
Electronic Journal of Statistics
Vol. 14 (2020) 4457–4488
ISSN: 1935-7524
https://doi.org/10.1214/20-EJS1784

A Bayesian hierarchical copula model

Haoxin Zhuang and Liqun Diao∗

Department of Statistics and Actuarial Science
University of Waterloo

200 University Avenue West, Waterloo, ON, Canada
e-mail: h9zhuang@uwaterloo.ca; l2diao@uwaterloo.ca

Grace Y. Yi

Department of Statistical and Actuarial Sciences
Department of Computer Science
University of Western Ontario

1151 Richmond Street, London, ON, Canada
e-mail: gyi5@uwo.ca

Abstract: Dependent data with hierarchical structures arises commonly
from a variety of application, and analysis of such data is often challenging
due to the complexity in modeling dependence structures and the compu-
tation intensity. In this paper, we propose a Bayesian hierarchical copula
model (BHCM) to accommodate hierarchical structures of dependent data,
where the subject-level dependence is modeled by the copula-based model
and the hierarchical structure is described using random dependence pa-
rameters. We introduce a layer-by-layer sampling scheme for conducting
Bayesian inferences. Our proposed BHCM enjoys the flexibility of mod-
eling various complex association structures, while retaining manageable
computation. Extensive simulation studies show that our proposed esti-
mators outperform conventional likelihood-based estimators in a variety
of finite sample settings. We apply the BHCM to analyze the Vertebral
Column dataset arising from UCI Machine Learning Repository.
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1. Introduction

Data with complex structures arises commonly in modern scientific research.
Examples include data with a hierarchical nesting structure, data collected from
different research centers, and data configured at multiple locations or multiple
time points, etc. With the development of Markov Chain Monte Carlo (MCMC)
algorithms [13, 20] and the rapidly increasing computation power, Bayesian
hierarchical models have become useful in multiple areas including environment
[25], genetics [5], machine learning [11, 18], etc. A large body of the literature
on Bayesian hierarchical models has been available; see [7], for example, for a
comprehensive introduction and discussion.

Using the Bayesian hierarchical framework, conventional single-level models
can be generalized to accommodate complex hierarchical structures of data by
allowing randomness and a hierarchical structure of the parameters. For in-
stance, the multilevel model [46], also known as the hierarchical linear model, is
an extension of the general linear regression model to facilitate the hierarchical
nesting structure of data. Another example is the time-varying autoregressive
model [41, 32, 37], which is a hierarchical generalization of the autoregressive
model and allows for random coefficients. Our interest in the paper is, while
using the same framework, to study dependence modeling using copula models.

Copula [45] is a useful tool to model the dependence between multivari-
ate random variables, allowing separate modeling of the marginal distributions
and the dependence structure. A comprehensive introduction to copula can be
found in [27, 29] and [36]. Several methods have been employed for estimation
of the copula parameters. The maximum likelihood (ML) method [27, 9, 50]
is the most commonly-used method, though it requires a large computational
resource in the presence of a large number of parameters. A computationally
friendly but less efficient alternative is the inference functions for margin (IFM)
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method proposed by [30] with the asymptotic properties studied by [28]. An-
other estimation method, the ranked-based method [27], is used to estimate
a copula parameter utilizing its relationship with Kendall’s τ . Such a method
is restrictive to the single-parameter copula function, which allows for an ex-
plicit expression of the relationship between the dependence parameter and
Kendall’s τ .

[48] provided a summary of applications of Bayesian methods in copula.
Bayesian approaches are mainly used for three objectives. First, they offer an
alternative to the likelihood-based and rank-based methods we mentioned pre-
viously. For instance, [35] used a Bayesian method to estimate copula forms
for D-Vine. Secondly, Bayesian approaches can be used for model selection. For
instance, [47] used a D-Vine copula to model longitudinal data and proposed
a Bayesian approach for estimating parameters and identifying independent bi-
variate pairs in the vine structure. [21] and [22] discussed a sequential method
and a simultaneous method, respectively, for selecting copula forms in a reg-
ular vine structure using the reversible jump MCMC. Thirdly, the Bayesian
hierarchical model can be used to accommodate the covariate information. For
example, Chapter 4 in [19] modeled spatial dependence by a multivariate copula
function. A Bayesian hierarchical model was proposed to relate parameters in
the marginal models to the covariates and the copula parameters were assumed
to have noninformative priors.

While various methods are available in the literature, studies of copula mod-
els under the Bayesian framework are relatively limited. Moreover, the use of
available methods is often hindered by its complexity in modeling and the in-
tensity of implementation. To circumvent these issues, we propose a Bayesian
hierarchical copula model (BHCM) for which we are particularly interested in
the scenario with hierarchical structured data illustrated by Figure 1. The nodes
at the data level represent subjects and those at the intermediate level represent
clusters which form the top node at the population level. Data in possession of
this hierarchical structure arises commonly in practice. Examples include multi-
center medical studies conducted at m sites, meta-analyses of m studies, spa-
tially configured data of m locations, longitudinal data from m subjects, time
series with time varying dependence structures of m periods, etc., where m is a
finite positive integer.

To account for a more complex hierarchical structure, the three-level struc-
ture can be easily extended by including more intermediate levels. Suppose that
multivariate data are collected from each subject and the dependence modeling
of the subject-level multivariate structure is of interest. To model the subject-
level dependence, we propose a Bayesian hierarchical copula model (BHCM);
such a model accounts for the hierarchical structure by allowing random depen-
dence parameters and specifying multiple layers of prior and hyperprior distri-
butions. This model unifies the ideas of the Bayesian hierarchical approach and
the copula-based dependence modeling, and offers us the flexibility in facilitating
various association structures, while allowing a straightforward implementation
of inference procedures.
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The rest of the paper is organized as follows. In Section 2, we describe the
model formulation of the proposed BHCM. In Section 3, we examine issues
concerning inferences and the sampling schemes. In Section 4, we discuss the
selection of transformation functions and associated scaling parameters. In Sec-
tion 5, we perform simulation studies to evaluate the finite sample performance
of the proposed methods. In Section 6, we analyze the Vertebral Column Data
[10] using the proposed BHCM. The paper ends with a discussion in Section 7.

Fig 1. A three-level hierarchical structure

2. Model formulation

We consider a three-level hierarchical structure as illustrated in Figure 1. The
single node at the top level represents the population level. The bottom level
is the subject level in which each node corresponds to the data from a subject.
The intermediate level contains m clusters to which the bottom-level subjects
belong. Let Uji = (Uji1, . . . , Ujid)

T be the vector of d features for the ith subject
in the jth cluster, where i = 1, . . . , nj , j = 1, . . . ,m, and nj is a positive integer
that may depend on j. Let Uj = (UT

j1, . . . , U
T
jnj

)T and U = (UT
1 , . . . , U

T
m)T. Let

ujik, uji, uj and u represent the observed counterparts of Ujik, Uji, Uj and U ,
respectively, for i = 1, . . . , nj , j = 1, . . . ,m, and k = 1, . . . , d.

The copula formulation is advantageous in its separation of modeling marginal
distributions and dependence structures, and much attention has been directed
to modeling the dependence structures with a standard treatment of marginal
distributions. Consistent with many authors [e.g., 1, 38, 39], we assume that
Ujik follows a uniform distribution on [0, 1] marginally and focus on dependence
modeling of the subject-level data Uji using copula-based models. In Section 2.1,
we first use a copula-based approach to model the dependence structure among
the d features of each subject and allow different structures for different clus-
ters. In Section 2.2, we account for the hierarchical structure and continue our
discussion in the framework of Bayesian hierarchical models.
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2.1. Copula-based dependence models

According to [45], any joint cumulative distribution function (CDF) can be
written as a copula function of its univariate marginal CDFs. A copula function
on [0, 1]d, denoted by C, is defined as C(u1, . . . , ud) = P (U1 ≤ u1, . . . , Ud ≤ ud),
for uniformly distributed random variables U1, . . . , Ud on [0,1]. If the marginal
distributions are all continuous, the copula C always exists and is unique. Here
we assume that the joint distribution of d features in cluster j is governed by
a multivariate copula function Cj(uji1, . . . , ujid; θj), for i = 1, . . . , nj , where
θj = (θj1, . . . , θjpj )

T is the vector of parameters indexing the copula function
Cj , pj is the number of parameters, and j = 1, . . . ,m. Let θ = (θT

1 , . . . , θ
T
m)T

denote the vector of all copula parameters. Common choices of multivariate
copula Cj include multivariate Gaussian copula and multivariate t-copula from
the elliptical copula family [12], and multivariate Clayton, Frank and Gumbel
copulas from the Archimedean copula family [16, 17]. Copula functions in the
Archimedean family contain only one parameter, while those in the elliptical
family may contain multiple parameters. For j = 1, . . . ,m, let cj denote the
density function derived from Cj .

2.2. Bayesian hierarchical models

We construct a Bayesian hierarchical model to account for the 3-level hierarchi-
cal structure, illustrated in Figure 1, through the following 3-stage specifications
of prior and hyperprior distributions [23, 33]. The first stage of the hierarchical
model facilitates the vector Uji = (Uji1, . . . , Ujid)

T by a copula-based depen-
dence model as described in Section 2.1, where θj is of dimension pj . As we
allow the dependence structures to be distinct and governed by different cop-
ula functions across clusters, the association parameters θj may have different
ranges for j = 1, . . . ,m. Before we specify a prior distribution for θj , we map
each component θjl of θj to R or an interval on R through a proper transforma-
tion. When an explicit expression of Kendall’s τ is available, a natural way of
reparameterizing the parameters θjl is to invoke the Kendall’s τ , together with
the Fisher z-transformation [42]. However, transformations based on Kendall’s τ
are not always feasible, especially for copulas indexed with two or more param-
eters. For example, for a bivariate t-copula indexed by a correlation coefficient
and a degree of freedom, the Kendall’s τ relates to the correlation coefficient but
has nothing to do with the degree of freedom. On the other hand, for bivariate
copulas in the BB family [27, 29], which are indexed by two parameters, the
Kendall’s τ can be written as a function of the two parameters but it cannot
be in one-to-one relation with the two copula parameters. Therefore, we cannot
make inference about the copula parameters by modeling Kendall’s τ and then
transforming it back to the copula parameters. In the development here, we take
an alternative by writing γjl = αjlgjl(θjl) for l = 1, . . . , pj and j = 1, . . . ,m,
where αjl is a non-zero scaling parameter, whose inclusion allows us to quantify
different variabilities across clusters, and g(·) is a monotonic function mapping
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the parameter space, A, of the dependence parameter θ, to R or an interval on
R.

The form of the transformation functions and the rationale behind rescaling
are discussed in details in Section 4. Let γj = (γj1, . . . , γjpj )

T denote the vector
of transformed and scaled dependence parameters in cluster j, and let γ =
(γT

1 , . . . , γ
T
m)T.

At the second stage of the hierarchical model, we specify the prior distribution
for the parameters γjl as

γjl|(μjl, σjl) ∼ N(μjl, σ
2
jl), (2.1)

where μjl and σjl indicate the cluster location and variability of γjl, respectively,
for l = 1, . . . , pj and j = 1, . . . ,m. Let μj = (μj1, . . . , μjpj )

T be the vector of
mean parameters, let σj = (σj1, . . . , σjpj )

T be the vector of standard deviations
(s.d.) of the jth cluster, and let μ = (μT

1 , . . . , μ
T
m)T and σ = (σT

1 , . . . , σ
T
m)T. We

further specify the prior distributions for cluster-level location parameters μjl

as

μjl|(ϕl, δl) ∼ N(ϕl, δ
2
l ), (2.2)

and the hyperprior distributions for the cluster-level variability parameters σjl

as

σjl ∼ πσ,

for l = 1, . . . , pj and j = 1, . . . ,m, where ϕl and δl indicate the population
location and variability of μjl, respectively, and πσ is the prior distribution of
σjl.

Let ϕ = (ϕ1, . . . , ϕp∗)T and δ = (δ1, . . . , δp∗)T, where p∗ = max(p1, . . . , pm).
This stage characterizes the cluster-level parameters, which corresponds to the
intermediate level of the hierarchical structure in Figure 1.

At the third stage, we specify the hyperprior distribution for the population-
level parameters ϕ and δ as

ϕl ∼ πϕ and δl ∼ πδ, (2.3)

for l = 1, . . . , p∗, where πϕ and πδ are prior distributions for ϕl and δl, respec-
tively.

Combining (2.1) and (2.2) gives

γjl|(ϕl, δl, σjl) ∼ N(ϕl, σ
2
jl + δ2l ), (2.4)

for l = 1, . . . , pj and j = 1, . . . ,m, where the variance of γjl includes the within-
cluster variability σ2

jl and between-cluster variability δ2l .
For the parameters (ϕT, δT)T at the population level and σj at the cluster

level, we select a weak-informative prior, such as an inverse Gamma distribu-
tion, Inverse Gamma(ε, ε), with a small ε, or a non-informative prior (e.g., an
improper uniform prior [26]). For the construction of the Bayesian hierarchical
model, we assume exchangeability for all levels of specification.
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3. Bayesian inference

Here we aim to make Bayesian inferences about the vector of the dependence
parameters θ = (θT

1 , . . . , θ
T
m)T. Since we have worked with the transformed and

scaled dependence parameters γ in Section 2.2, we will continue our discussion
in terms of γ and transform them back to their original scale θ. We first consider
the posterior distribution of γ

f(γ|u) ∝ f(u|γ)f(γ),

where f(u|γ) stands for the copula density function with the data u and the
transformed parameters γ specified as in Section 2.1, and f(γ) is the prior
distribution of γ, given in Section 2.2. The distribution of f(γ) can be obtained
by integrating the joint distribution of f(γ, σ, ϕ, δ) with respect to σ, ϕ and δ,
where f(γ, σ, ϕ, δ) is determined by f(γ|σ, ϕ, δ)π(σ)π(ϕ)π(δ). This calculation
involves the integrals of dimension

∑m
j=1 pj + 2p∗, which is generally difficult

to implement. To overcome this difficulty, we employ an alternative strategy
by sampling from the joint posterior distribution f(γ, σ, ϕ, δ|u). The posterior
distributions that are used in the sampling algorithm is provided in Section 3.1
and the sampling algorithm is introduced in Section 3.2.

3.1. Posterior distributions

We start with the joint posterior distribution of (γT, σT, ϕT, δT)T,

f(γ, σ, ϕ, δ|u) ∝ f(u|γ)f(γ|σ, ϕ, δ)π(σ)π(ϕ)π(δ)

=

m∏
j=1

[ nj∏
i=1

cj(uji; γj)

pj∏
l=1

φ(γjl|ϕl, σ
2
jl + δ2l )

]
πσπϕπδ, (3.1)

where φ(·|a, b2) is the density function of the normal distribution with mean a
and variance b2.

The joint posterior distribution of (ϕT, δT, σT)T can be obtained by integrat-
ing (3.1) with respect to γ,

f(σ, ϕ, δ|u) =
∫

f(γ, σ, ϕ, δ|u)dγ

=

m∏
j=1

∫ nj∏
i=1

cj(uji; γj)

pj∏
l=1

φ(γjl|ϕl, σ
2
jl + δ2l )πσπϕπδdγj . (3.2)

As the integrand in (3.2) involves the product of various copula functions, the
resulting integral generally has no analytical form, and thus a numerical algo-
rithm, such as the Monte Carlo approach, is needed to numerically approximate
the posterior density. Details on the implementation of Monte Carlo method is
deferred to Section 5.1.
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Finally, the conditional posterior distribution of parameters γj , given all the
hyperprior parameters and γ(−j) = (γT

1 , . . . , γ
T
j−1, γ

T
j+1, . . . , γ

T
m), is of the form

f(γj |σ, ϕ, δ, γ(−j), u) = f(γj |σ, ϕ, δ, u)
∝ f(uj |γj)f(γj |ϕ, δ, σ)

=

nj∏
i=1

cj(uji; γj)

pj∏
l=1

φ(γjl|ϕl, σ
2
jl + δ2l ), (3.3)

where the first equality comes from that given (ϕT, δT, σT)T, γj is independent
of γ(−j).

3.2. Sampling scheme and Markov Chain Monte Carlo

To utilize the joint posterior distribution f(γ, σ, ϕ, δ|u) in (3.1), we let ζ =
(γT, σT, ϕT, δT)T denote the vector of all the parameters. The Metropolis-Hasting
(M-H) algorithm [34, 24] can be employed, in principle, to sample from f(ζ|u)
directly. In the instance with a high dimensional ζ, directly applying the M-H
algorithm to the joint posterior distribution (3.1) is challenging because it is not
always straightforward to choose an appropriate proposal density function and
to tune the parameters in the proposal density to get a good acceptance rate,
and therefore the M-H can be inefficient or not even converge. It is not feasible
to directly invoke the Gibbs sampler [15, 14] to sample from the joint posterior
distribution f(γ, σ, ϕ, δ|u) in (3.1) by iteratively sampling from the conditional
distributions f(σ, ϕ, δ|γ(t−1), u) and f(γ|σ(t), ϕ(t), δ(t), u), where γ(t), σ(t), ϕ(t)

and δ(t) represent the parameter samples in the tth iteration, since the condi-
tional distribution of the hyper-parameters does not depend on the data,

f(σ, ϕ, δ|γ(t−1), u) ∝ f(γ(t−1)|σ, ϕ, δ)πσπϕπδ.

To cope with the issue, we consider the following “layer by layer” sampling
procedure.

1. Sample hyperprior parameters (σT, ϕT, δT)T from the posterior distribu-
tion f(σ, ϕ, δ|u) in (3.2) using the M-H algorithm.

2. Calculate the sample means of the sampled vectors in Step 1 and let
them be the Bayesian estimates for σ, ϕ, and δ, denoted by σ̂, ϕ̂, and δ̂,
respectively.

3. Sample parameters γj from the conditional posterior distribution

f(γj |σ̂, ϕ̂, δ̂, u) in (3.3) with the Bayesian estimates of the hyperprior pa-
rameters obtained from Step 2 plugged in. Apply the M-H algorithm to
f(γj |σ̂, ϕ̂, δ̂, u) and repeat this step for j = 1, . . . ,m.

4. Transform γ
(t)
jl back to obtain θ

(t)
jl through a division by αjl and the inverse

transformation function g−1
jl (·), for l = 1, . . . , pj , j = 1, . . . ,m, and t =

1, . . . , N .
5. Compute the quantities of interest that are related to the parameters θjl,

such as the posterior mean.
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In Steps 1 and 3, we apply the random walk Metropolis algorithm, where the
proposal distribution is a multivariate normal distribution with the mean vector
determined by the sampled values from the previous iteration of the M-H algo-
rithm and the covariance matrix specified as a diagonal matrix with diagonal
elements tuned to achieve an acceptance rate for convergence of the sampling
algorithm. Besides normal distributions, other distributions can also be consid-
ered as proposal distributions. For variance parameters, σ and δ, a truncated
normal or a Gamma distributions can be good options as well [14]. If a range
[a, b] of each parameter can be determined beforehand, a truncated normal pro-
posal can stabilize performance of the sampling procedure when the dependence
is extremely strong. [42] and [43] contain some guidelines on determining the
ranges for copula parameters.

In situations where the dimension of the parameters (σT, ϕT, δT)T is high
and/or the convergence of the sampling algorithm is a concern, one may adopt
a Gibbs Sampler [15, 14] in Step 1 and further decompose the joint posterior
distribution (3.2) at the tth iteration as

f(σj |σ(t−1)
(−j) , ϕ(t−1), δ(t−1), u) = f(σj |ϕ(t−1), δ(t−1), u)

∝
∫ nj∏

i=1

cj(uji; γj)

pj∏
l=1

φ(γjl|ϕ(t−1)
l , σ2

jl + (δ
(t−1)
l )2)πσjπϕπδdγj

f(ϕ|σ(t), δ(t−1), u) ∝ f(σ(t), ϕ, δ(t−1)|u)
f(δ|σ(t), ϕ(t−1), u) ∝ f(σ(t), ϕ(t−1), δ|u),

(3.4)

where σ(−j) = (σT
1 , . . . , σ

T
j−1, σ

T
j+1, . . . , σ

T
m)T, for j = 1, . . . ,m. Instead of sam-

pling from the joint posterior (3.2), sampling from each of the conditional distri-
butions in (3.4) improves the sampling efficiency in the sense that it facilitates
a lower rejection rate yet a larger effective sample size. This gain is at the price
of increasing the computation time which is basically caused by the calculation
of the integration over γ.

While a large dimension of γ can considerably increase the computation time
of the sampling procedure, Step 3 of the sampling procedure does not require an
appreciable computation time, as the sampling from (3.3) is conducted within
each cluster j which does not involve any integration. Although most of the
computation time is required by Step 1 for the case with a large number of
parameters, applications of our sampling algorithm are still feasible, because the
most frequently-used copulas from the Archimedean and extreme-value families
contain one or two parameters; even for copulas from the elliptical family, such
as the Gaussian copula, which contain a high dimension of parameters, it is often
common to impose certain correlation structures to the copula to facilitate a
parsimonious model.

The evaluation of the posterior density distribution in (3.2) involves the in-
tegrals which generally do not have an analytically close form. To handle this
issue, we suggest to use the random walk Metropolis algorithm [20] instead of
the MCMC algorithms which require the gradient of the posterior distribution,
such as Langevin MCMC or Hamiltonian MC [40].
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Finally, we comment that standard Bayesian theory (e.g., [31], [8], [44] or
[14]) can be adapted to establish the asymptotic results, such as the consistency
and asymptotic normality, for the posterior distribution, provided regularity
conditions.

4. Transformation of the dependence parameters

4.1. Transformation function

In this subsection, we discuss the selection of the transformation function g(·),
which is a monotonic function mapping A to R or an interval on R, where
A is the parameter space for the dependence parameter θ. In Table 1, we give
examples of transformation functions for some commonly-used copula functions,
where L and U are the lower and upper bounds of A, respectively.

Table 1

Transformation Functions for Copula Parameters

A Example of Copula Function Tranformation Function

[L,U ] Gaussian Copula g(x) = log
(
x−L
U−x

)
[L,∞) Clayton Copula g(x) = log(x− L)
(−∞, U ] Rotated Clayton Copula g(x) = log(U − x)

(−∞,∞) \ {0} Frank Copula g(x) = x

For copula functions with an infinite range of parameters, we can impose
a certain finite range [L∗, U∗] and use the transformation function g(x) =
log

(
x−L∗

U∗−x

)
. For example, for the Frank copula, we may impose the range

[−100, 100] to cover the Kendall’s τ from -0.96 to 0.96. In the simulation section,
we compare the identity transformation function and the logit transformation
function with end points as [−100, 100] for the Frank copula.

4.2. Choice of scaling parameter

In this subsection, we discuss the choice of scaling parameter αjl. First, we define
γ∗
jl = gjl(θjl) as the dependence parameter mapped into R or an interval on R

without scaling and write γ∗ = (γ∗
j1, . . . , γ

∗
jpj

)T. Then the scaled and unscaled
parameters have the relationship γjl = αjlγ

∗
jl, for l = 1, . . . , pj and j = 1, . . . ,m.

We impose a normal prior on γjl in Section 2.2 in the form of

γjl ∼ N(μjl, σ
2
jl),

and further impose a normal prior on the cluster mean μjl as

μjl ∼ N(ϕl, δ
2
l ),

which is equivalent to imposing a normal prior on γ∗
jl of the form

γ∗
jl ∼ N

(
μjl

αjl
,
σ2
jl

α2
jl

)
,
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together with the prior distribution for the cluster mean

μjl

αjl
∼ N

(
ϕl

αjl
,
δ2l
α2
jl

)
.

As |αjl| gets larger, both the within-cluster and between-cluster variances as-
sumed in the prior distributions become smaller. In other words, as |αjl| in-
creases, we impose a stronger prior on γ∗

jl.
Next, we describe a method of choosing suitable values of the αjl. Suppose

that we obtain the maximum likelihood estimate (MLE) of γ∗
j , denoted γ̃∗

j , by
maximizing the likelihood function

L(γ∗
j |uj) =

nj∏
i=1

cj(uji|γ∗
j ).

The asymptotic covariance matrix of γ̃∗
j can be estimated by I−1(γ̃∗

j ), where
I(γ̃∗

j ) is the observed information matrix

I(γ̃∗
j ) = −

∂2 logL(γ∗
j |uj)

∂γ∗
j ∂γ

∗T
j

∣∣∣∣
γ∗
j =γ̃∗

j

.

Let ŝd(γ̃∗
jl) denote the estimated asymptotic standard deviation of γ̃∗

jl, which

is calculated as the square root of the lth diagonal element of I−1(γ̃∗
j ). By the

invariance property of MLE, the MLE of γjl = αjlγ
∗
jl, denoted γ̃jl, is αjlγ̃

∗
jl, and

its estimated asymptotic s.d. is ŝd(γ̃jl) = |αjl| ŝd(γ̃∗
jl). We aim to choose the αjl

such that the resultant 95% confidence intervals of the γ̃jl are of the same length,

say, L, for all l = 1, . . . , pj and j = 1, . . . ,m, where L = 2 × 1.96 × ŝd(γ̃jl) =

2× 1.96× |αjl| × ŝd(γ̃∗
jl). Therefore, we set

αjl =
L

3.92× ŝd(γ̃∗
jl)

× sign(γ̃∗
jl),

which has the same sign as γ̃∗
jl; αjl is the ratio of the target width of a 95%

confidence interval of γ̃jl to the width of the 95% confidence interval of γ̃∗
jl.

Consequently, the within-cluster mean can be approximated by

γ̃jl = αjlγ̃
∗
jl = sign(γ̃∗

jl)×
L

3.92× ŝd(γ̃∗
jl)

× γ̃∗
jl,

and the within-cluster s.d. can be approximated by

ŝd(γ̃jl) = |αjl| ŝd(γ̃∗
jl) =

L

3.92
, (4.1)

a constant value shared by all clusters. The population mean can be approxi-
mated by

γ̄l :=
1

m

m∑
j=1

γ̃jl =

m∑
j=1

sign(γ̃∗
jl)×

L

m× 3.92× ŝd(γ̃∗
jl)

× γ̃∗
jl, (4.2)
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and the between-cluster s.d. can be approximated by

1

m− 1

m∑
j=1

(γ̃jl − γ̄l)
2 =

1

m− 1

⎡⎣ m∑
j=1

α2
jl(γ̃

∗
jl)

2 −mγ̄2
jl

⎤⎦ . (4.3)

Scaling the transformed dependence parameters has the following effects.
First, it standardizes how much the observations of the subjects within the same
cluster vary from the cluster mean. As we derive in (4.1), all clusters share the
same within-cluster s.d.. Secondly, the population mean in (4.2) can be viewed as
a weighted average of the unscaled γ∗

jl’s. If a cluster has a larger within-cluster
variability in terms of γ∗

jl, a smaller weight is often assigned to this cluster
(see Appendix A for a detailed discussion). Therefore, the population mean
will be less affected by the clusters with large variabilities and then becomes
more stable. The same argument applies to the calculation of between-cluster
variance in (4.3). Thirdly, the term sign(γ̃∗

jl) in αjl ensures the positivity of the
estimates of scaled parameters, which reduces the between-cluster variability.
Based on the simulation results in Section 5, we suggest to use L = 4 as “a rule
of thumb” to avoid an overwhelmingly strong or weak prior distribution.

5. Simulation studies

In this section, we conduct simulation studies to examine the finite sample
performance of the Bayesian estimators of the dependence parameter θ under
the proposed BHCM; the examination is taken in contrast to the performance
of the likelihood-based estimators, which are used conventionally for estimating
the parameters of copula models. Though the interpretation for the Bayesian
and the likelihood estimators is not the same, such comparisons can shed lights
on the performance of our proposed BHCM, because with non-informative priors
for the parameters θ, the Bayesian estimators would be numerically close to the
likelihood estimators.

5.1. Simulation settings

We consider a three-level hierarchical structure with m = 4 clusters at the
intermediate level, and the sample size is taken as n = 200 or 400. A vine cop-
ula structure [3, 1] is utilized to simulate dependent hierarchical data. While
various dependence structures can be obtained by choosing different types of
vines, changing the order of the nodes in the vine structure, and adopting dif-
ferent bivariate copulas on different levels of the vine structure, here we generate
data from a D-Vine copula structure as illustrated in Figure 2, where the bi-
variate copulas in the vine structure higher than level 1 are all assumed to be
independent. In Figure 2, the dependence strength between Uji1 and Uji2 is of
interest. The bivariate copula between U1i2 and U2i1 is the connecting structure
between clusters 1 and 2. Similarly, C(u2i2, u3i1) connects clusters 2 and 3, and
C(u3i2, u4i1) connects clusters 3 and 4.
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We consider five simulation settings. The copula forms and the parameter
values are summarized in Table 2. Settings 1 and 2 have the same copula forms
for different clusters, and Settings 3, 4 and 5 allow different dependence struc-
tures. In Settings 1 and 3, the difference between the strength of dependence is
moderate across clusters, while the difference is more obvious in Settings 2, 4
and 5. To demonstrate the capability of our proposed BHCM in handling the
setting with multiple copula parameters, in Setting 5, we further consider copu-
las with a single parameter in clusters 1 and 2, and copulas with two parameters
in clusters 3 and 4. A moderate dependence between clusters is introduced in
all settings and the linking copulas are set to be Gaussian(0.71).

Fig 2. The top level of a D-Vine structure

Table 2

Simulation Settings: Copula Forms and Parameters

Setting 1 τ1 Setting 2 τ Setting 3 τ Setting4 τ Setting5 τ
Cluster 1 Clayton(1.33) 0.40 Clayton(1.33) 0.40 Clayton(3.00) 0.60 Clayton(3.00) 0.60 Gumbel(2.50) 0.60
Cluster 2 Clayton(1.64) 0.45 Clayton(2.00) 0.50 Gumbel(2.50) 0.60 Gumbel(4.00) 0.75 Joe(2.50) 0.45
Cluster 3 Clayton(2.00) 0.50 Clayton(3.00) 0.60 Gaussian(0.81) 0.60 Gaussian(0.60) 0.41 BB1(5.00,3.00)2 0.90
Cluster 4 Clayton(2.44) 0.55 Clayton(4.67) 0.70 Frank(7.93) 0.60 Frank(13.00) 0.73 BB7(3.00,5.00)3 0.73

Between-cluster Gaussian(0.71) 0.50 Gaussian(0.71) 0.50 Gaussian(0.71) 0.50 Gaussian(0.71) 0.50 Gaussian(0.71) 0.50
1 Kendall’s τ
2 Clayton-Gumbel Copula
3 Joe-Clayton Copula

We construct the following BHCM. For i = 1, . . . , n, j = 1, 2, 3, 4 and l = 1, 2
(for setting 5), assume that

Uji = (Uji1, Uji2) ∼ Cj(uji1, uji2; θj)

γjl = αjlgjl(θjl),

γjl|μjl, σjl ∼ N(μjl, σ
2
jl),

μjl|ϕl, δl ∼ N(ϕl, δ
2
l ),

and all the hyperprior parameters have non-informative uniform priors. Sam-
pling N = 6000 from the posterior distribution and setting the Normal den-
sity with mean ζ(t−1) and variance as the stepsize as the proposal density
q(ζ ′|ζ(t−1)), we use the M-H algorithm and the layer-by-layer sampling strategy
described in Section 3.2 to sample θ. The posterior sample mean is used as the
point Bayesian estimators for the parameters. In comparison, we also obtain the
MLE of θ by maximizing the likelihood function

L(θ) =

n∏
i=1

[ 4∏
j=1

cj(uji1, uji2; θj)×
3∏

k=1

ck,k+1(uki2, uk+1,i1)

]
,

where cj is the copula density governing the subject-dependence within cluster
j for j = 1, . . . , 4, and ck,k+1 denotes the copula densities that connect between
clusters for k = 1, 2, 3.
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While the sampling algorithm is implemented on the R platform, we handle
the integrals in the posterior distribution (3.2) by employing C++ through
Monte Carlo approximations of size 15000, which is computationally fast yet
the resulting approximation is fairly accurate. Simulations are repeated 200
times for each setting.

5.2. Evaluation metrics

We use the following metrics to evaluate the Bayesian estimators and MLEs.

1. Empirical Bias (EBias): The EBias is calculated as the average of the point
estimates obtained from 200 simulations subtracting the true parameter
values.

2. Empirical Standard Error (ESE): The sample standard deviation of the
200 estimates.

3. Asymptotic Standard Error (ASE): The average of the estimated asymp-
totic standard deviations obtained from the 200 simulations. The esti-
mated asymptotic s.d. for a Bayesian estimator is calculated as the sample
s.d. of the sampled sequence, and that of a maximum likelihood estimator
is calculated from the inversion of the observed information matrix.

4. 95% Interval : Left and right endpoints of an equal-tailed 95% Bayesian
credible interval are computed as the 2.5th percentile and the 97.5th per-
centile of a sampled sequence, respectively. A 95% confidence interval for
the MLE is computed by MLE±1.96×the estimated asymptotic s.d.. A
95% interval is computed by averaging the left and right endpoints of 200
simulations [6].

5. Empirical Coverage Probability (ECP): ECP is the percentage of the 95%
credible intervals or 95% confidence intervals that contain the true value
of the parameter out of 200 simulations.

5.3. Simulation results

We summarize the simulation results for Setting 5 in Table 3, and those for
Settings 1-4 in Tables 7-10 in the Appendix.

The findings for all the settings reveal consistent patterns, as commented
below. We tune L, the target length of a 95% confidence interval of γ̃jl, to be 1,
4, 10 and 20 for comparison (results for L = 1 and 10 not shown). For the point
estimates of the copula parameters under all simulation settings, the EBias of
estimates obtained from the proposed BHCM are compatible with or smaller
than those from the likelihood-based estimates. The Bayesian estimators with
L = 1 have similar ESE’s and ASE’s to those of the likelihood-based estimates;
the standard error of the Bayesian estimators gets smaller, as L gets larger. For
interval estimates of the copula parameters, 95% Bayesian credible intervals of
the proposed BHCM are shorter than the likelihood-based 95% intervals when
L is set to be 4, 10 or 20. When L is set to be a large number, there are
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Table 3

Simulation Results for Setting 5

n=200 n=400
Cluster Copula Parameter L Ebias ESE ASE 95% interval ECP Ebias ESE ASE 95% interval ECP

Bayesian Estimation
1 Gumbel 2.5 4 0.020 0.150 0.133 (2.264,2.789) 0.940 0.003 0.093 0.095 (2.321,2.694) 0.950
2 Joe 2.5 4 -0.029 0.166 0.158 (2.172,2.795) 0.950 -0.024 0.118 0.111 (2.263,2.701) 0.940

3 BB1
5.0 4 0.111 0.617 0.478 (4.116,5.998) 0.920 -0.141 0.383 0.316 (4.227,5.474) 0.925
3.0 4 0.083 0.247 0.270 (2.552,3.617) 0.970 0.021 0.172 0.171 (2.689,3.364) 0.960

4 BB7
3.0 4 0.005 0.279 0.253 (2.551,3.550) 0.940 0.043 0.232 0.185 (2.717,3.403) 0.905
5.0 4 0.038 0.486 0.497 4.079,6.036) 0.970 0.021 0.364 0.347 (4.359,5.727) 0.940

1 Gumbel 2.5 20 -0.037 0.176 0.113 (2.249,2.694) 0.820 -0.015 0.087 0.072 (2.346,2.631) 0.870
2 Joe 2.5 20 -0.075 0.191 0.133 (2.175,2.699) 0.845 -0.013 0.111 0.090 (2.315,2.669) 0.910

3 BB1
5.0 20 0.091 0.835 0.407 (4.207,5.811) 0.765 -0.152 0.321 0.218 (4.401,5.262) 0.820
3.0 20 0.048 0.233 0.208 (2.647,3.469) 0.890 0.021 0.109 0.083 (2.860,3.188) 0.900

4 BB7
3.0 20 0.042 0.442 0.228 (2.632,3.529) 0.780 0.113 0.198 0.126 (2.872,3.369) 0.810
5.0 20 0.051 0.470 0.451 (4.178,5.956) 0.950 0.053 0.322 0.250 (4.565,5.552) 0.920

Maximum Likelihood Estimation
1 Gumbel 2.5 - 0.024 0.141 0.147 (2.236,2.812) 0.960 0.020 0.106 0.104 (2.317,2.723) 0.950
2 Joe 2.5 - 0.036 0.169 0.178 (2.187,2.885) 0.960 0.030 0.126 0.131 (2.284,2.776) 0.940

3 BB1
5.0 - -0.373 0.541 0.863 (2.936,6.318) 0.940 -0.289 0.448 0.627 (3.483,5.940) 0.930
3.0 - 0.234 0.365 0.472 (2.309,4.159) 0.960 0.178 0.300 0.332 2.527,3.830) 0.930

4 BB7
3.0 - 0.060 0.285 0.296 (2.479,3.640) 0.930 0.062 0.252 0.209 (2.654,3.471) 0.910
5.0 - 0.072 0.520 0.547 (4.005,6.149) 0.980 0.060 0.389 0.384 (4.308,5.812) 0.920

unignorable gaps between the ESE’s and ASE’s, and ECP deviates from the
95% nominal level. This is attributed to the strong prior imposed on γ∗

jl as we
discussed in Section 4.2, so that the posterior distribution is highly peaked and
deviated from the normal distribution. We recommend against choosing L to
be too small (close to 1) or too large (greater than 10). The former imposes a
weak prior and leads to results similar to maximum likelihood estimates, and
the latter imposes a too strong prior and leads to an underestimated standard
deviation and a possibly inflated bias.

As the sample size increases from 200 to 400, both the proposed BHCM
and MLE provide estimates with smaller biases, a better agreement between
ESE’s and ASE’s, and the coverage rates closer to the 95% nominal level. The
improvement in the standard error of the BHCM estimates, compared to the
likelihood-based estimates, is reduced, since Bayesian estimation tends to per-
form better with a smaller sample size and the two estimation methods have
the same limiting distribution, which, therefore, has similar performance as the
sample size gets larger. The gaps between ESE’s and ASE’s of Bayesian esti-
mates with a large L are getting closer as the sample size increases, showing
that the posterior distributions get closer to normality with a larger sample.

For the Frank copula with the range (−∞,∞)\{0} in Settings 3 and 4, we
report the results of two different choices of transformation functions in Tables 9
and 10 in Appendix, respectively. The identity transformation function g(θ) =
θ performs poorly with a small sample size, compared to the transformation
function g(θ) = log( 100+θ

100−θ ). As the sample size increases from 200 to 400, the
two transformation functions seem to work equally well.

Above all, with L = 4 across all settings, the BHCM provides reasonable
point estimates and interval estimates of copula parameters, and smaller EBias
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and shorter 95% intervals than those from the maximum likelihood method. The
benefit of using the BHCM is more obvious if the clusters share more similarity
in the subject-level dependence structures (e.g., Setting 1). The BHCM exhibits
the capability of handling settings with copula structures containing both one-
and two-parameter copulas and large differences in dependence strength.

For the BHCM with L = 4 in Setting 5, we also report the sample trace plots
and sample density plots for the results of the mean parameters ϕl and μjl and
those for the copula parameters θjl for j = 1, 2, 3, 4 and l = 1, 2, respectively,
in Figures 3 and 4. In all the sample trace plots, the samples of the mean
parameters and the copula parameters vary closely around the posterior mean,
and the sample densities are all close to a bell shape, indicating the convergence
of the M-H algorithm.

6. Data analysis

We now apply the proposed BHCM to analyze the Vertebral Column dataset
from the UCI Machine Learning Repository (http://archive.ics.uci.edu/
ml/datasets/vertebral+column). This is a biomedical dataset collected by
Dr. Henrique da Mota during a medical residence at Lyon, France. The dataset
contains biomedical features of 60 patients with disk hernia, 150 patients with
spondylolisthesis and 100 healthy volunteers. The three groups of people are
labeled as j = 1, 2, 3, respectively. The biomechanical features include angle of
pelvic incidence (PI), angle of pelvic tilt (PT), lumbar lordosis angle (LL), sacral
slope (SS), pelvic radius (PR), and degree of spondylolisthesis (DS), which are
labeled as k = 1, 2, 3, 4, 5 and 6, respectively. For j = 1, 2, 3, i = 1, . . . , nj , and
k = 1, 2, 3, 4, 5, let Yijk denote the kth biomedical features of the ith subject
from the jth group of people, where n1 = 60, n2 = 150, and n3 = 100.

In medical research, PR describes the pelvic lordosis angle, and PI, PT and SS

describe the shape and orientation of the pelvis. They represent two different
approaches to characterize the pelvis. For the latter one, PI is defined as “the
angle between a line perpendicular to the sacral plate and a line joining the
sacral plate to the axis of the femoral heads” and is the arithmetic summation
of PT and SS [4]. We are interested in examining the dependence of PI versus PT
and of PI versus SS. DS is the degree of slipping and can take negative values.
We are interested in understanding its association with the characteristics of
pelvis including PI, PT and PR, and that of lumbar LL.

6.1. Marginal model

The histograms of the six biomedical features in three groups are displayed in
Figure 5 in Appendix C.1, all showing uni-modal but possibly skewed distri-
butions. As a result, we use a generalized skewed-t distribution to model the
marginal distributions of the features to account for the possible skewness.

The estimates of the marginal parameters are obtained by maximizing the
marginal likelihood function, and the results are summarized in Table 11 in Ap-
pendix C. The six biomedical features are transformed to copula data ujik ∈

http://archive.ics.uci.edu/ml/datasets/vertebral+column
http://archive.ics.uci.edu/ml/datasets/vertebral+column
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Fig 3. Sample trace plots and sample density plots of mean parameters ϕl and μjl for j =
1, 2, 3, 4 and l = 1, 2 of the BHCM with L = 4 in Setting 5
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Fig 4. Sample trace plots and sample density plots of copula parameters θjl for j = 1, 2, 3, 4
and l = 1, 2 of the BHCM with L = 4 in Setting 5

[0, 1] by applying the fitted marginal CDF to the observed values of the corre-
sponding feature. Let Ujik denote the transformed uniformed random variable
for the kth feature of the ith subject in group j for j = 1, 2, 3, i = 1, . . . , nj and
k = 1, . . . , 6.

6.2. Dependence model

We are interested in studying the dependence between the following 6 pairs of
variables: PI versus PT, PI versus SS, DS versus PI, DS versus PT, DS versus PR,
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and DS versus LL. The scatter plots for those pairs are displayed in Figure 6 in
Appendix C.2.

We construct a set of parametric copula functions, including the commonly-
used copulas in the Archimedean family (Clayton, Gumbel, Frank and Joe cop-
ulas), Gaussian copula and their rotated versions. The specific copula function
forms are selected based on the AIC criterion [2], which is conducted using
the BiCopSelect function in the R package VineCopula [43]. For each bivariate
feature, we construct a BHCM for the three groups of individuals.

For comparison, we consider two benchmark models. The first one is a mul-
tivariate copula model (MCopula), which takes the same marginal and depen-
dence models as the BHCM, i.e., the marginals are generalized skewed-t distri-
butions and copula models are selected using AIC as reported in Table 5. The
second one is a multivariate Gaussian model (MVN), in which the marginal
distributions are all specified as a Gaussian distribution and the copulas of
the interested six pairs are also specified as the Gaussian copula. The param-
eters in both benchmark models are estimated using the maximum likelihood
method.

6.3. Results

We compare the performance of the three models, BHCM, MCopula and MVN,
in terms of log-likelihood values and the Deviance Information Criterion (DIC)
[49], and summarize the results in Table 4. The BHCM has the smallest over-
all DIC, thus being the best to fit the data. For the clusters of patients with
Spondilolisthesis and being healthy, the marginal distributions of some features,
for instance, DS, are highly skewed as shown in Figure 5. MVN provides a poor
fit of the data, yielding the smallest log-likelihood and the largest DIC. For
the cluster of patients with Disk Hernia, the skewness in the marginal distribu-
tions is mild and most of the bivariate copulas selected are the Gaussian copula
as shown in Table 5. The BHCM and MCopula produce log-likelihood values
similar to that of MVN but smaller DIC than MVN does, which is partially
attributed to the fact that the BHCM and the MCopula are penalized by extra
parameters in their marginal generalized skewed-t distributions.

Table 4

Log-likelihood and DIC of three models for each cluster

Disk Hernia Spondilolisthesis Healthy Total
log-likelihood DIC log-likelihood DIC log-likelihood DIC log-likelihood DIC

BHCM -1209.79 2464.05 -3639.85 7322.6 -2060.90 4166.29 -6910.54 13952.96
MCopula -1209.90 2467.78 -3637.70 7323.46 -2062.70 4173.45 -6910.34 13964.68
MVN -1212.80 2461.66 -3686.70 7409.31 -2079.30 4194.61 -6978.79 14065.58

Tables 5 shows the point estimates and interval estimates under the proposed
BHCM with L = 4 together with the results obtained from the likelihood-based
method. Once the Frank copula selected, we use the logit transformation func-
tion, which leads to more stable results than the identity transformation function
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when the sample size is small. It is seen that PI has a positive dependence on
PT and SS, which aligns with the reports in the medical literature [4]. Across
different groups, the dependence strengths of PI versus PT and PI versus SS

show similar Kendall’s τ ranging from 0.4 to 0.6. The dependence between DS

and other pelvic and lumbar characteristics show an obvious distinction across
groups. For patients with disease disk hernia and healthy people, DS has a weak
dependence on other four features. However, for patients with Spondylolisthesis,
DS has a much stronger positive dependence on the four features.

The BHCM with L = 4 produces similar point estimates to those obtained
from the likelihood-based method, but smaller standard errors. 95% credible
interval of the BHCM with L = 4 are narrower than 95% confidence intervals
obtained from the likelihood-based method. For the cluster of patients with
Spondilolisthesis, the DS feature is highly right-skewed as shown in Figure 5,
thus the MVN model fails to fit the data well.

7. Discussion

In this paper, we propose a Bayesian hierarchical copula model to characterize
the subject-level dependence for data with a hierarchical association structure.
The model is flexible to account for data coming from multiple sources with dif-
ferent sample sizes. We use a “layer-by-layer” sampling scheme, combined with
the Metropolis-Hasting algorithm, to sample from the posterior distribution.
Simulation studies and data analysis are conducted to compare the estimators
obtained from our proposed BHCM to the likelihood-based estimators. The re-
sults show that the BHCM outperforms the maximum likelihood methods when
the sample size is small. The proposed model captures the between-cluster vari-
ability and facilitate the information shared across clusters through delineating
the hierarchical structures.

In forming the copula models here, the marginal distributions are assumed
to be uniform over the unit interval [0, 1]. However, this assumption is not
essential. Other parametric models, such as the normal distribution and gener-
alized skewed-t distribution, can be considered to reflect various data features.
Furthermore, nonparametric models can also be considered as robust alterna-
tives. It is interesting to extend the proposed method to accommodate these
settings.

We comment that our BHCM differs from the Hierarchical Archimedean Cop-
ula (HAC) proposed by [38]. Since an Archimedean copula function can be de-
fined through the generator function of the copula [e.g., 36], an HAC is built
by applying the generator function to a lower level HAC in a recursive man-
ner. An HAC overcomes some disadvantages of a regular Archimedean copula.
However, it is not designed to handle a hierarchical structure as the one in Fig-
ure 1. Though our proposed BHCM does not necessarily feature an HAC as the
fundamental building block, our proposed framework is general enough to cover
the structures that the HAC can handle.

The proposed method invokes different regularization on the estimation of
the copula parameters by the tuning parameter L and the estimates of the
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Table 5. Copula Functions and Estimates for Six Interested Dependence of Three Health Groups

BHCM with L = 4 MCopula MVN
Group Dependence Relations Copula Estimates s.d. 95% Interval Estimates s.d. 95% Interval Copula Estimates s.d. 95% Interval

Disk Hernia

PI v.s. PT Gaussian 0.696 0.046 (0.599,0.775) 0.694 0.055 (0.586,0.801) Gaussian 0.710 0.052 (0.608,0.812)
PI v.s. SS Gaussian 0.726 0.040 (0.633,0.793) 0.766 0.042 (0.683,0.849) Gaussian 0.756 0.044 (0.670,0.842)
DS v.s. PI Gaussian 0.161 0.098 (-0.031,0.339) 0.150 0.125 (-0.095,0.395) Gaussian 0.144 0.125 (-0.101,0.389)
DS v.s. PT Frank -0.511 0.577 (-1.489,0.522) -0.226 0.753 (-1.702,1.250) Gaussian 0.044 0.129 (-0.209,0.297)
DS v.s. LL Gaussian 0.244 0.103 (0.031,0.435) 0.246 0.118 (0.015,0.477) Gaussian 0.231 0.119 (-0.002,0.464)
DS v.s. PR Gaussian -0.055 0.113 (-0.263,0.175) -0.060 0.128 (-0.312,0.191) Gaussian -0.051 0.129 (-0.304,0.202)

Spondilolisthesis

PI v.s. PT Frank 5.718 0.505 (0.599,0.775) 5.594 0.622 (4.375,6.814) Gaussian 0.601 - -
PI v.s. SS Gumbel 1.729 0.099 (1.554,1.943) 1.736 0.113 (1.515,1.958) Gaussian 0.665 - -
DS v.s. PI Frank 3.427 0.431 (2.552,4.245) 3.453 0.535 (2.404,4.502) Gaussian 0.533 - -
DS v.s. PT S Clayton1 0.887 0.143 (0.608,1.174) 0.905 0.153 (0.605,1.206) Gaussian 0.439 - -
DS v.s. LL Frank 3.230 0.426 (2.437,4.104) 3.155 0.527 (2.121,4.189) Gaussian 0.324 - -
DS v.s. PR Joe 1.466 0.115 (1.265,1.698) 1.481 0.123 (1.239,1.723) Gaussian 0.329 - -

Healthy

PI v.s. PT Gaussian 0.633 0.038 (0.555,0.699) 0.636 0.051 (0.537,0.735) Gaussian 0.634 0.051 (0.534,0.734)
PI v.s. SS Gumbel 2.574 0.178 (2.239,2.910) 2.599 0.214 (2.179,3.018) Gaussian 0.839 0.023 (0.794,0.884)
DS v.s. PI Frank 1.822 0.430 (0.936,2.632) 1.714 0.628 (0.483,2.945) Gaussian 0.200 0.094 (0.016,0.384)
DS v.s. PT Gaussian 0.242 0.080 (0.085,0.401) 0.244 0.091 (0.065,0.423) Gaussian 0.182 0.095 (-0.004,0.368)
DS v.s. LL Frank 1.409 0.570 (0.335,2.538) 1.511 0.600 (0.334,2.687) Gaussian 0.261 0.090 (0.085,0.437)
DS v.s. PR Gaussian -0.111 0.093 (-0.289,0.065) -0.107 0.098 (-0.299,0.086) Gaussian -0.058 0.099 (-0.252,0.136)

1 Survival Clayton Copula
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hyperprior parameters σ̂, ϕ̂, and δ̂. While the hyperprior parameters bring in
information “borrowed” from other clusters, the tuning parameter L controls the
strength that the hyperprior parameters can influence the copula parameters,
as discussed in Section 4 and shown in Section 5.

Finally, we comment that the BHCM model does not have to be restricted
to existing forms of multivariate copulas but takes the advantage of flexible
vine copulas to formulate the subject-level multivariate dependence structures.
Considering different vine structures and copula selection strategies for each
bivariate component, one may develop the vine-copula-based BHCM, which can
be an interesting topic to be explored in depth. One challenge that may hinder
the inference about the vine-copula-based BHCM concerns the high dimension
of the posterior density, and developing more efficient sampling algorithms is
generally required.
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Table 6

Empirical standard error of the MLE of transformed dependence parameter under various
copula functions

Kendall’s
τ

Clayton Gumbel Joe Gaussian Frank Frank†

n = 200 n = 400 n = 200 n = 400 n = 200 n = 400 n = 200 n = 400 n = 200 n = 400 n = 200 n = 400
0.1 0.590 0.348 0.844 0.413 0.632 0.347 0.142 0.103 0.431 0.307 0.009 0.006
0.2 0.229 0.160 0.291 0.197 0.262 0.175 0.137 0.098 0.436 0.311 0.009 0.006
0.3 0.152 0.108 0.192 0.134 0.177 0.121 0.130 0.093 0.453 0.324 0.009 0.007
0.4 0.118 0.083 0.146 0.103 0.136 0.093 0.123 0.087 0.487 0.350 0.010 0.007
0.5 0.098 0.069 0.119 0.084 0.111 0.076 0.116 0.083 0.548 0.395 0.011 0.008
0.6 0.085 0.061 0.101 0.071 0.096 0.066 0.110 0.079 0.651 0.471 0.013 0.009
0.7 0.076 0.054 0.087 0.061 0.085 0.059 0.106 0.076 0.837 0.604 0.017 0.012
0.8 0.069 0.050 0.077 0.054 0.076 0.053 0.104 0.074 1.225 0.883 0.025 0.018
0.9 0.064 0.046 0.069 0.048 0.068 0.048 0.101 0.073 2.429 1.730 0.057 0.041

† Using transformation function g(x) = α log( x+100
100−x

)

Appendix B: Additional simulation results

Table 7

Simulation Results for Setting 1

Cluster Copula L
n = 200 n = 400

EBias ESE ASE 95% Interval ECP EBias ESE ASE 95% Interval ECP
Bayesian Estimation

1 Clayton(1.33) 4 -0.001 0.125 0.127 (1.091,1.589) 0.950 -0.009 0.073 0.089 (1.154,1.503) 0.960
2 Clayton(1.64) 4 -0.002 0.140 0.157 (1.335,1.949) 0.970 -0.015 0.103 0.109 (1.413,1.839) 0.950
3 Clayton(2.00) 4 0.009 0.170 0.181 (1.665,2.373) 0.970 0.001 0.121 0.127 (1.756,2.253) 0.955
4 Clayton(2.44) 4 0.023 0.198 0.203 (2.081,2.876) 0.930 -0.010 0.155 0.145 (2.155,2.724) 0.940

1 Clayton(1.33) 20 0.039 0.070 0.058 (1.245,1.474) 0.850 0.013 0.044 0.037 (1.275,1.420) 0.905
2 Clayton(1.64) 20 -0.005 0.108 0.106 (1.432,1.848) 0.910 -0.014 0.085 0.070 (1.489,1.762) 0.890
3 Clayton(2.00) 20 0.003 0.150 0.147 (1.729,2.303) 0.890 < 0.001 0.122 0.093 (1.820,2.185) 0.900
4 Clayton(2.44) 20 -0.024 0.172 0.181 (2.076,2.786) 0.865 -0.014 0.152 0.123 (2.197,2.680) 0.910

Maximum Likelihood Estimation
1 Clayton(1.33) - 0.021 0.147 0.158 (1.043,1.664) 0.970 -0.004 0.098 0.111 (1.112,1.547) 0.960
2 Clayton(1.64) - 0.023 0.165 0.176 (1.315,2.003) 0.955 -0.013 0.113 0.123 (1.382,1.864) 0.965
3 Clayton(2.00) - 0.012 0.191 0.196 (1.628,2.396) 0.965 0.006 0.127 0.139 (1.734,2.277) 0.945
4 Clayton(2.44) - 0.028 0.216 0.223 (2.035,2.908) 0.955 -0.007 0.155 0.156 (2.131,2.743) 0.950

Table 8

Simulation Results for Setting 2

Cluster Copula L
n = 200 n = 400

EBias ESE ASE 95% Interval ECP EBias ESE ASE 95% Interval ECP
Bayesian Estimation

1 Clayton(1.33) 4 0.020 0.147 0.150 (1.087,1.677) 0.940 -0.004 0.071 0.081 (1.174,1.490) 0.945
2 Clayton(2.00) 4 0.002 0.169 0.177 (1.665,2.358) 0.965 -0.012 0.115 0.127 (1.744,2.243) 0.960
3 Clayton(3.00) 4 -0.013 0.220 0.233 (2.543,3.456) 0.945 0.003 0.161 0.167 (2.682,3.337) 0.935
4 Clayton(4.67) 4 -0.041 0.346 0.319 (4.018,5.269) 0.945 -0.021 0.249 0.230 (4.203,5.104) 0.940

1 Clayton(1.33) 20 0.054 0.139 0.102 (1.195,1.595) 0.815 0.021 0.052 0.043 (1.265,1.403) 0.895
2 Clayton(2.00) 20 0.038 0.162 0.124 (1.806,2.260) 0.830 0.004 0.094 0.089 (1.834,2.183) 0.910
3 Clayton(3.00) 20 -0.047 0.204 0.178 (2.615,3.313) 0.845 -0.014 0.159 0.142 (2.721,3.279) 0.880
4 Clayton(4.67) 20 -0.071 0.338 0.283 (4.054,5.164) 0.810 -0.033 0.242 0.218 (4.216,5.069) 0.910

Maximum Likelihood Estimation
1 Clayton(1.33) - 0.017 0.148 0.158 (1.040,1.660) 0.965 -0.002 0.099 0.111 (1.113,1.548) 0.965
2 Clayton(2.00) - 0.009 0.191 0.196 (1.626,2.393) 0.950 -0.014 0.126 0.138 (1.716,2.256) 0.960
3 Clayton(3.00) - -0.010 0.232 0.253 (2.494,3.486) 0.950 0.004 0.168 0.179 (2.652,3.355) 0.955
4 Clayton(4.67) - -0.036 0.351 0.349 (3.947,5.316) 0.940 -0.019 0.253 0.248 (4.162,5.133) 0.940
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Table 9

Simulation Results for Setting 3

Cluster Copula L
n = 200 n = 400

EBias ESE ASE 95% Interval ECP EBias ESE ASE 95% Interval ECP
Bayesian Estimation

1 Clayton(3) 4 0.004 0.215 0.218 (2.587,3.444) 0.955 0.011 0.141 0.154 (2.705,3.307) 0.945
2 Gumbel(2.5) 4 -0.002 0.140 0.128 (2.253,2.755) 0.920 -0.004 0.075 0.093 (2.321,2.686) 0.915
3 Gaussian(0.81) 4 -0.001 0.018 0.017 (0.772,0.840) 0.955 < 0.001 0.009 0.012 (0.784,0.833) 0.940
4 Frank(7.93) 4 0.011 0.571 0.542 (6.886,9.010) 0.925 0.020 0.406 0.395 (7.148,8.696) 0.930

1 Clayton(3) 4 0.012 0.182 0.219 (2.591,3.449) 0.965 0.001 0.149 0.157 (2.701,3.315) 0.970
2 Gumbel(2.5) 4 -0.010 0.135 0.129 (2.247,2.752) 0.935 -0.002 0.101 0.093 (2.319,2.684) 0.905
3 Gaussian(0.81) 4 -0.001 0.017 0.017 (0.772,0.840) 0.940 < 0.001 0.012 0.012 (0.784,0.833) 0.950
4 Frank(7.93)† 4 0.035 0.570 0.550 (6.931,9.088) 0.955 -0.017 0.440 0.394 (7.143,8.689) 0.925

1 Clayton(3) 20 -0.011 0.155 0.120 (2.761,3.231) 0.850 0.003 0.105 0.079 (2.853,3.161) 0.875
2 Gumbel(2.5) 20 -0.018 0.140 0.088 (2.312,2.657) 0.835 -0.011 0.098 0.064 (2.368,2.618) 0.860
3 Gaussian(0.81) 20 < 0.001 0.016 0.012 (0.788,0.832) 0.845 0.001 0.010 0.008 (0.795,0.826) 0.855
4 Frank(7.93) 20 0.040 0.558 0.341 (7.296,8.633) 0.850 0.015 0.419 0.315 (7.317,8.543) 0.855

1 Clayton(3) 20 -0.010 0.158 0.130 (2.738,3.250) 0.875 -0.008 0.102 0.081 (2.831,3.149) 0.905
2 Gumbel(2.5) 20 -0.014 0.136 0.100 (2.292,2.686) 0.850 -0.010 0.094 0.064 (2.360,2.610) 0.870
3 Gaussian(0.81) 20 0.001 0.015 0.013 (0.784,0.835) 0.845 0.001 0.011 0.008 (0.796,0.828) 0.855
4 Frank(7.93)† 20 0.024 0.549 0.321 (7.325,8.583) 0.820 -0.009 0.404 0.312 (7.318,8.542) 0.860

Maximum Likelihood Estimation
1 Clayton(3) - 0.013 0.253 0.254 (2.515,3.511) 0.955 < 0.001 0.164 0.179 (2.649,3.351) 0.965
2 Gumbel(2.5) - -0.004 0.147 0.145 (2.211,2.781) 0.940 -0.003 0.105 0.103 (2.296,2.699) 0.920
3 Gaussian(0.81) - -0.001 0.019 0.019 (0.772,0.846) 0.960 < 0.001 0.013 0.013 (0.784,0.836) 0.950
4 Frank(7.93) - -0.016 0.643 0.643 (6.653,9.715) 0.960 -0.046 0.456 0.454 (6.995,8.774) 0.930

(†) Using transformation function g(θ) = log
(

θ+100
100−θ

)

Table 10

Simulation Results for Setting 4

Cluster Copula L
n = 200 n = 400

EBias ESE ASE 95% Interval ECP EBias ESE ASE 95% Interval ECP
Bayesian Estimation

1 Clayton(3) 4 0.015 0.224 0.229 (2.577,3.477) 0.955 0.012 0.160 0.164 (2.697,3.341) 0.950
2 Gumbel(4) 4 0.018 0.220 0.215 (3.609,4.452) 0.940 -0.021 0.151 0.153 (3.684,4.285) 0.940
3 Gaussian(0.6) 4 -0.006 0.034 0.035 (0.520,0.658) 0.950 -0.004 0.026 0.026 (0.543,0.643) 0.945
4 Frank(13) 4 0.016 0.865 0.804 (11.472,14.623) 0.940 0.087 0.651 0.613 (11.899,14.300) 0.930

1 Clayton(3) 4 0.021 0.225 0.227 (2.589,3.480) 0.955 0.012 0.162 0.163 (2.700,3.339) 0.965
2 Gumbel(4) 4 0.023 0.219 0.212 (3.620,4.450) 0.940 -0.022 0.151 0.152 (3.686,4.280) 0.940
3 Gaussian(0.6) 4 -0.006 0.035 0.035 (0.519,0.658) 0.945 -0.003 0.026 0.025 (0.545,0.643) 0.960
4 Frank(13)† 4 -0.010 0.856 0.786 (11.469,14.551) 0.930 0.090 0.651 0.577 (11.973,14.236) 0.920

1 Clayton(3) 20 0.008 0.189 0.165 (2.697,3.344) 0.905 0.003 0.135 0.116 (2.780,3.234) 0.925
2 Gumbel(4) 20 0.009 0.190 0.157 (3.710,4.327) 0.895 -0.020 0.131 0.117 (3.749,4.208) 0.900
3 Gaussian(0.6) 20 < 0.001 0.028 0.023 (0.552,0.643) 0.835 -0.003 0.021 0.017 (0.562,0.629) 0.895
4 Frank(13) 20 0.009 0.876 0.600 (11.844,14.197) 0.815 0.084 0.639 0.443 (12.220,13.958) 0.850

1 Clayton(3) 20 0.012 0.193 0.168 (2.693,3.350) 0.905 0.002 0.126 0.114 (2.780,3.228) 0.915
2 Gumbel(4) 20 0.005 0.186 0.159 (3.700,4.323) 0.890 -0.015 0.130 0.112 (3.770,4.209) 0.890
3 Gaussian(0.6) 20 -0.002 0.026 0.023 (0.551,0.641) 0.865 -0.002 0.020 0.017 (0.563,0.630) 0.905
4 Frank(13)† 20 -0.021 0.837 0.594 (11.828,14.155) 0.830 0.067 0.645 0.445 (12.204,13.955) 0.845

Maximum Likelihood Estimation
1 Clayton(3) - 0.026 0.242 0.254 (2.524,3.521) 0.960 0.013 0.171 0.180 (2.661,3.365) 0.960
2 Gumbel(4) - 0.022 0.234 0.236 (3.559,4.486) 0.960 -0.022 0.158 0.165 (3.654,4.302) 0.945
3 Gaussian(0.6) - -0.004 0.038 0.039 (0.519,0.673) 0.940 -0.003 0.028 0.028 (0.543,0.651) 0.960
4 Frank(13) - -0.076 0.869 0.908 (11.144,14.704) 0.960 0.054 0.658 0.647 (11.785,14.322) 0.935

(†) Using transformation function g(θ) = log
(

θ+100
100−θ

)
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Appendix C: Additional results for data analysis

C.1. Marginal distribution of six features in three health groups

The marginal density of the k-th biomedical feature in the j-th group of people,
fjk(yjik), is given by

pjk

2kjkσjkq
1/pjk
jk B

(
1

pjk
, qjk

) (
|yjk−μjk+rjk|

pjk

qjk(sjkσjk)
pjk (λjksign(yjik−μjk+rjk)+1)

pjk + 1

) 1
pjk

+qjk
,

where B(·) is the Beta function, μ is the location parameter, σ is the scale pa-
rameter, λ ∈ (−1, 1) is the skewness parameter, p and q are kurtosis parameters,
and rjk and sjk are given by

rjk =
2vjkσjkλjkq

1/pjk

jk B( 2
pjk

, qjk − 1
pjk

)

B( 1
pjk

, qjk)

sjk =
q
1/pjk

jk√
(3λ2

jk + 1)
B( 3

pjk
,qjk− 2

pjk
)

B
(

1
pjk

,qjk

) − 4λ2
jk

B( 2
pjk

,qjk− 1
pjk

)2

B
(

1
pjk

,qjk

)2

.

Table 11

MLE of marginal parameters in the generalized skewed-t distributions

Skewed t distribution Normal distribution
Groups Features μ σ λ μ σ

Disk Hernia

PI 47.711 10.581 0.238 47.638 10.608
PT 17.431 6.942 0.314 17.398 6.958
LL 35.522 9.677 0.101 35.464 9.686
SS 30.261 7.495 -0.095 30.239 7.492
PR 116.337 9.237 -0.190 116.475 9.277
DS 2.470 5.483 -0.141 2.480 5.485

Spondylolisthesis

PI 71.538 15.056 0.065 71.514 15.059
PT 20.821 11.436 0.279 20.748 11.468
LL 64.100 16.346 0.256 64.110 16.342
SS 50.993 12.207 0.204 50.766 12.278
PR 114.599 15.517 0.087 114.519 15.528
DS 51.897 35.119 0.629 51.897 39.974

Healthy

PI 51.401 12.577 0.635 51.685 12.306
PT 12.789 6.739 -0.108 12.821 6.745
LL 43.643 12.239 0.392 43.543 12.299
SS 38.921 9.551 0.276 38.863 9.576
PR 123.893 8.969 0.015 123.891 8.969
DS 2.583 6.043 0.410 2.187 6.276
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Fig 5. Histogram of six biomedical features on three groups
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C.2. Dependence model
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Fig 6. Scatter plots of six pairs of bivariate dependence in 3 health groups
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