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Abstract: We study a plug in least squares estimator for the change point
parameter where change is in the mean of a high dimensional random vec-
tor under subgaussian or subexponential distributions. We obtain sufficient
conditions under which this estimator possesses sufficient adaptivity against
plug in estimates of mean parameters in order to yield an optimal rate of
convergence Op(ξ−2) in the integer scale. This rate is preserved while al-
lowing high dimensionality as well as a potentially diminishing jump size
ξ, provided s log(p ∨ T ) = o(

√
(T lT )) or s log3/2(p ∨ T ) = o(

√
(T lT )) in

the subgaussian and subexponential cases, respectively. Here s, p, T and lT
represent a sparsity parameter, model dimension, sampling period and the
separation of the change point from its parametric boundary, respectively.
Moreover, since the rate of convergence is free of s, p and logarithmic terms
of T , it allows the existence of limiting distributions under high dimen-
sional asymptotics. These distributions are then derived as the argmax of
a two sided negative drift Brownian motion or a two sided negative drift
random walk under vanishing and non-vanishing jump size regimes, respec-
tively, thereby allowing inference on the change point parameter. Feasible
algorithms for implementation of the proposed methodology are provided.
Theoretical results are supported with monte-carlo simulations.
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1. Introduction

In many applications of current scientific interest assuming stationarity of the
mean of a time series over an extended sampling period may be unrealistic
and may lead to flawed inference. Dynamic time series characterized via mean
changes across unknown time points form a simplistic yet useful tool to model
non-stationarity of large streams of data. In this article we consider the model,

xt =

{
θ01 + εt t = 1, ..., τ0

θ02 + εt t = τ0 + 1, ..., T.
(1.1)

The observed variables here are xt = (xt1, xt2, ..., xtp)
T ∈ R

p, t = 1, ..., T .
The variables εt = (εt1, ..., εtp)

T ∈ R
p are unobserved zero mean random vari-

ables, which are allowed to be subgaussian or subexponential. The unknown
parameters are the mean vectors θ01, θ

0
2 ∈ R

p, and the change point parameter
τ0 ∈ {0, 1, 2, ..., T}, with the latter being of main interest. The model dimension
p is allowed to be fixed or diverging potentially much faster than the sampling
period T . The boundary points τ0 = 0, T characterize the ‘no change’ case, or a
static model where no realizations from the corresponding distribution are ob-
served. These boundary points are considered to present additional theoretical
insights in the estimation of τ0 later in the manuscript, however these shall not
be pursued from an inference perspective. Our objective throughout the article
is that of inference on τ0 when it exists, i.e., construction of asymptotically
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valid confidence intervals for the change point parameter when it is not at the
boundary of its parametric space. We mention here that several solutions for
the boundary problem (detection) of testing the null hypothesis H0 : τ0 = T , in
the high dimensional setting are available in the literature, see, e.g., [24], [38],
[17], [13] and [32] amongst others.

To proceed further, define the jump vector and the jump size that are fun-
damentally related to the properties of any change point estimator. Let,

η0 = (θ01 − θ02), and ξ = ‖η0‖2.1 (1.2)

The problem of change point estimation in the high dimensional setting has
received significant attention in the recent past and several different estimators
have been proposed. A large proportion of this literature provides near optimal
localization error bounds of the form |τ̂ − τ0| ≤ O(ξ−2aT ), where aT → ∞,
with probability (w.p.) → 1. For e.g. in the case of a single change point, the
results of [21] yield aT = log T , with a least squares estimator together with
a total variation penalty, [40] provide aT = log log(T ) with a projected cusum
estimator, and those of [12] yields aT ≥ log2(T ) in the case of a single change
point. While near optimal rates of the approximation are informative from an
estimation perspective, however, from an inference perspective one requires a
change point estimator to obey an optimal rate of convergence of Op(ξ

−2) in
order to allow the existence of limiting distributions and in turn allow inference
on τ0. The literature on this inference perspective is very sparse. In a setting
where p is increasing with T , [7] and [8] develop limiting distribution results
while assuming ξ−1√(p/T ) → 0. These results yield non-degenerate limiting
distributions provided p 
 T . However, due to the assumption made on rate
of the jump size, these do not extend to the high dimensional case where p
may be diverging faster than T . In this case the assumption on the jump size
made in these articles necessitates ξ → ∞ in the high dimensional setting and
consequently allows only a degenerate limiting distribution to remain valid.
The article [2] provides a limiting distribution result while assuming a further
stronger assumption of ξ−1√p → 0. Two other recent articles in this direction
are of [10] and [37], both these works are under dense alternatives similar to
those of [7] and [8], in particular [37] require the dimension p to be necessarily
diverging faster than T but slower than T 2/ log T , under the case ξ = O(1). The
article of [10] provides results while also allowing temporal dependence.

More generally, in the high dimensional setting the question of an optimal
rate of estimation and that of inference on the change point parameter in the
non-degenerate case where the jump size is not assumed to be diverging remains
unaddressed. The viability of the question itself comes from the recent work of
[27] who show that assuming sparsity of the jump vector, much weaker signals
in the jump size are detectable. Specifically, they show that the region of de-
tectability of the change point satisfies a rate of ξ−1√{

s log(p∨T )/T
}
≤ c, in a

minimax sense, upto other logarithmic terms in s and T , and under restrictions

1These quantities depend on the sampling period T , however this dependence is notation-
ally suppressed for clarity of exposition.
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on the sparsity parameter s. We refer to their article for the precise rate which
involves a tripe iterated log expression. A corresponding result in the univariate
setting has been provided in [36].

A more precise description of the purpose of this article requires additional
notation. For any T ≥ 2, p ≥ 3,2 τ ∈ {0, ..., T}, and θ1, θ2 ∈ R

p, consider,

Q(τ, θ1, θ2) =
1

T

τ∑
t=1

‖xt − θ1‖22 +
1

T

T∑
t=τ+1

‖xt − θ2‖22.3 (1.3)

Assume for the time being, the availability of some estimates θ̂1 and θ̂2 of the
mean parameters of the model (1.1) and consider the following plug in estimator
utilizing these nuisance estimates,

τ̃ := τ̃(θ̂1, θ̂2) = argmin
0≤τ≤T

Q(τ, θ̂1, θ̂2). (1.4)

The overarching objective of this article is to study the inference properties
of the estimator τ̃ in the assumed setting allowing high dimensionality and weak
requirements on the jump size that allow non-degenerate limiting distributions,
for e.g. to allowing a potentially diminishing jump size. Establishing existence of
limiting distributions requires first suitable estimation properties to hold, which
forms the first main contribution of this article.

In particular, we shall show that τ̃ yields an optimal rate of convergence
Op(ξ

−2), under a subgaussian or subexponential setting and any nearly arbitrary
spatial dependence structure. New arguments are developed to obtain this result,
including a novel application of the Kolmogorov’s inequality on partial sums
(see, Theorem B.1). Moreover, we obtain sufficient conditions on the nuisance

estimates θ̂1 and θ̂2 required to achieve the optimal rate Op(ξ
−2), or a near

optimal rate Op

(
s log(p∨T )

)
. These sufficient conditions on nuisance estimation

are stated as an inter-relationship between the �2 error of nuisance estimates
and the jump size (Condition C.1 and Condition C.2). Formulating sufficient
conditions on nuisance parameters with respect to the jump size provides some
surprising insights. For e.g., they allow us to show that the estimation of a change
point parameter in itself does not require many assumptions that are typically
thought of as necessary conditions in the literature, including a rate condition on
the separation of τ0 from the parametric boundary, a rate condition on the jump
size, and a rate of divergence of the model dimension. Instead, these assumptions
arise from the nuisance estimation aspect of the overall process of change point
estimation. This is best observed for the case where the nuisance parameters are
known. Here these sufficient conditions shall be trivially satisfied with θ̂1 = θ01,

and θ̂2 = θ02. In this case, τ̃ yields an optimal rate Op(ξ
−2), where ξ > 0

may be converging arbitrarily fast towards zero and the model dimension may

2We assume p ≥ 3 throughout the article so that log p ≥ 1. This is not a necessary condition
and is only assumed to ease notational complexity of the results and proofs.

3The sum
∑τ

t=1 is defined to be zero when τ = 0, and similar for the other sum on the
boundary τ = T .
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be diverging arbitrarily fast with respect to T , and even when the change point
does not actually exist (τ0 = 0orT )4. This case of known nuisance parameters is
clearly infeasible in practice and is only meant to illustrate the above subtlety.
The main requirement to obtain an Op(ξ

−2) rate for τ̃ in the usual case of
unknown nuisance parameters shall effectively take the form

‖θ̂1 − θ01‖2 ∨ ‖θ̂2 − θ02‖2 ≤ cuσ
{s log(p ∨ T )

T lT

} 1
2

, (1.5)

with probability 1 − o(1), under the following weak condition on the rates of
model parameters,

(cuσ
ξ

){s log(p ∨ T )√
(T lT )

}
≤ cu1, or

(cuσ
ξ

){s log3/2(p ∨ T )√
(T lT )

}
≤ cu1 (1.6)

for the subgaussian and subexponential cases, respectively, and for a suitably
chosen small enough constant cu1 > 0. Here s is a sparsity parameter defined
later in (2.1), σ is a variance proxy parameter (Condition A) and lT is a sequence
separating τ0 from the parametric boundary (Condition D).

Despite irregular p-dimensional nuisance estimates in the construction of τ̃ , it
shall yield an optimal Op(ξ

−2) rate of convergence. This indicates that under the
assumed mild conditions largely described above, the estimator τ̃ statistically
behaves as if the nuisance parameters are known. This property of an estimator
is typically referred to as adaptation as described in [9], but is observed here in
a high dimensional sense. An indirect but informative comparison is with recent
results on inference on regression coefficients in high dimensional regression
models. For estimation of a component of the regression vector, it is known that
the least squares estimator itself is not sufficiently adaptive against nuisance
parameter estimates (estimates of remaining regression vector components) to
allow for an optimal rate of convergence. Instead, certain corrections to the
least squares loss or its first order moment equations, such as debiasing ([34])
or orthogonalization ([3], [11], [5] and [28]) induce sufficient adaptivity against
nuisance estimates and thereby allow optimal estimation of the target regression
parameter. The results of this article show that in the context of change point
estimation, the plugin least squares estimator (1.4) itself possesses the required
adaptivity against potentially high dimensional nuisance estimates, in order
to allow for Op(ξ

−2) estimation of the change point τ0 provided the nuisance
parameters are estimated with sufficient precision.

It may be observed that taking advantage of sparsity yields conditions (1.6)
that are weaker than those assumed in [2], [7] and [8]. This is best seen by noting
that conditions (1.6) allow a diminishing jump despite high dimensionality, un-

der the restrictions s log(p∨ T ) = o
(√

(T lT )
)
, and s log3/2(p∨ T ) = o

(√
(T lT )

)
,

under the subgaussian and subexponential cases, respectively. We also mention

4The boundary case of τ0 = 0, T and ξ > 0 can be simultaneously assumed since we allow
θ01 , θ

0
2 and τ0 to be free parameters. Effectively, τ0 = 0, and ξ > 0, assumes there is some

mean vector θ02 different from θ01 , however we do not observe any realizations from θ01 + ε, and
symmetrically for τ0 = T .
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here that while the estimators studied in [2] and [8] are also based on a squared
loss, however, they consider a grid search least squares where estimation of
nuisance parameters θ01 and θ02 is carried out internally in the change point es-
timation mechanism. This is in contrast to the plug in least squares estimator
(1.4) where the nuisance estimation has been separated from the change point
estimation. This separation is crucial since it allows nuisance estimates to be
computed separately and be made suitable for high dimensional approximations
of the mean vectors via regularization, whereas a grid search least squares by
construction disallows this capability.

Another observation here is that these conditions impose a stronger require-
ment on the jump size in the subexponential case in comparison to the sub-
gaussian case. While we do not prove that these are necessary assumptions for
an Op(ξ

−2) rate of τ̃ , however the tail probability bounds (e.g. Bernstein’s in-
equality) that force the conditions (1.6) are known to be sharp bounds. It is thus
reasonable to speculate that this relationship between the jump size, dimension-
ality and the underlying distribution is inherent to achieving an optimal rate of
convergence Op(ξ

−2) of the change point estimator and not an artifact of our
argument. Further circumstantial evidence towards this also comes from the fol-
lowing additional result. We show that a near optimal rate Op

(
ξ−2s log(p∨ T )

)
of τ̃ can be obtained under a weaker condition than (1.5) on the nuisance esti-
mates, which shall in turn requires the weaker restriction,(cuσ

ξ

){s log(p ∨ T )

T lT

} 1
2 ≤ cu1, (1.7)

for both the subgaussian and subexponential settings.
Notably, the distinction in the required conditions (1.6) for the two classes of

distributions is no longer present when only a near optimal rate is of interest. An
intuitive explanation for this behavior is as follows. One among a few quantities
that controls the rate of τ̃ is the tail behavior of a stochastic term of the form∥∥∑(τ0+k)

t=(τ0+1) εt
∥∥
∞ uniformly over k ≤ k′. Note that when k′ ≥ log(p ∨ T ) is

diverging with T , then for a sufficiently large T , this tail behavior is of the same
order under both the subgaussian and subexponential cases. When only a near
optimal rate is of interest, it is sufficient to examine this case with a diverging
k′. However, this is no longer true in the case where k′ is finite. In this case, the
heavier tail of the subexponential distribution is realized in the corresponding
tail bound of the underlying stochastic term, and in turn on the assumption
required to retain an optimal Op(ξ

−2) rate of convergence.
The second main contribution of this article is about inference on the change

point parameter. Note that in the case where ξ → ∞, the rate Op(ξ
−2) directly

yields a degenerate limiting distribution. It is thus sufficient to restrict this anal-
ysis to ξ = O(1). We show that the optimal rate of τ̃ , together with peripheral
results allows for the existence of limiting distributions of τ̃ in both vanishing
and non-vanishing jump size regimes, the forms of which are then derived. More
precisely, under the vanishing jump regime ξ → 0, we obtain,

ξ2σ−2
∞ (τ̃ − τ0) ⇒ argmax

ζ∈R

(
2W (ζ)− |ζ|

)
, (1.8)
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where σ2
∞ = limT→∞(η0TΣη0

)
/ξ2, Σ = Eεtε

T
t , and W (·) is a two-sided Brown-

ian motion on R. It may be observed that the form of the limiting distribution
obtained here is the same as that obtained in a one dimensional setting, ([1]).
The distribution of argmaxζ∈R

(
2W (ζ) − |ζ|

)
is well studied in the literature

and its cdf and thus its quantiles are readily available, ([41]).

The limiting distribution in the non-vanishing case of ξ → ξ∞ > 0 necessi-
tates a further parametric assumption (Condition A′) on the form of the un-
derlying distribution, the reason for which is discussed in Section 3 later in the
manuscript. The literature on this case even in the classical fixed p setting is
quite sparse. Some relevant articles in this direction are of [23] and [18]. How-
ever, the results of these articles do not allow an extension to the case where
the dimension p is function of T . When p is allowed to move with T , but p 
 T ,
the only articles we are aware of who consider the non-vanishing case are of [7]
and [8]. However it may be observed that our result to follow is quite different
in comparison to theirs and is additionally valid in the high dimensional setting.
To describe this distribution, let L represent the parametric form of the distri-
bution of the random variable

(
2η0T εt − ξ2

)
and define the following negative

drift two sided random walk initializing at the origin,

C∞(ζ) =

⎧⎪⎨
⎪⎩
∑ζ

t=1 zt, ζ ∈ N
+ = {1, 2, 3, ...}

0, ζ = 0∑−ζ
t=1 z

∗
t , ζ ∈ N

− = {−1,−2,−3, ...},
(1.9)

where zt, z
∗
t are independent copies of a L(−ξ2∞, 4ξ2∞σ2

∞) distribution, which
are also independent over all t. The notation in the arguments of L(· , · ) is
representative of the mean and variance of this distribution, where the limits
ξ∞ and σ2

∞ are as described earlier. Then, we obtain the following result,

(τ̃ − τ0) ⇒ argmax
ζ∈Z

C∞(ζ), (1.10)

where Z represents the collection of integers. Quantiles of this distribution can be
approximated numerically thereby enabling the construction of asymptotically
valid confidence intervals. We emphasize that asymptotics here are in a high
dimensional sense, where the sampling period T → ∞ and the dimension p may
be fixed or be allowed to diverge, potentially at an exponential rate of T .

Clearly all of the above discussion on estimation and inference on τ0 relies
critically on the nuisance estimates θ̂1 and θ̂2 that satisfy suitable conditions,
that have not yet been explicitly defined. We postpone this discussion to Sec-
tion 4 where the construction of these nuisance estimates is discussed, along
with validity of the assumed sufficient conditions. Section 2 and Section 3 study
the proposed plug in least squares estimator τ̃ and provide a rigorous descrip-
tion of the estimation and inference results discussed above. Section 5 provides
monte-carlo simulations numerically supporting the theoretical results devel-
oped in this article. We conclude this section with a short note on the notation
used throughout the article.
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Notation: Throughout the paper, R represents the real line. For any vector
δ ∈ R

p, ‖δ‖1, ‖δ‖2, ‖δ‖∞ represent the usual 1-norm, Euclidean norm, and
sup-norm respectively. For any set of indices U ⊆ {1, 2, ..., p}, let δU = (δj)j∈U

represent the subvector of δ containing the components corresponding to the
indices in U . Let |U | and U c represent the cardinality and complement of U .
We denote by a∧ b = min{a, b}, and a∨ b = max{a, b}, for any a, b ∈ R. We use
a generic notation cu > 0 to represent universal constants that do not depend
on T or any other model parameter. All limits are with respect to the sample
size T → ∞. The notation ⇒ represents convergence in distribution.

2. Assumptions and estimation properties

In this section we state sufficient conditions and theoretical results regarding
estimation properties of the plug in least squares estimator τ̃ of (1.4).

Condition A (On underlying distributions). We assume that the underlying
distribution in model (1.1) obeys one of the following two conditions.

(I) (subgaussian): The vectors εt = (εt1, ..., εtp)
T , t = 1, .., T , are indepen-

dent and identically distributed subgaussian random vectors with variance
proxy σ2 < ∞ (see, Definition B.1 and B.3).

(II) (subexponential): The vectors εt = (εt1, ..., εtp)
T , t = 1, .., T , are in-

dependent and identically distributed subexponential random vectors with
variance proxy σ2 < ∞ (see, Definition B.2 and B.3).

Subgaussian and subexponential are well known classes of distributions with
the latter being heavier tailed than the former. Distributions included in class (I)
are: Gaussian distribution, any bounded distribution, asymmetric mixtures of
Gaussian distributions etc. Examples of distributions included in class (II) are:
Laplace distribution, mean centered Exponential distribution, mean centered
Chi-square, centered mixtures of these distributions, amongst several others.
The monograph [35] provides a detailed study on the behavior of these classes
of distributions. This assumption is significantly weaker than assuming a Gaus-
sian distribution such as that in [40], but it requires lighter tail behavior in
comparison to [8] who assume a finite fourth moment of the underlying distri-
bution. However, as discussed in Section 1, the inference results of [7] and [8]
do not extend to the p � T setting as considered here. Moreover, our results
indicate that achieving an optimal rate Op(ξ

−2) in the high dimensional setting
leads to the rate required of jump signal indeed being influenced by the tail
behavior of the underlying distribution (see, (1.6)). It is thus expected that an
assumption of heavier tails will lead to further stringent requirements on this
rate, although we do not pursue this further in this article.

Condition B (On the covariance structure). The covariance Σ := Eεtε
T
t has

bounded eigenvalues, i.e., 0 < κ2 ≤ mineigen(Σ) ≤ maxeigen(Σ) ≤ φ2 < ∞.

Condition B assumes a positive definite dependence structure. Note here that
Condition A is inherently related to Condition B since the former by construc-
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tion imposes that maxeigen(Σ) = O(σ2), where σ2 is the variance proxy parame-
ter. This can be observed as follows: for all δ ∈ R

p, ‖δ‖2 = 1 from Definition B.3,
we have, δT εt ∼ subG(σ2) (or subE(σ2)) and thus δTΣδ = E(δT εt)

2 ≤ cuσ
2.5

Consequently, maxeigen(Σ) := sup‖δ‖2=1 δ
TΣδ ≤ cuσ

2.

A relaxation of this assumption to allow φ2 → ∞ and κ2 → 0 is feasible.
In context of estimation results, the bounds for the localization error of τ̃ and
thereby its rate of convergence provided later in this section are obtained upto
universal constants. Consequently the effect of this relaxation will be directly
observable in these bounds. Specifically, the case where φ2 is allowed to diverge
will lead to a deceleration of the rate of convergence of τ̃ . Note from the discus-
sion in the previous paragraph that if the maximum eigenvalue of Σ is allowed
to diverge with T , then the variance proxy parameter σ2 must necessarily be
allowed to diverge at the same rate. Consequently, without loss of generality,
one may assume that φ2 and σ2 are of the same order, i.e., φ2 � σ2. The reason
we mention this is because the effect of a diverging φ2 will be observed via σ2

in the bounds to be presented later in this section.
From an inference perspective, the extreme eigenvalues of Σ shall impact

limiting distribution τ̃ through a variance parameter of the form ξ−2η0TΣη0.
Thus a relaxation to the case of φ2 → ∞ and κ2 → 0 would be feasible upon a
rescaling with this underlying varaince. However, we do not explicitly illustrate
this in our results in the interest of simplicity of exposition.

Next consider the following sets of non-zero indices of θ01 and θ02,

S1 = {k; θ01k �= 0}, and S2 = {k; θ02k �= 0}, (2.1)

and let Sc
1 and Sc

2 be the complement sets. Define the maximum cardinality
|S1| ∨ |S2| = s ≥ 1. The parameter s measures sparsity in the model (1.1).
To allow the viability of this assumption one may center the observed data
with column-wise means, i.e., consider xt of model (1.1) where instead of the
means θ01, θ

0
2 the jump η0 is s-sparse, i.e., there is a mean change in at most s

components. Upon centering xt with column-wise empirical means, x∗
t = xt− x̄,

t = 1, ..., T , with x̄ =
∑T

t=1 xt

/
T , the sparsity of η0 is transferred onto the

new mean vectors θ∗1 = Ex∗
t , t ≤ τ0, and θ∗2 = Ex∗

t , t > τ0. Heuristically,
this centering operation is same as that carried out in linear regression models
to get rid of the intercept parameter, which is implicitly assumed in the high
dimensional linear regression literature. The sparsity assumption is typically
made on the jump vector η0, as done in [40] and [17]. In contrast we make this
assumption directly on the mean vectors θ01 and θ02 and in Appendix C we show
that this assumption holds without loss of generality with respect to a sparsity
assumption on jump vector η0, in context of the problem under consideration.

The remainder of this section is divided into two subsections. These sub-
sections present near optimal and optimal rates of convergence of τ̃ and the
sufficient conditions on the nuisance estimates θ̂1 and θ̂2 required for the same.
As noted in Section 1, near optimal rates in themselves do not allow inference.

5This follows since if x ∼ subG(σ2) (or subE(σ2) then E|x|k ≤ 3kσkkk/2 (or 4σkkk)),
k ≥ 1, see, e.g. [35].
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However, these results are still relevant since they shall provide new insight into
the distinctions between the sufficient conditions required to achieve optimal-
ity over near optimality. Moreover, these shall also serve as a stepping stone
in the construction of a feasible methodology to obtain an optimal estimator
considered in Section 4.

2.1. Near optimal Op(ξ
−2s log(p ∨ T )) estimation of τ0

We begin with the following condition on the nuisance estimates θ̂1 and θ̂2.

Condition C.1 (On nuisance estimates θ̂1, θ̂2 for near optimality of τ̃). Let
πT → 0 be a positive sequence and assume that the following two properties hold
with probability at least 1− πT .

(I) The nuisance estimates θ̂1 and θ̂2 satisfy ‖(θ̂1)Sc
1
‖1 ≤ 3‖(θ̂1−θ01)S1‖1, and

‖(θ̂2)Sc
2
‖1 ≤ 3‖(θ̂2 − θ02)S2‖1, where S1, and S2 are as defined in (2.1).

(II) Assume these nuisance estimates satisfy the following bound in the �2 er-
ror,

‖θ̂1 − θ01‖2 ∨ ‖θ̂2 − θ02‖2 ≤ cu1ξ,

where cu1 > 0 is an appropriately chosen small enough constant.

Condition C.1 is an exceptionally weak condition on the quality of nuisance
estimates. All it requires is the �2 error in the estimation of the mean parameters
to be of order of the jump size and may potentially be weaker than assuming
ordinary consistency, i.e., an op(1) approximation. To see this, consider the
case where jump size ξ is bounded below by a constant, then these nuisance
estimates are allowed to be inconsistent. Perhaps surprisingly, these nuisance
estimates shall still be sufficient for near optimal estimation Op

(
s log(p∨T )

)
of

the change point parameter. We can now state our first result which bounds the
localization error of τ̃ , thereby also yielding a near optimal rate of convergence
in both subgaussian and subexponential settings.

Theorem 2.1. Suppose the model (1.1) and assume τ0 ∧ (T − τ0) ≥ 0 and that
ξ > 0. Additionally assume Conditions A(I) (subgaussian), B and C.1 hold.
Then for any T ≥ 2, and cu > 2, we have,

(i)
∣∣τ̃ − τ0

∣∣ ≤ 72cuσ
2ξ−2s log(p ∨ T ),

with probability at least 1− 2 exp{−cu1 log(p∨T )}−πT , with cu1 = (cu − 2). In
other words σ−2ξ2(τ̃ − τ0) = O

(
s log(p ∨ T )

)
, with probability 1 − o(1). Alter-

natively, under Conditions A(II) (subexponential setting), B and C.1, assuming
T ≥ log(p ∨ T ), and cu > 8, we have,

(ii)
∣∣τ̃ − τ0

∣∣ ≤ max
{
72cuσ

2ξ−2s log(p ∨ T ), log(p ∨ T )
}

with probability at least 1−exp
{
−cu2 log(p∨T )

}
−πT , with cu2 = (

√
(cu/2)−2) >

0. In other words, when ξ = O(
√
s), we have σ−2ξ2(τ̃ − τ0) = O

(
s log(p ∨ T )

)
,

else, we have σ−2(τ̃ − τ0) = O
(
log(p ∨ T )

)
, both with probability 1− o(1).
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Although Theorem 2.1 only provides a near optimal rate of convergence and
not the optimal rate, it does so under a very mild condition on the relationship
between the nuisance estimates and the jump size (Condition C.1).

Remark 2.1. It may be observed from Theorem 2.1 that when ξ = O(
√
s) and

T ≥ log(p∨T ), then under both subgaussian and subexponential cases we have
the same rate of convergence of τ̃ , i.e. (τ̃ − τ0) = Op

(
ξ−2s log(p ∨ T )

)
, under

the same assumption (Condition C.1) on the nuisance estimates. This illustrates
that when only a near optimal rate of convergence is of interest the heavier tail
of a subexponential distribution does not influence τ̃ in its rate of convergence,
or the quality of nuisance estimates required to achieve the same. This shall
no longer be true when instead an optimal rate is of interest. Remark 4.1 in
Section 4 provides further insight in this direction.

Another observable consequence of Theorem 2.1 is that when
[
{s log(p ∨

T )}1/2
/
ξ
]
→ 0, then under the subgaussian case we have perfect identification

of the change point parameter in probability, i.e., pr(τ̃ = τ0) → 1. However the
same cannot be obtained from Theorem 2.1 in the subexponential case. This
is because under more general conditions than Remark 2.1, the localization
bound under a subexponential distribution is either less precise than its sub-
gaussian counterpart, or alternatively, requires a more rigid condition to match
the estimation precision obtained under subgaussianity. This is illustrated in
the following result where a slightly weaker bound allows perfect identifiability
for the subexponential case.

Theorem 2.2. Suppose the model (1.1) and assume τ0 ∧ (T − τ0) ≥ 0, ξ > 0.
Additionally assume Conditions A(II) (subexponential), B and C.1 hold. Then
for T ≥ 2 and any cu > 2, we have,

∣∣τ̃ − τ0
∣∣ ≤ (

12cuσ
)2
ξ−2s log2(p ∨ T ) (2.2)

with probability at least 1 − 2 exp{−cu1 log(p ∨ T )} − πT , with cu1 = (cu −
2). Consequently, if additionally the jump size is large enough to satisfy ξ ≥
cu2s

1/2 log(p ∨ T ), for some cu2 > 0. Then, we have, (i) (τ̃ − τ0) = O(1),
with probability 1− o(1). Furthermore, if the jump size diverges any faster, i.e.,{
s1/2 log(p ∨ T )

/
ξ
}
→ 0, then, pr(τ̃ = τ0) → 1.

Theorem 2.2 is valid when T ≥ 2 whereas the subexponential case of The-
orem 2.1 requires T ≥ log(p ∨ T ). The reason as to why this distinction arises
shall have significant consequences on optimal estimation and inference in the
context of distinctions between assumptions for subgaussian and subexponential
distributions. This is pursued in the following subsection. Simply stated, when
the underlying stochastic term comprises of only a finite number of random
variables, the heavier tail of the subexponential distribution is realized in the
tail bound of this underlying stochastic term, else the behavior is similar to that
in the subgaussian case. For intuition purposes, note that when an optimal rate
of convergence |τ̃ − τ0| ≤ cξ−2, is of interest and ξ ≥ cu, then there are only a
finite number of indices between τ̃ and τ0.
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2.2. Optimal Op(ξ
−2) estimation of τ0

This subsection illustrates that τ̃ can achieve an optimal rate of convergence,
Op(ξ

−2) while allowing potentially diminishing jump sizes. The only price one

needs to pay to get this advantage is to ensure that the nuisance estimates θ̂1,
and θ̂2 are of a higher quality as compared that in the previous subsection. To
describe this behavior we begin with a stronger version of Condition C.1 on the
nuisance estimates.

Condition C.2 (Assumption on nuisance estimates for optimality of τ̃). Let
πT → 0 be a positive sequence and assume that either one of the two pairs of
properties (I, II) or (I, III) holds with probability at least 1− πT .

(I) The nuisance estimates θ̂1 and θ̂2 satisfy ‖(θ̂1)Sc
1
‖1 ≤ 3‖(θ̂1−θ01)S1‖1, and

‖(θ̂2)Sc
2
‖1 ≤ 3‖(θ̂2 − θ02)S2‖1, where S1, and S2 are as defined in (2.1).

(II) For the subgaussian case: Assume that there exists a sequence rT > 0,
such that these nuisance estimates satisfy,

‖θ̂1 − θ01‖2 ∨ ‖θ̂2 − θ02‖2 ≤ rT ≤ cu1ξ

{s log(p ∨ T )}1/2 ,

for an appropriately chosen small enough constant cu1 > 0.
(III) For the subexponential case: Assume that there exists a sequence rT >

0, such that these nuisance estimates satisfy,

‖θ̂1 − θ01‖2 ∨ ‖θ̂2 − θ02‖2 ≤ rT ≤ cu1ξ

s1/2 log(p ∨ T )
,

for an appropriately chosen small enough constant cu1 > 0.

The only distinction between Condition C.2 and Condition C.1 of the previous
subsection is that we have assumed a tighter bound on the nuisance estimates.
This tightening has consequences on both the rate of convergence of τ̃ , and the
assumptions on s, p required for the feasibility of this assumption. These aspects
shall be discussed in detail after the following first main result providing an
optimal rate of convergence of τ̃ .

Theorem 2.3. Suppose the model (1.1) and assume τ0∧(1−τ0) ≥ 0, ξ > 0, and
T ≥ 2. Additionally assume either one of the following two sets of conditions.

(a) Suppose Conditions A(I) (subgaussian), B and C.2 (I, II) hold.
(b) Suppose Conditions A(II) (subexponential), B and C.2 (I, III) hold.

Then, for any 0 < a < 1, choosing ca ≥ √
(1/a), we have,

|τ̃ − τ0| ≤ 36c2aσ
2ξ−2

with probability at least 1−a− 2 exp{− log(p∨T )}−πT . Equivalently, we have,
σ−2ξ2(τ̃ − τ0) = Op(1).
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Theorem 2.3 provides the optimal rate of convergence of τ̃ . A first look on
the sufficient conditions required for this result may lead one to suspect that
Theorem 2.3 provides an optimal bound without any rate conditions on the
model parameters s, p, ξ, lT . This is indeed true only in a very special case but
false in general, as discussed in the following.

Consider the case where mean parameters θ01 and θ02 are known. Here, setting

θ̂1 = θ01 and θ̂2 = θ02 allows Condition C.2 to be trivially satisfied irrespective
of the rate of divergence of s, p. Consequently, even if τ0 is at a boundary
(τ0 = 0orT ) and the dimensions s, p are diverging arbitrarily fast, τ̃ will still
estimate τ0 at an optimal rate. The only assumption required for this case is
ξ > 0, i.e. θ01 �= θ02. This case is clearly infeasible in practice and is only discussed
to provide the following perhaps surprising insight. The estimation of a change
point in itself does not require many assumptions that are usually thought of as
necessary in the literature, including separation from boundary, minimum jump
size and restrictions on dimensionality. These assumptions instead arise solely
from the nuisance estimation aspect of the overall process.

In the more realistic setup where θ01 and θ02 are unknown, the key in Theo-
rem 2.3 is Condition C.2. Effectively, the use of Condition C.2 has passed the
burden of assumptions on model parameters to the nuisance estimates θ̂1 and
θ̂2. To discuss this further we require the following boundary condition on τ0.

Condition D (On separation of τ0 from its parametric boundary). Assume the
existence of a change point τ0 for the model (1.1), i.e., it satisfies τ0∧(T−τ0) ≥
T lT ≥ 1, for some positive sequence lT → 0.

Clearly, all this condition requires is at least one realization from both of
the two distributions characterizing model (1.1) and is usually implicit in the

literature. Under Condition D, one can obtain regularized mean estimates θ̂1,
and θ̂2, that satisfy at best the bound (see, Section 4),

‖θ̂1 − θ01‖2 ∨ ‖θ̂2 − θ02‖2 ≤ rT = cuσ
(s log(p ∨ T )

T lT

) 1
2

, (2.3)

with probability 1−o(1). Now comparing (2.3) with Condition C.2 (II) and C.2
(III) for the subgaussian and subexponential cases, respectively, yields the fol-
lowing requirements that must be satisfied for Condition C.2 to be feasible and
in turn Theorem 2.3 to remain valid,

(cuσ
ξ

){s log(p ∨ T )√
(T lT )

}
≤ cu1, for the subgaussian setting, (2.4)

(cuσ
ξ

){s log3/2(p ∨ T )√
(T lT )

}
≤ cu1, for the subexponential setting, (2.5)

for a suitably chosen small enough constant cu1 > 0. Relations (2.4) and (2.5)
describes interplay between model parameters ξ, lT , s, p, T

(
which are all se-

quences in T
)
and the underlying class of distribution, that are then sufficient

for the estimator τ̃ to achieve the optimal rate of convergence Op(ξ
−2).
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As a direct consequence of Theorem 2.3 one may observe that when ξ →
∞, then the estimator τ̃ perfectly identifies the change point parameter τ0, in
probability, i.e., the limiting distribution of τ̃ in this case is degenerate. While
this perfect identifiability under a diverging jump size is also provided by the grid
search least squares estimator as studied in [2] and [8], however the assumption
made here on the diverging jump size is weaker given high dimensionality. This
can be observed in the rate at which ξ is required to diverge, for e.g. for the
same result to hold true in [8] one requires ξ → ∞ at a fast enough rate so
that additionally ξ−1√p/T → 0 is satisfied. The assumption required in [2] to
achieve the same perfect identifiability in the high dimensional setting is more
stringent than that of [8].

From an estimation perspective, the optimal rate Op(ξ
−2) of τ̃ may not seem

a significant improvement in comparison to near optimal rates available in the
literature for estimators in the high dimensional setting, for e.g. the projected
cusum estimator of [40] with a presented rate of Op(ξ

−2 log log T ), thus the
improvement offered by τ̃ being only of order log log T . However, this slight
improvement is critical from an inference perspective, it is only the availability
of an Op(ξ

−2) rate that allows the existence of a limiting distribution.

The above discussion also highlights that in order for τ̃ to have a non-
degenerate limiting distribution in the high dimensional setting, conditions (2.4)
and (2.5) must allow ξ ≤ cu, despite high dimensionality and while preserving
the optimal rate of convergence Op(ξ

−2) presented in Theorem 2.3. This feasi-
bility is summarized in the following corollary.

Corollary 2.1. Suppose the model (1.1) and assume one of the following two
sets of conditions.

(a) Conditions A(I) (subgaussian), B and C.2 (I, II) hold with rT =

cuσ
{
s log(p∨T )

/
T lT

}1/2
. Additionally assume s log(p∨T ) = o

(√
(T lT )

)
,

and ξ (potentially diminishing) satisfies (2.4).
(b) Conditions A(II) (subexponential), B and C.2 (I, III) hold with rT =

cuσ
{
s log(p ∨ T )

/
T lT

}1/2
. Additionally assume s log3/2(p ∨ T ) =

o
(√

(T lT )
)
, and ξ (potentially diminishing) satisfies (2.5).

Then, we have, σ−2ξ2(τ̃ − τ0) = Op(1).

We conclude this section with another perspective on the discussion in this
subsection. Recall that the construction of τ̃ utilizes p-dimensional nuisance
estimates whose rate of convergence involve the dimensional parameters s, p
(see, (2.3)). However the rate of convergence of the change point estimator itself
is Op(ξ

−2), which is free of dimensionality parameters s, p, the sampling period
T and is valid despite high dimensionality and a potentially diminishing jump
size. This alludes towards the estimator τ̃ behaving as if the nuisance parameter
vectors utilized in its construction are known. This property of an estimator is
typically referred to as adaptation as described in [9], but is observed here in
a high dimensional sense and in the context of change point estimation. In the
fixed p setting, this property of a change point estimator behaving as if the
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nuisance parameters are known has also been studied in [22]. There are also
more recent precedent’s to similar behavior but in the context of inference on
regression coefficients in high dimensional linear regression models. For estima-
tion of a component of the regression vector, where certain corrections to the
least squares loss or its first order moment equations, such as debiasing ([34]) or
orthogonalization ([3], [11], [5] and [28]) induce sufficient adaptivity against nui-
sance estimates and thereby allow optimal estimation of the target regression
parameter. The results of this subsection show that in the context of change
point estimation, the plugin least squares estimator (1.4) itself possesses adap-
tivity against potentially high dimensional nuisance estimates, in order to allow
for Op(ξ

−2) estimation of the change point τ0, provided the nuisance parame-
ters are estimated with sufficient precision. This adaptation shall become further
visible in the following section where limiting distributions of τ̃ are established.

3. Limiting distributions of τ̃ in vanishing and non-vanishing jump
size regimes

This section investigates the asymptotic distributional properties of τ̃ . Critically,
here asymptotics are in a high dimensional sense where s, p are allowed to be
fixed or diverge with T , with p diverging potentially exponentially with T . As
noted before, the case of ξ → ∞ yields a degenerate limiting distribution of
τ̃ . Thus, in what follows we restrict our analysis to ξ ≤ cu, where the limiting
distribution of τ̃ is non-trivial. This case is further subdivided into two distinct
regimes described in the following condition.

Condition E (On the jump size for stability of limiting distributions). Assume
that the jump size is bounded above, i.e., 0 < ξ ≤ cu. Let Σ and η0 be as defined
in Condition B and (1.2), respectively, and additionally assume that either one
of the following two conditions hold.

(i) (vanishing jump) Let ξ → 0 and ξ−2
(
η0TΣη0

)
→ σ2

∞, for some 0 < σ2
∞ <

∞.
(ii) (non-vanishing jump) Let ξ → ξ∞, and

(
η0TΣη0

)
→ ξ2∞σ2

∞, for some
0 < ξ∞, σ2

∞ < ∞.

The existence of the deterministic limit assumed in Condition E(i) and E(ii)
is a mild assumption since Condition B already guarantees that the sequences
under consideration are bounded above and below, i.e., we have, 0 < κ2ξ2 ≤
η0TΣη0 ≤ φ2ξ2 < ∞. This limit measures the variance of the underlying limiting
process which then characterizes the distribution of τ̃ , thus the need for an
assumption of its existence.

The vanishing and non-vanishing jump size regimes described in Condition E
play a fundamental role in the distributional behavior of a change point esti-
mator. The reason for this inherent characteristic can be directly observed by
noting that the stochastic term that controls the change point estimator τ̃ has a

distribution of the form
∑ζξ−2

t=1 uT
t η

0, where ut ∼ i.i.d.(0,Σ), and constant ζ > 0.
The regime ξ → 0, enables the ζξ−2 → ∞ and thus upon suitable normalization
allows the functional central limit theorem to kick in, and yield a Brownian



86 A. Kaul et al.

motion as the resulting process over ζ. This neat property has been exploited in
the classical literature under fixed dimension (p) to obtain distributional results
under this vanishing jump size regime, see, e.g. [1]. Unfortunately, when ξ �→ 0,
the stochastic term described earlier is no longer an infinite sum, and it is clear
that the Brownian motion approximation is no longer feasible. Infact it is also
observable that any distributional result under this non-vanishing case will ne-
cessitate a further parametric assumption on the underlying distribution, since
in this case the stochastic term under consideration is a finite sum.

The first result below considers the vanishing case ξ → 0. It obtains the
limiting distribution of τ̃ as the distribution of the argmax of a symmetric two
sided Brownian motion with a negative drift, under suitable conditions on the
quality of the nuisance estimates used in the construction of τ̃ .

Theorem 3.1 (Limiting distribution under vanishing jump regime). Suppose
Conditions A, B, D and E(i) hold and assume that the sequence lT of Condi-
tion D satisfies T lT → ∞. Let the mean parameters θ01 and θ02 be known and let
τ̃∗ = τ̃(θ01, θ

0
2). Then, we have,

ξ2(τ̃∗ − τ0) ⇒ argmax
ζ∈R

{
2σ∞W (ζ)− |ζ|}, (3.1)

where W (ζ) is a two sided Brownian motion6. Alternatively, when θ01 and θ02
are unknown, suppose τ̃ = τ̃(θ̂1, θ̂2), where the estimates θ̂1 and θ̂2 satisfy Con-
dition C.2. Additionally assume that the sequence rT of Condition C.2 satisfies,

rT =

{
o(1)ξ

{s log(p∨T )}1/2 , under subgaussian case,
o(1)ξ

s1/2 log(p∨T )
, under subexponential case.

(3.2)

Then, the convergence (3.1) also holds when τ̃∗ is replaced with τ̃ .

Following are observations regarding the sufficient conditions required for this
result and comparisons with those in Theorem 2.3 which provides the optimal
rate of convergence. As before, the burden of rate assumptions on s, p and ξ,
have been passed onto Condition C.2 and additionally here the requirement
(3.2), which in turn requires an inter-relationship between s, p, T, ξ, lT to be
satisfied similar to as discussed before in (2.4) and (2.5). In this case however,
condition (3.2) forces a marginally stronger requirement, specifically, comparing
the desired rate of rT in condition (3.2) to the best attainable rate (2.3) of mean
estimation under high dimensionality yields,

s log(p ∨ T )

ξ
√
(T lT )

= o(1), or
s log3/2(p ∨ T )

ξ
√
(T lT )

= o(1), (3.3)

for the subgaussian and subexponential cases, respectively. Comparing (3.3) to
the requirements (2.4) and (2.5) we observe that the additional assumption made
here is only to tighten the rate restriction to o(1) from O(1). This illustrates
the price paid in order to obtain the limiting distribution in comparison to only

6A two-sided Brownian motion W (ζ) is defined as W (0) = 0, W (ζ) = W1(ζ), ζ > 0 and
W (ζ) = W2(−ζ), ζ < 0, where W1(ζ) and W2(ζ) are two independent Brownian motions
defined on the non-negative half real line.
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optimal rate of estimation. This tighter restriction is also in coherence with
classical results in the fixed p setting, where the condition reduces to only a
relationship between ξ, T and lT . Additionally, since here we are restricted by
the regime ξ → 0 under consideration, consequently these sufficient conditions
must be further restricted as,

s log(p ∨ T )√
(T lT )

= o(1), or
s log3/2(p ∨ T )√

(T lT )
= o(1), (3.4)

for the subgaussian and subexponential cases, respectively.
Another slightly stronger assumption made here in comparison to Theo-

rem 2.3 is on sequence lT . While the result of Theorem 2.3 is valid without
the actual existence of the change point, i.e. τ0 ∧ (T − τ0) ≥ 0, the limiting dis-
tribution of Theorem 3.1 assumes that the change point exists and is separated
from the boundaries of its parametric space, i.e., τ0 ∧ (T − τ0) ≥ T lT → ∞.
This additional assumption is required in order to allow both ends of the two
sided random walk to stabilize to the given Brownian motion process.

It can be observed that a change of variable to ζ = σ2
∞ζ ′, yields that

argmaxζ∈R

{
2σ∞W (ζ)−|ζ|} =d σ2

∞ argmaxζ′∈R

{
2W (ζ ′)−|ζ ′|}, which in turn

yields the relation (1.8) provided in Section 1. This distribution is well studied in
the literature and its cdf was first provided by [41], which enables computation
of quantiles and in turn an asymptotically valid confidence interval for τ0.

We now proceed to the non-vanishing regime of Condition E(ii). The liter-
ature on inference under this case is quite sparse. Under the fixed p setting,
the articles [23] and [18] provide generalized results on the distribution of the
maximum likelihood estimators. These results provide key connections of the
desired distribution to a two sided random walk. However, the results require
mean parameters to be known and the sequence ξ to be constant over the sam-
pling period T . To the best of our knowledge, the only results in the literature
that discuss this non-vanishing regime in a diverging p setting are those of [7],
[8] and [37]. Where the first two require p diverging slower than T , and the
last requiring p diverging slower than T 2/ log T . The second main result of this
section provides this limiting distribution valid under both fixed p and high
dimensional asymptotics.

Recall from the earlier discussion on Condition E that under this non vanish-
ing regime, the stochastic term controlling the distributional properties of the
change point estimator is a finite sum (in t), and with finite variance for each
random variable in this sum. This disallows the use of central limit theorems
and thereby makes Gaussian approximations of the limiting process infeasible
(without exact normality assumptions on the data generating process). It is
due to this reason that the analysis of this regime requires further parametric
assumptions on the underlying distribution which are stated in the following.

Condition A′ (Additional distributional assumptions). Suppose Condition A
and B hold and additionally assume for any constants c1, c2 ∈ R, the r.v.’s
c2ε

T
t η

0 + c1 ∼i.i.d. L
(
c1, c

2
2η

0TΣη0
)
, t = 1, ..., T , for some distribution L, which

is continuous and supported in R.
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The arguments in the notation L(μ, σ2) are used to represent the mean and
variance of the distribution L, i.e., EL(μ, σ2) = μ, and var

(
L(μ, σ2)

)
= σ2. Note

that these relations follow trivially since Eεt = 0 and Eεtε
T
T = Σ from Condi-

tion A and B, these parameters are notated only to complete the description of
the assumed distribution and not to place them as additional assumptions.

The additional assumptions made in Condition A′ over those in Condition A
are that of assuming an explicit form L of the distribution and assuming that
it is continuous. Moreover, this condition also assumes that the form of the
distribution of the linear combination of p components of εt remains the same
irrespective of p. An example of this is when εt are assumed to be multivariate
normal, here this linear combination will still be normal irrespective of size of
the multivariate normal vector being projected. This condition can alternatively
be restated as assuming the r.v c1+c2ε

T
t η

0 follows the distribution L in the limit
(in T via p), without any alterations to the results to follow. The distribution
being supported in R is also implicitly assumed in Condition A.

To proceed further we require the following stochastic process that shall char-
acterize the limiting distribution of the change point estimator in the current
non-vanishing regime. Let N

+ = {1, 2, ....} and N
− = {−1,−2, ....}, and define

the following negative drift two-sided random walk initializing at the origin,

C∞(ζ) =

⎧⎪⎨
⎪⎩
∑ζ

t=1 zt, ζ ∈ N
+

0, ζ = 0∑−ζ
t=1 z

∗
t , ζ ∈ N

−.

(3.5)

Here zt, z
∗
t are independent copies of a L(−ξ2∞, 4ξ2∞σ2

∞) distribution, which are
also independent over all t. The parameters ξ∞ and σ2

∞ are defined in Condi-
tion E(ii). In the case of unit variances and spatial uncorrelated-ness of the data
generating process, where Σ = Eεtε

T
t = Ip×p, we have σ

2
∞ = 1 and consequently

zt, z
∗
t ∼i.i.d. L(−ξ2∞, 4ξ2∞). Under these notations we can now state the second

main result of this section.

Theorem 3.2 (Limiting distribution under non-vanishing jump regime). Sup-
pose Conditions A′, B, D and E(ii) hold and assume that lT of Condition D
satisfies T lT → ∞. Let the mean parameters θ01 and θ02 be known and let
τ̃∗ = τ̃(θ01, θ

0
2). Then

(τ̃∗ − τ0) ⇒ argmax
ζ∈Z

C∞(ζ), (3.6)

where C∞(ζ) is as defined in (3.5). Alternatively, when θ01 and θ02 are unknown,

suppose τ̃ = τ̃(θ̂1, θ̂2), where estimates θ̂1 and θ̂2 satisfy Condition C.2. Ad-
ditionally assume the sequence rT of Condition C.2 satisfies (3.2). Then, the
convergence in distribution (3.6) also holds when τ̃∗ is replaced with τ̃ .

The map argmaxζ∈Z
C∞(ζ) is a.s. unique and possesses a distribution sup-

ported on Z. This has been shown in the proof of Theorem 3.2, although it is
also quite intuitive upon observing that the two sided random walk C∞(ζ) is
negative drift with continuously distributed increments, which in turn implies
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that maxζ∈Z C∞(ζ) is supported on [0,∞), where it is continuously distributed
on (0,∞) and has an additional probability mass at the singleton zero.

The sole distinction between the assumptions of Theorem 3.1 and Theo-
rem 3.2 is the change of regime from a vanishing jump size (Condition E(i))
to the non-vanishing regime (Condition E(ii)). Consequently, the observations
after Theorem 3.1 on the inter-relationship between the quality of nuisance esti-
mates, the dimensional parameters s, p and the jump size ξ, retain their validity
under this non-vanishing regime. In particular, these inter-related requirements
can be replaced with the rate restrictions (3.3) and in turn (3.4), while main-
taining validity of Theorem 3.2. Since the analytical form of the distribution
argmaxζ∈Z

C∞(ζ) is unavailable, one may obtain quantiles of this distribution
via a monte-carlo simulation, i.e., simulating the two sided random walk process
and in turn obtaining realizations from the distribution under consideration.

4. Construction of a feasible Op(ξ
−2) estimator of τ0

The results of Section 2 and Section 3 allow τ̃ to provide an Op(ξ
−2) approx-

imation of τ0, and provide limiting distributions to perform inference on the
unknown change point. However, these results rely on the apriori availability
of nuisance estimates θ̂1, and θ̂2, satisfying Condition C.2. In this section we
develop an algorithmic estimator to obtain these nuisance estimates that are
theoretically guaranteed to satisfy Condition C.2, which in turn shall yield a
feasible Op(ξ

−2) estimate of the change point parameter.
To proceed further we require more notation. For any τ ∈ {1, ..., (T − 1)}, let

x̄(0:τ ] =
1

τ

τ∑
t=1

xt, and x̄(τ :T ] =
1

(T − τ)

T∑
t=τ+1

xt, (4.1)

be the piece-wise sample means. Consider the soft-thresholding operator, kλ(x)=
sign(x)(|x| − λ)+, λ > 0, x ∈ R

p, where sign(· ), |· |, and (· )+7 are applied
component-wise. Then for any λ1, λ2 > 0, define �1 regularized mean estimates,

θ̃1(τ) = kλ1

(
x̄(0:τ ]

)
, and θ̃2(τ) = kλ2

(
x̄(τ :T ]

)
. (4.2)

It is well known in the literature ([14], [15]) that the soft-thresholding operation
in (4.2) is equivalent to the following �1 regularization.

θ̃1(τ) = argmin
θ∈Rp

∥∥x̄(0:τ ] − θ
∥∥2
2
+ λ1‖θ‖1. (4.3)

In order to develop a feasible estimator for τ0, recall the following two aspects
from Section 2. (a) The missing links required to implement the estimator of
Section 2 are the nuisance (mean) estimates. (b) These mean estimates require
either Condition C.1 (milder) to obtain a near optimal estimate or Condition C.2
(stronger) to obtain an optimal estimate of τ0. We shall fulfill requirement

7For x ∈ R, (x)+ = x, if x ≥ 0, and x = 0 if x < 0.
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Fig 1. A schematic of the underlying working mechanism of Algorithm 1.

(a) using soft thresholded means (4.2), and furthermore utilize the distinctions
between Condition C.1 and Condition C.2 to build an algorithmic estimator that
improves a nearly arbitrarily chosen τ̌ , first to a near optimal estimate τ̂ in a first
iteration, and then to an optimal estimate τ̃ in a second iteration. We remind
the reader here that the specific choice of soft-thresholding as a regularization
mechanism on the empirical means is superficial, the eventual objective is only
to obtain mean estimates that are well behaved in the high dimensional setting
in the �2 norm (see, (2.3)). Alternatively, one may consider using any suitable
choice of the regularization mechanism that may also be problem specific, e.g.
group �1 regularization which assumes a partially known sparsity structure.

The stepwise approach of the estimator to be considered is as follows. Con-
dition C.1 is weak enough to be satisfied by estimates θ̌1 = θ̃(τ̌) and θ̌2 = θ̃2(τ̌)
of (4.2), computed with any nearly arbitrarily chosen τ̌ ∈ {1, ..., (T − 1)} that
is marginally away from its boundaries. (see, Condition F below). Thus, The-
orem 2.1 and Theorem 2.2 now guarantee the update τ̂ = τ̃

(
θ̌1, θ̌2

)
of (1.4)

computed using these mean estimates θ̌1, θ̌2, shall be a near optimal estimate
of τ0. With the availability of this near optimal estimate τ̂ , it can be shown
that the updates θ̂1 = θ̃1(τ̂), and θ̂2 = θ̃2(τ̂), satisfy Condition C.2. This allows

us to perform another update τ̆ = τ̃(θ̂1, θ̂2), and Theorem 2.3 now guarantees
optimality of τ̆ . Thus, in performing these updates (two each of the change
point and the mean) we have taken a τ̌ from a nearly arbitrary neighborhood of
τ0, and deposited it in an optimal neighborhood of τ0, with an intermediate τ̂
that lies in a near optimal neighborhood. This process is stated as Algorithm 1
below and is presented visually in Figure 1. To complete the description of Al-
gorithm 1, we provide the mild sufficient condition required from the initializing
choice τ̌ .

Condition F (Initializing assumption). Let ψ = ‖η0‖∞ and assume that the
initializer τ̌ of Algorithm 1 satisfies the following relations.

(i) τ̌ ∧ (T − τ̌) ≥ cuT lT , and (ii)|τ̌ − τ0| ≤ cu1T lT(√
(2s)ψ

/
ξ
) .

Here lT is as defined in Condition D, cu > 0 is any constant and cu1 > 0 is an
appropriately chosen small enough constant.



HD change point inference 91

Algorithm 1 Optimal estimation of τ0.
(Initialize): Choose any τ̌ ∈ {1, ..., (T − 1)} satisfying Condition F.
Step 1: Obtain estimates θ̌1 = θ̃1(τ̌), and θ̌2 = θ̃2(τ̌), and update change point estimate as,

τ̂ = argmin
τ∈{1,...,(T−1)}

Q(τ, θ̌1, θ̌2) (4.4)

Step 2: Update mean estimates to θ̂1 = θ̃1(τ̂), and θ̂2 = θ̃2(τ̂) and perform another update
of the change point estimate as,

τ̆ = argmin
τ∈{1,...,(T−1)}

Q(τ, θ̂1, θ̂2)

(Output): τ̆

The first requirement of Condition F is clearly innocuous, all it requires is a
marginal separation of the chosen τ̌ from the boundaries of the parametric space
of the change point. It is satisfied with τ̌ = �Tk�, with any k ∈ [cu1, cu2] ⊂ (0, 1).

The second requirement is discussed in the following, first from a theoretical
and then followed by a practical perspective. For simplicity consider the case
when lT ≥ cu < 1, i.e., the true change point τ0/T in the fractional scale
is in some bounded subset of (0, 1), and that

(√
(2s)ψ

/
ξ
)
= O(1), i.e., the

entries of the change vector η0 are roughly evenly spread across its non-zero
components and not with uneven diverging spikes, this is also satisfied if one
assumes ψ ≤ cu. Then, requirement (ii) of Condition F is satisfied for all τ̌ in
an o(T ) neighborhood of τ0, i.e., any τ̌ satisfying |τ̌ − τ0| = o(T ).

We shall show that despite choosing any starting value in this o(T ) neigh-
borhood, Step 1 of Algorithm 1 shall then move it into a near optimal neigh-
borhood. Following which, the next iteration of Step 2 will then move it to
an optimal neighborhood of τ0, i.e., o(T )-nbd. −→Step 1 near optimal-nbd.,
Op(ξ

−2s log p) −→Step 2 optimal-nbd., Op(ξ
−2). Note here the sequential im-

provement in the rate of convergence from initializing to Step 2. Moreover, the
improvement to optimality in exactly two iterations. Another important conse-
quence of these results is that it shows the redundancy of any further iterations,
in the sense that since an optimal rate has been obtained at Step 2, performing
further iterations will not yield any statistical improvement in the estimation
of τ0. Upon viewing the above discussion from a rate perspective provides the
theoretical argument in support of the mildness of Condition F.

From a practical perspective, a valid initializer τ̌ in an o(T ) neighborhood of
τ0 can be obtained by means of a preliminary coarse grid search, for e.g. one
may choose a slowly diverging sequence (say log T ) and choose log T equally
separated values in {1, ..., T} forming a coarse grid of possible initializers. Upon
choosing the best fitting value τ̌ for Algorithm 1 from this coarse initializer grid
(minimizing squared loss) and assuming that the best fitting value is closest to
τ0, amongst the chosen grid points (while this is fairly intuitively, it remains
to be verified analytically). Then by the pigeonhole principle this choice of τ̌
must be in an T/ log T = o(T ) neighborhood of τ0. Thereby this τ̌ shall form a
theoretically valid initializer. A similar preliminary coarse grid search has also
been heuristically utilized in [31] in a different model setting.
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Fig 2. Illustration of robustness of Algorithm 1 to the initializer τ̌ . x-axis: initializer τ̌ , y-
axis: estimated change point τ̂ of Step 1 of Algorithm 1. This illustration is based on a single
dataset x, with τ0 = �T/2	 (Left panel: indicated by red line) and τ0 = �T/4	 (Right panel:
indicated by red line). Additional parameters: T = 225, p = 100, θ01 = (11×5, 01×p−5)T ,

θ02 = (01×5, 11×5, 01×p−10)T and εt ∼i.i.d. N (0,Σ), with Σij = ρ|i−j|.

However, based on extensive numerical experiments we observe that this pre-
liminary coarse grid search is numerically redundant. It is observed that any
arbitrarily chosen τ̌ separated from the boundaries of the parametric space
yields statistically indistinguishable updates of Algorithm 1 when T is large.
The reader may numerically confirm these observations using the software asso-
ciated with this article. An illustration of this behavior is provided in Figure 2
with a single data set realization. In Section 5 we present results with the ini-
tializer fixed at τ̌ = �T/2�, irrespective of the location of the true change point
τ0. Note that in the absence of any information on τ0, this choice of τ̌ = �T/2�
forms the worst or farthest initializer in a mean distance sense. All other val-
ues of τ̌ shall only serve to make estimation easier. Despite this worst possible
choice, numerical results remain indistinguishable compared to those obtained
when τ̌ is chosen with a preliminary coarse grid search. A version of this condi-
tion has also been provided in [26] in the context of near optimal estimation of
a change point in linear models together with evidence in its support.

In the following we provide a precise description of the statistical performance
of Algorithm 1, starting with a result that obtains the near optimal rate of
convergence of τ̂ of Step 1 of Algorithm 1.

Theorem 4.1. Suppose the model (1.1) and assume the following,

cuσ

ξ

{s log(p ∨ T )

T lT

} 1
2 ≤ cu1, (4.5)

for an appropriately chosen small enough constant cu1 > 0. Additionally assume
T ≥ 2, the regularizers λ1 and λ2 for Step 1 of Algorithm 1 are chosen as in
(A.29), and assume either one of the following two sets of conditions.

(a) Conditions A(I) (subgaussian), B and D hold.
(b) Conditions A(II) (subexponential), B and D hold and cuT lT ≥ log(p∨T ).
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Then, τ̂ = τ̃(θ̌1, θ̌2) of Step 1 of Algorithm 1 satisfies the following.

|τ̂ − τ0| ≤
{
cuσ

2ξ−2s log(p ∨ T ) under Conditions (a)

cuσ
2ξ−2s log2(p ∨ T ) under Conditions (b)

(4.6)

with probability at least 1− o(1).

The result of Theorem 4.1 shows that τ̂ of Step 1 of Algorithm 1 will satisfy
near optimal bounds despite the algorithm initializing with a nearly arbitrary
τ̌ . The conclusion of this theorem is effectively same as that of Theorem 2.1
and Theorem 2.2, with the distinction being that here the τ̂ is a implementable
estimate in comparison to Theorem 2.1, where the availability of nuisance es-
timates satisfying Condition C.1 was assumed. Following are two important
remarks regarding Algorithm 1 and Theorem 4.1.

Remark 4.1. This remark is a continuation of Remark 2.1. Under conditions
(b) (subexponential case) of Theorem 4.1, using the result of Theorem 2.1 it
can also be shown that

|τ̂ − τ0| ≤ cuσ
2 max

{
ξ−2s log(p ∨ T ), log(p ∨ T )

}
(4.7)

with probability 1 − o(1). The bound presented in (4.6) is chosen since it is
required for the results to follow. The reason we bring this up is because in the
case where ξ = O(

√
s), it may be observed that (4.7) reduces to |τ̂ − τ0| ≤

cuξ
−2s log(p∨T ), which is the same bound as that in the subgaussian case, i.e.,

in this case where only a near optimal rate of convergence is of interest, the
heavier tail of the subexponential distribution does not impact the change point
estimation neither through rate assumptions (4.5) nor through the rate of the
change point estimator itself.

Remark 4.2 (Boundary case of τ0 = 0 or T ). It may be observed that Theo-
rem 4.1 assumes existence of a change point (Condition D), which is not required
in Theorem 2.1. As discussed in Section 2, this distinction is not due to change
point estimation itself but instead because one requires at least one realization
from both underlying distributions before and after τ0 to obtain any estimate
of both nuisance parameters θ01 and θ02. If these mean parameters are known
apriori one may also estimate the boundary points with the squared loss itself.
Nevertheless, a 0-norm regularization approach can be utilized to relax this as-
sumption and include one boundary point, τ0 = T 8. This can be achieved by
replacing Step 1 of Algorithm 1 with a regularized version,

τ̂∗ = argmin
τ∈{1,...,T}

{
Q(τ, θ̌1, θ̌2) + γ1[τ �= T ]

}
, γ > 0.

Here γ is a tuning parameter. It can be observed that τ̂∗ can be equivalently
represented as,

τ̂∗ =

{
T If {Q(T, θ̌1, θ̌2)−Q(τ̂ , θ̌1, θ̌2)} < γ,

τ̂ else,

8It is clear that when θ01 , θ
0
2 are unknown both boundary values τ0 = 0, T are not simul-

taneously identifiable since no realizations from one of the distributions are observed.
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where τ̂ is as in (4.4). This representation is more common in the change point
literature, see, e.g. [19] and [40], where it is utilized to extend a single change
point methodology to a multiple change point setting via variants of binary
segmentation. Selection consistency

(
pr(τ̂∗ = T ) → 1 when τ0 = T

)
yielded by

this regularization can be additionally verified via conventional arguments. This
is quite intuitive since when τ0 = T , the mean parameter on both sides of any
arbitrary cutoff τ̌ is θ01. Thus if γ is chosen as an upper bound on residual noise,
the boundary squared loss will be at most γ larger than that obtained with any
value in {1, ..., (T − 1)}, in probability. A rigorous proof is omitted since it is
largely a reproduction of existing arguments from the literature.

The construction of Algorithm 1 is modular in the sense that for it to yield
an estimate τ̆ that is optimal in its rate of convergence, it does not require the
estimator of Step 1 to be specifically the one that has currently been chosen.
Instead, all that is required from Step 1 is that it provides some estimate τ̂ that
satisfies the bound (4.6) of Theorem 4.1 with probability 1−o(1). Consequently,
one may instead modify Algorithm 1 to use any other near optimal estimator
in Step 1. This is described below as Algorithm 2.

Algorithm 2 Optimal estimation of τ0.
Step 1: Implement any estimator τ̂ from the literature that satisfies the near optimal
bounds (4.6) with probability 1− o(1).

Step 2: Compute mean estimates θ̂1 = θ̃1(τ̂), and θ̂2 = θ̃2(τ̂) and perform the update,

τ̆ = argmin
τ∈{1,...,(T−1)}

Q(τ, θ̂1, θ̂2)

(Output): τ̆

An example of an estimator that can be used in Step 1 of Algorithm 2 is of
[40], which obeys a tighter bound than that of Theorem 4.1 under similar rate
conditions on model parameters, and consequently also satisfies (4.6). However,
this estimator would be limited to the Gaussian setting. To the best of our
knowledge, there is no estimator that is currently available in the literature
that would serve as a replacement for Step 1 of Algorithm 1 while allowing high
dimensionality and under the assumed conditions of Theorem 4.1. The following
result provides the optimal rate of convergence for the estimate τ̆ obtained from
either Algorithm 1 or Algorithm 2 and shows that the limiting distributions of
Section 3 remain valid for these feasible estimators.

Theorem 4.2. Suppose model (1.1) and assume (ψ/ξ
)
≤ cu

√{log(p∨T )}. Ad-
ditionally assume the regularizers λ1 and λ2 for Step 1 of Algorithm 1 are chosen
as in (A.29) and those for Step 2 of Algorithm 1 or Algorithm 2 are chosen as
in (A.32) and assume either one of the following two sets of conditions.

(a) Conditions A(I) (subgaussian), B, D, and the relation (2.4) hold, and
cuT lT ≥ s log(p ∨ T ).

(b) Conditions A(II) (subexponential), B, D and the relation (2.5) hold, and
cuT lT ≥ s log2(p ∨ T ).
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Then the estimate τ̆ of Algorithm 1 or Algorithm 2 satisfies, σ−2ξ2(τ̆ − τ0) =
Op(1). Additionally suppose Condition A′, E and (3.3) hold, then τ̆ of Algo-
rithm 1 or Algorithm 2 obeys the limiting distributions of Theorem 3.1 and
Theorem 3.2, in the vanishing and non-vanishing regimes, respectively.

The result of Theorem 4.2 concludes the task that was put forth in the prob-
lem setup of Section 1, i.e., to obtain feasible estimators that achieve an optimal
rate of convergence and possess well defined limiting distributions which in turn
allows inference on the change point parameter τ0, despite high dimensionality
of the underlying mean structure. Finally, we mention here the computational
simplicity of Algorithm 1. It may be noted that computationally all that is re-
quired is two computations of sample means and two one dimensional discrete
minimizations. The only notable computational cost arises from data based tun-
ing process of choosing the regularizers λ1, λ2 for soft-thresholding. Effectively,
this makes Algorithm 1 highly scalable and implementable on large scale data.

5. Numerical results

This section evaluates the numerical performance of the estimation and inference
results developed in the preceding sections. The two main objectives of this
section are to evaluate the estimation performance of the proposed Algorithm 1
(AL1) and benchmark its performance with the estimator (WS) of [40]. While
illustrating this objective we shall also compute the first step estimator (Step 1)
of Algorithm 1, which although is not optimal but still yields a near optimal
rate of convergence. The second objective is to evaluate the empirical inference
performance of Algorithm 1 when utilized in conjunction with the result of
Theorem 4.2. An auxiliary simulation examining uniformity of the proposed
methodology over the mean parametric space is provided in Appendix D of the
supplementary materials. In all simulations to follow, no underlying parameter
is assumed to be known.

We consider two simulation designs in the following. Simulation A considers
the subgaussian setting with an underlying Gaussian distribution and Simula-
tion B considers the subexponential setting with an underlying Laplace (dou-
ble exponential) distribution. In all cases considered, the mean vectors are set
to be θ01 = (θ1×s, 0p−s)

T
p×1 and θ02 = (01×s, θ1×s, 0p−2s)

T
p×1, and s = 5. Here

θ1×s = {1, ..., 0.25}, with s = 5 equally spaced entries, this yields a jump size ξ =
2.14. The covariance matrix Σ is chosen to be a toeplitz type matrix defined as
Σij = ρ|i−j|, i, j = 1, ..., p and ρ = 0.5. We consider all combinations of the sam-
pling period T ∈ {200, 275, 350, 425}, model dimension p ∈ {50, 250, 500, 750}
and the change point τ0 ∈

{
�0.2·T �, �0.4·T �, �0.6·T �, �0.8·T �

}
. The remaining

specifications of Simulation A and Simulation B are as follows. For Simulation
A, the unobserved noise variables εt are generated as independent Gaussian
r.v.’s, more precisely we set εt ∼i.i.d. N (0,Σ), t = 1, ..., T . For Simulation B the

unobserved noise variables εt are generated as εt = Σ
1
2 ε∗t , t = 1, ..., T , where

ε∗t = (ε∗t1, ...., ε
∗
tp), and each component ε∗tj ∼i.i.d. Laplace(0, 1), j = 1, ..., p, with

zero mean and unit variance. This yields i.i.d. random variables εt, t = 1, .., T



96 A. Kaul et al.

which are subexponential random vectors with a covariance Σ amongst com-
ponents. Both Simulation A and Simulation B are further subdivided into two
cases A(i), A(ii) and B(i), B(ii), the first of each simulation evaluating estimation
performance and the second computing inference performance.

For the inference related designs of Simulation A(ii) and B(ii), we construct
confidence intervals using both the limiting distributions of Theorem 3.1 and
Theorem 3.2. Note that by design ξ is fixed throughout, hence the former limit-
ing distribution is mis-specified for the considered cases. The significance level is
set to α = 0.05. Confidence intervals are constructed as

[
(τ̆ −ME), (τ̆ +ME)

]
,

where τ̆ is the output of Algorithm 1 and the margin of error (ME) is computed
as ME = qvασ

2
∞/ξ2 or ME = qnvα based on the results of Theorem 3.1 and The-

orem 3.2, respectively. Here qvα represents the
(
1−α/2

)th
quantile of the argmax

of two sided negative drift Brownian motion of Theorem 3.1. This critical value
is evaluated as cα = 11.03 by using its distribution function provided in [41].

The
(
1 − α/2

)th
quantile qnvα of the argmax of the two sided negative drift

random walk is computed as its monte carlo approximation by simulating 3000
realizations of this distribution. Recall that Theorem 3.2 necessitates a para-
metric assumption on the distribution of the projection of εt (Condition A′).
As per the assumed data generating process of Simulation A, the distribution L
here is assumed to be Gaussian for this design. For Simulation B(ii) we assume
L to also be Laplace distributed, this is clearly a mis-specification since Laplace
distribution is not invariant under linear combinations. However this was em-
pirically observed to be the closest parametric form amongst other common
subexponential distributions. For implementation of the confidence interval, we
utilize plugin estimates of σ2

∞ and ξ2, pertinent computational details of which
are provided in Appendix D of the supplementary materials.

Choice of tuning parameters: The regularizers λ1, λ2 used to obtain soft
thresholded mean estimates in Step 1 and Step 2 are tuned via a BIC type
criteria. Specifically we set λ1 = λ2 = λ, and evaluate θ̃1(λ), and θ̃2(λ) over an
equally spaced grid of twenty five values in the interval (0, 0.5). Upon letting

Ŝ = {j; θ̂1j �= 0} ∪ {j; θ̂2j �= 0} we evaluate the criteria,

BIC(λ, τ) =

τ∑
t=1

‖xt − θ̃1(λ)‖22 +
T∑

t=τ+1

‖xt − θ̃2(λ)‖22 + |Ŝ| log T. (5.1)

For Step 1 of Algorithm 1 we set λ as the minimizer of BIC(λ, τ̌), and for Step
2 of Algorithm 1 we choose λ as the minimizer of BIC(λ, τ̂). In context of the
benchmarking estimator of [40], due to the absence of an author recommended
tuning mechanism, we follow a similar approach as above to also tune their
estimator. Their estimator is implemented using the author provided r-package
InspectChangepoint [39] on a grid of twenty five values in order to obtain a
sequence of estimated change points. Each estimated change point is then used
to construct corresponding soft-thresholded mean estimates, which are tuned
via the BIC criteria as above. Finally, the squared loss criteria is applied to
choose the tuned estimate from amongst the pairs of estimated change points
and corresponding estimated mean parameters.
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Table 1

Simulation A(i): estimation performance of Step 1 (τ̂), AL1 (τ̆) and WS methods under
Gaussian setting with τ0 = �0.2·T 	. Bias (|E(τ̂ − τ0)|), and RMSE (E1/2(τ̂ − τ0)2) and

time (in seconds), approximated with 100 monte carlo replications.

τ0 = �0.2·T 	 Step 1 AL1 WS
T p bias RMSE time bias RMSE time bias RMSE time
200 50 2.410 5.823 0.060 0.320 1.876 0.111 0.110 2.666 0.117
200 250 1.930 6.089 0.145 0.380 2.107 0.261 1.050 4.088 1.504
200 500 2.970 11.937 0.197 2.240 11.475 0.370 1.970 5.835 7.414
200 750 0.000 4.228 0.254 0.180 2.478 0.460 1.860 5.552 22.699
275 50 2.400 5.020 0.093 0.570 3.442 0.168 0.070 2.610 0.139
275 250 1.520 3.592 0.253 0.300 2.392 0.450 0.700 5.923 1.961
275 500 1.600 4.035 0.321 0.420 1.811 0.596 2.710 8.945 7.862
275 750 0.780 4.474 0.400 0.140 2.510 0.743 1.890 4.951 23.096
350 50 1.850 4.836 0.098 0.190 2.347 0.179 0.290 2.076 0.162
350 250 1.180 3.552 0.268 0.110 1.700 0.480 0.350 3.294 2.025
350 500 1.700 3.680 0.409 0.350 1.947 0.743 0.920 3.990 8.699
350 750 1.470 4.339 0.494 0.100 1.703 0.911 0.810 3.838 24.261
425 50 2.220 6.263 0.131 0.130 1.873 0.242 0.470 2.193 0.176
425 250 1.330 4.021 0.304 0.060 2.112 0.581 0.290 2.629 2.234
425 500 1.860 3.912 0.500 0.100 1.828 0.970 0.330 2.247 9.471
425 750 1.390 3.345 0.621 0.170 1.997 1.225 1.470 5.489 26.021

To report our results we present the following metrics. For the estimation
results of Simulation A(i) and B(i) we report bias (|E(τ̂ − τ0)|), root mean
squared error (RMSE, E1/2(τ̂ − τ0)2), and time (average over replications of
running time in seconds)9, computed based on 100 monte carlo replications.
The reported computation time for Algorithm 1 includes all tuning undertaken
for its computation, i.e., as it would be implemented in practice. For the bench-
mark estimator of [40], the reported computation time is that of repeating their
estimation process over the chosen tuning grid of twenty five values and does not
include the time taken to thereafter complete the tuning process as described
above. For the inference results of Simulation A(ii) and B(ii), we report coverage
(relative frequency of the number of times τ0 lies in the confidence interval) and
the average margin of error (average over replications of the margin of error of
each confidence interval) computed based on 500 monte carlo replications.

Partial results of estimation simulations A(i), B(i), and inference simulations
of A(ii) and B(ii) are provided in Table 1, Table 2, and Table 3 and Table 4,
respectively. Results of all remaining cases of these simulations are provided in
Table 5–Table 16 in Appendix D of the supplementary materials. These results
provide strong numerical support to our theoretical results regarding estimation
and limiting distribution behavior of the proposed Algorithm 1.

We begin with a discussion on the estimation results of Simulation A(i) and
B(i) from Table 1, and Table 2 in the Gaussian and Laplace settings, respec-
tively. The proposed Algorithm 1 is observed to perform uniformly better over
all considered model dimension sizes in comparison to the benchmark method
WS when the sampling period is large T ∈ {350, 425}. In the case where
T ∈ {200, 275}, neither method is observed to be uniformly superior. In all
results, the Step 1 estimator is observed to be worst performer, this is not par-

9CPU: Intel Xeon E5-2609 v3 @ 1.9GHz.
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Table 2

Simulation B(i): estimation performance of Step 1 (τ̂), AL1 (τ̆) and WS methods under
Laplace setting with τ0 = �0.2·T 	. Bias (|E(τ̂ − τ0)|), and RMSE (E1/2(τ̂ − τ0)2) and time

(in seconds), approximated with 100 monte carlo replications.

τ0 = �0.2·T 	 Step 1 AL1 WS
T p bias RMSE time bias RMSE time bias RMSE time
200 50 3.910 8.679 0.063 0.640 2.458 0.111 0.240 3.803 0.113
200 250 1.300 6.822 0.128 0.700 6.293 0.244 0.800 4.909 1.384
200 500 1.740 7.647 0.220 1.430 6.932 0.378 2.330 6.049 7.100
200 750 1.390 4.021 0.234 0.560 2.412 0.439 3.110 8.190 21.581
275 50 2.480 6.010 0.086 0.060 1.625 0.161 0.200 1.908 0.139
275 250 1.420 4.416 0.240 0.020 1.860 0.427 0.030 2.524 1.900
275 500 1.260 4.334 0.293 0.350 2.161 0.541 0.640 3.682 7.627
275 750 0.780 3.914 0.396 0.430 3.260 0.728 2.000 5.860 22.935
350 50 2.790 5.925 0.107 0.260 1.871 0.174 0.110 2.907 0.138
350 250 1.680 4.637 0.240 0.000 1.789 0.444 0.340 2.550 1.887
350 500 1.650 3.869 0.371 0.550 2.105 0.679 1.690 5.074 8.247
350 750 2.260 6.482 0.483 0.590 2.373 0.892 1.360 4.630 24.222
425 50 1.770 4.410 0.114 0.100 1.783 0.223 0.300 2.864 0.160
425 250 3.300 7.695 0.297 0.700 2.328 0.564 1.210 4.189 2.195
425 500 1.340 3.904 0.487 0.160 2.078 0.918 0.860 4.678 9.103
425 750 1.090 3.291 0.644 0.010 1.841 1.247 0.590 3.848 25.988

Table 3

Simulation A(ii): inference using AL1 (τ̆) with τ0 = �0.2·T 	, at significance level α = 0.05.
Here, V: confidence intervals constructed using Theorem 3.1 under vanishing regime, NV:
confidence intervals constructed using Theorem 3.2 under non-vanishing regime (Gaussian

parametric assumption). Computation based on 500 monte carlo replications.

Coverage (average margin of error)
V NV V NV V NV

p n = 275 n = 350 n = 425
50 0.922 (3.861) 0.946 (3.808) 0.936 (3.958) 0.948 (3.879) 0.946 (4.004) 0.960 (3.939)
250 0.918 (3.453) 0.922 (3.384) 0.914 (3.567) 0.930 (3.473) 0.944 (3.734) 0.952 (3.635)
500 0.902 (3.310) 0.920 (3.252) 0.912 (3.506) 0.922 (3.443) 0.906 (3.517) 0.926 (3.450)
750 0.882 (3.208) 0.898 (3.107) 0.928 (3.437) 0.938 (3.347) 0.920 (3.533) 0.934 (3.467)

Table 4

Simulation B(ii): inference using AL1 (τ̆) with τ0 = �0.2·T 	, at significance level α = 0.05.
Here, V: confidence intervals constructed using Theorem 3.1 under vanishing regime, NV:
confidence intervals constructed using Theorem 3.2 under non-vanishing regime (Laplace

parametric assumption). Computation based on 500 monte carlo replications.

Coverage (average margin of error)
V NV V NV V NV

p n = 275 n = 350 n = 425
50 0.926 (3.785) 0.940 (3.763) 0.924 (3.910) 0.936 (3.877) 0.918 (3.981) 0.938 (3.951)
250 0.906 (3.424) 0.920 (3.386) 0.934 (3.595) 0.946 (3.554) 0.918 (3.627) 0.926 (3.570)
500 0.912 (3.286) 0.926 (3.263) 0.910 (3.482) 0.916 (3.446) 0.920 (3.605) 0.942 (3.560)
750 0.896 (3.157) 0.922 (3.117) 0.898 (3.327) 0.926 (3.296) 0.924 (3.497) 0.940 (3.443)

ticularly surprising since the near optimal rate of convergence Op(ξ
−2s log p) of

the Step 1 estimator derived in Theorem 4.1 is indeed slower than that of WS:
Op(ξ

−2 log log T ) and the optimal rate of Algorithm 1: Op(ξ
−2). We note here

that the Laplace setting of Simulation B is a mis-specification for the method
WS since that method is developed under a Gaussian setting.

Moving on to the inference results of Simulation A(ii) and B(ii) from Ta-
ble 3 and Table 4. The proposed Algorithm 1 and the inference methodology
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provides good control on the nominal significance level with an expected deteri-
oration observed with larger values of p and values of τ0 closer to the boundary
of the parametric space (also see, results of Table 11–16), but importantly the
coverage is observed to catchup to the nominal level as T increases. Some ob-
servations from these results are following. The confidence intervals constructed
using the non-vanishing regime result appear to provide nearly uniformly more
precise coverage in comparison to those constructed using the vanishing regime
result. While the reader may recall that the latter setting of a vanishing jump
size regime is mis-specified under the considered designs, however, this should
not be the cause for the above observation since under this mis-specification
one would expect conservative coverage as opposed to the observed deficient
coverage. Following are two speculative reasons that could be the root of this
observation. There may be finite sample biases in the estimated jump size ξ̂
and estimated asymptotic variance σ̂2

∞ which are inherent to regularized esti-
mators. This reason however is not likely since this would also have impacted
the non-vanishing regime confidence intervals equally, but is not observed to be
the case. The most probable reason is due to the non-vanishing result itself and
the manner in which its quantiles are computed. Specifically, since this result
is based on a parametric distributional assumption and moreover its quantiles
are evaluated as a monte-carlo approximation from realizations of the limiting
distribution generated via the estimated jump size and asymptotic variance, it
is consequently more adaptive to the specific data set realization under consid-
eration in a finite sample sense. A final unusual observation is that despite the
non-vanishing regime providing a higher coverage, the average margin of error
is smaller than that of the vanishing regime. The margin of error being lower
and coverage being higher is clearly not possible uniformly over all replications
since both utilize the same estimate τ̆ of Algorithm 1. Instead, upon a careful
examination of individual intervals it was observed that the reason here is again
that the quantiles of the non-vanishing regime are more adaptive to the specific
data set realization under consideration.
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Appendix A: Proofs

A.1. Proofs of Section 2

To present the arguments of this section we require some additional notation.
In all to follow define η̂ = θ̂1 − θ̂2. Also, for any non-negative sequences 0 ≤
vT ≤ uT ≤ 1 we define the following collection. Let

G(uT , vT ) =
{
τ ∈ {1, 2, ..., T}; TvT ≤ |τ − τ0| ≤ TuT

}
(A.1)
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Finally, for any vectors θ1, θ2 ∈ R
p and any τ ∈ {0, ..., T}, define,

U(τ, θ1, θ2) = Q(τ, θ1, θ2)−Q(τ0, θ1, θ2),

=

⎧⎪⎨
⎪⎩

1
T

∑τ
t=(τ0+1)

{
‖xt − θ1‖22 − ‖xt − θ2‖22

}
, τ = (τ0 + 1), ..., T

0, τ = τ0

− 1
T

∑τ0

t=(τ+1)

{
‖xt − θ1‖22 − ‖xt − θ2‖22

}
, τ = 0, ..., (τ0 − 1)

(A.2)

where Q(· , · , · ) is the least squares loss in (1.3) defined for any T ≥ 2. The proof
of Theorem 2.1 shall rely on the following preliminary lemma that provides a
uniform lower bound on the expression U(τ, θ̂1, θ̂2), over the collection G(uT , vT ).

Lemma A.1. Suppose the model (1.1) and assume τ0 ∧ (1− τ0) ≥ 0 and that
ξ > 0. Additionally assume Condition A(I) (subgaussian setting), B and C.1
hold and let 0 ≤ vT ≤ uT ≤ 1, be any non-negative sequences. Then for T ≥ 2,
and any cu > 2, we have,

inf
τ∈G(uT ,vT )

U(τ, θ̂1, θ̂2) ≥
ξ2

2

[
vT − 6

√
(2cu)σ

ξ

{uT s log(p ∨ T )

T

} 1
2
]

(A.3)

with probability at least 1− 2 exp{−cu1 log(p∨T )}− πT , for cu1 = (cu − 2) > 0.
Alternatively, suppose Condition A(II) (subexponential setting), B and C.1 hold.
Additionally assume that T ≥ 2 ∨ log(p ∨ T ), and that the sequence vT satisfies
TvT ≥ log(p ∨ T ). Then, for any cu > 8, the same bound (A.3) holds with
probability at least 1− exp

{
− cu2 log(p ∨ T )

}
, for cu2 = (

√
(cu/2)− 2) > 0.

Proof of Theorem A.1. We begin this proof with a few observations that shall
be required to obtain the desired bound (A.3). Using Condition C.1 we have the
following relations,

‖η̂ − η0‖2 ≤ ‖θ̂1 − θ01‖2 + ‖θ̂2 − θ02‖2 ≤ 2cu1ξ and similarly,

‖η̂ − η0‖1 ≤ 4
√
s‖θ̂1 − θ01‖2 + 4

√
s‖θ̂2 − θ02‖2 ≤ 8cu1

√
sξ (A.4)

with probability at least 1 − πT . Here the third inequality follows since the
assumption ‖(θ̂1)Sc

1
‖1 ≤ 3‖(θ̂1 − θ01)S1‖1 of Condition C.1 in turn implies that

‖θ̂1 − θ01‖1 ≤ 4
√
s‖θ̂1 − θ01‖2. Next, consider,

‖η̂‖2 ≤ ‖η̂ − η0‖2 + ‖η0‖2 ≤ ξ{1 + 2cu1} ≤ 3

2
ξ, and similarly,

‖η̂‖1 ≤ ‖η̂ − η0‖1 + ‖η0‖1 ≤ 8cu1
√
sξ +

√
sξ

≤ √
sξ{1 + 8cu1} ≤ 3

2

√
sξ, (A.5)

which holds with probability at least 1− πT . Here the second inequality for the
�2 bound follows from (A.4) and the third follows from Condition C.1 where
cu1 > 0 is chosen to be small enough. The �1 bound follows analogously. Lastly,
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consider the following expression,

‖η̂‖22 + 2(θ̂2 − θ02)
T η̂ = ‖η0 + (η̂ − η0)‖22 + 2(θ̂2 − θ02)

T η̂

≥ ‖η0‖22 + 2(η̂ − η0)T η0 + 2(θ̂2 − θ02)
T η̂

≥ ‖η0‖22 − 2‖η̂ − η0‖2‖η0‖2 − 2‖θ̂2 − θ02‖2‖η̂‖2

≥ ξ2(1− 4cu1 − 3cu1) ≥
ξ2

2
, (A.6)

which again holds with probability at least 1 − πT . Here the first inequality is
simply an algebraic manipulation. The second follows from the Cauchy-Schwartz
inequality and the third follows from Condition C.1, (A.4) and (A.5). The final
inequality again follows since the constant cu1 > 0 in Condition C.1 is chosen
to be small enough.

We now proceed to the main proof of the bound (A.3). Consider any τ ∈
G(uT , vT ), and without loss of generality assume τ ≥ τ0. The mirroring case of
τ ≤ τ0 can be proved using symmetrical arguments. Consider,

U(τ, θ̂1, θ̂2) = Q(τ, θ̂1, θ̂2)−Q(τ0, θ̂1, θ̂2)

=
1

T

τ∑
t=1

‖xt − θ̂1‖2 +
1

T

T∑
t=τ+1

‖xt − θ̂2‖2

−
{ 1

T

τ0∑
t=1

‖xt − θ̂1‖2 +
1

T

T∑
t=τ0+1

‖xt − θ̂2‖2
}

=
1

T

τ∑
t=τ0+1

‖xt − θ̂1‖2 −
1

T

τ∑
t=τ0+1

‖xt − θ̂2‖2

=
(τ − τ0)

T
‖η̂‖22 −

2

T

τ∑
t=τ0+1

εTt η̂ +
2(τ − τ0)

T
(θ̂2 − θ02)

T η̂

≥ vT ξ
2

2
− 2

T

∥∥∥ τ∑
t=τ0+1

εt

∥∥∥
∞
‖η̂‖1

≥ vT ξ
2

2
− 3

√
sξ

T

∥∥∥ τ∑
t=τ0+1

εt

∥∥∥
∞
, (A.7)

with probability at least 1 − πT . Where the final inequality follows by using
(A.5). The uniform bound (A.3) now follows by substituting the uniform bound
in Lemma A.6 for term

∥∥∑τ
t=τ0+1 εt

∥∥
∞ in (A.7), for the subgaussian and subex-

ponential cases, under their respective assumptions.

Proof of Theorem 2.1. The proof of this result relies on a recursive argument
on Lemma A.1, where the desired rate of convergence is obtained by a series of
recursions, with this rate being sharpened at each step. We begin by considering
any vT > 0 and applying Lemma A.1 on the set G(1, vT ) to obtain,

inf
τ∈G(1,vT )

U(τ, θ̂1, θ̂2) ≥
ξ2

2

[
vT − 6σ

√
2cu
ξ

{s log(p ∨ T )

T

} 1
2
]
,
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with probability at least 1− 2 exp{−cu1 log(p ∨ T )} − πT , where cu1 = (cu − 2)
in the subgaussian case and cu1 = (

√
(cu/2)− 2) in the subexponential setting.

Now upon choosing any,

vT > v∗T =
6σ

√
2cu
ξ

{s log(p ∨ T )

T

} 1
2

,

we obtain infτ∈G(1,vT ) U(τ, θ̂1, θ̂2) > 0, thus implying that τ̃ /∈ G(1, v∗T ), i.e.,
|τ̃ −τ0| ≤ Tv∗T , with probability at least 1−2 exp{−cu1 log(p∨T )}−πT .

10 Now
reset uT = v∗T and reapply Lemma A.1 for any vT > 0 to obtain,

inf
τ∈G(uT ,vT )

U(τ, θ̂1, θ̂2) ≥
ξ2

2

[
vT −

(6σ√2cu
ξ

)1+ 1
2
{s log(p ∨ T )

T

} 1
2+

1
2
]
,

with probability at least 1− 2 exp{−cu1 log(p ∨ T )} − πT . Again choosing any,

vT > v∗T =
(6σ√2cu

ξ

)1+ 1
2
{s log(p ∨ T )

T

} 1
2+

1
2

,

we obtain infτ∈G(uT ,vT ) U(τ, θ̂1, θ̂2) > 0, thus yielding τ̂ /∈ G(uT , v
∗
T ), i.e.,

|τ̃ − τ0| ≤ T
(6σ√2cu

ξ

)a2
{s log(p ∨ T )

T

}b2
, (A.8)

with probability at least 1− 2 exp{−cu1 log(p ∨ T )} − πT . Where,

a2 = 1 +
1

2
=

1∑
j=0

1

2j
, and b2 =

1

2
+

1

4
=

2∑
j=1

1

2j
.

Note that the rate of convergence of τ̃ has been sharpened at the second recur-
sion in comparison to the first. Continuing these recursions by resetting uT to
the bound of the previous recursion, and applying Lemma A.1, we obtain for
the mth recursion,

|τ̃ − τ0| ≤ T
(6σ√2cu

ξ

)am
{s log(p ∨ T )

T

}bm
, (A.9)

with probability at least 1 − 2 exp{−cu1 log(p ∨ T )} − πT . Repeating these re-
cursions an infinite number of times and noting that a∞ =

∑∞
j=0(1/2

j) = 2,

and b∞ =
∑∞

j=1(1/2
j) = 1 we obtain,

|τ̃ − τ0| ≤ T
(6σ√2cu

ξ

)2 s log p

T

with probability at least 1 − 2 exp{−cu1 log(p ∨ T )} − πT . Finally, note that
despite the recursions in the above argument, the probability of the bound after

10Since by construction of τ̃ , we have U(τ̃ , θ̂1, θ̂2) ≤ 0.
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every recursion is maintained to be at least 1 − 2 exp{−cu1 log(p ∨ T )} − πT .
This follows since the probability statement of Lemma A.1 arises from stochastic
upper bounds of Lemma A.6 applied recursively with a tighter bound at each
recursion. This yields a sequence of events such that the event at each recursion
is a proper subset of the event at the previous recursion. This completes the
proof of Part (i) of this theorem.

The distinction between the bounds of Part (ii) (subexponential case) and
Part (i) (subgaussian case) arises due to the following reason. Recall that for
the bound of Lemma A.1 to be valid in the subexponential case, we require
TvT ≥ log(p ∨ T ). This is in turn due to the same requirement in the corre-
sponding subexponential part of Lemma A.6. Thus the recursions in the above
argument can only be performed so long as the rate is slower than log(p ∨ T )
for the subexponential case, thereby yielding the statement of Part (ii) of this
theorem.

Proof of Theorem 2.2. We begin with a version of Lemma A.1 that is valid in
this subexponential setting with any non-negative sequences 0 ≤ vT ≤ uT ≤ 1
(as opposed to log(p ∨ T ) ≤ TvT ≤ uT assumed in Lemma A.1). Proceeding
with identical as in Lemma A.1 and using the deviation bound of Lemma A.7
(instead of Lemma A.6) in (A.7), we obtain,

inf
τ∈G(uT ,vT )

U(τ, θ̂1, θ̂2) ≥
ξ2

2

[
vT − 12cuσ

ξ

{uT s

T

} 1
2

log(p ∨ T )
]
,

with probability at least 1 − 2 exp{−(cu − 2) log(p ∨ T )} − πT . Without loss
of generality assume τ ≥ τ0. The mirroring case of τ ≤ τ0 can be proved
using symmetrical arguments. Now following the recursive tightening proof of
Theorem 2.1 we have for the mth recursion that, infτ ∈ G(uT , v

∗
T ) > 0, i.e.,

|τ̃ − τ0| ≤ Tv∗T , with probability at least 1− 2 exp{−(cu − 2) log(p ∨ T )} − πT ,
when,

v∗T =
(12σcu log(p ∨ T )

ξ

)am
( s

T

)bm
.

Where,

am =

m−1∑
j=0

1

2j
, and bm =

m∑
j=1

1

2j
.

Continuing these recursions an infinite number of times we obtain,

|τ̃ − τ0| ≤ T
(12cuσ log(p ∨ T )

ξ

)2( s

T

)
≤ 122

c2uσ
2

ξ2
s log2(p ∨ T ),

with probability at least 1 − 2 exp{−(cu − 2) log(p ∨ T )} − πT . This completes
the proof of the bound (2.2) of this theorem. The remaining assertions are a
direct application of the bound (2.2).

Lemma A.2. Suppose the model (1.1) and assume τ0 ∧ (1 − τ0) ≥ 0, ξ > 0,
and let 0 ≤ vT ≤ uT ≤ 1, be any non-negative sequences. Additionally assume
either one of the following two sets of conditions.
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(a) Suppose Condition A(I) (subgaussian), B and C.2 (I, II) holds, and let
T ≥ 2.

(b) Suppose Condition A(II) (subexponential), B and C.2 (I, III) holds and
let T ≥ 2.

Then, for any 0 < a < 1, choosing ca ≥ √
(1/a), we have the following uniform

lower bound.

inf
τ∈G(uT ,vT )

U(τ, θ̂1, θ̂2) ≥
ξ2

2

[
vT − 6ca

(σ ∨ φ)

ξ

(uT

T

) 1
2
]

with probability at least 1− a− 2 exp{− log(p ∨ T )} − πT .

Proof of Lemma A.2. The structure of this proof is largely similar to that of
Lemma A.1, except that it requires a more careful analysis of a residual stochas-
tic term in order to allow for the comparatively sharper bound, however with a
slightly weaker probability statement.

First, using Condition C.2, we have,

‖η̂ − η0‖1 ≤ 4
√
s‖θ̂1 − θ01‖2 + 4

√
s‖θ̂2 − θ02‖2

≤
{
8
√
s cu1ξ
{s log(p∨T )}1/2 , under Condition C.2 (II),

8
√
s cu1ξ
s1/2 log(p∨T )

, under Condition C.2 (III),
(A.10)

with probability at least 1− πT . Also, using Condition C.2 we also have that,

‖η̂‖22 + 2(θ̂2 − θ02)
T η̂ ≥ ξ2

2
, (A.11)

that holds with the same probability. This inequality follows by identical ar-
guments as those in (A.6), which also hold here since Condition C.1 assumed
in Lemma A.1 is weaker than Condition C.2 assumed here. Now consider any
τ ∈ G(uT , vT ), and without loss of generality assume τ ≥ τ0. Following the
arguments used to obtain (A.7) we have,

U(τ, θ̂1, θ̂2) = Q(τ, θ̂1, θ̂2)−Q(τ0, θ̂1, θ̂2)

=
(τ − τ0)

T

{
‖η̂‖22 + 2(θ̂2 − θ02)

T η̂
}
− 2

T

τ∑
t=τ0+1

εTt η̂

≥ vT ξ
2

2
− 2

T

τ∑
t=τ0+1

εTt η̂

=
vT ξ

2

2
− 2

T

τ∑
t=τ0+1

εTt η
0 − 2

T

τ∑
t=τ0+1

εTt (η̂ − η0), (A.12)

with probability at least 1 − πT . The inequality follows from (A.11), and the
final equality is obtained by simply an algebraic manipulation, however it is
the key step that shall yield the desired bound of this lemma. We now consider
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each of the residual stochastic terms in the expression (A.12). First, applying
Lemma A.8 for any 0 < a < 1, with ca ≥ √

(1/a), we have,

sup
τ∈G(uT ,vT );

τ≥τ0

2

T

∣∣∣ τ∑
t=τ0+1

εTt η
0
∣∣∣ ≤ 2caφξ

(uT

T

) 1
2

(A.13)

with probability at least 1 − a. The second stochastic term in (A.12) can be
bounded as follows,

2

T

τ∑
t=τ0+1

εTt (η̂ − η0) ≤ 2

T

∥∥∥ τ∑
t=τ0+1

εt

∥∥∥
∞

∥∥η̂ − η0
∥∥
1

≤ 32cucu1σξ
(uT

T

) 1
2 ≤ σξ

(uT

T

) 1
2

, (A.14)

with probability at least 1− 2 exp{− log(p∨ T )}. The second inequality follows
using the deviation bounds in Lemma A.6 and Lemma A.7 for the subgaussian
and subexponential cases, respectively, and the use of corresponding �1 error
bound of (A.10). The third inequality and the probability statement follows
by first choosing cu = 3

(
see, Lemma A.6 and Lemma A.7

)
, and then recalling

that by assumption, cu1 of Condition C.2 is chosen to be small enough
(
choosing

cu1 ≤ 1/(32· 3)
)
. Substituting (A.13) and (A.14) in (A.12), we obtain,

inf
τ∈G(uT ,vT );

τ≥τ0

U(τ, θ̂1, θ̂2) ≥
vT ξ

2

2
− 2caφξ

(uT

T

) 1
2 − σξ

(uT

T

) 1
2

≥ ξ2

2

[
vT − 6ca

(σ ∨ φ)

ξ

(uT

T

) 1
2
]

with probability at least 1−a−2 exp{− log(p∨T )}−πT . The mirroring case of
τ ≤ τ0 can be proved using symmetrical arguments. This completes the proof
of this lemma.

Proof of Theorem 2.3. The proof of this result follows a recursive argument sim-
ilar to that of Theorem 2.1, the distinction being that these recursions are made
on Lemma A.2 instead of Lemma A.1. We begin by considering any vT > 0,
now applying Lemma A.2 on the set G(1, vT ), for any 0 < a < 1, and choosing
ca ≥ √

(1/a), we have,

inf
τ∈G(1,vT )

U(τ, θ̂1, θ̂2) ≥
ξ2

2

[
vT − 6ca

(σ ∨ φ)

ξ

( 1

T

) 1
2
]
,

with probability at least 1− a− 2 exp{− log(p ∨ T )} − πT . Upon choosing any,

vT > v∗T = 6ca
(σ ∨ φ)

ξ

( 1

T

) 1
2

,
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we obtain that infτ∈G(1,vT ) U(τ, θ̂1, θ̂2) > 0, thus implying that τ̃ /∈ G(1, v∗T ), i.e.,
|τ̃ − τ0| ≤ Tv∗T , with probability at least 1− a− 2 exp{− log(p∨ T )}− πT . Now
reset uT = v∗T and reapply Lemma A.2 for any vT > 0 to obtain,

inf
τ∈G(1,vT )

U(τ, θ̂1, θ̂2) ≥
ξ2

2

[
vT −

{
6ca

(σ ∨ φ)

ξ

}1+ 1
2
( 1

T

) 1
2+

1
4
]
,

with probability at least 1− a− 2 exp{− log(p ∨ T )} − πT . Again choosing any,

vT > v∗T =
{
6ca

(σ ∨ φ)

ξ

}1+ 1
2
( 1

T

) 1
2+

1
4

,

we obtain that infτ∈G(uT ,vT ) U(τ, θ̂1, θ̂2) > 0, consequently yielding τ̂ /∈
G(uT , v

∗
T ), i.e.,

|τ̃ − τ0| ≤ T
{
6ca

(σ ∨ φ)

ξ

}b2( 1

T

)c2
, (A.15)

with probability at least 1− a− 2 exp{− log(p ∨ T )} − πT . Where,

b2 = 1 +
1

2
=

1∑
j=0

1

2j
, and c2 =

1

2
+

1

4
=

2∑
j=1

1

2j
.

Continuing these recursions by resetting uT to the bound of the previous recur-
sion, and applying Lemma A.2, we obtain for the mth recursion,

|τ̃ − τ0| ≤ T
{
6ca

(σ ∨ φ)

ξ

}bm( 1

T

)cm
, (A.16)

with probability at least 1 − a − 2 exp{− log(p ∨ T )} − πT . Repeating these
recursions an infinite number of times and noting that b∞ =

∑∞
j=0(1/2

j) = 2,

and c∞ =
∑∞

j=1(1/2
j) = 1 we obtain,

|τ̃ − τ0| ≤ 36c2a(σ ∨ φ)2ξ−2

with probability at least 1 − a − 2 exp{− log(p ∨ T )} − πT . The statement of
Theorem 2.3 follows directly from the bound (A.17) upon recalling φ2 ≤ cuσ

2

from the discussion after Condition B. As seen earlier, despite the recursions
in the above argument, the probability of the bound after every recursion is
maintained to be at least 1 − a − 2 exp{− log(p ∨ T )} − πT , due to the same
reasoning as in Theorem 2.1. This completes the proof of Part (i) of this theo-
rem.

A.2. Proofs of Section 3

As the reader may have observed, a change of notation has been carried out
for the results of this section. These results are presented in more conventional
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argmax notation instead of the argmin notation of the problem setup in Sec-
tion 1. This is purely a notational change and all results can equivalently be
stated in the argmin language. Accordingly we define the following versions.
Let U(τ, θ1, θ2) be as in (A.2) and consider,

C(τ, θ1, θ2) = −TU(τ, θ1, θ2)

=

⎧⎪⎨
⎪⎩
−
∑τ

t=(τ0+1)

{
‖xt − θ1‖22 − ‖xt − θ2‖22

}
, τ = (τ0 + 1), ..., T

0, τ = τ0∑τ0

t=(τ+1)

{
‖xt − θ1‖22 − ‖xt − θ2‖22

}
. τ = 0, ..., (τ0 − 1)

(A.17)

The multiplication of U with the sampling period T is only meant for nota-
tional convenience later on. Then, we can re-express the change point estimator
τ̃(θ1, θ2) defined in (1.4) as,

τ̃(θ1, θ2) = argmax
0≤τ≤T

C(τ, θ1, θ2)

The proofs of Theorem 3.1 and Theorem 3.2 below are applications of the
Argmax Theorem (reproduced as Theorem B.2 in Appendix B). The arguments
here are largely an exercise in verification of requirements of this theorem.

Proof of Theorem 3.1. Let the underlying indexing metric space be R, and con-
sider the two cases of known and unknown mean parameters.

Case I
(
θ01 and θ02 known

)
: Following is list of requirement of the Argmax

theorem that require verification for this case (see, page 288 of [33]).

(i) The sequence ξ2(τ̃∗ − τ0) is uniformly tight.
(ii)

{
2σ∞W (ζ)− |ζ|

}
satisfies suitable regularity conditions.11

(iii) For any ζ ∈ [−cu, cu] we have, C(τ0 + ζξ−2, θ01, θ
0
2) ⇒

{
2σ∞W (ζ)− |ζ|

}
.

Note that by setting θ̂1 = θ01 and θ̂2 = θ02, Condition C.2 is trivially satisfied.
Now using Theorem 2.3 we have that ξ2(τ̃∗ − τ0) = Op(1). This directly yields
requirement (i). The second requirement follows from well known properties of
Brownian motion’s. The only remaining requirement is (iii), which is provided
in the following. For any fixed ζ ∈ R, first consider �ζξ−2� and note that under
the assumed regime of ξ → 0 we have,

ζ ← (ζ − ξ2) ≤ ξ2�ζξ−2� ≤ (ζ + ξ2) → ζ

Hence, w.l.o.g. we may assume ζξ−2 is integer valued. Now for any ζ ∈ (0, cu],

11Almost all sample paths ζ →
{
2σ∞W (ζ) − |ζ|} are upper semicontinuous and posses a

unique maximum at a (random) point argmaxζ∈R

{
2σ∞W (ζ)− |ζ|}, which as a random map

in the indexing metric space is tight.
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consider

C(τ0 + ζξ−2, θ01, θ
0
2) = −

τ0+ζξ−2∑
t=(τ0+1)

{
‖xt − θ01‖22 − ‖xt − θ02‖22

}

= 2

τ0+ζξ−2∑
t=(τ0+1)

εTt η
0 − ζ ⇒ 2σ∞W1(ζ)− ζ,

where the weak convergence follows from the functional central limit theorem.
Repeating the same argument with ζ ∈ [−cu, 0), yields C(τ0 + ζξ−2, θ01, θ

0
2) ⇒

2σ∞W2(ζ) − |ζ|. This completes the proof of requirement (iii) for the Argmax
theorem and consequently an application of its results yields ξ2(τ̃∗ − τ0) ⇒
argmaxζ∈R

{
2σ∞W (−ζ)− |ζ|}, which completes the proof of this case.

Case II
(
θ01 and θ02 unknown

)
: In this case the applicability of the argmax

theorem requires verification of the following conditions.

(i) The sequence ξ2(τ̃ − τ0) is uniformly tight.
(ii)

{
2σ∞W (ζ)− |ζ|} satisfies suitable regularity conditions.

(iii) For any ζ ∈ [−cu, cu] we have, C(τ0 + ζξ−2, θ̂1, θ̂2) ⇒
{
2σ∞W (ζ)− |ζ|

}
.

Part (i) again follows from the result of Theorem 2.3 under the assumed Con-

dition C.2 on the nuisance estimates θ̂1 and θ̂2. Part (ii) is identical to the
corresponding requirement of Case I. Finally to prove part (iii) note that from
Lemma A.4 we have that,

sup
τ∈G(cuT−1ξ−2,0)

|C(τ, θ̂1, θ̂2)− C(τ, θ01, θ02)| = op(1). (A.18)

The approximation (A.18) and Part (iii) of Case I together imply Part (iii)
for this case. This completes the verification of all requirements for this case.
The statement of the theorem now follows by an application of the Argmax
theorem.

Proof of Theorem 3.2. Let the underlying indexing metric space be the set of
integers Z and consider the following two cases.

Case I
(
θ01 and θ02 known

)
: The requirements to be verified here are as

follows.

(i) The sequence (τ̃∗ − τ0) is uniformly tight.
(ii) C(ζ) satisfies suitable regularity conditions.
(iii) For any ζ ∈ {−cu,−cu + 1, ...,−1, 0, 1, ...cu} we have, C(τ0 + ζ, θ01, θ

0
2) ⇒

C∞(ζ).

As in the proof of Theorem 3.1, requirement (i) follows directly from the result
of Theorem 2.3. Lemma A.3 below provides the regularity requirements of Part
(ii). The requirement (iii) is verified in the following. For any ζ ∈ {1, 2, ..., cu},
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consider,

C(τ0 + ζ, θ01, θ
0
2) = −

τ0+ζ∑
t=(τ0+1)

{
‖xt − θ1‖22 − ‖xt − θ2‖22

}

=

τ0+ζ∑
t=(τ0+1)

(
2εTt η

0 − ξ2
)
=d

ζ∑
t=1

L(−ξ2, 4η0TΣη0)

⇒
ζ∑

t=1

L(−ξ2∞, 4ξ2∞σ2
∞).

The third equality follows from Condition A′ and the convergence in distri-
bution follows from Condition E(ii). Repeating the same argument with ζ ∈
{−cu,−cu+1, ...,−1}, yields C(τ0+ ζ, θ01, θ

0
2) ⇒

∑−ζ
t=1 L(−ξ2∞, 4ξ2∞σ2

∞). An ap-
plication the Argmax theorem now yields (τ̃∗− τ0) ⇒ argmaxζ∈Z

C∞(ζ), which
completes the proof of this case.

Case II
(
θ01 and θ02 unknown

)
: In this case, the applicability of the argmax

theorem requires verification of the following.

(i) The sequence (τ̃ − τ0) is uniformly tight.
(ii) C(ζ) satisfies suitable regularity conditions.

(iii) For any ζ ∈ {−cu,−cu + 1, ...,−1, 0, 1, ...cu} we have, C(τ0 + ζ, θ̂1, θ̂2) ⇒
C∞(ζ).

Part (i) follows from Theorem 2.3 under the assumed Condition C.2 on the nui-

sance estimates θ̂1 and θ̂2. Part (ii) is identical to the corresponding requirement
of Case I. Finally to prove part (iii) note that from Lemma A.4 we have that,

sup
τ∈G(cuT−1ξ−2,0)

|C(τ, θ̂1, θ̂2)− C(τ, θ01, θ02)| = op(1). (A.19)

The approximation (A.19) and Part (iii) of Case I together imply Part (iii)
for this case. This completes the verification of all requirements for this case.
The statement of the theorem now follows by an application of the Argmax
theorem.

Lemma A.3 (Regularity conditions of argmax C(ζ)). Let C(ζ) be as defined
in (3.5) and suppose Condition A′ holds. Then the map ζ → C(ζ) is continu-
ous with respect to the domain space Z. Additionally suppose Condition B and
Condition E(ii) holds, then argmaxζ∈Z

C(ζ) possesses an almost sure unique
maximum at ω∞, which as a random map in Z is tight.

Proof of Lemma A.3. From Condition A′, each side of the random walk C(ζ)
has increments supported on R, thus the first assertion on the continuity of the
map ζ → C(z) follows trivially since the domain space of this map is restricted
to only the integers Z (ε − δ definition of continuity). To prove the remaining
assertions note that from Condition A′, Condition B and Condition E(ii), to-
gether with the definition (3.5), we have that C∞(ζ) has i.i.d. increments with a
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negative drift of −ξ2∞. Consequently, we have C∞(ζ) → −∞, as ζ → ∞ almost
surely (strong law of large numbers). Using elementary properties of random
walks, this implies that maxζ C∞(ζ) < ∞, a.s. (follows from the Hewitt-Savage
0-1 law, see, e.g. (1.1) and (1.2) on Page 172, 173 of [16]). Additionally ω∞ ≥ 0,
from the construction of C∞(ζ). Thus, we have 0 ≤ ω∞ < ∞, a.s. which directly
implies that when ω∞ is well defined (unique) then it must be tight. To show
that ω∞ is unique, note that since by assumption (Condition A′) the increments
are continuously distributed and supported on R, therefore max C∞(ζ) is con-
tinuously distributed on (0,∞), with some additional probability mass at the
singleton zero. Hence, the probability of max C∞(ζ) attaining any two identical
values is zero. Consequently ω∞ is unique a.s.

Lemma A.4. Let C(τ, θ1, θ2) be as defined in (A.17) and suppose Condition A,
B and C.2 hold. Additionally assume sequence rT of Condition C.2 satisfies
(3.2). Then, for any cu > 0, we have,

sup
τ∈G(cuT−1ξ−2,0)

∣∣C(τ, θ̂1, θ̂2)− C(τ, θ01, θ02)
∣∣ = op(1).

Proof of Lemma A.4. By proceeding similar to (A.10), we have under Condi-
tion C.2 and (3.2) that,

‖η̂ − η0‖1 ≤ cu1
√
s‖η̂ − η0‖2

=

{
o(1)ξ

log1/2(p∨T )
, for subgaussian case,

o(1)ξ
log(p∨T ) , for subexpoential case,

(A.20)

with probability at least 1− πT . Consider any τ ≥ τ0 and define the following,

R1 = 2

τ∑
t=τ0+1

εTt (η̂ − η0), and R2 = (τ − τ0)
(
‖η̂‖22 − ‖η0‖22).

Then we have the following algebraic expansion,

C(τ, θ̂1, θ̂2)− C(τ, θ01, θ02) = T
{
Q(τ0, θ̂1, θ̂2)

−Q(τ, θ̂1, θ̂2)
}
− T

{
Q(τ0, θ01, θ

0
2)−Q(τ, θ01, θ

0
2)
}

= 2

τ∑
t=τ0+1

εTt (η̂ − η0)− (τ − τ0)
(
‖η̂‖22 − ‖η0‖22)

= R1 −R2 (A.21)

Next we provide uniform bounds on the terms R1 and R2 of (A.21). Consider,

sup
τ∈G(cuT−1ξ−2,0);

τ≥τ0

|R1| ≤ 2 sup
τ∈G(cuT−1ξ−2,0);

τ≥τ0

∥∥ τ∑
t=τ0+1

εt
∥∥
∞‖η̂ − η0‖1

≤
{√

cuσξ
−1 log1/2(p ∨ T )‖η̂ − η0‖1 for subG case

√
cuσξ

−1 log(p ∨ T )‖η̂ − η0‖1 for subE case

= o(1), (A.22)
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with probability at least 1 − o(1). Here the second inequality follows from
Lemma A.6 and Lemma A.7. The final equality follows from an application
of (A.20). Next consider term R2 of (A.21).

sup
τ∈G(cuT−1ξ−2,0);

τ≥τ0

|R2| ≤ cuξ
−2

∣∣‖η̂‖22 − ‖η0‖22
∣∣ = cuξ

−2
∣∣‖η̂ − η0‖22 + 2(η̂ − η0)T η0

∣∣
≤ cuξ

−2‖η̂ − η0‖22 + 2cuξ
−1‖η̂ − η0‖2 = op(1), (A.23)

where the final equality follows from (A.20). Applying (A.22) and (A.23) in the
expression (A.21) yields,

sup
τ∈G(cuT−1ξ−2,0);

τ≥τ0

∣∣C(τ, θ̂1, θ̂2)− C(τ, θ01, θ02)
∣∣ ≤ sup

τ∈G(cuT−1ξ−2,0);

τ≥τ0

|R1|

+ sup
τ∈G(cuT−1ξ−2,0);

τ≥τ0

|R2|

= op(1)

Corresponding bound for the mirroring case of {τ ≤ τ0} can be obtained via
symmetrical arguments. This completes the proof of this lemma.

A.3. Proofs of Section 4

The proof of Theorem 4.2 first requires some preliminary work, in particular we
first need to examine the behavior of the estimates θ̃1(τ), and θ̃2(τ), uniformly
over a collection of values of τ . This is provided in the following theorem.

Theorem A.1. Suppose model (1.1), let 0 ≤ uT ≤ 1 be any non-negative
sequence, ψ = ‖η0‖∞, and for any constants cu, cu1 > 0, let,

λ := λ1 = λ2 = 8max
[
σ
{2cu1 log(p ∨ T )

cuT lT

} 1
2

,
uTψ

culT

]
. (A.24)

Additionally let either one of the following two conditions hold.

(a) Condition A(I) (subgaussian), B, and D holds.
(b) Condition A(II) (subexponential), B, and D holds and cuT lT ≥ log(p∨T ).

Then, the estimates θ̃1(τ) and θ̃2(τ) satisfy the following two results with prob-
ability at least 1− πT .

(i) For any τ ∈ G(uT , 0), with τ ∧ (T − τ) ≥ cuT lT , we have
∥∥(θ̃1(τ))Sc

1

∥∥
1
≤

3
∥∥(θ̃1(τ)− θ01

)
S1

∥∥
1
, and

∥∥(θ̃2(τ))Sc
2

∥∥
1
≤ 3

∥∥(θ̃2(τ)− θ02
)
S2

∥∥
1
.

(ii) The following bound is satisfied,

sup
τ∈G(uT ,0)

τ∧(T−τ)≥cuTlT

‖θ̃1(τ)− θ01‖2 ∨ ‖θ̃2(τ)− θ02‖2 ≤ 6
√
sλ.
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Here πT = 2 exp{−(cu1−2) log(p∨T )} under conditions (a) and πT = 2 exp
{
−(

cu2 − 2
)
log(p ∨ T )

}
, under conditions (b), where cu2 = cu1 ∧

√
(cucu1/2).

Proof of Theorem A.1. Consider any τ ∈ G(uT , 0), satisfying τ ≥ cuT lT , and
without loss of generality assume τ ≥ τ0. The mirroring case of τ ≤ τ0 can
be proved using symmetrical arguments. An algebraic rearrangement of the

elementary inequality
∥∥x̄(0:τ ] − θ̃1(τ)

∥∥2
2
+ λ1‖θ̃1(τ)‖1 ≤

∥∥x̄(0:τ ] − θ01
∥∥2
2
+ λ1‖θ01‖1

yields,

∥∥θ̃1(τ)− θ01
∥∥2
2
+ λ1

∥∥θ̃1(τ)∥∥1 ≤ λ1

∥∥θ01∥∥1 + 2

τ∑
t=1

ε̃Tt (θ̃1(τ)− θ01),

= λ1

∥∥θ01∥∥1 + 2

τ∑
t=1

εTt (θ̃1(τ)− θ01)

−2
(τ − τ0)

τ
(θ01 − θ02)

T (θ̃1(τ)− θ01)

≤ λ1

∥∥θ01∥∥1 + 2
∥∥∥ τ∑

t=1

εt

∥∥∥
∞

∥∥θ̃1(τ)− θ01
∥∥
1

− 2uT

culT
ψ
∥∥θ̃1(τ)− θ01

∥∥
1

(A.25)

where ε̃t = εt, for t = 1, ..., τ0, and ε̃t = εt − (θ01 − θ02), t = τ0 + 1, ..., τ . Now
using the bound of Lemma A.9 we have that,

2

τ

∥∥∥ τ∑
t=1

εt

∥∥∥
∞

≤ 2
√
(2cu1/cu)σ

{ log(p ∨ T )

T lT

} 1
2

with probability at least 1− 2 exp{−(cu1 − 2) log(p∨ T )}, or 1− exp
{
− (cu2 −

2) log(p ∨ T )
}
, under the subgaussian or subexponential setting, respectively.

Consequently, upon choosing,

λ = max
{
4
√
(2cu1/cu)σ

{ log(p ∨ T )

T lT

} 1
2

,
4uTψ

culT

}
,

and substituting these bounds in (A.25) we obtain,

∥∥θ̃1(τ)− θ01
∥∥2
2
+ λ1

∥∥θ̃1(τ)∥∥1 ≤ λ1

∥∥θ01∥∥1 + λ
∥∥θ̃1(τ)− θ01

∥∥
1
, (A.26)

with probability at least 1− 2 exp{−(cu1 − 2) log(p∨ T )}, or 1− exp
{
− (cu2 −

2) log(p ∨ T )
}
, under the subgaussian or subexponential setting, respectively.

Now choosing λ1 = 2λ, leads to ‖
(
θ̃1(τ)

)
Sc
1
‖1 ≤ 3‖

(
θ̃1(τ) − θ01

)
S1
‖1, which

proves part (i) of this theorem. From inequality (A.26) we also have that,

‖θ̃1(τ)− θ01‖22 ≤ 3

2
λ1‖θ̃1(τ)− θ01‖1 ≤ 6λ1

√
s‖θ̃1(τ)− θ01‖2 (A.27)
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This directly implies that ‖θ̃1(τ)− θ01‖2 ≤ 6λ1
√
s, where we have used ‖θ̃1(τ)−

θ01‖1 ≤ 4
√
s‖θ̃1(τ)−θ01‖2, which follows in turn from ‖

(
θ̃1(τ)

)
Sc
1
‖1 ≤ 3‖

(
θ̃1(τ)−

θ01
)
S1
‖1. To finish the proof of this part recall that the only stochastic bound used

here is the uniform bound over G(uT , 0) of Lemma A.9, consequently the final
bound also holds uniformly over the same collection. Similar results for θ̃2(τ)
follow analogously. This result can alternatively be proved using the properties of
the soft-thresholding operator kλ(· ), by building uniform versions of arguments
such as those in [30], or [25].

Following is another preliminary result required to prove Theorem 4.2. This
results uses Theorem A.1 to provide the rate of convergence of θ̌1 = θ̃1(τ̌), and
θ̌2 = θ̃2(τ̌), of Step 1 of Algorithm 1.

Lemma A.5. Suppose model (1.1) and assume the following,

cuσ

ξ

{s log(p ∨ T )

T lT

} 1
2 ≤ cu1

for an appropriately chosen small enough constant cu1 > 0. Additionally, let
either one of the following two conditions hold.

(a) Condition A(I) (subgaussian), B, and D holds and T ≥ 2.
(b) Condition A(II) (subexponential), B, and D holds, T ≥ 2 and cuT lT ≥

log(p ∨ T ).

Then, the mean estimates θ̌1 = θ̃1(τ̌), and θ̌2 = θ̃2(τ̌), satisfy the following, with
probability 1− o(1).

(i)
∥∥(θ̌1)Sc

1

∥∥
1
≤ 3

∥∥(θ̌1 − θ01
)
S1

∥∥
1
, and

∥∥(θ̌2)Sc
2

∥∥
1
≤ 3

∥∥(θ̌2 − θ02
)
S2

∥∥
1
.

(ii) The following bound is satisfied,

‖θ̌1 − θ01‖2 ∨ ‖θ̌2 − θ02‖2 ≤ cu1ξ.

Consequently, the mean estimates θ̌1 and θ̌2 satisfy Condition C.1.

Proof of Lemma A.5. From Condition F we have that τ̌ satisfies,

(i) τ̌ ∧ (T − τ̌) ≥ cuT lT , and (ii) |τ̌ − τ0| ≤ TuT , (A.28)

where uT = cu1lT ξ
/
(
√
(2s)ψ), i.e., τ̌ ∈ G(uT , 0). Now upon choosing,

λ as prescribed in (A.24) with uT = cu1lT ξ
/
(
√
(2s)ψ), (A.29)

and applying Theorem A.1 we obtain the following two results that hold with
probability 1 − o(1), for both subgaussian and subexponential cases. First,∥∥(θ̌1)Sc

1

∥∥
1
≤ 3

∥∥(θ̌1 − θ01
)
S1

∥∥
1
, and

∥∥(θ̌2)Sc
2

∥∥
1
≤ 3

∥∥(θ̌2 − θ02
)
S2

∥∥
1
. Second,

‖θ̌1 − θ01‖2 ∨ ‖θ̌2 − θ02‖2 ≤ max
[
cuσ

{s log(p ∨ T )

T lT

} 1
2

, cu
uT

√
(2s)ψ

lT

]
,

= ξ
[
cu

σ

ξ

{s log(p ∨ T )

T lT

} 1
2

, cu
uT

√
(2s)ψ

lT ξ

]
= ξ

[
R1, R2

]
(A.30)
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Here the first equality is simply an algebraic manipulation. Now for a suitable
chosen cu1 > 0, we have from assumption (4.5) that,

cuσ

ξ

{s log(p ∨ T )

T lT

} 1
2 ≤ cu1,

which provides a bound for term R1 on the RHS of (A.30). Next we bound term
R2 of the same expression. Substituting the choice of uT from (A.28) in term
R2, together with the earlier bound for R1, we obtain,

‖θ̌1 − θ01‖2 ∨ ‖θ̌2 − θ02‖2 ≤ ξ
[
R1, R2

]
≤ cu1ξ,

with probability 1−o(1). Thereby all requirement of Condition C.1 are met and
this completes the proof of the lemma.

Proof of Theorem 4.1. The proof of this theorem is a fairly direct consequence
of Lemma A.5, Theorem 2.1 and Theorem 2.2. First note that Lemma A.5 es-
tablishes that θ̌1 = θ̃1(τ̌), and θ̌2 = θ̃2(τ̌) of Step 1 of Algorithm 1 will satisfy
Condition C.1. The availability of Condition C.1 on these mean estimates, now
allows us to directly obtain the rate of convergence of τ̂ of Step 1 of Algo-
rithm 1 using Part (i) of Theorem 2.1 for the subgaussian case and Theorem 2.2
for the subexponential case. Specifically, under the assumed conditions of the
corresponding results, we have,

|τ̂ − τ0| ≤
{
cuσ

2ξ−2s log(p ∨ T ) for subgaussian case

cuσ
2ξ−2s log2(p ∨ T ) for subexponential case

with probability at least 1− o(1). This completes the proof of this theorem.

Proof of Theorem 4.2. The starting point for this proof is the near optimality
of τ̂ of Step 1 of Algorithm 1, which is provided by Theorem 4.1 or alternatively
assumed in Step 1 of Algorithm 2. From (4.6) of Theorem 4.1, we have that
τ̂ ∈ G(uT , 0), with probability 1− o(1), where,

TuT =

{
cuσ

2ξ−2s log(p ∨ T ) under subgaussian case

cuσ
2ξ−2s log2(p ∨ T ) under subexponential case.

(A.31)

Moreover, by assumption we have cuT lT ≥ s log(p∨ T ), and cuT lT ≥ s log2(p∨
T ), in the subgaussian and subexponential case respectively. Thus, with the same
probability at above we also have τ̂ ∧ (T − τ̂) ≥ cuT lT . Now upon choosing,

λ as prescribed in (A.24) with uT as in (A.31), (A.32)

we obtain from Theorem A.1 that θ̂1 = θ̃1(τ̂), and θ̂2 = θ̃2(τ̂) of Step 2 of
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Algorithm 1 satisfies,∥∥θ̂1 − θ01
∥∥
2
∨
∥∥θ̂2 − θ02

∥∥
2

≤ cu
√
smax

[
σ
{ log(p ∨ T )

T lT

} 1
2

,
uTψ

lT

]

=
ξ√

(s log(p ∨ T ))
max

[
cuσ

{s log(p ∨ T )

ξ
√(

T lT
) }

, cu
√{s log(p ∨ T )}

√
sψ

lT ξ
uT

]

=
ξ√

(s log(p ∨ T ))
max

[
R1, R2

]
(A.33)

with probability at 1 − o(1). Here the first equality is simply an algebraic ma-
nipulation. From assumption (2.4) and (2.5), we have that R1 ≤ cu1, where
cu1 > 0, is an appropriately chosen small enough constant. Next consider term
R2 of (A.33) under the subgaussian and subexponential cases separately.

Case I (subgaussian setting): Substituting uT from (A.31) in term R2 we
obtain,

cu
√{s log(p ∨ T )}

√
sψ

lT ξ
uT = cu

√{s log(p ∨ T )}
√
sψ

ξ

{σ2

ξ2
s log(p ∨ T )

T lT

}

≤ cu

{σ

ξ

s log(p ∨ T )√
(T lT )

}2

≤ cuc
2
u1 ≤ cu1.

Here the first inequality follows from the assumption (ψ
/
ξ) ≤ √{log(p ∨ T )}.

The second inequality follows from assumption (2.4). Substituting the bounds
for terms R1 and R2 back in (A.33) yields,∥∥θ̂1 − θ01

∥∥
2
∨
∥∥θ̂2 − θ02

∥∥
2
≤ cu1ξ√

(s log(p ∨ T ))
, (A.34)

for a suitably chosen small enough cu1 > 0, with probability 1− o(1). This pro-
vides the bound required for the validity of Condition C.2. The first requirement
of Condition C.2 is directly satisfied by using Theorem A.1. Thus, the estimates
θ̂1 and θ̂2 of Step 2 of Algorithm 1 satisfy all requirement of Condition C.2 and
now the statement of this theorem follows from the result of Theorem 2.3.

Case II (subexponential setting): Substituting uT from (A.31) in term
R2 we obtain,

cu
√{s log(p ∨ T )}

√
sψ

lT ξ
uT = cu

√{s log(p ∨ T )}
√
sψ

ξ

{σ2

ξ2
s log2(p ∨ T )

T lT

}

≤ cu

{σ

ξ

s log3/2(p ∨ T )√
(T lT )

}2

≤ cuc
2
u1 ≤ cu1.

Here the first inequality follows from the assumption (ψ
/
ξ) ≤ √{log(p ∨ T )}.

The second inequality follows from assumption (2.5). Substituting the bounds
for terms R1 and R2 back in (A.33) yields the same bound as (A.34). Thus,

the estimates θ̂1 and θ̂2 of Step 2 of Algorithm 1 satisfy all requirement of
Condition C.2 and now the statement of this theorem follows from the result of
Theorem 2.3. This completes the proof of the theorem.
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A.4. Deviation bounds used in the proofs of Section 2

Lemma A.6. Suppose Condition A(I) (subgaussian setting) and B holds and
let 0 ≤ vT ≤ uT ≤ 1, be any non-negative sequences. Then for any cu ≥ 1, we
have,

sup
τ∈G(uT ,vT );

τ≥τ0

∥∥∥ τ∑
t=τ0+1

εt

∥∥∥
∞

≤ √
(2cu)σ{TuT log(p ∨ T )} 1

2 (A.35)

with probability at least 1− 2 exp{−(cu − 2) log(p ∨ T )}. Alternatively, suppose
Condition A(II) (subexponential setting) and B hold. Additionally assume that
T ≥ log(p ∨ T ), and log(p ∨ T ) ≤ TvT ≤ TuT . Then, for any constant cu ≥ 1,
the same bound (A.35) holds with probability at least 1 − exp

{
−

(√
(cu/2) −

2
)
log(p ∨ T )

}
.

Proof of Lemma A.6. First note that without loss of generality we can assume
vT ≥ (1/T ). This follows since the only additional element in the set G(uT , 0) in
comparison to G(uT , (1/T )) is τ

0, and at this value, the sum of interest is over
indices in an empty set and is thus trivially zero.

We begin with subgaussian case. Consider any j ∈ {1, 2, ..., p} and any τ > τ0,
and note that

∑τ
t=τ0+1 εtj ∼ subG(λ), with λ = σ

√
(τ − τ0). This follows since

εtj are independent over t = 1, ..., T (see, Part (iii) of Lemma B.2). Now using
Lemma B.1, for any d > 0, we have,

pr
(∣∣ τ∑

t=τ0+1

εtj
∣∣ > d

)
≤ 2 exp

(
− d2

2(τ − τ0)σ2

)
.

Choosing d = σ{2cu(τ − τ0) log(p ∨ T )}1/2, yields,∣∣ τ∑
t=τ0+1

εtj
∣∣ ≤ σ{2cu(τ − τ0) log(p ∨ T )}1/2

≤ σ
√
(2cu){TuT log(p ∨ T )}1/2,

with probability at least 1−2 exp{−cu log(p∨T )}. Now applying a union bound
over j = 1, ..., p, and τ = 1, ..., T yields the statement for subgaussian part of
this lemma.

Next, we consider the subexponential case. Apply the Bernstein’s inequality
(Theorem B.4) for any d > 0 to obtain,

pr
(∣∣ τ∑

t=τ0+1

εtj
∣∣ > d(τ − τ0)

)
≤ 2 exp

{
− (τ − τ0)

2

( d2

σ2
∧ d

σ

)}
. (A.36)

Choose d = σ{2cu log(p ∨ T )
/
(τ − τ0)}1/2, and due to the assumption TvT ≥

log(p ∨ T ), we have,

(τ − τ0)
d2

2σ2
= cu log(p ∨ T ), and,

(τ − τ0)
d

2σ
≥ √

(cu/2)(TvT )
1/2{log(p ∨ T )}1/2 ≥ √

(cu/2) log(p ∨ T ).
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Thus, substituting this choice of d in (A.36) and recalling that by choice cu > 1,
we obtain, ∣∣ τ∑

t=τ0+1

εtj
∣∣ ≤ √

(2cu)σ{TuT log(p ∨ T )}1/2,

with probability at least 1− exp
{
−√

(cu/2) log(p∨ T )
}
. The statement of the

subexponential part of this result now follows by applying a union bound over
j = 1, ..., p, and τ = 1, ..., T .

Lemma A.7. Suppose Condition A(II) (subexponential setting) and B holds
and let 0 ≤ vT ≤ uT ≤ 1, be any non-negative sequences. Then for any T ≥ 2,
and any cu ≥ 1, we have,

sup
τ∈G(uT ,vT );

τ≥τ0

∥∥∥ τ∑
t=τ0+1

εt

∥∥∥
∞

≤ 2cuσ log(p ∨ T )
√(

TuT

)

with probability at least 1− 2 exp{−(cu − 2) log(p ∨ T )}.
Proof of Lemma A.7. Without loss of generality assume vT ≥ (1/T ) (see, first
paragraph in proof of Lemma A.6). Consider any j ∈ {1, 2, ..., p} and any τ > τ0,
and apply the Bernstein’s inequality (Theorem B.4) for any d > 0 to obtain,

pr
(∣∣ τ∑

t=τ0+1

εtj
∣∣ > d(τ − τ0)

)
≤ 2 exp

{
− (τ − τ0)

2

( d2

σ2
∧ d

σ

)}
. (A.37)

Choose d = 2cuσ{log2(p ∨ T )/(τ − τ0)}1/2, and note that,

(τ − τ0)
d2

2σ2
= 2c2u log

2(p ∨ T ), and,

(τ − τ0)
d

2σ
≥ cu log(p ∨ T ), (A.38)

where we have used (τ − τ0) ≥ TvT ≥ 1, to obtain the first inequality. Thus,
substituting this choice of d in (A.37) and recalling that by choice cu ≥ 1, we
obtain,

∣∣ τ∑
t=τ0+1

εtj
∣∣ ≤ 2cuσ(τ − τ0)1/2{log2(p ∨ T )}1/2 ≤ 2cuσ{TuT log2(p ∨ T )}1/2,

with probability at least 1−2 exp{−cu log(p∨T )}. The statement of this lemma
follows by applying a union bound over j = 1, ..., p, and τ = 1, ..., T .

Lemma A.8. Suppose Condition A and B hold and let uT , vT be any non-
negative sequences satisfying 0 ≤ vT ≤ uT ≤ 1. Then for any 0 < a < 1,
choosing ca ≥ √

(1/a), we have,

sup
τ∈G(uT ,vT );

τ≥τ0

∣∣∣ τ∑
t=τ0+1

εTt η
0
∣∣∣ ≤ caφ‖η0‖2

√
(TuT ),

with probability at least 1− a.
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Proof of Lemma A.8. This result is a direct application of the Kolmogorov’s
inequality (Theorem B.1). First consider,

var(εTt η
0) = η0TΣη0 ≤ φ2‖η0‖22

where the inequality follows from Condition B. Note that there are at most TuT

values of τ in the set G(uT , vT ), and now apply the Kolmogorov’s inequality
(Theorem B.1) for any d > 0 to obtain,

pr
(

sup
τ∈G(uT ,vT );

τ≥τ0

∣∣∣ τ∑
t=τ0+1

εTt η
0
∣∣∣ > d

)
≤ TuT

d2
φ‖η0‖22.

Choosing d = caφ‖η0‖2
√
(TuT ), with ca ≥ √

(1/a) yields the statement of the
lemma.

A.5. Deviation bounds used in the proofs of Section 4

Lemma A.9. Assume Condition A(I) (subgaussian) and B holds. Then, for
any cu, cu1 > 0, we have the following bound.

sup
τ∈{1,.....,T};
τ≥cuTlT

1

τ

∥∥∥ τ∑
t=1

εt

∥∥∥
∞

≤ σ
{2cu1 log(p ∨ T )

cuT lT

} 1
2

(A.39)

with probability at least 1− 2 exp{−(cu1 − 2) log(p∨ T )}. Alternatively, suppose
Condition A(II) (subexponential) and B hold. Additionally assume that cuT lT ≥
log(p∨T ). Then, the same bound (A.39) holds, with probability at least 1−exp

{
−

(cu2 − 2) log(p ∨ T )
}
, where cu2 = cu1 ∧

√
(cucu1/2).

Proof of Lemma A.9. First consider the subgaussian case. For any τ ∈ {1, ..., T},
and any j ∈ {1, ..., p} we have

∑τ
1 εtj ∼ subG(

√
τσ). Consequently, for any

d > 0, we have,

pr
(∣∣∣ τ∑

t=1

εtj

∣∣∣ > d
)
≤ 2 exp

(
− d2

2τσ2

)

Choose d = σ{2cu1τ log(p ∨ T )}1/2, yields,

1

τ

∣∣∣ τ∑
t=1

εtj

∣∣∣ ≤ σ{2cu1 log(p ∨ T )

τ
}1/2 ≤ σ{2cu1 log(p ∨ T )

cuT lT
}1/2,

with probability at least 1 − 2 exp{−cu1 log(p ∨ T )}. Here the final inequality
follows since by assumption τ ≥ cuT lT . Applying a union bound over all possible
values of τ and j yields the statement of the lemma for this case.

Next, consider the subexponential case. For any τ ∈ {1, ..., T}, and any j ∈
{1, ..., p}, applying the Bernstein’s inequality (Lemma B.4) for any d > 0, we
obtain,

pr
(∣∣∣ τ∑

t=1

εtj

∣∣∣ > dτ
)
≤ 2 exp

{
− τ

2

( d2

σ2
∧ d

σ

)}
. (A.40)
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Choose d = σ{2cu1 log(p ∨ T )
/
τ}1/2, and due to the assumption τ ≥ cuT lT ≥

log(p ∨ T ), we have,

τ
d2

2σ2
= cu1 log(p ∨ T ), and,

τ
d

2σ
≥ √

(cu1/2)(cuT lT )
1/2{log(p ∨ T )}1/2 ≥ √

(cucu1/2) log(p ∨ T ).

Now substituting this choice of d in (A.40), we obtain,

1

τ

∣∣∣ τ∑
t=1

εtj

∣∣∣ ≤ σ{2cu1 log(p ∨ T )
/
τ}1/2 ≤ σ

{2cu1 log(p ∨ T )

cuT lT

}1/2

with probability at least 1−2 exp{−cu2 log(p∨T )}, where cu2 = cu1∧
√
(cucu1/2).

The statement of the lemma now follows by applying a union bound over all
values of τ and j.

Appendix B: Definitions and auxiliary results

In the following Definition’s B.1–B.3 and Lemma’s B.1–B.4 we provide basic
properties of subgaussian and subexponential distributions. These are largely
reproduced from [35] and [29]. Theorem B.1 and B.2 below reproduce the Kol-
mogorov’s inequality and the argmax theorem.

Definition B.1 (Subgaussian r.v.). A random variable X ∈ R is said to be sub-
gaussian with a variance proxy parameter σ2 > 0

(
denote by X ∼ subG(σ2)

)
if

E(X) = 0 and its moment generating function

E(etX) ≤ et
2σ2/2, ∀ t ∈ R

Definition B.2 (Subexponential r.v.). A random variable X ∈ R is said to be
sub-exponential with parameter σ2 > 0

(
denote by X ∼ subE(σ2)

)
if E(X) = 0

and its moment generating function

E(etX) ≤ et
2σ2/2, ∀ |t| ≤ 1

σ

Definition B.3. A random vector X ∈ R
p shall said to be subgaussian or

subexponential with parameter σ2, if the inner products 〈X, v〉 ∼ subG(σ2) or
〈X, v〉 ∼ subE(σ2), respectively, for any v ∈ R

p with ‖v‖2 = 1.

Definition B.4. A sequence of random variables Xn is said to be uniformly
tight if for every ε > 0, there is a compact set K such that pr(Xn ∈ K) > 1− ε.
(Reproduced from Page 166, Chapter 2 of [16].)

Lemma B.1 (Tail bounds). (i) If X ∼ subG(σ2), then,

pr(|X| ≥ λ) ≤ 2 exp(−λ2/2σ2).
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(ii) If X ∼ subE(σ2), then

pr(|X| ≥ λ) ≤ 2 exp
{
− 1

2

(λ2

σ2
∧ λ

σ

)}
.

Proof of Lemma B.1. This proof is a simple application of the Markov inequal-
ity. For any t > 0,

pr(X ≥ λ) = pr(tX ≥ tλ) ≤ EetX

etλ
= e−tλ+t2σ2/2.

Minimizing over t > 0, yields the choice t∗ = λ/σ2, and substituting in the
above bound, we obtain,

pr(X ≥ λ) ≤ inf
t>0

e−tλ+t2σ2/2 = e−λ2/2σ2

.

Repeating the same for P (X ≤ −λ) yields part (i) of the lemma. To prove Part
(ii), repeat the above argument with t ∈ (0, 1/σ], to obtain,

pr(X ≥ λ) = pr(tX ≥ tλ) ≤ e−tλ+t2σ2/2. (B.1)

As in the subgaussian case, to obtain the tightest bound one needs to find t∗ that
minimizes −tλ+ t2σ2/2, with the additional constraint for this subexponential
case that t ∈ (0, 1/σ]. We know that the unconstrained minimum occurs at
t∗ = λ/σ2 > 0. Now consider two cases:

1. If t∗ < (0, 1/σ] ⇔ λ ≤ σ then the unconstrained minimum is same as
the constrained minimum, and substituting this value yields the same tail
behavior as the subgaussian case.

2. If t∗ > (1/σ) ⇔ λ > σ, then note that −tλ+ t2σ2/2 is decreasing in t, in
the interval (0, (1/σ)], thus the minimum occurs at the boundary t = 1/σ.
Substituting in the tail bound we obtain for this case,

pr(X ≥ λ) ≤ e−tλ+t2σ2/2 = exp{−(λ/σ) + (1/2)} ≤ exp (−λ/2σ),

where the final inequality follows since λ > σ.

Part (ii) of the lemma is obtained by combining the results of the above two
cases.

Lemma B.2. Assume that X ∼ subG(σ2), and that α ∈ R, then, (i) αX ∼
subG(α2σ2). If X1 ∼ subG(σ2

1) and X2 ∼ subG(σ2
2), then, (ii) X1 + X2 ∼

subG((σ1 + σ2)
2). If X1 ∼ subG(σ2) and X2 ∼ subG(σ2) are independent,

then, (iii) X1 +X2 ∼ subG(2σ2).

Proof of Lemma B.2. The first part follows directly from the inequality
E(etαX) ≤ exp(t2α2σ2/2). To prove Part (ii) use the Hölder’s inequality to
obtain,

E(et(X1+X2)) = E(etX1etX2) ≤ {E(etX1p)} 1
p {E(etX2q)} 1

q

≤ e
t2

2 σ2
1p

2

e
t2

2 σ2
2q

2

= e
t2

2 (pσ2
1+qσ2

2)
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where p, q ∈ [1,∞], with 1/p+1/q = 1. Choose p∗ = (σ2/σ1)+1, q∗ = (σ1/σ2)+1

to obtain E(et(X1+X2)) ≤ exp
{

t2

2 (σ1 + σ2)
2
}
. For Part (iii) note that,

E(et(X1+X2)) = E(etX1etX2) = E(etX1)E(etX2)

≤ e
t2σ2

2 e
t2σ2

2 = e
t2(σ

√
2)2

2

This completes the proof of this lemma.

Lemma B.3. Assume that X ∼ subE(λ2), and that α ∈ R, then, (i) αX ∼
subE(α2λ2). If X1 ∼ subE(λ2

1) and X2 ∼ subE(λ2
2), then, (ii) X1 + X2 ∼

subE((λ1 +λ2)
2). If X1 ∼ subE(λ2) and X2 ∼ subE(λ2) are independent, then,

(iii) X1 +X2 ∼ subE(2λ2).

The proof of Lemma B.3 is analogous to that of Lemma B.2 and is thus
omitted. The next result is the Bernstein’s inequality, reproduced from Lemma
1.13 of [29]. This result is a direct consequence of Lemma B.1 and Lemma B.3.

Lemma B.4 (Bernstein’s inequality). Let X1, X2, ..., XT be independent ran-
dom variables such that Xt ∼ subE(λ2). Then for any d > 0 we have,

pr(|X̄| > d) ≤ 2 exp
{
− T

2

(d2
λ2

∧ d

λ

)}
The next result is the Kolmogorov’s inequality reproduced from [20]

Theorem B.1 (Kolmogorov’s inequality). If ξ1, ξ2, ... is a sequence of mutually
independent random variables with mean values E(ξk) = 0 and finite variance
var(ξk) = D2

k (k = 1, 2, ...), we have, for any ε > 0,

pr
(

max
1≤k≤m

∣∣ξ1 + ξ2 + ...+ ξk
∣∣ > ε

)
≤ 1

ε2

m∑
k=1

D2
k

Following is the well known ‘Argmax’ theorem reproduced from Theorem
3.2.2 of [33].

Theorem B.2 (Argmax Theorem). Let Mn,M be stochastic processes indexed
by a metric space H such that Mn ⇒ M in �∞(K) for every compact set K ⊆
H. Suppose that almost all sample paths h → M(h) are upper semicontinuous

and posses a unique maximum at a (random) point ĥ, which as a random map

in H is tight. If the sequence ĥn is uniformly tight and satisfies Mn(ĥn) ≥
suph Mn(h)− op(1), then ĥn ⇒ ĥ in H.

Appendix C: Discussion on sparsity assumption

The purpose of this section is to show that the sparsity assumption (2.1) on the
mean vectors θ01 and θ02 holds without loss of generality with respect to assuming
sparsity of jump vector η0 = θ01 − θ02, and in context of the estimator τ̃ and the
estimation and inference results presented in this manuscript.
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Recall the model (1.1) under consideration,

xt =

{
θ01 + εt t = 1, ..., τ0

θ02 + εt t = τ0 + 1, ..., T,

where εt are i.i.d. as per Condition A. Define,

x̄ =
1

T

T∑
t=1

xt =
1

T

[
τ0θ01 + (T − τ0)θ02

]
+

1

T

T∑
t=1

εt, and

θ∗1 =
(T − τ0)η0

T
, θ∗2 = −τ0η0

T
, ε∗t = εt − ε̄, and ε̄ =

1

T

T∑
t=1

εt.

Then performing a mean centering operation x∗
t = xt − x̄, t = 1, ..., T , yields

the transformed model,

x∗
t =

{
θ∗1 + ε∗t t = 1, ..., τ0

θ∗2 + ε∗t t = τ0 + 1, ..., T.
(C.1)

Note that assuming η0 = θ01 − θ02 is s-sparse directly implies that the mean
vectors θ∗1 and θ∗2 of model (C.1) are now individually s-sparse, also note that
η0∗ = θ∗1 − θ∗2 = η0. Thus making assumption (2.1) feasible.

The consequence of this centering operation is an alteration to the unobserved
noise term as ε∗t = (εt − ε̄), t = 1, ..., T . Although this induces a dependence
amongst ε∗t , however its representation allows separability of this structure and
in turn allows all results of the manuscript to remain valid. The only consequence
of this alteration being in the universal constants of the localization bounds of
Section 2 and Section 4. There will be no consequence in context of limiting
distributions of Section 3. This is illustrated in the following discussion.

Lemma C.1. Suppose εt, t = 1, ..., T satisfy Condition A and B, then

‖ε̄‖∞ ≤

⎧⎪⎨
⎪⎩
cuσ

√{log(p ∨ T )/T}, under subG,

cuσ
√{log(p ∨ T )/T}, under subE when T ≥ log(p ∨ T )

cuσ log(p ∨ T )/
√
T, under subE when T ≥ 1

(C.2)

with probability 1 − o(1). Moreover, for any non-random δ ∈ R
p, ‖δ‖2 = 1, we

have,
√
TδT ε̄ = Op(1). More precisely, for any 0 < a < 1 there exists c′a > 0

such that pr
(∣∣√TδT ε̄

∣∣ > c′a) ≤ a.

This is a straightforward result. The bound on the sup-norm follows directly
by applying subgaussian or subexponential tail bounds component-wise, fol-
lowed with a union bound over components. The second result follows directly
from the Markov inequality upon noting that

√
TδT ε̄ is also subgaussian or

subexponential when εt are subgaussian or subexponential, respectively (Defi-
nition B.3), with var(

√
TδT ε̄) ≤ φ2 ≤ cuσ

2.
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Now recall the construction of the set G(uT , vT ) from (A.1) and note that
the results of Theorem 2.1, Theorem 2.2 and Theorem 2.3 of Section 2 rely on
the following uniform bounds (provided in Appendix A.4),

sup
τ∈G(uT ,vT );

τ≥τ0

∥∥∥ τ∑
t=τ0+1

εt

∥∥∥
∞

≤

⎧⎪⎨
⎪⎩
cuσ{TuT log(p ∨ T )} 1

2 , under subG

cuσ{TuT log(p ∨ T )} 1
2 , under subE

(
TvT ≥ log(p ∨ T )

)
cuσ log(p ∨ T ){TuT }

1
2 , under subE

(
vT ≥ 0

) (C.3)

sup
τ∈G(uT ,vT );

τ≥τ0

∣∣∣ τ∑
t=τ0+1

εTt η
0
∣∣∣ ≤ caφ‖η0‖2

√
(TuT ), (C.4)

where (C.3) hold with probability 1 − o(1) and (C.4) holds with probability
1− a, when ca ≥ √

(1/a). (see, Lemma A.6, Lemma A.7 and Lemma A.8).
The only additional requirement to replicate the proofs of Theorem 2.1, 2.2,

Theorem 2.3 under the model (C.1) are the bounds (C.3) and (C.4) with εt
replaced with ε∗t . This can be done using Lemma C.1 as follows. Consider the
subgaussian case and note that,

sup
τ∈G(uT ,vT );

τ≥τ0

∥∥∥ τ∑
t=τ0+1

ε∗t

∥∥∥
∞

≤ sup
τ∈G(uT ,vT );

τ≥τ0

∥∥∥ τ∑
t=τ0+1

εt

∥∥∥
∞

+ TuT ‖ε̄‖∞

≤ cuσ{TuT log(p ∨ T )} 1
2 + cuσuT

√{T log(p ∨ T )}
≤ σ{TuT log(p ∨ T )} 1

2

[
cu +

√
uT

]
≤ (cu + 1)σ{TuT log(p ∨ T )} 1

2

with probability 1 − o(1). Here the second inequality follows from (C.3) and
Lemma C.1. The final inequality follows since uT ≤ 1. Thus, the only impact
of using the transformed model (C.1) is on the associated universal constant. A
similar argument also yields,

sup
τ∈G(uT ,vT );

τ≥τ0

∣∣∣ τ∑
t=τ0+1

ε∗Tt η0
∣∣∣ ≤ sup

τ∈G(uT ,vT );

τ≥τ0

∣∣∣ τ∑
t=τ0+1

εTt η
0
∣∣∣+ TuT

∣∣ε̄T η0∣∣
≤ caφ‖η0‖2

√
(TuT ) + uT c

′
a‖η0‖2σ

√
T

≤ σ(ca + c′a)‖η0‖2
√
(TuT )

with probability at least 1− 2a. The subexponential cases can be handled sim-
ilarly using the corresponding cases in (C.3) and Lemma C.1. These bounds
allow reproducing identical arguments to obtain the bounds provided in Theo-
rem 2.1, 2.2 and 2.3 under the transformed model (C.1) upto universal constants.

In context of results of Section 3, the only consequence of centering is that the
stochastic term that stabilizes to form the limiting distribution will under the
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transformed model (C.1) comprise of an additional op(1) residual term. Clearly
this will not affect the weak limit. For e.g. in the vanishing case of ξ → 0, the

limiting distribution is governed by the term
∑τ0+rξ−2

t=τ0 εTt η
0, where 0 < r ≤ cu.

When stated w.r.t. model (C.1) this term changes to the following,

τ0+rξ−2∑
t=τ0

ε∗Tt η0 =

τ0+rξ−2∑
t=τ0

εTt η
0 + rξ−1ε̄T δ =

τ0+rξ−2∑
t=τ0

εTt η
0 + rξ−1Op

(
1/

√
T
)

=

τ0+rξ−2∑
t=τ0

εTt η
0 + op(1).

Here the second equality follows from Lemma C.1. Consequently, centering does
not alter the weak limit. A similar argument holds for the non-vanishing case.

Finally, the only additional result that enables the results of Section 4 is
Theorem A.1. The proof of this theorem requires control on the stochastic term
in Lemma A.9. Proceeding analogously as earlier, it may be observed that the
same bound holds upto universal constants when εt is replaced with ε∗t .

In conclusion, the discussion of this section implies that assuming sparsity
(2.1) on the mean vectors θ01 and θ02 holds without loss of generality with respect
to assuming sparsity of the jump vector η0, in context of the change point
estimator τ̃ and the results presented in this article.

Appendix D: Additional numerical results and further details

This section provides remaining results of Simulation A and Simulation B dis-
cussed in Section 5, an additional Simulation C is also provided here that nu-
merically examines the uniform validity of the estimation and inference results
developed in the main manuscript where uniformity under consideration is that
of the parametric space of the mean parameters θ01 and θ02. Finally we also
provide in this section the pertinent details regarding estimation of the jump
size and asymptotic variance that was utilized to obtain confidence intervals
computed in Section 5.

Simulation C: (numerical evaluation of uniformity of results over mean
parametric space) The design of this simulation is as follows. The unobserved
noise is generated as in the Gaussian setting of Simulation A. We set model
parameters T = 425, p = 250 and τ0 = �0.4·T �. We set the mean parameters as
cθ01 and cθ02, where θ1 and θ02 are as described in Section 5 and the c is a constant
chosen from an equally separated grid of twenty five values, c ∈ {1, ..., 0.25}. We
evaluate bias, RMSE (over 100 replications) and coverage, average margin of
error (over 500 replications).

The results of Simulation C presented in Figure 3 and Figure 4 are as per
expectation. The proposed inference methodology yields a coverage controlled at
near the nominal level, uniformly in the sub-interval c ∈ (0.5, 2). As the constant
c diminishes the variance of estimators increases (as observed via rmse), this is in
turn correctly captured in the asymptotic variance (as observed by the margin
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Fig 3. Estimation results of Simulation C (100 monte carlo replications). x-axis: constant
c ∈ {2, ...., 0.25}. Left panel: y-axis: Bias (|E(τ̂ − τ0)|). Right panel: RMSE (E1/2(τ̂ − τ0)2).

Fig 4. Inference results of Simulation C (500 monte carlo replications). x-axis: constant
c ∈ {2, ...., 0.25}. Left panel: y-axis: Average over replications of margin of error of confidence
intervals. Right panel: coverage over replications of confidence intervals.

of error) which is then evidenced by the proper control on coverage in this
sub-interval c ∈ (0.5, 2). The methodology appears to break down in the sub-
interval (0.25, 0.5). This is plausibly due to the jump size getting smaller and
going beyond the detection limit, i.e., at these smaller values of c, the jump size
is ξ = c‖θ01 − θ02‖2 and may no longer be able to preserve the relation (2.4), thus
leading to a breakdown of the theoretical results supporting the methodology
and thereby leading to the observations of Figure 3 and Figure 4. In practice,
one may perform a detection test on the existence of a change point prior to
implementation of the proposed inference methodology. A positive detection
from this test will point toward the jump size being above the detection limit.
However, there is still a gap here. While the detection limit on the jump size

is when it scales as approximately
(
s log p/T

)1/2
, however, our inference results

begin their validity at a scaling of
(
s log p/T 1/2

)
.
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Computation of σ̂2 and ξ̂2: Here we discuss the computation of σ̂2
∞ and

ξ̂ utilized for the computation of confidence intervals for τ0 using the result of
Theorem 3.1 and Theorem 3.2.

In order to alleviate finite sample regularization biases from the mean param-
eter estimates we utilize refitted mean estimates computed as θ̆1 =

[
x̄(1:τ̆ ]

]
Ŝ1

and μ̆2 =
[
x̄(τ̆ :T ]

]
Ŝ2
, where τ̆ is the change point estimate of Algorithm 1 and

Ŝ1 = {j θ̂1j �= 0}, Ŝ2 = {j θ̂2j �= 0}, where θ̂1 and θ̂2 are the Step 2 mean
estimates of Algorithm 1. It is well known in the literature that refitted mean
estimates preserve the rate of convergence of the regularized version while re-
ducing finite sample biases, see, e.g. [4] and [6]. The jump vector and jump size

are then estimated as η̂ = θ̆1 − θ̆2, and ξ̂ = ‖η̂‖2, respectively.
Next, recall the asymptotic variance σ2

∞ from Condition E where it is de-
fined as limT→∞ η0TΣη0

/
ξ2. The direct way to estimate this quantity is to first

estimate the high dimensional covariance Σ and plug in previously estimated
quantities η̂ and ξ̂ into the finite sample representation of σ2

∞, i.e., η0TΣη0
/
ξ2.

However, this direct approach shall also be expected to further induce regu-
larization biases that will inevitably seep in due to the estimation of the high
dimensional Σ. We note that an explicit estimation of Σ is itself not necessary
for the proposed inference methodology, and instead only the jump size and
asymptotic variance are necessary parameters. In view of this observation we
use the following approach in order to avoid the above eventuality.

Consider a one-dimensional projection zt = ξ−1η0Txt, t = 1, ..., T of the
model (1.1) and note that it yields a transformed model of the form,

zt = ξ−1η0Txt =

{
μ0
1 + ψt, t = 1, ..., τ0

μ0
2 + ψt, t = τ0 + 1, ..., T,

(D.1)

where μ0
1 = ξ−1η0T θ01 ∈ R, μ0

2 = ξ−1η0T θ02 ∈ R and more importantly ψt =
ξ−1η0T εt, t = 1, ..., T . Consequently the variance of the transformed unobserved
noise term ψt is η

0TΣη0/ξ2, which is exactly a finite sample representation of the
asymptotic variance σ2

∞ of interest. In view of this observation we estimate this
quantity as the sample variance of the residual of the transformed model (D.1)
implemented by utilizing the previously estimated jump size and jump vector,
i.e., let,

zt = ξ̂−1η̂Txt, μ̂1 = ξ̂−1η̂T θ̆1 and μ̂2 = ξ̂−1η̂T θ̆2.

Then we estimate σ2
∞ as the sample variance,

σ̂2
∞ =

1

T

{
τ̆∑

t=1

(ẑt − μ̂1)
2 +

T∑
t=τ̆+1

(ẑt − μ̂2)
2

}
.



HD change point inference 127

Additional results of Simulation A and Simulation B:

Table 5

Simulation A(i): estimation performance of Step 1 (τ̂), AL1 (τ̆) and WS methods under
Gaussian setting with τ0 = �0.4·T 	. Bias (|E(τ̂ − τ0)|), and RMSE (E1/2(τ̂ − τ0)2) and

time (in seconds), approximated with 100 monte carlo replications.

τ0 = �0.4·T 	 Step 1 AL1 WS
T p bias RMSE time bias RMSE time bias RMSE time
200 50 0.350 2.696 0.070 0.290 2.751 0.114 0.180 2.665 0.118
200 250 0.520 2.117 0.155 0.370 2.189 0.274 0.100 3.124 1.513
200 500 0.000 2.005 0.207 0.090 1.792 0.388 0.500 3.481 7.307
200 750 0.230 2.447 0.279 0.190 2.472 0.513 0.110 2.632 23.222
275 50 0.240 1.637 0.092 0.120 1.619 0.168 0.040 2.069 0.141
275 250 0.200 2.074 0.215 0.140 1.990 0.387 0.490 3.205 1.835
275 500 0.150 1.803 0.340 0.220 1.828 0.620 0.080 2.638 7.929
275 750 0.340 2.035 0.400 0.240 1.980 0.752 0.290 2.544 23.124
350 50 0.060 1.667 0.101 0.230 1.578 0.191 0.040 1.649 0.158
350 250 0.370 2.142 0.295 0.170 1.797 0.535 0.050 2.105 2.069
350 500 0.330 2.830 0.400 0.040 2.702 0.720 0.300 2.821 8.652
350 750 0.110 2.007 0.532 0.010 1.952 0.975 0.180 1.811 24.239
425 50 0.340 2.482 0.122 0.120 2.375 0.231 0.110 3.002 0.168
425 250 0.140 2.005 0.353 0.120 2.245 0.650 0.170 2.057 2.330
425 500 0.320 2.371 0.510 0.020 2.307 0.988 0.050 2.476 9.491
425 750 0.160 1.944 0.649 0.100 1.766 1.251 0.350 2.536 26.271

Table 6

Simulation A(i): estimation performance of Step 1 (τ̂), AL1 (τ̆) and WS methods under
Gaussian setting with τ0 = �0.6·T 	. Bias (|E(τ̂ − τ0)|), and RMSE (E1/2(τ̂ − τ0)2) and

time (in seconds), approximated with 100 monte carlo replications.

τ0 = �0.6·T 	 Step 1 AL1 WS
T p bias RMSE time bias RMSE time bias RMSE time
200 50 0.160 1.568 0.066 0.070 1.539 0.115 0.190 2.095 0.123
200 250 0.060 1.562 0.162 0.090 1.603 0.281 0.080 2.112 1.602
200 500 0.620 3.444 0.218 0.510 3.288 0.399 0.610 3.557 7.431
200 750 0.040 2.049 0.269 0.060 1.772 0.492 0.040 2.775 23.284
275 50 0.460 2.272 0.088 0.190 2.313 0.162 0.170 3.220 0.139
275 250 0.230 1.775 0.220 0.080 1.691 0.399 0.210 1.634 1.868
275 500 0.480 2.040 0.349 0.350 1.931 0.653 0.550 3.041 8.245
275 750 0.100 2.015 0.404 0.110 2.335 0.743 0.210 3.110 23.378
350 50 0.360 1.794 0.101 0.320 1.783 0.191 0.120 2.093 0.161
350 250 0.280 2.241 0.290 0.130 2.133 0.547 0.010 2.402 2.167
350 500 0.210 1.609 0.383 0.040 1.517 0.708 0.120 2.088 8.710
350 750 0.470 2.812 0.510 0.300 2.608 0.957 0.570 3.404 24.317
425 50 0.350 2.086 0.129 0.080 1.811 0.235 0.250 2.304 0.183
425 250 0.190 1.622 0.370 0.050 1.916 0.706 0.010 2.335 2.330
425 500 0.200 2.074 0.473 0.370 2.110 0.909 0.600 2.429 9.331
425 750 0.320 1.661 0.711 0.200 1.720 1.362 0.280 2.000 26.281
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Table 7

Simulation A(i): estimation performance of Step 1 (τ̂), AL1 (τ̆) and WS methods under
Gaussian setting with τ0 = �0.8·T 	. Bias (|E(τ̂ − τ0)|), and RMSE (E1/2(τ̂ − τ0)2) and

time (in seconds), approximated with 100 monte carlo replications.

τ0 = �0.8·T 	 Step 1 AL1 WS
T p bias RMSE time bias RMSE time bias RMSE time
200 50 2.880 7.347 0.065 0.110 1.658 0.113 0.320 2.195 0.119
200 250 1.250 6.298 0.155 0.380 2.272 0.267 1.170 6.268 1.537
200 500 1.110 7.077 0.195 0.400 1.908 0.358 1.090 3.936 7.182
200 750 1.220 4.572 0.266 0.460 2.608 0.488 3.380 8.470 23.587
275 50 3.520 7.521 0.088 0.690 2.161 0.167 0.110 2.456 0.143
275 250 1.960 4.357 0.242 0.870 3.500 0.424 0.930 4.073 1.927
275 500 2.100 7.624 0.318 0.040 1.822 0.588 1.220 4.212 7.834
275 750 1.190 3.486 0.387 0.150 2.309 0.728 1.470 4.487 23.118
350 50 3.230 6.587 0.097 0.460 3.036 0.185 0.080 2.821 0.164
350 250 2.440 5.669 0.249 0.470 2.659 0.452 0.340 2.691 2.012
350 500 1.180 3.672 0.410 0.200 1.679 0.763 1.160 4.402 8.761
350 750 1.530 4.487 0.489 0.510 2.216 0.890 1.860 5.185 24.224
425 50 3.580 7.254 0.122 0.310 1.752 0.235 0.290 2.504 0.179
425 250 1.940 4.459 0.304 0.420 2.400 0.581 0.200 3.000 2.272
425 500 1.770 3.814 0.500 0.410 1.688 0.948 0.550 2.452 9.484
425 750 2.800 8.656 0.716 0.370 2.071 1.406 1.190 5.381 26.215

Table 8

Simulation B(i): estimation performance of Step 1 (τ̂), AL1 (τ̆) and WS methods under
Laplace setting with τ0 = �0.4·T 	. Bias (|E(τ̂ − τ0)|), and RMSE (E1/2(τ̂ − τ0)2) and time

(in seconds), approximated with 100 monte carlo replications.

τ0 = �0.4·T 	 Step 1 AL1 WS
T p bias RMSE time bias RMSE time bias RMSE time
200 50 0.320 2.341 0.061 0.030 1.658 0.104 0.010 1.836 0.115
200 250 0.250 2.027 0.137 0.240 2.035 0.231 0.310 3.002 1.424
200 500 0.150 2.317 0.226 0.190 2.095 0.415 0.010 2.472 7.184
200 750 0.010 2.119 0.258 0.070 1.389 0.483 0.170 2.390 21.718
275 50 0.400 1.697 0.100 0.140 1.435 0.168 0.030 2.062 0.134
275 250 0.290 1.967 0.228 0.180 1.860 0.400 0.080 3.156 1.907
275 500 0.940 2.267 0.317 0.710 1.916 0.586 0.480 2.437 7.603
275 750 0.050 2.722 0.407 0.020 2.542 0.744 0.480 2.093 22.957
350 50 0.410 2.189 0.098 0.310 2.166 0.173 0.060 2.581 0.133
350 250 0.140 1.449 0.293 0.050 1.404 0.547 0.150 1.825 2.184
350 500 0.020 1.649 0.381 0.280 1.822 0.693 0.320 2.358 8.262
350 750 0.090 2.095 0.486 0.070 1.841 0.897 0.050 1.889 24.225
425 50 0.270 1.895 0.116 0.150 1.841 0.218 0.230 1.879 0.164
425 250 0.360 1.794 0.339 0.340 1.811 0.649 0.280 2.145 2.291
425 500 0.030 1.597 0.524 0.070 1.758 1.000 0.050 2.012 9.266
425 750 0.310 1.396 0.635 0.050 1.432 1.213 0.070 2.128 25.804
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Table 9

Simulation B(i): estimation performance of Step 1 (τ̂), AL1 (τ̆) and WS methods under
Laplace setting with τ0 = �0.6·T 	. Bias (|E(τ̂ − τ0)|), and RMSE (E1/2(τ̂ − τ0)2) and time

(in seconds), approximated with 100 monte carlo replications.

τ0 = �0.6·T 	 Step 1 AL1 WS
T p bias RMSE time bias RMSE time bias RMSE time
200 50 0.230 1.584 0.061 0.090 1.729 0.110 0.120 2.362 0.110
200 250 0.030 1.792 0.139 0.030 1.741 0.234 0.300 1.954 1.442
200 500 0.480 2.387 0.242 0.170 2.265 0.415 0.090 2.156 7.175
200 750 0.300 2.706 0.245 0.340 2.437 0.451 0.260 3.030 21.480
275 50 0.440 1.783 0.088 0.180 1.755 0.168 0.170 1.597 0.126
275 250 0.350 1.863 0.222 0.140 1.523 0.391 0.330 2.594 1.843
275 500 0.240 2.191 0.321 0.250 2.193 0.602 0.010 3.012 7.660
275 750 0.190 1.221 0.406 0.040 1.530 0.753 0.040 2.214 23.008
350 50 0.610 1.905 0.097 0.250 2.147 0.163 0.170 2.617 0.137
350 250 0.090 1.977 0.266 0.030 1.884 0.506 0.110 2.693 1.947
350 500 0.210 1.863 0.387 0.150 1.735 0.695 0.090 2.202 8.285
350 750 0.390 2.278 0.474 0.040 1.934 0.883 0.360 2.731 24.209
425 50 0.280 2.263 0.116 0.010 2.052 0.219 0.200 2.319 0.158
425 250 0.210 1.936 0.343 0.050 1.879 0.651 0.240 1.975 2.316
425 500 0.260 2.069 0.506 0.110 2.100 0.969 0.360 2.619 9.183
425 750 0.200 2.030 0.657 0.020 1.703 1.253 0.080 2.289 25.939

Table 10

Simulation B(i): estimation performance of Step 1 (τ̂), AL1 (τ̆) and WS methods under
Laplace setting with τ0 = �0.8·T 	. Bias (|E(τ̂ − τ0)|), and RMSE (E1/2(τ̂ − τ0)2) and time

(in seconds), approximated with 100 monte carlo replications.

τ0 = �0.8·T 	 Step 1 AL1 WS
T p bias RMSE time bias RMSE time bias RMSE time
200 50 3.320 6.684 0.063 0.660 2.881 0.110 0.770 3.045 0.115
200 250 2.430 7.997 0.143 1.320 7.122 0.246 1.790 7.115 1.483
200 500 0.850 5.469 0.213 0.070 1.916 0.372 1.250 5.944 7.111
200 750 1.010 7.072 0.241 0.990 5.733 0.444 3.050 7.584 21.474
275 50 4.010 10.014 0.088 0.890 5.015 0.164 0.250 4.253 0.127
275 250 1.650 4.892 0.236 0.380 2.263 0.421 0.600 2.789 1.925
275 500 1.720 5.982 0.294 0.240 2.173 0.535 1.370 4.034 7.520
275 750 0.280 3.552 0.420 0.210 2.022 0.769 1.860 5.521 22.996
350 50 3.120 7.580 0.102 0.730 3.887 0.168 0.050 3.055 0.135
350 250 1.430 3.874 0.262 0.210 2.356 0.474 0.650 3.604 2.046
350 500 1.460 4.176 0.389 0.240 1.833 0.711 0.040 2.425 8.273
350 750 1.990 6.856 0.486 0.190 2.571 0.924 1.930 6.564 24.302
425 50 2.650 6.489 0.117 0.380 1.661 0.223 0.080 1.908 0.163
425 250 1.780 4.459 0.307 0.150 1.962 0.592 0.450 4.009 2.198
425 500 1.770 5.811 0.480 0.040 1.685 0.910 0.300 3.165 9.161
425 750 2.010 4.288 0.632 0.710 2.629 1.209 1.620 4.539 25.863
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Table 11

Simulation A(ii): inference using AL1 (τ̆) with τ0 = �0.4·T 	, at significance level α = 0.05.
Here, V: confidence intervals constructed using Theorem 3.1 under vanishing regime, NV:
confidence intervals constructed using Theorem 3.2 under non-vanishing regime (Gaussian

parametric assumption). Computation based on 500 monte carlo replications.

Coverage (average margin of error)
V NV V NV V NV

p n = 275 n = 350 n = 425
50 0.956 (4.020) 0.966 (3.929) 0.916 (4.111) 0.926 (4.021) 0.956 (4.136) 0.968 (4.058)
250 0.938 (3.936) 0.946 (3.859) 0.946 (3.984) 0.958 (3.901) 0.944 (4.025) 0.956 (3.949)
500 0.934 (3.886) 0.942 (3.783) 0.934 (3.925) 0.940 (3.847) 0.950 (3.982) 0.958 (3.912)
750 0.944 (3.848) 0.954 (3.753) 0.936 (3.922) 0.954 (3.843) 0.946 (3.961) 0.954 (3.905)

Table 12

Simulation A(ii): inference using AL1 (τ̆) with τ0 = �0.6·T 	, at significance level α = 0.05.
Here, V: confidence intervals constructed using Theorem 3.1 under vanishing regime, NV:
confidence intervals constructed using Theorem 3.2 under non-vanishing regime (Gaussian

parametric assumption). Computation based on 500 monte carlo replications.

Coverage (average margin of error)
V NV V NV V NV

p n = 275 n = 350 n = 425
50 0.956 (4.033) 0.970 (3.965) 0.932 (4.054) 0.952 (4.030) 0.938 (4.101) 0.952 (4.044)
250 0.918 (3.916) 0.936 (3.852) 0.946 (3.988) 0.958 (3.917) 0.938 (4.008) 0.942 (3.907)
500 0.948 (3.881) 0.950 (3.804) 0.944 (3.901) 0.962 (3.813) 0.946 (4.003) 0.950 (3.945)
750 0.930 (3.823) 0.944 (3.745) 0.940 (3.981) 0.948 (3.891) 0.958 (3.999) 0.964 (3.903)

Table 13

Simulation A(ii): inference using AL1 (τ̆) with τ0 = �0.8·T 	, at significance level α = 0.05.
Here, V: confidence intervals constructed using Theorem 3.1 under vanishing regime, NV:
confidence intervals constructed using Theorem 3.2 under non-vanishing regime (Gaussian

parametric assumption). Computation based on 500 monte carlo replications.

Coverage (average margin of error)
V NV V NV V NV

p n = 275 n = 350 n = 425
50 0.942 (3.831) 0.954 (3.758) 0.932 (3.861) 0.944 (3.789) 0.934 (3.951) 0.944 (3.884)
250 0.896 (3.417) 0.920 (3.349) 0.920 (3.602) 0.928 (3.537) 0.940 (3.716) 0.950 (3.644)
500 0.908 (3.307) 0.926 (3.235) 0.896 (3.476) 0.910 (3.392) 0.916 (3.612) 0.930 (3.491)
750 0.890 (3.252) 0.916 (3.158) 0.896 (3.408) 0.922 (3.324) 0.928 (3.542) 0.948 (3.461)

Table 14

Simulation B(ii): inference using AL1 (τ̆) with τ0 = �0.4·T 	, at significance level α = 0.05.
Here, V: confidence intervals constructed using Theorem 3.1 under vanishing regime, NV:
confidence intervals constructed using Theorem 3.2 under non-vanishing regime (Laplace

parametric assumption). Computation based on 500 monte carlo replications.

Coverage (average margin of error)
V NV V NV V NV

p n = 275 n = 350 n = 425
50 0.946 (4.029) 0.956 (4.015) 0.932 (4.099) 0.940 (4.083) 0.946 (4.113) 0.950 (4.067)
250 0.932 (3.926) 0.942 (3.905) 0.950 (3.984) 0.964 (3.933) 0.936 (4.035) 0.958 (3.990)
500 0.938 (3.878) 0.948 (3.841) 0.940 (3.892) 0.952 (3.849) 0.942 (4.055) 0.960 (4.023)
750 0.938 (3.843) 0.952 (3.769) 0.930 (3.931) 0.948 (3.871) 0.946 (3.947) 0.962 (3.919)
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Table 15

Simulation B(ii): inference using AL1 (τ̆) with τ0 = �0.6·T 	, at significance level α = 0.05.
Here, V: confidence intervals constructed using Theorem 3.1 under vanishing regime, NV:
confidence intervals constructed using Theorem 3.2 under non-vanishing regime (Laplace

parametric assumption). Computation based on 500 monte carlo replications.

Coverage (average margin of error)
V NV V NV V NV

p n = 275 n = 350 n = 425
50 0.950 (4.043) 0.958 (4.003) 0.952 (4.100) 0.964 (4.075) 0.930 (4.103) 0.944 (4.051)
250 0.940 (3.945) 0.952 (3.897) 0.912 (3.989) 0.944 (3.965) 0.948 (4.029) 0.960 (4.030)
500 0.940 (3.875) 0.948 (3.822) 0.940 (3.969) 0.950 (3.924) 0.944 (4.006) 0.958 (3.941)
750 0.928 (3.827) 0.950 (3.769) 0.950 (3.942) 0.964 (3.895) 0.930 (4.002) 0.948 (3.949)

Table 16

Simulation B(ii): inference using AL1 (τ̆) with τ0 = �0.8·T 	, at significance level α = 0.05.
Here, V: confidence intervals constructed using Theorem 3.1 under vanishing regime, NV:
confidence intervals constructed using Theorem 3.2 under non-vanishing regime (Laplace

parametric assumption). Computation based on 500 monte carlo replications.

Coverage (average margin of error)
V NV V NV V NV

p n = 275 n = 350 n = 425
50 0.918 (3.841) 0.934 (3.789) 0.934 (3.883) 0.950 (3.833) 0.924 (3.966) 0.944 (3.907)
250 0.930 (3.410) 0.940 (3.423) 0.944 (3.597) 0.952 (3.563) 0.932 (3.624) 0.938 (3.565)
500 0.904 (3.404) 0.916 (3.368) 0.936 (3.480) 0.954 (3.431) 0.916 (3.600) 0.942 (3.561)
750 0.898 (3.234) 0.924 (3.198) 0.900 (3.410) 0.916 (3.391) 0.924 (3.533) 0.942 (3.487)
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[34] Sara Van de Geer, Peter Bühlmann, Ya’acov Ritov, Ruben Dezeure,
et al. On asymptotically optimal confidence regions and tests for high-
dimensional models. The Annals of Statistics, 42(3):1166–1202, 2014.
MR3224285

[35] Roman Vershynin. High-Dimensional Probability. Cambridge, UK: Cam-
bridge University Press, 2019. URL https://www.math.uci.edu/

~rvershyn/papers/HDP-book/HDP-book.pdf. MR3837109
[36] Daren Wang, Yi Yu, Alessandro Rinaldo, et al. Univariate mean change

point detection: Penalization, cusum and optimality. Electronic Journal of
Statistics, 14(1):1917–1961, 2020. MR4091859

[37] Runmin Wang and Xiaofeng Shao. Dating the break in high-dimensional
data. arXiv preprint arXiv:2002.04115, 2020.

[38] Runmin Wang, Stanislav Volgushev, and Xiaofeng Shao. Inference for
change points in high dimensional data. arXiv preprint arXiv:1905.08446,
2019.

[39] Tengyao Wang and Richard J Samworth. Inspectchangepoint: high-
dimensional changepoint estimation via sparse projection. R Package Ver-
sion, 1, 2016. MR3744712

[40] Tengyao Wang and Richard J. Samworth. High dimensional change point
estimation via sparse projection. Journal of the Royal Statistical Society:

https://www.ams.org/mathscinet-getitem?mr=3824758
https://www.ams.org/mathscinet-getitem?mr=3990465
https://arxiv.org/abs/1907.10012
https://www.ams.org/mathscinet-getitem?mr=3611489
https://www.ams.org/mathscinet-getitem?mr=2504372
https://www.ams.org/mathscinet-getitem?mr=3689314
https://www.ams.org/mathscinet-getitem?mr=1385671
https://www.ams.org/mathscinet-getitem?mr=3224285
https://www.math.uci.edu/~rvershyn/papers/HDP-book/HDP-book.pdf
https://www.math.uci.edu/~rvershyn/papers/HDP-book/HDP-book.pdf
https://www.ams.org/mathscinet-getitem?mr=3837109
https://www.ams.org/mathscinet-getitem?mr=4091859
https://arxiv.org/abs/2002.04115
https://arxiv.org/abs/1905.08446
https://www.ams.org/mathscinet-getitem?mr=3744712


134 A. Kaul et al.

Series B (Statistical Methodology), 80(1):57–83, 2018. MR3744712
[41] Yi-Ching Yao. Approximating the distribution of the maximum likelihood

estimate of the change-point in a sequence of independent random variables.
The Annals of Statistics, 15(3):1321–1328, 1987. MR0902262

https://www.ams.org/mathscinet-getitem?mr=3744712
https://www.ams.org/mathscinet-getitem?mr=0902262

	Introduction
	Assumptions and estimation properties
	Near optimal Op(-2slog(pT)) estimation of 0
	Optimal Op(-2) estimation of 0

	Limiting distributions of  in vanishing and non-vanishing jump size regimes
	Construction of a feasible Op(-2) estimator of 0
	Numerical results
	Acknowledgment
	Proofs
	Proofs of Section 2
	Proofs of Section 3
	Proofs of Section 4
	Deviation bounds used in the proofs of Section 2
	Deviation bounds used in the proofs of Section 4

	Definitions and auxiliary results
	Discussion on sparsity assumption
	Additional numerical results and further details
	References

