theorems; it
should also be called Theorem.

Theorem 4. Let N(n,s) be defined as in (1), and t(n,s) as in (6). Also recall
the set A(n,s) defined by (8), and also that E(Sa(,,s)) < s. Denoting p, =
P(N(n,s) <mn) we have

s = E(SA(ms))
t(n, s)

E(N(nv 5)) < Dn (Z Fk(t(nv S)) -

k=1

) +n(l —py).

Proof. We first note the evident equality E(N(n, s)|N((n,s) > n) = n. Using
it in expressing E(N(n, s)) by conditioning on the event {N(n, s) < n} and its
complement, we obtain

E(N(n,s)) =n(1 —pn) + pn E (N(n, s)’N(n, s) < n) .

The statement of Theorem 4 follows now in a straightforward manner from the
trivial inequality

E (N(n,s)‘() < N(n,s) < n) <E(N(n,s))

by plugging in the upper bound for E(N(n, s)) of Theorem 3, and then isolating
E(N(n,s)) again on the left-hand side. O

2.6. Decreasing order statistics

So far we have studied the sum of increasing order statistics X1, < Xo, <+ <
Xn,n of the random variables X1, Xs,---,X,, by thinking at the same time of
the stopping time N(n,s) + 1 when the sum of prices exceeds the budget s.
What can we say about E(M (N, s)) where

0, if Xn)n > s,
max{k eN: an + Xn—l,n + -+ X7L—k+1,n < 3}7 if Xn,n <s,

M(n,s):{

i.e. E(M(n,s)) is the maximum expected number of items one can buy with a
fixed budget s by buying in decreasing order always the most expensive item?

Given that all items are supposed to have the same utility 1, the problem of
finding E(M (n, s)) is neither dual to finding E(N(n, s)), nor is it, a priori, a nat-
ural problem in our context. It looks like the problem of a maniac money-waster
who wants to spend his or her budget as quickly as possible with minimum total
utility.

As occurs often, it is the context which makes the difference. The problem
makes perfect sense if we interpret budget and wutility differently, as for example
in the context of so-called Resource dependent branching processes studied in
Subsection 4.2. For the latter it will be helpful to summarise Theorem 1 (ii)
and to combine it with another result of B.& R. (1991) on the stopping time
for decreasing order statistics.
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Theorem 5. Suppose that F is a strictly increasing absolute continuous distri-
bution function on [a,b] of i.i.d. random variables X, Xa,- - , X,, with expected
value E(X) < oo where 0 < a < b < oo and F(a) = 0, F(b) = 1. Further let
s = limy, 00 Sn/n, and let T and 0 be defined as the solutions of the respective
equations

T b
/ zdF(x) = s; / zdF(z) = s.
a 0
Then, denoting N,, := N(n,s,), M, := M(n,s,) and F(z) = 1— F(x), we have

N, E(Ny,)

(i) HILH;O XN, =7 as, nl;n;o e F(7) as., nhﬁrr;o = F(r),
If, moreover, the X1, Xo, -+, X, are bounded (i.e. if we require b < o), then
E(M, _ M, =
(i) lim X,_m, 41, =0as., lim (M) =F(0), lim — = F(6) a.s.

n— 0o n— 00 n n—oco n

The proof of (i) (which collects the implications of Theorem 1 (ii)) is given in
detail on pages 614-165 in B. & R. (1991), and we know that it holds without
a constraint of boundedness of the Xj. The proof of (ii) goes through in an
analogous way under the assumption that the Xj are bounded.

Putting (i) and (ii) in one Theorem shows us the way to quantify (asymptot-
ically) where the sum of increasing order statistics and the sum of decreasing
order statistics would meet.

2.7. Tractability of improved inequalities

If we denote the rhs-bound of Theorem 2 by a(n, s) and the rhs-bound of Theo-
rem 3 by B(n, s), then d(n, s) = a(n, s) — B(n, s) is the improvement Theorem 3
gives compared to Theorem 2. According to (5) and (12) we have

s —E(Sam,s) E(R(n,s))

d(n,s) = 1(n.s) = tn,s)

where the second equality follows from the definition of the residual R(n,s) in
Section 1, and from the trivial equality E(s) = s. Also, we recall that t(n, s) is
the solution of the BRS-equation (6). The open part of the problem is thus to
find a good estimate of E(R(n, s)). This is also a part of the problem in applying
Theorem 4. Since we have, a priori, for the BRS-inequalities no restriction on
dependencies between the random variables X7, Xo, - - - X,,, the generality allows
for an uncountable number of different scenarios for the joint distribution of the
X1, Xa, -+, X,. Therefore it seems hard to give a generally useful estimate for
d(n, s). Even having complete independence of the X}, is still of limited value,
because their order statistics are no longer independent.

Now, can we find at least for i.i.d. random variables X;,1 < k < n, bounds
of interest which are relatively easily available?
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Our answer for this more modest question is yes. Indeed, suppose E(X) :=
E(X}) < oo. Denoting S,, = X1+ X5+ -+ X, we then have E(S,,) = nE(X) <
00, and thus S, < oo almost surely. Let us look now at Figure 1. It might remind
us of figures we have seen to visualise renewal type arguments (For an overview
on renewal theory see e.g. Ross (1983)). We have no renewal process, however,
and our argument must be different.

Residual
- =
et — — — » > >
- - - — — — // . %
s
Overshoot

Residual and overshoot in reversed summation

Fic 1. The first line of arrows in Figure 1 displays the successive partial sums of the increasing
order statistics until the interval which “covers” s. The second line starts at the end S, and
runs backwards with the partial sums of decreasing order statistics.

Suppose first that N(n,s) < n. Then the point s is almost surely covered
by the interval generated by the order statistic Xy s)41,n,- Now suppose for
instance that the X are i.i.d. exponential with parameter 1, say. It is well
known that all order statistics of exponentials are again exponential with varying
parameters. Then, whatever the parameter of the density, all random variables
have the memoryless property. Hence the length of the overshoot to the right of
the point s as seen by an observer (he, say) of the upper line of arrows has the
same distribution as Xy s)+1,, (unconditional! on covering s). But if another
observer (she, say) standing in S,, looks into the opposite direction (lower line
of arrows) then she would see the same covering order statistic after n — N(n, s)
steps. For her the overshoot, now to the left of s, is the residual in the upper
line. Since it is the same covering order statistic interval, his residual in the
upper line must follow itself the (unconditional) distribution of Xy ¢)41,n-
Hence, like in the famous waiting time paradox, since conditional on covering s
is intrinsic in the definition of N(n, s), we get for the expectation of the latter
E(XN(n,s)4+1,n) = 2E(R(n, s))), which means

1
E(R<na S)) = EE(XN(n,S)+1,n)~

2.7.1. Asymptotic improvement

Now let s, be the available budget and suppose that s = lim,_, . s, /n exists
with 0 < s < E(X). Then we have P(N(n,s,) < n) — 1 as n — oo so that
we can confine our interest to the event {N(n,s) < n} we considered above.
It follows from the independence hypothesis and from Theorem 5 (i), where



56 F. T. Bruss

7 := t(n, s,) solves the BRS-equation, that Xy s,)+1,n/t(n,5,) — 1 almost
surely as m — o0o. Since almost-sure convergence implies convergence in mean,
we have
o(n, s,) = E(R(n, sn) — =, asn — 00.
t(n, sn) 2

The limiting improvement of Theorem 3 compared to Theorem 2 is thus 1/2.

This result is not exciting as an asymptotic improvement, because we have
nF(t(n,s,)) — oo as n — oo. However, as we shall see in the Applications
(Subsection 3.1), we will not lose much of the improvement for smaller n, and
then it is non-negligible, of course.

Note also that whenever the conditions of Theorem 5 (i) are satisfied, we
have

0 < lim d(n,s,) <1

n—o0

because the interval generated by Xy (ns,)+1,, always contains the residual,
and clearly, XN(msn)«H,n/XN(n,sn);n — 1 a.s. Hence the limiting improvement
for i.i.d. random variables is always between 0 and 1.

If we replace in our example the i.i.d. exponentials by i.i.d. uniform Xj then
the limiting improvement is also 1/2. However, the author does not know under
which general conditions on the X} one can right away prove the existence of a
limiting improvement. And even then, any result for i.i.d. random variables is
still modest compared to what one would really like to have, namely a general
assessment of the added value of Theorem 3 compared to Theorem 2, which
both allow for the random variables dependence and arbitrarily many different
distribution functions.

2.8. Interest of further refinements

It is now no surprise that, in some special cases, other refinements are possible.
We want to exemplify another one of such cases, but we confine ourselves to
describe things verbally, because it suffices to present ideas which come along
quite naturally. There are simply too many special cases which come to our
mind.

Consider for instance the case of identically distributed random variables
X, ~ X (as in Theorem 1). Suppose moreover that s := s,, is small compared
to nE(X). Then, for large n, the probability of not exceeding the budget s,
becomes small, and so p,, = P(N(n,s) < n) becomes large as n grows. Conse-
quently, it will become very probable that the budget will be exceeded, and we
know

P(XN@mn,s)4+1,n € {X1, X2, -+, Xp}) = 1 asn — oo.

This guarantees that the sum Sy, ,,) behaves essentially like s,, as n becomes
large. Now recall that, conditioned on N(n,s) < 1, the random time N(n,s)+1
is a stopping time with respect to the filtration

j—:.k = U(Xl,anQ,na o 'Xk,n)7k = 172a e, N
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Recall also that all X; ~ X have the same mean and that the generalised version
of Wald’s equation works with weaker conditions than independence. Thus, even
though we started with a special case and, compared to independence, arguably
partially weaker condition that s, is small compared to nE(X), this may still
allow for a residual-type argument as exemplified in Subsection 2.7.

The author thinks that in this survey it would be hardly rewarding to go
further with discussions of more specific cases, and that it is preferable to view
results which are, arguably, of sufficient general interest. If a researcher would
like to apply a result for a given problem, needing slightly more precise estimates,
and searching ways to obtain new refinements, then she or he, knowing their own
problem best, would probably know best in which corner of the set of options
to look for.

2.9. Evaluation of importance

As so often in Mathematics, it is not always the very strongest form of a result
which draws attention but rather the most convenient form of a sufficiently
strong result, which does so. Seen under this angle of view, our analysis of
relative importance is as follows.

Theorem 1 (i) and its generalisation Theorem 2 give a convenient upper
bound of E(N(n, s)). They involve those functions and parameters which inter-
vene naturally, namely, apart from the budget s, the number of random variables
and their distributions. They neither speak about specific properties of the lat-
ter nor would they refer indirectly to such properties. It is this modesty in the
hypotheses that makes, as we think, Theorems 1 (i) and 2 particularly appealing.

Theorems 2 and its special case Theorem 1 (i) are in that sense likely to be
the most interesting results. The author thinks that Theorem 3 is broad and
therefore of true interest; Theorem 4 may already be close to the borderline.
Theorem 1 (i) has a number of citations to its credit. So far it stands out, and
the likely reasons are easy to understand. The univariate case is typically more
frequent in studied problems than cases involving different distributions. Also,
and in particular, Theorem 1 (i) (B. & R. (1991)) has been around much longer
than Theorem 2 (Steele (2016)).

The author thinks that, given its generality, Theorem 2, i.e. Steele’s version,
is very promising from the point of view of future applications. So are then in
particular the generalisations Theorem 3 and Theorem 4. However, it is some-
times hard to substantiate their benefit compared with Theorem 2.

3. Applications

The goal of this section is to convince that the BRS-inequality is an interesting
result, and both flexible and versatile for applications.

We begin our examples with identically distributed uniform random variables.
In this example we also compare the improvement of Theorem 3 compared to
Theorem 2 (i.e. to Theorem 1 (i)), because i.i.d. uniform random variables are
relevant in many contexts.
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3.1. Identically distributed U|0,1] variables

Let X1, X5, -, X, be uniform random variables on [0, 1], that is F(x) =  on
[0,1]. To compute an upper bound for the maximum number of X}’s we can
sum up without exceeding s with 0 < s < n/2 we solve the BRS-equation (3),
that is

t(n,s) t(n,s)
n/ xdF(z) = n/ xdrx =s <= t(n,s) =+/2s/n. (15)
0 0
Hence, from the BRS-inequality (2)

E(N(n,s)) < nF(\/2s/n) = V2sn. (16)

This bound becomes trivial for s > n/2 = nE(X), namely E(N(n,s)) < n. We
can say slightly more, i.e. E(N(n,n/2) < n, because n items need in expectation
the budget n/2. However, they need a larger budget with a strictly positive
probability.

If the Xj’s are moreover independent, then this bound is essentially tight
according to (4).

8.1.1. Sharpening the upper bound

The limiting improvement of 1/2 we have seen in Subsection 2.7 for exponential
random variables, can also be proved (with different arguments) to hold for i.i.d.
X ~ U0,1].

What comes as a nice surprise is to see how quickly the improvement of
Theorem 3 compared to Theorem 1, i.e. 6(n, s,,) defined in Subsection 2.7, tends
to 1/2. This is worth noting since it is also the relative improvement which
counts. Even with n as small as n = 7 and s = 0.1, i.e. 5, = s7 = 0.7, the
average improvement in 10000 simulations (Mathematica, version 5.2; double-
precision) turned out 510000 ~ 0.4664. Increasing n or s (or both) shifts the
improvement rather quickly to 1/2. For example, for n = 70 and sy = 7, the
average improvement for the same number of simulations turned out 310 000 A
0.4991.

3.2. Random variables with dependence

Recall that no independence assumption about the X,’s is needed. So let us
compare the extreme case of total independence with the case of full dependence
such as X; = X, = --- = X,,, say. Here, by the way, we see that the total
order defined in the proof before (11) through (A) and (B) is essential. In the
case of uniform random variables on [0,1] we know from Subsection 3.1 that
E(N(n,s)) < nF(t(n,s)) = v2sn. Moreover in the case of i.i.d. U[0, 1] random
variables we have from (4) also the asymptotic relationship N(n, s, ) ~ v/2s,, so
that the upper bound computed in (15) and (16) is asymptotically tight.
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In the case X; = Xy = -+ = X, however, there is trivially only one order
statistic, namely X;, and our bound should be worse. Indeed, it is easy to
compute this bound, namely

E(N(n,s)) = zn:P(N(n zn:P (X1 < s/k)
k=1 k=1

Z (1{k < s} + s1{k > s}/k) ~ [s] + slog(n),

k=1

where [s] denotes the largest integer smaller than s. This upper bound grows
more slowly in n than v/2sn, and it is clear why: independent draws bear natu-
rally the potential of producing small order statistics, whereas these independent
draws are now wiped out by the total dependence.

3.3. Different distribution functions Fy.

For each k € {1,2,--- ,n} let X} to be uniform on the real interval [0, k]. For
convenience we take 0 < s <1 and n > 4. The BRS-equation (6) tells us

n

§= %Z%t2(n, 5) = %t2(nvs)Hn or t(n’ S) =V 2S/I_"n’ (17)

i=1

where H, denotes the n’th harmonic number. In particular, for s = 1, we get
from (5) using (17)

;_n

E(N(n,1)) < an zn:_ (2/H,)"? = (2H,)"/?,

i=1

~.

where we use n > 4 to assure that H,, > 2. This bound grows also much more
slowly than the bound v/2ns we had obtained in 3.1. The reason is now that
small order statistics become rarer with the increasing length of the supports
[0, k] of the uniform Fj’s.

If, in contrast, we have decreasing lengths of supports as k grows, the up-
per bound for E(N(n, s)) should go up. We would expect this upper bound to
become much closer to n and in the order of n if the supports of the Fj are
shrinking more or less in the same order or quicker as/than the expected order
statistics of n variables would do on the support of Fj. To exemplify this on
[0,1], let

Frz)=1{0 <z <1/k}tkx+1{x > 1/k}, k=1,2,...,n,

and let again s = 1, say. Putting h(¢) = [1/¢] and t = t(n, 1), the BRS-equation
(6) becomes

h(t) n

Z/ xdFy,(x Z kt?/24+ > 1/(2k) = 1.

h(t)+1
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Clearly we must have t(n,1) — 0 as n — oo, and elementary asymptotic analysis
shows that t(n, 1) ~ €3/2/n. Plugging t(n, 1) into the BRS-inequality (5) yields
then (using Mathematica) that, for n sufficiently large, the upper bound for
E(N(n,1)) is about 0.8884n.

3.4. Point processes and selection bias

Let Ty = 0 and, recursively, Ty = Tx—1 + X,k = 1,2,--- where the X}’s are
positive random variables with absolute continuous laws Fj. The X};’s are now
seen as the inter-arrival times of a point process (Tk>}c:1,2,»-- on the positive
half-line.

Suppose now that we fix n and wait for the nth arrival, occurring at time
T, =T, say. Given s with 0 < s < T we ask what is the maximum density of
arrival points we can expect on a set S € U[T] with Lebesgue measure s, where
U[T] is the set of all subsets of {[Tx—1,Tx[: 1 < k < n}? (Note that if we did
not confine our interest to U(T), then the answer would be trivially oo, because
we could, for instance, collect open balls B(T}, €) and then let € — 0+.)

The maximum obtainable density is N(n,s)/s with N(n,s) defined in (1)
based on the inter-arrival times X, X5, -+, X,,. Thus from the BRS-inequality
we know that the maximum expected density is bounded by

Amax(8) := w < %ZFk(t(n, s)), (18)
k=1

where t(n, s) solves the BRS-equation (3) if the X}, are identically distributed,
and otherwise solves (6). We also note that in the case of independence (where
we have the stronger result (4)), the problem of finding the set with minimum
expected density is then asymptotically dual, because it suffices to maximise the
number of points on the complementary set with Lebesgue measure T, — s.

S |

Fic 2. Figure 2 shows for a given “budget time”s the selection of the 4 smallest inter-arrival
times until arrival time T = Ty. As n becomes larger, i.e. as T = Ty, mowves to the right, the
number of arrival points in a selected set of fired Lebesque measure s cannot but increase.
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3.5. Poisson processes

As a specific example, consider a homogeneous Poisson process of rate 1. Hence
here all the F}, are the same. Suppose that a dishonest statistician would like
to make an observer (client) believe that the rate is higher than 1 by claiming
that the missing data are due to the fact that the counting process could not be
recorded during certain sub-periods. How far can this type of dishonesty bias
the perceived rate?

_+
- (t+]1)
08
== 0.05
06
- 0.2
0.4
- 0.25
0.'7
- 0.5
—_—— 95
1 2 3 4 5 6 — 095

Fic 3. Figure 3 displays for a Poisson process of rate 1 the lhs of (19) for 0 <t < T =mn,
and the rhs of (19) for a selection of values of s/n ranging between 5% and 95% (horizontal
lines = fraction of the observation time.)

The inter-arrival times of the homogeneous Poisson process (rate 1) are i.i.d.
exponential random variables with distribution function F(z) = 1 — e~ *. No
conditional bias intervenes here since we look at the random horizon T' = T,,,
where T, denotes the nth arrival time. The BRS-equation (3) yields then

t ¢
/ zdF (z) = / re “dr = i
0 0 n

or equivalently, the implicit equation
S

e+ =1-=. 19
e '(t+1) - (19)
Thus from (18) we obtain with ¢ := #(n, s) solving (19)
1 1 ;
dmax(8) < —=nF(t(n,s)) = —n (1 - e_t("’é)) . (20)
s s

In the Poisson process case the random variables X, are i.i.d., and so (4) implies
that the obtained bounds obtained from the inequality (20) are essentially tight
(for s/T bounded away from 0). The 50% line for instance (see Figure 3) cuts the
curve in t &~ 1.67835, and (19) and (20) yield a maximum density ~ 1.62664,
that is about 63 percent more than the true rate. Clearly, the less time we
observe, the more the observed rate can grow. With only 5% observation time
we obtain from (19) and (20) that the dishonest statistician can cheat (a naive
client) by a factor almost 6.
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3.6. “Awkward” point processes

Sometimes one comes across random structures which are complicated, but have
components which are nevertheless well understood, and/or tractable. Staying
in the class of problems we have considered in Subsections 3.4. and 3.5, the
following awkward counting process (completely invented) exemplifies such an
instance.

Let (Xk)k=1,2,.. be a random sequence of inter-arrival times of a point pro-
cess. X7 is uniform on [0, 1], say, Xo =1 — X1, X3 =1— X5 = X, ... and this
alternating pattern goes on until some random time Ci. X¢, 41 is then again
UJ0,1]— distributed independently, and the following variables play the same
alternating game as before until some random time C5. Then again a new U[0,1]
random variable X, 41 is drawn ... and so on. Suppose we are stopped after a
large number of n observations (in total). Can we say anything nontrivial about
the expected number of variables among X7, Xo, ...., X;, we can sum up without
exceeding a given s?

At first glance it may seem that we must know something about the mecha-
nism producing the random times Cy, Co, - - -.

However, we simply concentrate on the essential information which is given:
whatever the law of Xy, Xs, ..., whatever their dependence structure, all the
marginals of the X}, are the same, namely F(t) = F(t) =t on [0, 1]. Hence, as
seen in Subsection 3.1, (16), we always have the convenient bound

E(N(n,s)) <vV2sn. (21)

If we happen moreover to know one of the expected change times, E(C),) say,
then we have also a nice upper bound for E(N(C,,s)), namely by the tower
property of conditional expectations,

E(N(Cy, s)) = E[E(N(Cy, 5)|C0)] < E (\/2an) < /25E(Cy),

where the first inequality follows from (21), and the second one from the con-
cavity of the square-root function and Jensen’s inequality.

With more information one can sometimes say more. To stay with our exam-
ple, suppose all block lengths C; 1 — C; of strictly dependent random variables
are geometric random variables with parameter p, say. Instead of looking at the
horizon of n variables we now look at n blocks, that is altogether C,, variables
with budget s := s¢,. The expected length of blocks consisting of strongly
dependent variables is thus 1/p.

On the one hand, the larger p gets, the higher becomes the fraction of inde-
pendent U[0, 1] random variables so that upper bound for C,, variables

\/280” C, ~ \/2307Ln/p

must become better and better. On the other hand, if p becomes small, the
expected block lengths become large so that most blocks contain with each X
also the value 1 — X. This opens then a new option, namely we can recompute
a new threshold by taking the variables two by two.
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Heuristic arguments: All what we say here is that in point processes de-
fined by a mixture of both i.i.d. inter-arrival times and strongly dependent
ones, it can be worth checking whether the fraction of i.i.d. random variables is
non-negligible, knowing that the BRS-bound is essentially tight for these. For
instance, if these variables are U([0, 1] random variables, then N (-, s) is in the
order of square-root of their number. The contribution of the others will be
somewhere between a logarithmic order (see Subsection 3.2) and an order of
square-root, and may contribute to the total E(N(n, s)) just something asymp-
totically negligible.

3.7. Sequential selection problems

As has been noticed by several authors before, as e.g. Gnedin (1999) and Arlotto
et al. (2015a; 2015b), the BRS-inequality leads to a priori upper bounds for
two well-studied problems in combinatorial optimisation. In particular, in the
classical case of independent uniformly distributed random variables, the BRS-
inequality (Theorem 1 (i)) gives bounds that are essentially sharp for both
the sequential knapsack problem and the sequential (increasing) subsequence
selection problem (Steele (2016)).

3.7.1. Knapsack problem

In this problem, one observes a sequence of n independent non-negative random
variables X1, X5, ..., X,, with a fixed, known distribution F'. One is also given
a real value x € [0,00) that one regards as the capacity of a knapsack into
which selected items are placed. Observations are sequential, and when X; is
first observed, one either selects X; for inclusion in the knapsack or else X is
rejected from any future consideration. The goal is to maximise the expected
number of items, N (n,x), say of items that can be sequentially packed without
recall into the knapsack with initial capacity z. Since the BRS-inequality tells us
how well we could do if we knew in advance all of the values {X; : 1 < i < n},
it is evident that no strategy for making sequential choices can ever lead in
expectation to more affirmative choices than E(N(n,z)), and thus from (2) we
have the bounds

E(N(n,x)) < E(N(n,z)) < nF(t(n,z)), (22)

where ¢ := t(n, z) solves the associated BRS-equation (3).

Now, packing an item into the knapsack will not change the distribution of
the items to come. The only effect of packing an item of size y say is reducing
the current remaining capacity by y. Hence the problem is a Markov decision
problem so that the optimal sequential selection strategy given by a unique non-
randomised Markovian decision rule. Beginning with n values to be observed and
with an initial knapsack capacity of x, the expected number of selections that
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one makes is denoted by v, (). It is easy to see that the value function for this
Markov decision problem can be calculated by the recursion relation

on(@) = (1 - F(2))vnr(2) + / "t {vn1(2), 1+ vn_1 (& — 9)} dF(y). (23)

Specifically, one begins with the obvious relation vy(z) = 0, and one computes
vn(2) by iteration. This is the Bellman equation (optimality equation) for the
sequential knapsack problem.

3.7.2. Monotone subsequence problem

Now suppose that we observe sequentially n independent random variables
X1, Xo, -+, X, with the common continuous distribution F. Our goal is to
make monotonically (decreasing, say) choices

Xi1 >Xi2>"'>Xika

trying to maximise the expected number of choices. Here, prior to making any
selection, we take the state variable x to be the supremum of the support of
F, which may be infinity. After we have made at least one selection, we take
the state variable x to be the value of the last selection that was made. Now
we write U, (z) for the expected number of selections made under the optimal
policy when the state variable is  and where there are n observations to come.
In this case the Bellman equation given by Samuels and Steele (1981) can be
written as

Up(z) = (1 = F(z))n-1(2) + /Ow max{Up—1(z),1+0p-1(y)} dF(y), (24)

where again one has the obvious relation v,,(x) = 0 for the initial value. In (20)
the decision to select X; = y would move the state variable to y, so here we
have 14 v,,_1(y) where earlier we had the term 1+ v, _1(x —y) in the knapsack
Bellman equation. In the knapsack problem the state variable moves from z to
x —y when X; = y is selected.

In general, the solutions of (23) and (24) are distinct, but Coffman et al.
(1987) made the essential observation that v,(x) and v,(z) are equal when
the observations are uniformly distributed. This allows to create an interesting
detailed linkage between these two problems: The first step is to note that the
equality of the value functions permits one to construct optimal selection rules
that can be applied simultaneously to the same sequence of observations. The
selections that are made will be different in the two problems, but we see a
useful distributional relationship. The essential observation is that the second
term of the Bellman equation leads one almost immediately to the construction
of an optimal selection strategy for the monotone subsequence problem. These
strategies lead one in turn to a more detailed understanding of the number of
values that one actually selects.
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First, one notes that it is easy to show (Samuels and Steele (1981)) that there
is a unique y € [0, 1] that solves the “equation of indifference”:

511—1(:3) =1 + 5n—1(y)-

If we denote this solution by o, (x), we can use its values to determine the rule
for making the sequential selections. At the moment just before X; is presented,
we face the problem of selecting a monotone sequence from among the n —
i+ 1 values X;, Xiy1,...,Xn, and if we let S;_; denote the last of the values
X1, Xs,...,X;_1 that has been selected so far, then we can only select X; if it is
not greater than the most recently selected value §i,1. In fact, one would choose
to select X; if and only if it falls in the interval [S;—1,.5;—1 —an,iﬂ(gi,l)]. Thus,
the actual number of values selected out of the original n is the random variable
given by

‘7” d:Ef Z 1 {Xi S [gi_l, gi—l - an—i-&-l(gi—l)}}'

i=1

By the same logic, one finds that in the sequential knapsack problem the number
of values that are selected by the optimal selection rule can be written as

Vo 31X € 0,5 (S5 1)])

i=1

where now S;_; denotes the capacity that remains after all of the knapsack
selections have been made from the set of values Xy, Xs,...,X;_1 that have
already been observed. By this parallel construction we have

E[Va] = v,(1) = va(1) = E[V,,].

Moreover, one has Sy =1 = §0, and then see the equality of the joint distribu-
tions of the vectors

(SQ,Sl,...,Sn_l) and (50,§17...,§n_1),

since the two processes {S; : 0 < i < n} and {S; : 0 < i < n} are (temporally
non-homonomous) Markov chains that have the same transition kernel at each
time epoch.

Theorem 1 (i) tells us now that E[V,] < v/2n. By the distributional identity
of V,, and V,, we find indirectly that

E[Vn] <+V2n foralln>1. (25)

It turns out that (25) can be proved by a remarkable variety of methods. In
particular, Gnedin(1999) gave a direct proof where one can even accommodate
a random sample size N and where the upper bound is now replaced with
the natural proxy (2E[N])!/2. More recently, Arlotto et al. (2015a) gave two
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further proofs of (25) as consequences of bounds that were developed for the
quickest selection problem, a sequential decision problem that provides a kind
of combinatorial dual to the classical sequential selection problem.

The distributional identity can also be used to make some notable inferences
about the knapsack problem from what has been discovered in the theory of
sequential monotone selections. For example, by building on the work of Bruss
and Delbaen ((2004)), Arlotto et al. (2015b) found that

‘7n —V2n

Var[V,] ~ %\/ 2n  and

where = stands for convergence in law. Thus, as a consequence of the distribu-
tional identity V,, ~ V,, one has the same results for the knapsack variable V,
for i.i.d. U([0,1]) random variables.

It is also interesting to recall here the non-sequential (or clairvoyant) selection
problem where one studies the random variable

L, =max{k:X;, <X;, <...<X;, 1<i; <izg<--<ip <n}

This classic problem has a long history, beautifully told in both Romik (2014)
and in Aldous and Diaconis (1999). Here the most relevant part of that story
is that Baik et al. (1999) found the asymptotic distribution of L,, and, in
particular, they found that one has the asymptotic relation

E[L,] = 2v/n — an/% + o(n'/®) where a = 1.77108... (27)

For the dominant part 2,/n we see, as already observed in Samuels and Steele
(1981), the advantage of clairvoyance is essentially the factor /2.

3.8. Random tilings with different shapes

We have given so far already several applications of Theorem 1. Now we show
that the generalisation provided in Theorem 2 has much to offer for other ap-
plications. For example, look at the following “multi-type” online problem:

3.8.1. Selection and online-selection

We are given a connected d-dimensional subset S of R? with Lebesgue measure
s, and a sequence of d-dimensional random shapes which we would like to fit
into S without overlappings. If the sequence contains nj shapes of type k, and
there are o types of shapes, what is the maximum number of non-overlapping
shapes we can hope to fit into S? Also, what would be a good strategy to fit
the shapes online, i.e., sequentially and without recall?

First, neglecting the online question, we have a convenient upper bound by
the BRS-equality. We define n = ny +ng + -+ 4+ ng,, and let V1, V5,--- |V}, be
the volumes of the n random shapes. If the randomization algorithm is known
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for the o types of shapes and the same within each class of shapes then we
can compute the distribution functions Fy,k = 1,2, - ;o of their volumes. We
suppose that the latter are absolute continuous random variables X;. Hence
from (5) and (6)

E(N(n, s)) < anFk(t(n, s)), n=n1+n2+-+ng, (28)
k=1

where t(n, s) solves the corresponding BRS-equation
o t(n,s)

an/ vdFy(v) = s. (29)
k=1 0
Now, coming back to online-selection, how well could we do with a skilfull online
selection if we select, independently of the type of shapes all those objects which
have a random volume V' < t(n, s), and fit these best possible into S7

As an example we study a specific tiling problem involving two types of
shapes.

3.8.2. Rectangles and ellipses

Suppose S is the unit square S = [0,1] x [0,1] and that we have two types
of shapes, namely rectangles (type 1) and ellipses (type 2). Let X,Y be inde-
pendent U[0,1] random variables, and A, B be independent U[0,1/2] random
variables. Here X and Y denote the random length of the sides of a rect-
angle, and A and B the random height and width of an ellipse. Further let
X;,Y;, j=1,2,--- ,nrespectively A;, B;, 7 =1,2,--- ,n be independent ver-
sions of these.

Then we get for the surface area distribution function Fj(u) (rectangle) for
u € [0,1],

Fl(u):P(XYgu):/lP(Yg%’X:x)d:v (30)

u 1 ”
= / dx + / —dz = u(1 — log(u)),
0 u X

and similarly for the distribution of the surface area of a random ellipse

Fg(U)ZP(ABS%) :/01/2P(B§%’A:a) da (31)
=1{0<u< 7r/4}4?u (1 — log <4?u)> + {r/4 <u<1}.

We have s = 1 and o = 2. For our example (see Figure 4) let us choose ny = 300
and ng = 150, say. Putting ¢ := ¢(450, 1) we must solve according to the BRS-
equation (29)

t t
300/ udFl(u)—i—lBO/ wdFy(u) = 1, (32)
0 0
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Fic 4. Figure 4 displays online tiling with rectangles and ellipses. The square has surface
1, and n1 = 300 and ng = 150. Solving the corresponding BRS-equation (32) yields (using
Mathematica) t = 0.0326 - - - as upper surface threshold (limit) for the rectangles and ellipses
we select.

where F(u), respectively Fy(u) are given by (30), respectively (31). The nu-
merical solution of equation (32) (by Mathematica) yields ¢ = 0.0326 - - - . Hence
from inequality (28)

E(N(450,1)) < 300F, (t) + 150 Fy(t) = 69.325 - - - .

Instead of storing 300 rectangles and 150 ellipses we randomised (for conve-
nience) the shape P(type 1) = 2/3, P(type 2) = 1/3, so that we obtain in 450
trials in expectation 300 rectangles and 150 ellipses. Then we randomised their
respective parameters, packing those rectangles or ellipses with surface area < ¢
independently of their type, online, and just on eyesight, in the square.

In Figure 4 the upper bound E(N(450,1)) < 69.325--- seems surprisingly
feasible. Admittedly, we were lucky with a few very small ellipses. Recall the
bounds in (22) and note that our upper bound is a full-information upper bound,
and not only an upper bound for an online strategy. With other types of shapes
the relative loss through unusable space may be higher, and for certain non-
convex shapes it is likely to be much higher. Figure 4 looks unfinished, and this
was on purpose. We wanted to stop half-way i.e. at 225 simulations, in order to
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see how it looks so far. Not on purpose was that we had to stop earlier due to
a legally imposed interruption, and forgotten to take note of the exact last step
number (at around 1507)

The only theory we applied here was thus computing the BRS-threshold
t(n,s) = t(450,1). Tt is of great help to have just a single decision function,
namely the area threshold ¢(n, s). We asked the computer to serve us sequentially
only those random shapes with area below t(n, s). Then each offer meant “Place
it!”, and that’s what we did (without rotations of the shapes), just as they came.
With the right computed threshold it works well, and is just fun to observe.

3.9. Borel-Cantelli type problems

For Borel-Cantelli type problems, the BRS-inequality can also be of interest. It
sometimes allow us to isolate on a set of dependent events condensed subsets on
which sub-events become independent. In our first example we use an argument
in the spirit of the key-inequality (10).

3.9.1. Direct neighbours

Let X1, Xo,...., X;, be i.i.d. uniform random variables on [0,1]. Further let A4,
be the event that the (n + 1)st draw X,, 11 becomes a direct neighbour of X,
that is, the interval [min{X,, X, 1}, max{X,, X,41}] contains no X; with
1 < j < n— 1. First, we are interested to know P(A4,, i.0.) as n — oo, where
“.0.” stands for infinitely-often. Clearly A,, depends on where X, has landed so
that the A,, are not independent. Hence ) P(A,) = oo does not imply from
the Borel-Cantelli Lemma that P(A,, i.0.) = 1.

However, fix now a constant ¢ with 0 < ¢ < 1 and then think of all spacings
with length < ¢/n united in one set A. This takes less space than Lebesgue
measure c¢ so that the difference set B C [0, 1] with AU B = [0, 1] has Lebesgue
measure at least 1 — ¢. This is already the simple idea: at least the Lebesgue
measure 1—c is available for X,, 11 independently of n, and within the set having
at least this measure, we know that the minimal distance between neighboured
points is larger than ¢/n.

To finish the question, let now By, := { X3, and Xa,4+1 become neighbours}.
Clearly, the B,, are independent. Also, P(B,) > (1 —c¢)c/(4n), because if Xs,, €
B, which occurs with probability at least 1 — ¢, more than one half of ¢/(2n) of
space is free for the next point Xs, 1 to fall to the left or right of it and thus
become its direct neighbour. Since {B,, i.0.} C {4, i.0.}, and the harmonic sum
diverges, we have P(4, i.0.) = 1.

3.9.2. Spacings

Second, let us now look at all spacings generated sequentially by the draws
X,. Fix a function k := k(n) with 1 < k < n + 1 and look at the events
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K, = {X,41 falls in the k(n)th smallest spacing}. Bruss et al. (1990) found
criteria on k(n) for P(IC,, i.0.) = 0, respectively P(K,, i.0.) = 1. In a nice
more elaborate approach, Alsmeyer (1991) improved these results by giving the
complete if-and-only-if answer.

Now, what about the event of hitting infinitely often one of the k(n) smallest
spacings? Does it suffice to replace Alsmeyer’s sum criterion by the correspond-
ing double sum for all j = 1,2,--- ,k(n)? (Since Alsmeyer refers in his paper
to decreasing order statistics we must read his criterion by replacing his k(n)
by n — k(n) + 1.) This seems intuitive, and a similar argument as above shows
that this must be true. However, here the BRS-inequality cannot give as much
as Alsmeyer’s approach, which uses the strong property of uniform spacings
behaving, normalised, like independent exponential variables.

Under weaker conditions, the BRS-inequality may however give results where
other approaches cannot help. For example if the BRS-sum Sy p s, (see (8) to
(10)) “accommodates” the sum of the k(n) smallest spacings for n sufficiently
large, and if E(N(n,s,) stays bounded then we always have P(K, i.0.) = 0.
Moreover, if a similar independent set can be found as in the first question
above, then we are also able to find, with 2?21 s; tending to infinity as n — oo,
the desired converse.

4. Further connections and applications
4.1. Brief overview

Here the whole goal has been to explain, extend, and explore the upper bound
given by the BRS-inequality. The only work we know in which Theorem 2 was
applied is Steele (2016). Since, as said before, Theorem 1 has been around
since 1991 already, we heard in talks occasionally speakers referring to it. We
also know references in the literature where Theorem 1 was used explicitly or
referred to. In an attempt to be somewhat complete in this survey, here is a list
in alphabetic order of the written references we know:

Arlotto, A. and Steele, J. M. (2011),

Arlotto A., Mossel E. and Steele J. M. (2015a), (2015b)
Arlotto A., Wei Y., and Xie (2018)

Boshuizen F. A. and Kertz R. P. (1995), (1999)

Bruss F. T. (2014)

Caballero J. A., Lepora N. F. and Gumey K.N. (2015)
Cain N. and Shea-Brown (2013)

Gnedin A. V. (1999)

Gnedin A. V. and Seksenbayev A. (2019)

Gribonval R., Cevher V. and Davies M. E. (2012)
Jacquemain A. (2017)

Kaluszka M., Okolevski A. and Szymanska K. (2005)
Kiwi M. and Soto A. J (2015)

Lasner Z. and DeMille D. (2018)



BRS-inequality 71

Li L., Zhou H., Xiong S. X., Yang J.and Y. Mao (2019)
Peng P. and Steele J.M. (2016)

Pohl O. (2016)

Rhee and Talagrand (1991)

Stanke M. (2004)

Steele J.M. (2016)

Truong L V, Tan V. Y. F. (2018)

Tunc S., Donmez M.A. and Kozat S.S. (2013)

Zhang J.J.J. (2019)

Theorem 1 also plays a central role in the theory of so-called resource depen-
dent branching processes, or RDBPs, which we will treat as our last example
of applications. The work of B. & R.(1991), instigated by the article of Coffman
et al. (1987), was motivated in particular by questions arising in the context of
RDBPs.

4.2. Resource dependent branching processes

A resource dependent branching process (RDPB) is a branching process trying
to model the development of human populations in a way which seems as real-
istic as possible. In these RDBP’s particles (individuals) have to work in order
to survive and to reproduce. Moreover, they live in a society and are supposed
to observe the rules their society imposes on them. Individuals receive resources
from a global resource space left by their ancestors, and they also create new re-
sources. These are used as resources for their own consumption, but also to add
to the resource space for the next generation. All these quantities are modelled
by random variables.

4.2.1. Special model assumptions

It is the society who is supposed to decide how resources are distributed among
the individuals. Decisions are taken according to two guiding objectives. On
the one hand the society wants to survive, and on the other hand, the average
individual would like to have a certain standard of living. These objectives are
typically in competition to each other. It is this feature which makes a RDBP
very different from other branching process models, and the methods to study
them have to be different.

In a RDBP individuals and society must also take into account changing
environments. In contrast to what one usually calls a process with random
random environment, the changing environment is now also the result of policies
exercised by the society and not only the result of changing parameters, as for
instance changing reproduction rates for the individuals. Decisions are reviewed
in every generation. (For branching processes with random environments in the
more classical sense see in particular the remarkable generality of models enabled
by the unifying approach of Kersting (2019).)
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Returning to the notion of claims (consumption) in RDBPs, it is the interplay
of claims and productivity which will, together with the society’s policy to
distribute resources, be decisive for the possible survival of the process. Namely,
those individuals, who do not receive their minimum claims, are supposed to
refuse to replicate within the population. This is for individuals a tool of defence
or a means to have a say in policy. We recall that the first priority of the society
is to survive. The second one is to do so with a comfortable or at least acceptable
standard of living which is modeled for the individuals as the average size of
accepted claims.

In the so-called weakest-first society, the definition (1) plays a central role
as we explain first for a single population. If in a given generation there are n
individuals claiming X7, X5 --- , X,, under a currently available resource space
(budget) s, and if the weakest (smallest claims) are served first (w.f.-society)
then E(N(n,s) of the n can be expected to reproduce (having children) for the
next generation. (The fact that human reproduction is not asexual, and that
thus men and woman and their mating behavior intervene, is, fortunately, here
irrelevant. It can be neglected by confining the interest to the so-called average
reproduction mean of mating units, as shown in Bruss (1984).)

Bruss and Duerinckx (2015) proved that no society can possibly survive unless
the w.f.-society survives forever with a strictly positive probability. This result
does not surprise because saving resources is helpful for survival if all other
parameters stay unchanged. However, the logical converse that wasting resources
by greedy individuals is bad for survival is harder to prove. To see this, recall
the random variable M (n, s) defined in Subsection 2.6, namely

0, if Xy, > s,

. (33)
max{k e N: X, , + -+ Xp_pr10 < s}, if Xy <s,

M(n,s):{

where the X}, , now denote the order statistics of n claims. If the (strongest)
individuals with the largest claims are served first, then less individuals can
reproduce. However, with a smaller population in the next generation, their
largest claims will go down in expectation (as seen in (33)). According to the
model of an RDBP this will be favourable for future available resources, and
thus for individuals to replicate.

This is in contrast to what we see for the monotone behaviour of the smallest
order statistic, which will go down in size when the sample size increases, so that
the trend is maintained. This leads to the study of N(n,s) and M (n,s). Theo-
rem 1 (ii) and Theorem 5 (ii) together allowed to prove the so-called Theorem of
Envelopment (Bruss and Duerinckx (2015)). This theorem states that any such
RDBP will (in its number of effectives) fluctuate between the bounds which are
necessary for the survival of the w.f.-society, respectively, the s.f.-society.

4.2.2. Sub-populations

Theorem 2 allows for dealing with populations which split into several sub-
populations with their own parameters. As indicated in the more elementary ex-
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amples seen before, some dependencies may be fully compatible with the essence
of conclusions. The final goal is to see under which conditions sub-populations
may arrive at a certain equilibrium. For a long-term equilibrium between sub-
populations to exist, it is a necessary condition for them to survive, and we now
understand these conditions. We see that in political decision-making, which is
(too often) online, necessary conditions typically play a more important role
than sufficient conditions. Also, depending on the degree of independence as-
sumptions for the behaviour of individuals within the same sub-population,
these can turn into sufficient conditions.

Immigration of sub-populations and its effect on equilibria can now, due to
Theorem 2, be treated in one single framework (Bruss (2018)). Understanding
the necessary conditions for the survival of sub-populations within a given pop-
ulation is a first step to see whether an equilibrium between sub-populations is
possible. For such questions, independence assumptions become more and more
difficult to defend, if one wants to stay within realistic assumptions. This is
why the author believes that, if RDBPs, as imperfect as they might be, will at-
tract interest as reasonable models for interacting human sub-populations, then
Steele’s contribution will be very important for their understanding.

Conclusion

As the style of the present survey may suggest, it was written with the objective
in mind to convince: the BRS-inequality is a versatile tool. The author would
be delighted to see readers profit from it for problems, or sub-problems, in their
own research.
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