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Abstract: We discuss parametric estimation of a degenerate diffusion sys-
tem from time-discrete observations. The first component of the degenerate
diffusion system has a parameter θ1 in a non-degenerate diffusion coefficient
and a parameter θ2 in the drift term. The second component has a drift
term parameterized by θ3 and no diffusion term. Asymptotic normality is
proved in two different situations for an adaptive estimator for θ3 with
some initial estimators for (θ1, θ2), and an adaptive one-step estimator for
(θ1, θ2, θ3) with some initial estimators for them. Our estimators incorpo-
rate information of the increments of both components. Thanks to this
construction, the asymptotic variance of the estimators for θ1 is smaller
than the standard one based only on the first component. The convergence
of the estimators for θ3 is much faster than the other parameters. The re-
sulting asymptotic variance is smaller than that of an estimator only using
the increments of the second component.
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1. Introduction

In this article, we will discuss parametric estimation for a hypo-elliptic diffu-
sion process. More precisely, given a stochastic basis (Ω,F ,F, P ) with a right-
continuous filtration F = (Ft)t∈R+ , R+ = [0,∞), suppose that an F-adapted
process Zt = (Xt, Yt) satisfies the stochastic differential equation{

dXt = A(Zt, θ2)dt+B(Zt, θ1)dwt

dYt = H(Zt, θ3)dt.
(1.1)

Here A : RdZ ×Θ2 → RdX , B : RdZ ×Θ1 → RdX ⊗Rr, H : RdZ ×Θ3 → RdY , and
w = (wt)t∈R+ is an r-dimensional F-Wiener process. The spaces Θi (i = 1, 2, 3)
are the unknown parameter spaces of the components of θ = (θ1, θ2, θ3) to be
estimated from the data (Ztj )j=0,1,...,n, where tj = jh, h = hn satisfying h → 0,
nh → ∞ and nh2 → 0 as n → ∞.

Estimation theory has been well developed for diffusion processes. Even fo-
cusing on parametric estimation for ergodic diffusions, there is huge amount of
studies: Kutoyants [27, 29, 28], Prakasa Rao [39, 40], Yoshida [50, 51, 52], Bibby
and Sørensen [2], Kessler [24], Küchler and Sørensen [25], Genon–Catalot et al.
[14], Gloter [16, 17, 19], Sakamoto and Yoshida [41], Uchida [45], Uchida and
Yoshida [46, 47, 48], Kamatani and Uchida [23], De Gregorio and Iacus [10],
Genon–Catalot and Larédo [15], Suzuki and Yoshida [44] among many others.
Nakakita and Uchida [36] and Nakakita et al. [35] studied estimation under
measurement error; related are Gloter and Jacod [20, 21]. Non parametric esti-
mation for the coefficients of an ergodic diffusion has also been widely studied:
Dalayan and Kutoyants [9], Kutoyants [29], Dalalyan [6], Dalalyan and Reiss
[7, 8], Comte and Genon–Catalot [3], Comte et al. [4], Schmisser [43] to name a
few. Historically attentions were paid to inference for non-degenerate cases.

Recently there is a growing interest in hypo-elliptic diffusions, that appear in
various applied fields. Examples of the hypo-elliptic diffusion include the har-
monic oscillator, the Van der Pol oscillator and the FitzHugh-Nagumo neuronal
model; see e.g. León and Samson [30]. For parametric estimation of hypo-elliptic
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diffusions, we refer the reader to Gloter [18] for a discretely observed integrated
diffusion process, and Samson and Thieullen [42] for a contrast estimator. Comte
et al. [5] gave adaptive estimation under partial observation. Recently, Ditlevsen
and Samson [12] studied filtering and inference for hypo-elliptic diffusions from
complete and partial observations. When the observations are discrete and com-
plete, they showed asymptotic normality of their estimators under the assump-
tion that the true value of some of parameters are known. Melnykova [33] stud-
ied the estimation problem for the model (1.1), comparing contrast functions
and least square estimates. The contrast functions we propose in this paper
are different from the one in [33]. Recently, Delattre et al. [11] gave a rate of
convergence to a nonparametric estimator for the stationary distribution of a
hypoelliptic diffusion.

In this paper, we will present several estimation schemes. Since we assume
discrete-time observations of Z= (Zt)t∈R+, quasi-likelihood estimation for θ1
and θ2 is known; only difference from the standard diffusion case is the existence
of the covariate Y= (Yt)t∈R+ in the equation of X= (Xt)t∈R+ but it causes no
theoretical difficulty. Thus, our first approach in Section 3 is toward estimation
of θ3 with initial estimators for θ1 and θ2. The idea for construction of the
quasi-likelihood function in the elliptic case was based on the local Gaussian
approximation of the transition density. Then it is natural to approximate the
distribution of the increments of Y by that of the principal Gaussian variable
in the expansion of the increment. However, this method causes deficiency, as
we will observe there; see Section 8. We present a more efficient method by
incorporating an additional Gaussian part from X. The error rate attained by
the estimator for θ3 is n−1/2h1/2 and it is much faster than the rate (nh)−1/2

for θ2 and n−1/2 for θ1. Section 4 treats some adaptive estimators using suitable
initial estimators for (θ1, θ2, θ3), and shows joint asymptotic normality. Then it

should be remarked that the asymptotic variance of our estimator θ̂1 for θ1 has
improved that of the ordinary volatility parameter estimator, e.g. θ̂01 recalled in
Section 3.4 that would be asymptotically optimal if the system consisted only
of X. Section 2 collects the assumptions under which we will work. Section 5
offers several basic estimates to the increments of Z.

To investigate efficiency of the presented estimators, we need the LAN prop-
erty of the exact likelihood function of the hypo-elliptic diffusion. Another im-
portant and natural question the reader must have is the asymptotic behavior
of the joint quasi-maximum likelihood estimator based on a quasi-likelihood
random field for the full parameter θ; an expression of the random field has
already appeared in (4.2) essentially. In the present situation, the three param-
eters have different convergence rates and in particular the handling of θ3 is not
straightforward because for estimation of θ3, the parameters (θ1, θ2) become
nuisance, but any estimator of them has very large error compared with θ3. The
user could get some estimated value with the joint quasi-likelihood random field,
however, there is no theoretical backing for such a scheme. Though somewhat so-
phisticated treatments are necessary, we can validate the joint quasi-maximum
likelihood estimator and can show that the same asymptotic variance is at-
tained, up to the first order, as the one-step quasi-likelihood estimator provided
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in this article. We will discuss these problems elsewhere, while we recommend
the reader to see Gloter and Yoshida [22] for more complete exposition including
the non-adaptive approach and additional information.

2. Assumptions

We assume that Θi (i = 1, 2, 3) are bounded open domain in Rpi , respectively,

and Θ =
∏3

i=1Θi has a good boundary so that Sobolev’s embedding inequality
(cf. Adams [1]) holds, that is, there exists a positive constant CΘ such that

sup
θ∈Θ

|f(θ)| ≤ CΘ

1∑
k=0

‖∂k
θ f‖Lp(Θ) (2.1)

for all f ∈ C1(Θ) and p >
∑3

i=1 pi. If Θ has a Lipschitz boundary, then this
condition is satisfied. Obviously, the embedding inequality (2.1) is valid for
functions depending only on a part of components of θ. In this paper, giving
priority to simplicity of presentation, we use Sobolev’s inequality to control the
maximum of a random field though other embedding inequalities such as the
GRR inequality improve the assumptions on differentiability of the coefficients
of the stochastic differential equations.

In this paper, we will propose an estimator for θ and show its consistency
and asymptotic normality.

Given a finite-dimensional real vector space E, denote by Ca,b
p (RdZ × Θi;E)

the set of functions f : RdZ ×Θi → E such that f is continuously differentiable
a times in z ∈ RdZ and b times in θi ∈ Θi in any order and f and all such
derivatives are continuously extended to RdZ × Θi, moreover, they are of at
most polynomial growth in z ∈ RdZ uniformly in θi ∈ Θi. Let

C = BB�,

where � denotes the matrix transpose. We suppose that the process (Zt)t∈R+

generating the data satisfies the stochastic differential equation (1.1) for a true
value θ∗ = (θ∗1 , θ

∗
2 , θ

∗
3) ∈ Θ1 ×Θ2 ×Θ3.

[A1 ] (i) A ∈ CiA,jA
p (RdZ ×Θ2;RdX ) and B ∈ CiB,jB

p (RdZ ×Θ1;RdX ⊗ Rr).

(ii) H ∈ CiH ,jH
p (RdZ ×Θ3;RdY ).

We will denote Fx for ∂xF , Fy for ∂yF , and Fi for ∂θiF .

[A2 ] (i) supt∈R+
‖Zt‖p < ∞ for every p > 1.

(ii) There exists a probability measure ν on RdZ such that

1

T

∫ T

0

f(Zt) dt →p

∫
f(z)ν(dz) (T → ∞)

for any bounded continuous function f : RdZ → R.
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(iii) The function θ1 	→ C(Zt, θ1)
−1 is continuous on Θ1 a.s., and

sup
θ1∈Θ1

sup
t∈R+

‖ detC(Zt, θ1)
−1‖p < ∞

for every p > 1.

(iv) For the RdY ⊗ RdY valued function

V (z, θ1, θ3) = Hx(z, θ3)C(z, θ1)Hx(z, θ3)
�, (2.2)

the function (θ1, θ3) 	→ V (Zt, θ1, θ3)
−1 is continuous on Θ1×Θ3 a.s.,

and
sup

(θ1,θ3)∈Θ1×Θ3

sup
t∈R+

‖ detV (Zt, θ1, θ3)
−1‖p < ∞

for every p > 1.

Remark 2.1. (a) It follows from [A2] that the convergence in [A2] (ii) holds
for any continuous function f of at most polynomial growth.

(b) We implicitly assume the existence of C(Zt, θ1)
−1 and V (Zt, θ1, θ3)

−1 in
(iii) and (iv) of [A2].

(c) Fatou’s lemma implies∫
|z|pν(dz) + sup

θ1∈Θ1

∫ (
detC(z, θ1)

)−p
ν(dz)

+ sup
(θ1,θ3)∈Θ1×Θ3

∫ (
detV (z, θ1, θ3)

)−p
ν(dz) < ∞

for any p > 0.
(d) Assumption [A2] is standard. Exponential ergodicity and boundedness of

any order of moment of the process are also well known. For nondegenerate
diffusions, see e.g. Pardoux and Veretennikov [38], Meyn and Tweedie
[34] and Kusuoka and Yoshida [26] among many others. For damping
Hamiltonian systems, we refer the reader to Wu [49]. The Lyapounov
function method provides exponential mixing (even in the non-stationary
case) and estimates of moments of the invariant probability measure up
to any order. Wu’s paper investigated several examples including the van
der Pol model. We are giving additional information in Delattre et al. [11].

Let

Y(1)(θ1) = −1

2

∫ {
Tr
(
C(z, θ1)

−1C(z, θ∗1)
)
− dX + log

detC(z, θ1)

detC(z, θ∗1)

}
ν(dz).

Since | log x| ≤ x + x−1 for x > 0, Y(1)(θ1) is a continuous function on Θ1 well
defined under [A1] and [A2]. Let

Y(2)(θ2) = −1

2

∫
C(z, θ∗1)

−1
[(
A(z, θ2)−A(z, θ∗2)

)⊗2]
ν(dz), (2.3)
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and

Y(3)(θ3) = −
∫

6V (z, θ∗1 , θ3)
−1
[(
H(z, θ3)−H(z, θ∗3)

)⊗2]
ν(dz).

The random field Y(3) is well defined under [A1] and [A2]. Obviously, ν de-
pends on the value θ∗. We suppress θ∗ from notation since it is fixed in this
article, where it is not necessary to change θ∗ differently from discussion of the
asymptotic minimax bound for example.

We will assume all or some of the following identifiability conditions

[A3 ] (i) There exists a positive constant χ1 such that

Y(1)(θ1) ≤ −χ1|θ1 − θ∗1 |2 (θ1 ∈ Θ1).

(ii) There exists a positive constant χ2 such that

Y(2)(θ2) ≤ −χ2|θ2 − θ∗2 |2 (θ2 ∈ Θ2).

(iii) There exists a positive constant χ3 such that

Y(3)(θ3) ≤ −χ3|θ3 − θ∗3 |2 (θ3 ∈ Θ3).

In the hypoelliptic case, as it is the most interesting case, checking these iden-
tifiability conditions is usually easy since ν is equivalent to or at least dominated
by the Lebesgue measure and admits a density that is positive on a non-empty
open set. Thus, identifiability is a problem of parameterization of the model.
In particular, it is obvious that this condition causes no difficulty for linearly
parametrized models often appearing in applications.

As already mentioned, we will assume that h → 0, nh → ∞ and nh2 → 0 as
n → ∞ throughout this article. The condition nh2 → 0 is a standard one called
the condition for rapidly increasing experimental design (Prakasa Rao [40]).
Yoshida [51] relaxed this condition to nh3 → 0, and Kessler [24] to nhp → 0
for any positive number p. Uchida and Yoshida [48] carried out the Ibragimov-
Has’minskii-Kutoyants program under the condition nhp → 0, with the so-
called Quasi-Likelihood Analysis based on the polynomial type large deviation
estimate for the quasi-likelihood random field (Yoshida [52]). It is well known
that these approaches under nhp → 0 need more smoothness of the model
than our assumptions because they inevitably involve higher-order expansions
of the semigroup. In this paper, when estimating the order of a random variable,
eventually we use either n → ∞, h → 0, nh → ∞ or nh2 → 0, and that’s all.
So, it is easy for the reader to recognize which convergence is used in each case.
For example, if the reader finds Op(

√
nh), then quite likely it will be estimated

as op(1). However, we left traces as many as possible in the proof.

3. Adaptive estimation of θ3

We denote U⊗k for U ⊗ · · · ⊗ U (k-times) for a tensor U . For tensors S1 =
(S1

i1,1,...,i1,d1 ;j1,1,...,j1,k1
), ..., Sm = (Sm

im,1,...,im,dm ;jm,1,...,jm,km
) and and a tensor
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T = (T i1,1,...,i1,d1 ,...,im,1,...,im,dm ), we write

T [S1, ..., Sm] = T [S1 ⊗ · · · ⊗ Sm]

=

( ∑
i1,1,...,i1,d1 ,...,im,1,...,im,dm

T i1,1,...,i1,d1 ,...,im,1,...,im,dmS1
i1,1,...,i1,d1 ;j1,1,...,j1,k1

· · ·Sm
im,1,...,im,dm ;jm,1,...,jm,km

)
j1,1,...,j1,k1

,...,jm,1,...,jm,km

.

This notation will be applied for a tensor-valued tensor T as well.

Remark 3.1. Clearly, this notation has an advantage over the notation by
matrix product since the elements S1, ..., Sm quite often have a long expression
in the inference. The matrix notation repeats Sis twice for the quadratic form,
thrice for the cubic form, and so on. This notation was introduced by [52] and
already adopted by many papers, e.g., [45], [48], [53], [31], [23], [32], [13], [37],
[36], [35], just to name a few.

Let

LH(z, θ1, θ2, θ3) = Hx(z, θ3)[A(z, θ2)] +
1

2
Hxx(z, θ3)[C(z, θ1)]

+Hy(z, θ3)[H(z, θ3)].

Define the RdY -valued function Gn(z, θ1, θ2, θ3) by

Gn(z, θ1, θ2, θ3) = H(z, θ3) +
h

2
LH

(
z, θ1, θ2, θ3

)
. (3.1)

Let

Dj(θ1, θ2, θ3) =

⎛⎝ h−1/2
(
ΔjX − hA(Ztj−1 , θ2)

)
h−3/2

(
ΔjY − hGn(Ztj−1 , θ1, θ2, θ3)

)
⎞⎠ . (3.2)

We will work with some initial estimators θ̂01 for θ
0
1 and θ̂02 for θ2. The following

standard convergence rates, in part or fully, will be assumed for these estimators:

[A4 ] (i) θ̂01 − θ∗1 = Op(n
−1/2) as n → ∞

(ii) θ̂02 − θ∗2 = Op(n
−1/2h−1/2) as n → ∞

The expansions (5.1) and (5.6) with Lemma 5.5 suggest two approaches for
estimating θ3. The first approach is based on the likelihood of ΔjY only, with-
out assistance of ΔjX. The second one uses the likelihood corresponding to
Dj(θ1, θ2, θ3). However, it is possible to show that the first approach gives less
optimal asymptotic variance; see Section 8. So, we will take the second approach
here.
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3.1. Adaptive quasi-likelihood function for θ3

Recall (2.2):
V (z, θ1, θ3) = Hx(z, θ3)C(z, θ1)Hx(z, θ3)

�.

Let

S(z, θ1, θ3) =

(
C(z, θ1) 2−1C(z, θ1)Hx(z, θ3)

�

2−1Hx(z, θ3)C(z, θ1) 3−1Hx(z, θ3)C(z, θ1)Hx(z, θ3)
�

)
.

Then

S(z, θ1, θ3)
−1 =

(
S(z, θ1, θ3)

1,1 S(z, θ1, θ3)
1,2

S(z, θ1, θ3)
2,1 S(z, θ1, θ3)

2,2

)
, (3.3)

where

S(z, θ1, θ3)
1,1 = C(z, θ1)

−1 + 3Hx(z, θ3)
�V (z, θ1, θ3)

−1Hx(z, θ3),

S(z, θ1, θ3)
1,2 = −6Hx(z, θ3)

�V (z, θ1, θ3)
−1,

S(z, θ1, θ3)
2,1 = −6V (z, θ1, θ3)

−1Hx(z, θ3)

and
S(z, θ1, θ3)

2,2 = 12V (z, θ1, θ3)
−1.

Let
Ŝ(z, θ3) = S(z, θ̂01, θ3).

Since the increment ΔjZ = Ztj −Ztj−1 is approximately conditionally Gaus-
sian in short-term asymptotics, it seems natural to construct a likelihood func-
tion based on the local Gaussian approximation. Remark that

S(z, θ1, θ3) =

(
B(z, θ1)B(z, θ1)

�
√
3
2 B(z, θ1)κ(z, θ1, θ3)

�
√
3
2 κ(z, θ1, θ3)B(z, θ1)

� κ(z, θ1, θ3)κ(z, θ1, θ3)
�

)
is the covariance matrix of the principal conditionally Gaussian part of
(ΔjX,ΔjY ) if properly scaled and evaluated at z = Ztj−1 and (θ1, θ3) = (θ∗1 , θ

∗
3),

where
κ(z, θ1, θ3) = 3−1/2Hx(z, θ3)B(z, θ1). (3.4)

See Lemmas 5.4 and 5.5.
We define a log quasi-likelihood function by

H(3)
n (θ3) = −1

2

n∑
j=1

{
Ŝ(Ztj−1 , θ3)

−1
[
Dj(θ̂

0
1, θ̂

0
2, θ3)

⊗2
]
+ log det Ŝ(Ztj−1 , θ3)

}
.

(3.5)

Let θ̂03 be a quasi-maximum likelihood estimator (QMLE) for θ3 for H(3)
n , that

is, θ̂03 is a Θ3-valued measurable mapping satisfying

H(3)
n (θ̂03) = max

θ3∈Θ3

H(3)
n (θ3).

The QMLE θ̂03 for H(3)
n depends on n as it does on the data (Ztj )j=0,1,...,n; θ̂

0
1

in the function Ŝ also depends on (Ztj )j=0,1,...,n.
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3.2. Consistency of θ̂0
3

Let
Y(3)
n (θ3) = n−1h

{
H(3)

n (θ3)− H(3)
n (θ∗3)

}
.

Theorem 3.2. Suppose that [A1] with (iA, jA, iB , jB , iH , jH) = (1, 1, 2, 1, 3, 1)
and [A2] are satisfied. Then

sup
θ3∈Θ3

∣∣Y(3)
n (θ3)− Y(3)(θ3)

∣∣ →p 0 (3.6)

as n → ∞, if θ̂01 →p θ∗1 and θ̂02 →p θ∗2. Moreover, θ̂03 →p θ∗3 if [A3] (iii) is
additionally satisfied.

Proof of Theorem 3.2 is in Section 6.

3.3. Asymptotic normality of θ̂0
3

Let

Γ33 =

∫
S(z, θ∗1 , θ

∗
3)

−1

[(
0

∂3H(z, θ∗3)

)⊗2
]
ν(dz)

=

∫
12V (z, θ∗1 , θ

∗
3)

−1
[(
∂3H(z, θ∗3)

)⊗2]
ν(dz)

=

∫
12∂3H(z, θ∗3)

�V (z, θ∗1 , θ
∗
3)

−1∂3H(z, θ∗3)ν(dz). (3.7)

The following theorem provides asymptotic normality of θ̂03. The convergence

of θ̂03 is much faster than other components of estimators. The proof of the

following theorem and the definition of M
(3)
n are in Section 6.3.

Theorem 3.3. Suppose that [A1] with (iA, jA, iB , jB , iH , jH) = (1, 1, 2, 1, 3, 2),
[A2], [A3] (iii) and [A4] are satisfied. Then

n1/2h−1/2
(
θ̂03 − θ∗3

)
− Γ−1

33 M
(3)
n →p 0

as n → ∞. In particular,

n1/2h−1/2
(
θ̂03 − θ∗3

)
→d N(0,Γ−1

33 )

as n → ∞.

3.4. About initial estimators

Let

H(1)
n (θ1) = −1

2

n∑
j=1

{
C(Ztj−1 , θ1)

−1
[
h−1(ΔjX)⊗2

]
+ log detC(Ztj−1 , θ1)

}



Adaptive estimation for degenerate diffusion processes 1433

where ΔjX = Xtj −Xtj−1 . It should be remarked that the present H(1)
n (θ1) is

different from the one given in (4.2) on p. 1436. Under [A1] and [A2] (iii), H(1)
n

is a continuous function on Θ1 a.s.

Given the data (Ztj )j=0,1,...,n, let us consider the quasi-maximum likelihood

estimator (QMLE) θ̂01 = θ̂01,n for θ1, that is, θ̂01 is any measurable function of
(Ztj )j=0,1,...,n satisfying

H(1)
n (θ̂01) = max

θ1∈Θ1

H(1)
n (θ1) a.s.

Routinely, n1/2-consistency and asymptotic normality of θ̂01 can be estab-
lished. We will give a brief for self-containedness and for the later use. Let

Γ(1)[u⊗2
1 ] =

1

2

∫
RdZ

Tr
{
C−1(∂1C)[u1]C

−1(∂1C)[u1](z, θ
∗
1)
}
ν(dz) (3.8)

for u1 ∈ Rp1 . We will see the existence and positivity of Γ(1) in the following
theorem. We refer the reader to Gloter and Yoshida [22] for a proof.

Theorem 3.4. (a) Suppose that [A1] with (iA, jA, iB , jB , iH , jH) = (0, 0, 1, 1,

0, 0), [A2] (i), (ii), (iii), and [A3] (i) are satisfied. Then θ̂01 →p θ∗1 as n → ∞.

(b) Suppose that [A1] with (iA, jA, iB, jB , iH , jH) = (1, 0, 2, 3, 0, 0), [A2] (i),
(ii), (iii), and [A3] (i) are satisfied. Then Γ(1) exists and is positive-
definite, and √

n
(
θ̂01 − θ∗1

)
− (Γ(1))−1M̂ (1)

n →p 0

as n → ∞, where

M̂ (1)
n =

1

2
n−1/2

n∑
j=1

(
C−1(∂1C)C−1

)
(Ztj−1 , θ

∗
1)

·
[(
h−1/2B(Ztj−1 , θ

∗
1)Δjw

)⊗2 − C(Ztj−1 , θ
∗
1)
]
.

Moreover, M
(1)
n →d Np1(0,Γ

(1)) as n → ∞. In particular,

√
n
(
θ̂01 − θ∗1

)
→d Np1

(
0, (Γ(1))−1

)
as n → ∞.

Remark 3.5. It is possible to show that the quasi-Bayesian estimator (QBE)
also enjoys the same asymptotic properties as the QMLE in Theorem 3.4, if
we follows the argument in Yoshida [52]. This means we can use both estima-
tors together with the estimator for θ2 e.g. given in Section 3.4, to construct
a one-step estimator for θ3 based on the scheme presented in Section 3.1, and
consequently we can construct a one-step estimator for θ = (θ1, θ2, θ3) by the
method in Section 4.
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We will recall a standard construction of estimator for θ2. As usual, the
scheme is adaptive. Suppose that an estimator θ̂01 based on the data
(Ztj )j=0,1,...,n satisfies Condition [A4] (i), i.e.,

θ̂01 − θ∗1 = Op(n
−1/2)

as n → ∞. Obviously we can apply the estimator constructed above, but any
estimator satisfying this condition can be used.

Define the random field H(2)
n on Θ2 by

H(2)
n (θ2) = −1

2

n∑
j=1

C(Ztj−1 , θ̂
0
1)

−1
[
h−1

(
ΔjX − hA(Ztj−1 , θ2)

)⊗2]
. (3.9)

We will denote by θ̂02 = θ̂02,n any sequence of quasi-maximum likelihood estimator

for H(2)
n , that is,

H(2)
n (θ̂02) = sup

θ2∈Θ2

H(2)
n (θ2).

Let Y(2)
n (θ2) = T−1

(
H(2)

n (θ2) − H(2)
n (θ∗2)

)
, where T = nh. The matrix Γ22 is

defined by (4.1). Let

M̂ (2)
n = T−1/2

n∑
j=1

C(Ztj−1 , θ
∗
1)

−1
[
B(Ztj−1 , θ

∗
1)Δjw, ∂2A(Ztj−1 , θ

∗
2)
]
(3.10)

See Gloter and Yoshida [22] for a proof of the following theorem.

Theorem 3.6. (a) Suppose that Conditions [A1] with (iA, jA, iB , jB, iH , jH) =

(1, 1, 2, 1, 0, 0), [A2], [A3] (ii) and [A4] (i). Then θ̂02 →p θ∗2 as n → ∞.

(b) Suppose that Conditions [A1] with (iA, jA, iB , jB , iH , jH) = (1, 3, 2, 1, 0, 0),
[A2], [A3] (ii) and [A4] (i). Then

(nh)
1/2(

θ̂02 − θ∗2
)
− Γ−1

22 M̂
(2)
n →p 0

as n → ∞. In particular,

(nh)
1/2(

θ̂02 − θ∗2
)
→d N(0,Γ−1

22 )

as n → ∞.

4. Adaptive one-step estimator for (θ1, θ2, θ3)

In this section, we will consider a one-step estimator for θ = (θ1, θ2, θ3) given

an initial estimators (θ̂01, θ̂
0
2, θ̂

0
3) for (θ1, θ2, θ3) based on (Ztj )j=0,1,...,n. We will

assume the following rate of convergence for each initial estimator.
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[A4� ] (i) θ̂01 − θ∗1 = Op(n
−1/2) as n → ∞

(ii) θ̂02 − θ∗2 = Op(n
−1/2h−1/2) as n → ∞

(iii) θ̂03 − θ∗3 = Op(n
−1/2h1/2) as n → ∞.

Condition [A4�] does not assume each initial estimator is attaining the opti-
mal asymptotic variance, nor asymptotically normal. The quasi-maximum like-
lihood estimator θ̂02 with respect to (3.9) is an option. Another choice of the

initial estimator θ̂02 is the simple least squares estimator using the coefficient A
though it is less efficient than the quasi-maximum likelihood estimator for the
first component of the model. Theorem 4.1 in this section shows the one-step
estimator for θ2 recovers efficiency even if such a less efficient estimator is used
as the initial estimator for θ2.

The initial estimator θ̂03 is not necessarily the one defined in Section 3, though

we already know that one satisfies [A4�] (iii). That is, the initial estimator θ̂03
used in this section is requested to attain the error rate n−1/2h1/2 only, not
to necessarily achieve the asymptotic variance equal to Γ−1

33 or less. We know
there is an estimator of θ1 satisfying Condition [A4�] (i) based on only the first
equation of (1.1). It is known that its information cannot be greater than the
matrix

1

2

∫
Tr
{(

C−1(∂1C)C
−1∂1C

)
(z, θ∗1)

}
ν(dz).

It will be turned out that the amount of information is increased by the one-step
estimator.

Let

Γ11 =
1

2

∫
Tr
{
S−1(∂1S)S

−1∂1S(z, θ
∗
1 , θ

∗
3)
}
ν(dz)

=
1

2

∫ [
Tr
{(

C−1(∂1C)C
−1∂1C

)
(z, θ∗1)

}
+Tr

{(
V−1Hx(∂1C)H

�
xV

−1Hx(∂1C)H
�
x

)
(z, θ∗1 , θ

∗
3)
}]

ν(dz).

If Hx is an invertible (square) matrix, then Γ11 coincides with∫
Tr
{(

C−1(∂1C)C
−1∂1C

)
(z, θ∗1)

}
ν(dz).

Otherwise, it is not always true.
Let

Γ22 =

∫
S(z, θ∗1 , θ

∗
3)

−1

[(
∂2A(z, θ

∗
2)

2−1∂2LH(z, θ∗1 , θ
∗
2 , θ

∗
3)

)⊗2
]
ν(dz)

=

∫
∂2A(z, θ

∗
2)

�C(z, θ∗1)
−1∂2A(z, θ

∗
2)ν(dz). (4.1)

Let ΓJ(θ∗) = diag
[
Γ11,Γ22,Γ33

]
, where Γ33 is defined by (3.7).
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We will use the following random fields:

H(1)
n (θ1) = −1

2

n∑
j=1

{
S(Ztj−1 , θ1, θ̂

0
3)

−1
[
Dj(θ1, θ̂

0
2, θ̂

0
3)

⊗2
]

+ log detS(Ztj−1 , θ1, θ̂
0
3)

}
(4.2)

and

H(2,3)
n (θ2, θ3) = −1

2

n∑
j=1

Ŝ(Ztj−1 , θ̂
0
3)

−1
[
Dj(θ̂

0
1, θ2, θ3)

⊗2
]
. (4.3)

Recall Ŝ(z, θ3) = S(z, θ̂01, θ3). To construct one-step estimators, we consider the
functions

En(θ1) = θ1 −
[
∂2
1H(1)

n (θ1)]
−1∂1H

(1)
n (θ1)

and

Fn(θ2, θ3) =

(
θ2
θ3

)
−
[
∂2
(θ2,θ3)

H(2,3)
n

(
θ2, θ3

)]−1
∂(θ2,θ3)H

(2,3)
n

(
θ2, θ3

)
when both matrices ∂2

1H
(1)
n (θ1) and ∂2

(θ2,θ3)
H(2,3)

n

(
θ2, θ3

)
are invertible. Let

X (1)
n =

{
ω ∈ Ω; ∂2

1H(1)
n (θ̂01) is invertible and En(θ̂

0
1) ∈ Θ1

}
and

X (2,3)
n =

{
ω ∈ Ω; ∂2

(θ2,θ3)
H(2,3)

n

(
θ̂02, θ̂

0
3

)
is invertible

and Fn(θ̂
0
2, θ̂

0
3) ∈ Θ2 ×Θ3

}
.

Let Xn = X (1)
n ∩ X (2,3)

n . The event Xn is a statistic because it is determined
by the data (Ztj )j=0,...,n only. For (θ1, θ2, θ3), the one-step estimator (θ̂1, θ̂2, θ̂3)

with the initial estimator (θ̂01, θ̂
0
2, θ̂

0
3) is defined by

⎛⎝ θ̂1
θ̂2
θ̂3

⎞⎠ =

⎧⎪⎪⎨⎪⎪⎩
(

En(θ̂
0
1)

Fn

(
θ̂02, θ̂

0
3

) )
on Xn

υ on X c
n

where υ is an arbitrary value in Θ.
Let

γ̂ =
(
θ̂2, θ̂3

)�
, γ̂0 =

(
θ̂02, θ̂

0
3

)�
and γ∗ =

(
θ∗2 , θ

∗
3

)�
.

Let

bn =

⎛⎝ n−1/2 0 0
0 n−1/2h−1/2 0
0 0 n−1/2h1/2

⎞⎠ .

We obtain a limit theorem for the joint adaptive one-step estimator.
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Theorem 4.1. Suppose that [A1] with (iA, jA, iB , jB , iH , jH) = (1, 3, 2, 3, 3, 2),
[A2], [A3] and [A4�] are satisfied. Then

b−1
n (θ̂ − θ∗) →d N(0, (ΓJ(θ∗))−1)

as n → ∞.

Condition [A3] is used to ensure non-degeneracy of the information matrix.
We will give a proof to Theorem 4.1 in Section 7.

5. Basic estimation of the increments

The following sections will be devoted to the proofs.
We have

h−1/2ΔjX = h−1/2

∫ tj

tj−1

B(Zt, θ
∗
1)dwt + h−1/2

∫ tj

tj−1

A(Zt, θ
∗
2)dt

= h−1/2B(Ztj−1 , θ
∗
1)Δjw + r

(5.2)
j (5.1)

where

r
(5.2)
j = h−1/2

∫ tj

tj−1

(B(Zt, θ
∗
1)−B(Ztj−1 , θ

∗
1))dwt

+h−1/2

∫ tj

tj−1

A(Zt, θ
∗
2)dt (5.2)

Lemma 5.1. (a) Under [A1] with (iA, jA, iB , jB , iH , jH) = (0, 0, 0, 0, 0, 0) and
[A2] (i),

sup
s,t∈R+, |s−t|≤Δ

‖Zs − Zt‖p = O(Δ1/2) (Δ ↓ 0) (5.3)

for every p > 1.

(b) Under [A1] with (iA, jA, iB, jB , iH , jH) = (0, 0, 1, 0, 0, 0) and [A2] (i),

sup
n

sup
j

‖r(5.2)j ‖p = O(h1/2)

for every p > 1.

Proof. (a) is trivial. For (b), the first term on the right-hand side of (5.2) can
be estimated by the Burkholder-Davis-Gundy inequality, Taylor’s formula for
B(Zt, θ

∗
1)−B(Ztj−1 , θ

∗
1) and by (5.3).

We have

h−1/2ΔjX = h−1/2

∫ tj

tj−1

B(Zt, θ
∗
1)dwt + h1/2A(Ztj−1 , θ

∗
2) + r

(5.4)
j

where

r
(5.4)
j = h−1/2

∫ tj

tj−1

(
A(Zt, θ

∗
2)−A(Ztj−1 , θ

∗
2)
)
dt. (5.4)

Then, thanks to (5.3), we obtain the following estimate.
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Lemma 5.2. r
(5.4)
j = OL∞–(h) uniformly, i.e.,

sup
n

sup
j

∥∥r(5.4)j

∥∥
p
= O(h) (5.5)

for every p > 1 if [A1] for (iA, jA, iB, jB , iH , jH) = (1, 0, 0, 0, 0, 0) and [A2] (i)
hold.

Write

ζj =
√
3

∫ tj

tj−1

∫ t

tj−1

dwsdt.

Then E
[
ζ⊗2
j

]
= h3Ir for the r-dimensional identity matrix Ir.

The function Gn is defined in (3.1). Under sufficient smoothness of the coef-
ficients, we have

ΔjY − hGn(Ztj−1 , θ1, θ2, θ3)

= ΔjY − hH(Ztj−1 , θ3)−
h2

2
LH

(
Ztj−1 , θ1, θ2, θ3

)
= hH(Ztj−1 , θ

∗
3)− hH(Ztj−1 , θ3)

+Hx(Ztj−1 , θ
∗
3)B(Ztj−1 , θ

∗
1)

∫ tj

tj−1

∫ t

tj−1

dwsdt

+

∫ tj

tj−1

∫ t

tj−1

{
Hx(Zs, θ

∗
3)B(Zs, θ

∗
1)−Hx(Ztj−1 , θ

∗
3)B(Ztj−1 , θ

∗
1)
}
dwsdt

+

∫ tj

tj−1

∫ t

tj−1

(
LH(Zs, θ

∗
1 , θ

∗
2 , θ

∗
3)− LH(Ztj−1 , θ1, θ2, θ3)

)
dsdt

=
{
hH(Ztj−1 , θ

∗
3)− hH(Ztj−1 , θ3)

}
+ κ(Ztj−1 , θ

∗
1 , θ

∗
3)ζj

+ρj(θ1, θ2, θ3) (5.6)

where κ(Ztj−1 , θ
∗
1 , θ

∗
3) is given in (3.4).

ρj(θ1, θ2, θ3) =

∫ tj

tj−1

∫ t

tj−1

{
Hx(Zs, θ

∗
3)B(Zs, θ

∗
1)

−Hx(Ztj−1 , θ
∗
3)B(Ztj−1 , θ

∗
1)
}
dwsdt

+

∫ tj

tj−1

∫ t

tj−1

(
LH(Zs, θ

∗
1 , θ

∗
2 , θ

∗
3)− LH(Ztj−1 , θ1, θ2, θ3)

)
dsdt.

(5.7)

Lemma 5.3. Suppose that [A1] with (iA, jA, iB, jB , iH , jH) = (1, 0, 1, 0, 3, 0)
and [A2] (i) are satisfied. Then

(a) sup
n

sup
j

∥∥ρj(θ∗1 , θ∗2 , θ∗3)∥∥p = O(h2) for every p > 1.

(b) sup
n

sup
j

∥∥Dj(θ
∗
1 , θ

∗
2 , θ

∗
3)
∥∥
p
< ∞ for every p > 1.



Adaptive estimation for degenerate diffusion processes 1439

Proof. It is possible to show (a) by (5.7) and using the estimate (5.3) with the
help of Taylor’s formula. Additionally to the representation (5.6), by using (5.1)
and (5.2), we obtain (b).

We denote by (BxB)(z, θ2) the tensor defined by (BxB)(z, θ2)[u1 ⊗ u2] =
Bx(z, θ2)[u2, B(z, θ2)[u1]] for u1, u2 ∈ Rr. Moreover, we write dwsdwt for dws ⊗
dwt, and

(BxB)(Ztj−1 , θ
∗
2)

∫ tj

tj−1

∫ t

tj−1

dwsdwt

for

(BxB)(Ztj−1 , θ
∗
2)

[ ∫ tj

tj−1

∫ t

tj−1

dwsdwt

]
.

We will apply this rule in similar situations. Let

LB(z, θ1, θ2, θ3) = Bx(z, θ1)[A(z, θ2)] +
1

2
Bxx(z, θ1)[C(z, θ1)]

+By(z, θ3)[H(z, θ3)]. (5.8)

Lemma 5.4. Suppose that [A1] with (iA, jA, iB , jB, iH , jH) = (1, 1, 2, 0, 0, 0)
and [A2] (i) are satisfied. Then

h−1/2
(
ΔjX − hA(Ztj−1 , θ2)

)
= ξ

(5.10)
j + ξ

(5.11)
j + r

(5.12)
j (θ2) (5.9)

where

ξ
(5.10)
j = h−1/2B(Ztj−1 , θ

∗
1)Δjw, (5.10)

ξ
(5.11)
j = h−1/2(BxB)(Ztj−1 , θ

∗
1)

∫ tj

tj−1

∫ t

tj−1

dwsdwt, (5.11)

and

r
(5.12)
j (θ2) = h−1/2

∫ tj

tj−1

∫ t

tj−1

((BxB)(Zs, θ
∗
1)− (BxB)(Ztj−1 , θ

∗
1))dwsdwt

+h−1/2

∫ tj

tj−1

∫ t

tj−1

LB(Zs, θ
∗
1 , θ

∗
2 , θ

∗
3)dsdwt

+h−1/2

∫ tj

tj−1

(
A(Zt, θ

∗
2)−A(Ztj−1 , θ2)

)
dt. (5.12)

Moreover,

sup
n

sup
j

‖r(5.12)j (θ∗2)‖p = O(h) (5.13)
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for every p > 1, and∣∣r(5.12)j (θ2)
∣∣ ≤ r

(5.15)
n,j

{
h1/2

∣∣θ2 − θ∗2
∣∣+ h

}
(5.14)

with some random variables r
(5.15)
n,j satisfying

sup
n

sup
j

∥∥r(5.15)n,j

∥∥
p
< ∞ (5.15)

for every p > 1.

Proof. The decomposition (5.9) is obtained by Itô’s formula. The estimate (5.13)
is verified by (5.3) since ∂z(BxB) and ∂zA are bound by a polynomial in z
uniformly in θ. The estimate (5.14) uses ∂2A for θ2 near θ∗2 as well as ∂zA
evaluated at θ∗2 :∣∣r(5.12)j (θ2)

∣∣1{|θ2−θ∗
2 |<r} ≤ r

(5.15)
n,j

{
h1/2

∣∣θ2 − θ∗2
∣∣+ h

}
1{|θ2−θ∗

2 |<r}

with some positive constant r and some random variables r
(5.15)
n,j satisfying

(5.15). The small number r was taken to ensure convexity of the vicinity of
θ∗2 . For θ2 such that |θ2 − θ∗2 | ≥ r, the estimate (5.14) is valid by enlarging

r
(5.15)
n,j if necessary.

Lemma 5.5. (a) Suppose that [A1] with (iA, jA, iB , jB , iH , jH) = (1, 1, 2, 1, 3, 0)
and [A2] (i) are satisfied. Then

ΔjY − hGn(Ztj−1 , θ1, θ2, θ
∗
3) = ξ

(5.17)
j + ξ

(5.18)
j + h3/2r

(5.19)
j (θ1, θ2)

+h3/2r
(5.20)
j (θ1, θ2) (5.16)

where

ξ
(5.17)
j = κ(Ztj−1 , θ

∗
1 , θ

∗
3)ζj , (5.17)

ξ
(5.18)
j = ((HxB)xB)(Ztj−1 , θ

∗
1 , θ

∗
3)

∫ tj

tj−1

∫ t

tj−1

∫ s

tj−1

dwrdwsdt, (5.18)

r
(5.19)
j (θ1, θ2) = h−3/2

∫ tj

tj−1

∫ t

tj−1

∫ s

tj−1

{
((HxB)xB)(Zr, θ

∗
1 , θ

∗
3)

−((HxB)xB)(Ztj−1 , θ
∗
1 , θ

∗
3)
}
dwrdwsdt

+h−3/2

∫ tj

tj−1

∫ t

tj−1

∫ s

tj−1

LHxB(Zr, θ
∗
1 , θ

∗
2 , θ

∗
3)drdwsdt

+h−3/2

∫ tj

tj−1

∫ t

tj−1

(
LH(Zs, θ1, θ2, θ

∗
3)

−LH(Ztj−1 , θ1, θ2, θ
∗
3)
)
dsdt

(5.19)
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with

LHxB(z, θ1, θ2, θ3) = (HxB)x(z, θ1, θ3)[A(z, θ2)]

+
1

2
(HxB)xx(z, θ1, θ3)[C(z, θ1)]

+(HxB)y(z, θ1, θ3)[H(z, θ3)],

and

r
(5.20)
j (θ1, θ2) = h−3/2

∫ tj

tj−1

∫ t

tj−1

(
LH(Zs, θ

∗
1 , θ

∗
2 , θ

∗
3)

−LH(Zs, θ1, θ2, θ
∗
3)
)
dsdt. (5.20)

Moreover,

sup
n

sup
j

∥∥∥∥ sup
(θ1,θ2)∈Θ1×Θ2

∣∣r(5.19)j (θ1, θ2)
∣∣∥∥∥∥

p

= O(h) (5.21)

for every p > 1, and∣∣r(5.20)j (θ1, θ2)
∣∣ ≤ h1/2r

(5.23)
n,j

{∣∣θ1 − θ∗1
∣∣+ ∣∣θ2 − θ∗2

∣∣}
(5.22)

for all (θ1, θ2) ∈ Θ1 ×Θ2 with some random variables r
(5.23)
n,j satisfying

sup
n

sup
j

∥∥r(5.23)n,j

∥∥
p
< ∞ (5.23)

for every p > 1.

(b) Suppose that [A1] with (iA, jA, iB , jB, iH , jH) = (1, 1, 2, 1, 2, 0) and [A2] (i)

are satisfied. Then there exist random variables r
(5.24)
n,j and a number ρ

such that

sup
θ3∈Θ3

∣∣Dj(θ1, θ2, θ3)−Dj(θ
∗
1 , θ

∗
2 , θ3)

∣∣ ≤ h1/2r
(5.24)
n,j

{∣∣θ1 − θ∗1
∣∣+ ∣∣θ2 − θ∗2

∣∣}
for all (θ1, θ2) ∈ B((θ∗1 , θ

∗
2), ρ) and that

sup
n

sup
j

∥∥r(5.24)n,j

∥∥
p
< ∞ (5.24)

for every p > 1.

Proof. By (5.6), we have

ΔjY − hGn(Ztj−1 , θ1, θ2, θ
∗
3) = ξ

(5.17)
j + ρj(θ1, θ2, θ

∗
3) (5.25)
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and

ρj(θ1, θ2, θ
∗
3) =

∫ tj

tj−1

∫ t

tj−1

{
Hx(Zs, θ

∗
3)B(Zs, θ

∗
1)

−Hx(Ztj−1 , θ
∗
3)B(Ztj−1 , θ

∗
1)
}
dwsdt

+

∫ tj

tj−1

∫ t

tj−1

(
LH(Zs, θ

∗
1 , θ

∗
2 , θ

∗
3)

−LH(Ztj−1 , θ1, θ2, θ
∗
3)
)
dsdt.

Then the decomposition (5.16) is obvious. The first and third terms on the right-
hand side of (5.19) can be estimated with Taylor’s formula and (5.3), and the
second term is easy to estimate. Thus, we obtain (5.21). Since ∂(θ1,θ2)LH(z, θ1,
θ2, θ

∗
3) is bounded by a polynomial in z uniformly in (θ1, θ2), there exist random

variables r
(5.23)
n,j that satisfy (5.22) and (5.23). [ First show (5.22) on the set

{|(θ1, θ2)−(θ∗1 , θ
∗
2)| < r}, next see this estimate is valid on

(
Θ1×Θ2

)
\{|(θ1, θ2)−

(θ∗1 , θ
∗
2)| < r} by redefining r

(5.23)
n,j if necessary. ] We obtained (a). The assertion

(b) is easy to verify with (5.6), (5.7) and Lemma 5.4.

Lemma 5.6. Suppose that [A1] with (iA, jA, iB, jB , iH , jH) = (0, 0, 0, 0, 2, 1)
and [A2] (i) are satisfied. Then

sup
(θ1,θ2)∈Θ1×Θ2

∣∣Dj(θ1, θ2, θ3)−Dj(θ1, θ2, θ
′
3)
∣∣ ≤ h−1/2r

(5.26)
n,j

∣∣θ3 − θ′3
∣∣

(θ3, θ
′
3 ∈ Θ3)

for some random variables r
(5.26)
n,j such that

sup
n

sup
j

∥∥r(5.26)n,j

∥∥
p
< ∞ (5.26)

for every p > 1.

Proof.

Dj(θ1, θ2, θ3)−Dj(θ1, θ2, θ
′
3)

=

⎛⎜⎝ 0{
h−1/2

(
H(Ztj−1 , θ

′
3)−H(Ztj−1 , θ3)

)
+h1/2

2

(
LH(Ztj−1 , θ1, θ2, θ

′
3)− LH(Ztj−1 , θ1, θ2, θ3)

) } ⎞⎟⎠
Therefore the lemma is obvious. Apply the Taylor formula for the argument θ3
if θ3 and θ′3 are close, otherwise and if necessary, redifine r

(5.26)
n,j .
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6. Proof of Theorems 3.2 and 3.3

6.1. Proof of Theorem 3.2

Lemma 6.1. Suppose that [A1] with (iA, jA, iB , jB, iH , jH) = (0, 0, 0, 1, 1, 1)
and [A2] (i), (iii) and (iv) are fulfilled. Then

sup
t∈R+

∥∥∥∥ sup
(θ1,θ3)∈Θ1×Θ3

{∣∣S(Zt, θ1, θ3)
∣∣+ detS(Zt, θ1, θ3)

−1

+
∣∣S(Zt, θ1, θ3)

−1
∣∣}∥∥∥∥

p

< ∞

for every p > 1

Proof. By [A2] (iii) and (iv), detS(Ztj−1 , θ1, θ3)
−1 as well as S(Ztj−1 , θ1, θ3) is

continuous on Θ1×Θ3 a.s., and continuously differentiable on Θ1×Θ3. Moreover
we see

sup
t∈R+

∑
i=0,1

sup
(θ1,θ3)∈Θ1×Θ3

∥∥∂i
(θ1,θ3)

(
detS(Zt, θ1, θ3)

−1
)∥∥

p
< ∞

for every p > 1 from (3.3). This implies that

sup
t∈R+

∥∥∥∥ sup
(θ1,θ3)∈Θ1×Θ3

(
detS(Zt, θ1, θ3)

−1
)∥∥∥∥

p

< ∞

for every p > 1 by Sobolev’s inequality. The inequality

sup
t∈R+

∥∥∥∥ sup
(θ1,θ3)∈Θ1×Θ3

∣∣S(Zt, θ1, θ3)
∣∣∥∥∥∥

p

< ∞

for every p > 1 is rather easy to show.

Proof of Theorem 3.2. We have

Y(3)
n (θ3) = − 1

2n

n∑
j=1

Ŝ(Ztj−1 , θ3)
−1
[(
h1/2δj(θ̂

0
1, θ̂

0
2, θ3)

)⊗2]
+n−1hR(6.1)

n (θ3),

where
δj(θ1, θ2, θ3) = −Dj(θ1, θ2, θ3) +Dj(θ1, θ2, θ

∗
3)

and

R(6.1)
n (θ3) = h−1/2

n∑
j=1

Ŝ(Ztj−1 , θ3)
−1
[
h1/2δj(θ̂

0
1, θ̂

0
2, θ3),Dj(θ̂

0
1, θ̂

0
2, θ

∗
3)
]

−1

2

n∑
j=1

(
Ŝ(Ztj−1 , θ3)

−1 − Ŝ(Ztj−1 , θ
∗
3)

−1
)[
Dj(θ̂

0
1, θ̂

0
2, θ

∗
3)

⊗2
]
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−1

2

n∑
j=1

log
det Ŝ(Ztj−1 , θ3)

det Ŝ(Ztj−1 , θ
∗
3)

(6.1)

By Lemma 5.3 (b), Lemma 5.5 (b), Lemma 5.6 and Lemma 6.1, we obtain

n−1h sup
θ3∈Θ3

∣∣R(6.1)
n (θ3)

∣∣ = Op(h
1/2) +Op(h) = Op(h

1/2).

By definition,

h1/2δj(θ̂
0
1, θ̂

0
2, θ3)

=

⎛⎜⎝ 0{
H(Ztj−1 , θ3)−H(Ztj−1 , θ

∗
3)

+h
2

(
LH(Ztj−1 , θ̂

0
1, θ̂

0
2, θ3)− LH(Ztj−1 , θ̂

0
1, θ̂

0
2, θ

∗
3)
) }

⎞⎟⎠ .

Since the functions A(z, θ2), H(z, θ3) and LH(z, θ1, θ2, θ3) are dominated by a
polynomial in z uniformly in θ, by using the above formula, it is easy to show

sup
θ3∈Θ3

∣∣∣Y(3)
n (θ3)− Y(6.3)

n (θ̂01, θ3)
∣∣∣ = Op(h

1/2) (6.2)

for

Y(6.3)
n (θ1, θ3)

= − 1

2n

n∑
j=1

S(Ztj−1 , θ1, θ3)
−1

[(
0

H(Ztj−1 θ3)−H(Ztj−1 θ
∗
3)

)⊗2
]
.

(6.3)

The derivative ∂1Sx(z, θ1, θ3) is dominated by a polynomial in z uniformly in θ.
Therefore

sup
θ3∈Θ3

∣∣Y(6.3)
n (θ̂01, θ3)− Y(6.3)

n (θ∗1 , θ3)
∣∣ →p 0. (6.4)

Finally, the estimate (5.3) gives

sup
θ3∈Θ3

∣∣∣∣∣Y(6.3)
n (θ∗1 , θ3)

+
1

2nh

∫ nh

0

S(Zt, θ
∗
1 , θ3)

−1

[(
0

H(Zt, θ3)−H(Zt, θ
∗
3)

)⊗2
]
dt

∣∣∣∣∣
→p 0. (6.5)

Now (3.6) follows from (6.2), (6.4), (6.5) and [A2] (ii) since ∂3
iH(z, θ1, θ3) (i =

0, 1) are dominated by a polynomial in z uniformly in θ3. Then the convergence

θ̂03 →p θ3 as n → ∞ is obvious under Condition [A3] (iii).
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6.2. Random fields

Let

D̃j(θ
′
1, θ

′
2, θ

′
3) = Dj(θ

′
1, θ

′
2, θ

′
3) + D̃j(θ

∗
1 , θ

∗
2 , θ

∗
3)−Dj(θ

∗
1 , θ

∗
2 , θ

∗
3)

where

D̃j(θ
∗
1 , θ

∗
2 , θ

∗
3) =

⎛⎝ ξ
(5.10)
j + ξ

(5.11)
j

h−3/2
(
ξ
(5.17)
j + ξ

(5.18)
j

)
⎞⎠ .

To solve the problem, we need to exploit stochastic orthogonality between
random fields. Though this technique is standard, to carry out it as visibly as
possible, we necessarily introduce various random fields below. These symbols
are useful to clarify which parameters are replaced in the formula and which or-
der of error is caused, also to make big formulas compact and to avoid repetition
of them. The following random fields depend on n.

Ψ3,1(θ1, θ3, θ
′
1, θ

′
2, θ

′
3)

=
n∑

j=1

S(Ztj−1 , θ1, θ3)
−1

[
Dj(θ

′
1, θ

′
2, θ

′
3),

(
0

∂3H(Ztj−1 , θ3)

)]
,

Ψ̃3,1(θ1, θ3, θ
′
1, θ

′
2, θ

′
3)

=

n∑
j=1

S(Ztj−1 , θ1, θ3)
−1

[
D̃j(θ

′
1, θ

′
2, θ

′
3),

(
0

∂3H(Ztj−1 , θ3)

)]
,

Ψ3,2(θ1, θ2, θ3, θ
′
1, θ

′
2, θ

′
3)

=

n∑
j=1

S(Ztj−1 , θ1, θ3)
−1

[
Dj(θ

′
1, θ

′
2, θ

′
3),

(
0

2−1h∂3LH(Ztj−1 , θ1, θ2, θ3)

)]
,

Ψ3,3(θ1, θ3, θ
′
1, θ

′
2, θ

′
3)

=
1

2

n∑
j=1

(
S−1(∂3S)S

−1
)
(Ztj−1 , θ1, θ3)

[
Dj(θ

′
1, θ

′
2, θ

′
3)

⊗2 − S(Ztj−1 , θ1, θ3)
]
,

Ψ33,1(θ1, θ2, θ3)

= −
n∑

j=1

S(Ztj−1 , θ1, θ3)
−1

⎡⎢⎣
⎛⎝ 0{

∂3H(Ztj−1 , θ3)
+2−1h∂3LH(Ztj−1 , θ1, θ2, θ3)

} ⎞⎠⊗2
⎤⎥⎦ ,



1446 A. Gloter and N. Yoshida

Ψ33,2(θ1, θ2, θ3, θ
′
1, θ

′
2, θ

′
3)

=

n∑
j=1

S(Ztj−1 , θ1, θ3)
−1

[
Dj(θ

′
1, θ

′
2, θ

′
3)

⊗
(

0
∂2
3H(Ztj−1 , θ3) + 2−1h∂2

3LH(Ztj−1 , θ1, θ2, θ3)

)]
,

Ψ33,3(θ1, θ3)

= −1

2

n∑
j=1

{(
S−1(∂3S)S

−1
)
(Ztj−1 , θ1, θ3)

[
∂3S(Ztj−1 , θ1, θ3)

]}
,

Ψ33,4(θ1, θ2, θ3, θ
′
1, θ

′
2, θ

′
3)

= −2

n∑
j=1

S−1(∂3S)S
−1(Ztj−1 , θ1, θ3)

[
Dj(θ

′
1, θ

′
2, θ

′
3)

⊗
(

0
∂3H(Ztj−1 , θ3) + 2−1h∂3LH(Ztj−1 , θ1, θ2, θ3)

)]
,

Ψ33,5(θ1, θ3, θ
′
1, θ

′
2, θ

′
3)

=
1

2

n∑
j=1

∂3
{(

S−1(∂3S)S
−1
)
(Ztj−1 , θ1, θ3)

}
·
[
Dj(θ

′
1, θ

′
2, θ

′
3)

⊗2 − S(Ztj−1 , θ1, θ3)

]
.

6.3. Proof of Theorem 3.3

Let

M (3)
n = n−1/2

n∑
j=1

S(Ztj−1 , θ
∗
1 , θ

∗
3)

−1

[(
h−1/2B(Ztj−1 , θ

∗
2)Δjw

h−3/2κ(Ztj−1 , θ
∗
1 , θ

∗
3)ζj

)

⊗
(

0
∂3H(Ztj−1 , θ

∗
3)

)]
.

Lemma 6.2. Suppose that [A1] with (iA, jA, iB, jB , iH , jH) = (1, 1, 2, 1, 3, 1),
[A2] and [A4] are satisfied. Then

n−1/2h1/2 ∂3H
(3)
n (θ∗3)−M (3)

n = op(1)

as n → ∞.
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Proof. From (3.5) and (3.2), we have

n−1/2h1/2 ∂3H
(3)
n (θ∗3) = R(6.7)

n (θ̂01, θ̂
0
2) +R(6.8)

n (θ̂01, θ̂
0
2) +R(6.9)

n (θ̂01, θ̂
0
2)

(6.6)

where

R(6.7)
n (θ̂01, θ̂

0
2) = n−1/2Ψ3,1(θ̂

0
1, θ

∗
3 , θ̂

0
1, θ̂

0
2, θ

∗
3), (6.7)

R(6.8)
n (θ̂01, θ̂

0
2) = n−1/2Ψ3,2(θ̂

0
1, θ̂

0
2, θ

∗
3 , θ̂

0
1, θ̂

0
2, θ

∗
3)

(6.8)

and

R(6.9)
n (θ̂01, θ̂

0
2) = n−1/2h1/2Ψ3,3(θ̂

0
1, θ

∗
3 , θ̂

0
1, θ̂

0
2, θ

∗
3). (6.9)

We have

Dj(θ̂
0
1, θ̂

0
2, θ

∗
3)−Dj(θ̂

0
1, θ

∗
2 , θ

∗
3)

= −h1/2

⎛⎝ (
A(Ztj−1 , θ̂

0
2)−A(Ztj−1 , θ

∗
2)
)

2−1Hx(Ztj−1 , θ
∗
3)
[
A(Ztj−1 , θ̂

0
2)−A(Ztj−1 , θ

∗
2)
]
⎞⎠ ,

and so only by algebraic computation we obtain

Ŝ(Ztj−1 , θ
∗
3)

−1

[
Dj(θ̂

0
1, θ̂

0
2, θ

∗
3)−Dj(θ̂

0
1, θ

∗
2 , θ

∗
3),

(
0

∂3H(Ztj−1 , θ
∗
3)

)]
= 0. (6.10)

Applying Lemma 5.5 (b) under [A4], and next using the results in Lemmas 5.4
and 5.5, we see

R(6.7)
n (θ̂01, θ̂

0
2) = n−1/2Ψ3,1(θ̂

0
1, θ

∗
3 , θ

∗
1 , θ

∗
2 , θ

∗
3) +Op(h

1/2)

= n−1/2Ψ̃3,1(θ̂
0
1, θ

∗
3 , θ

∗
1 , θ

∗
2 , θ

∗
3) + op(1)

(6.11)

since (nh2)1/2 = o(1). Consider the random field

Φ(6.12)
n (u1) = n−1/2

{
Ψ̃3,1(θ

∗
1 + rnu1, θ

∗
3 , θ

∗
1 , θ

∗
2 , θ

∗
3)− Ψ̃3,1(θ

∗
1 , θ

∗
3 , θ

∗
1 , θ

∗
2 , θ

∗
3)
}

(6.12)

on {u1 ∈ Rp1 ; |u1| < 1} for any sequence of positive numbers rn → 0. Sobolev’s
inequality gives

sup
u1:|u1|<1

|Φ(6.12)
n (u1)| = op(1)
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with the help of orthogonality. In particular,

R(6.7)
n (θ̂01, θ̂

0
2) = n−1/2Ψ̃3,1(θ

∗
1 , θ

∗
3 , θ

∗
1 , θ

∗
2 , θ

∗
3) + op(1).

(6.13)

This implies
R(6.7)

n (θ̂01, θ̂
0
2) = M (3)

n + op(1).

Simpler is that R
(6.8)
n (θ̂01, θ̂

0
2) = Op(n

1/2h). Similarly,

R(6.9)
n (θ̂01, θ̂

0
2) = n−1/2h1/2Ψ3,3(θ

∗
1 , θ

∗
3 , θ

∗
1 , θ

∗
2 , θ

∗
3) +Op(h

1/2)

= Op(h
1/2).

Thus, we obtained the result.

In what follows, we quite often use the estimates in Lemma 6.1 without
mentioning it explicitly.

Lemma 6.3. Suppose that [A1] with (iA, jA, iB, jB , iH , jH) = (1, 1, 2, 1, 3, 2),
[A2] and [A4] are satisfied. Then

sup
θ3∈Bn

∣∣∣n−1h ∂2
3H(3)

n (θ3) + Γ33

∣∣∣ →p 0

for any sequence of balls Bn in Rp3 shrinking to θ∗3.

Proof. We have

n−1h ∂2
3H(3)

n (θ3) = n−1Ψ33,1(θ̂
0
1, θ̂

0
2, θ3)

+n−1h1/2Ψ33,2(θ̂
0
1, θ̂

0
2, θ3, θ̂

0
1, θ̂

0
2, θ3)

+n−1hΨ33,3(θ̂
0
1, θ3)

+n−1h1/2Ψ33,4(θ̂
0
1, θ̂

0
2, θ3, θ̂

0
1, θ̂

0
2, θ3)

+n−1hΨ33,5(θ̂
0
1, θ3, θ̂

0
1, θ̂

0
2, θ3).

For Dj(θ̂
0
1, θ̂

0
2, θ3) in the above expression, we use Lemma 5.5 (b) to replace θ̂0i

by θ∗i for i = 1, 2, and Lemma 5.6 to replace θ3 ∈ Bn by θ∗3 with an error uniform
in θ3 ∈ Bn. Next we use Lemma 5.3 (b). Then

n−1h ∂2
3H(3)

n (θ3) = −n−1
n∑

j=1

Ŝ(Ztj−1 , θ3)
−1

[(
0

∂3H(Ztj−1 , θ3)

)⊗2
]

+r(6.14)n (θ3)

where
sup

θ3∈Θ3

∣∣r(6.14)n (θ3)
∣∣ = op(1). (6.14)

Now we obtain the result by using [A2] and estimating the functions ∂3S and
∂2
3H uniformly in (θ1, θ3).

Now Theorem 3.3 follows from Lemmas 6.2 and 6.3.
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7. Proof of Theorem 4.1

Let us prepare the following random fields.

Ψ2(θ1, θ2, θ3, θ
′
1, θ

′
2, θ

′
3)

=

n∑
j=1

S(Ztj−1 , θ1, θ3)
−1

[
Dj(θ

′
1, θ

′
2, θ

′
3)

⊗
(

∂2A(Ztj−1 , θ2)
2−1∂2LH(Ztj−1 , θ1, θ2, θ3)

)]

=

n∑
j=1

S(Ztj−1 , θ1, θ3)
−1

[
Dj(θ

′
1, θ

′
2, θ

′
3)

⊗
(

∂2A(Ztj−1 , θ2)
2−1Hx(z, θ3)[∂2A(Ztj−1 , θ2)]

)]
,

Ψ̃2(θ1, θ2, θ3, θ
′
1, θ

′
2, θ

′
3)

=

n∑
j=1

S(Ztj−1 , θ1, θ3)
−1

[
D̃j(θ

′
1, θ

′
2, θ

′
3)

⊗
(

∂2A(Ztj−1 , θ2)
2−1∂2LH(Ztj−1 , θ1, θ2, θ3)

)]

=

n∑
j=1

S(Ztj−1 , θ1, θ3)
−1

[
D̃j(θ

′
1, θ

′
2, θ

′
3)

⊗
(

∂2A(Ztj−1 , θ2)
2−1Hx(z, θ3)[∂2A(Ztj−1 , θ2)]

)]
,

Ψ3(θ1, θ2, θ3, θ
′
1, θ

′
2, θ

′
3)

=

n∑
j=1

S(Ztj−1 , θ1, θ3)
−1

[
Dj(θ

′
1, θ

′
2, θ

′
3)

⊗
(

0
∂3H(Ztj−1 , θ3) + 2−1h∂3LH(Ztj−1 , θ1, θ2, θ3)

)]
,

Ψ̃3(θ1, θ2, θ3, θ
′
1, θ

′
2, θ

′
3)

=

n∑
j=1

S(Ztj−1 , θ1, θ3)
−1

[
D̃j(θ

′
1, θ

′
2, θ

′
3)

⊗
(

0
∂3H(Ztj−1 , θ3) + 2−1h∂3LH(Ztj−1 , θ1, θ2, θ3)

)]
.
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Let

M (1)
n =

1

2
n−1/2

n∑
j=1

(
S−1(∂1S)S

−1
)
(Ztj−1 , θ

∗
1 , θ

∗
3)

·
[
D̃j(θ

∗
1 , θ

∗
2 , θ

∗
3)

⊗2 − S(Ztj−1 , θ
∗
1 , θ

∗
3)
]
.

Let U be an open ball in Rp2+p3 centered at γ∗ such that U ⊂ Θ2 ×Θ3. Let

X ∗(2,3)
n = X (2,3)

n ∩ {γ̂0 ∈ U}.
Lemma 7.1. Suppose that [A1] with (iA, jA, iB, jB , iH , jH) = (1, 2, 2, 1, 3, 1),
[A2] (i), (iii), (iv) and [A4�] are satisfied. Then

n−1/2h−1/2 ∂2H
(2,3)
n (γ̂0) = Op(1)

as n → ∞.

Proof. By using Lemma 5.6 and Lemma 5.5 (b) together with the convergence
rate of the initial estimators, we have

n−1/2h−1/2 ∂2H
(2,3)
n (γ̂0) = n−1/2Ψ2(θ̂

0
1, θ̂

0
2, θ̂

0
3, θ̂

0
1, θ̂

0
2, θ̂

0
3)

= n−1/2Ψ2(θ̂
0
1, θ̂

0
2, θ̂

0
3, θ

∗
1 , θ

∗
2 , θ

∗
3) +Op(1)

= n−1/2Ψ̃2(θ̂
0
1, θ̂

0
2, θ̂

0
3, θ

∗
1 , θ

∗
2 , θ

∗
3) +Op(1)

by Lemma 5.4 and Lemma 5.5 (a).
The open ball of radius r centered at θ is denoted by U(θ, r). Define the

random field
Φ(7.1)

n (θ) = n−1/2Ψ̃2(θ1, θ2, θ3, θ
∗
1 , θ

∗
2 , θ

∗
3) (7.1)

on θ = (θ1, θ2, θ3) ∈ U(θ∗, r) for a small number r such that U(θ∗, r) ⊂ Θ. With
the Burkholder-Davis-Gundy inequality and in particular twice differentiability
of A in θ2, we obtain

sup
n

∑
i=0,1

sup
θ∈B(θ∗,r)

∥∥|∂i
θΦ

(7.1)
n (θ)|

∥∥
p
< ∞

for every p > 1. Therefore, Sobolev’s inequality ensures

sup
n

∥∥∥∥ sup
θ∈U(θ∗,r)

|Φ(7.1)
n (θ)|

∥∥∥∥
p

< ∞

Consequently,

Φ(7.1)
n

(
θ̂01, θ̂

0
2, θ̂

0
3

)
1{

(θ̂0
1,θ̂

0
2 ,θ̂

0
3)∈U(θ∗,r)

} = Op(1).

This completes the proof.

Lemma 7.2. Suppose that [A1] with (iA, jA, iB, jB , iH , jH) = (1, 1, 2, 1, 3, 2),
[A2] (i), (iii), (iv) and [A4�] are satisfied. Then

n−1/2h1/2 ∂3H
(2,3)
n (γ̂0) = Op(1)

as n → ∞.
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Proof. The proof is similar to that of Lemma 7.1. First,

n−1/2h1/2 ∂3H
(2,3)
n (γ̂0) = n−1/2Ψ3(θ̂

0
1, θ̂

0
2, θ̂

0
3, θ̂

0
1, θ̂

0
2, θ̂

0
3)

= n−1/2Ψ̃3(θ̂
0
1, θ̂

0
2, θ̂

0
3, θ

∗
1 , θ

∗
2 , θ

∗
3) +Op(1).

Then we can show the lemma in the same fashion as Lemma 7.1 with a random
field.

Let

Bn = U
(
θ∗1 , n

−1/2 log(nh)
)
× U

(
θ∗2 , (nh)

−1/2 log(nh)
)

×U
(
θ∗3 , n

−1/2h1/2 log(nh)
)
,

B′
n = U

(
θ∗2 , (nh)

−1/2 log(nh)
)
× U

(
θ∗3 , n

−1/2h1/2 log(nh)
)

and
B′′

n = U
(
θ∗1 , n

−1/2 log(nh)
)
× U

(
θ∗3 , n

−1/2h1/2 log(nh)
)
.

We will use the following random fields.

Φ22,1(θ1, θ3, θ
′
1, θ

′
2, θ

′
3)

= −
n∑

j=1

S(Ztj−1 , θ1, θ3)
−1

[(
∂2A(Ztj−1 , θ

′
2)

2−1∂2LH(Ztj−1 , θ
′
1, θ

′
2, θ

′
3)

)⊗2
]
,

Φ22,2(θ1, θ3, θ
′
1, θ

′
2, θ

′
3, θ

′′
2 , θ

′′
3 )

=
n∑

j=1

S(Ztj−1 , θ1, θ3)
−1

[
Dj(θ

′
1, θ

′
2, θ

′
3)

⊗
(

∂2
2A(Ztj−1 , θ

′′
2 )

2−1Hx(Ztj−1 , θ
′′
3 )
[
∂2
2A(Ztj−1 , θ

′′
2 )
] )]

,

Φ̃22,2(θ1, θ3, θ
′
1, θ

′
2, θ

′
3, θ

′′
2 , θ

′′
3 )

=

n∑
j=1

S(Ztj−1 , θ1, θ3)
−1

[
D̃j(θ

′
1, θ

′
2, θ

′
3)

⊗
(

∂2
2A(Ztj−1 , θ

′′
2 )

2−1Hx(Ztj−1 , θ
′′
3 )
[
∂2
2A(Ztj−1 , θ

′′
2 )
] )]

,

Φ23,1(θ1, θ3, θ
′
1, θ

′
2, θ

′
3, θ

′′
2 , θ

′′
3 )

= −
n∑

j=1

S(Ztj−1 , θ1, θ3)
−1

[(
0

2−1∂3LH(Ztj−1 , θ
′
1, θ

′
2, θ

′
3)

)

⊗
(

∂2A(Ztj−1 , θ
′′
2 )

2−1Hx(Ztj−1 , θ
′′
3 )
[
∂2A(Ztj−1 , θ

′′
2 )
] )]

,



1452 A. Gloter and N. Yoshida

Φ23,2(θ1, θ3, θ
′
1, θ

′
2, θ

′
3, θ

′′
2 , θ

′′
3 )

=
n∑

j=1

S(Ztj−1 , θ1, θ3)
−1

[
Dj(θ

′
1, θ

′
2, θ

′
3)

⊗
(

0
2−1∂3Hx(Ztj−1 , θ

′′
3 )
[
∂2A(Ztj−1 , θ

′′
2 )
] )]

,

Φ33,1(θ1, θ3, θ
′
1, θ

′
2, θ

′
3)

= −
n∑

j=1

S(Ztj−1 , θ1, θ3)
−1

⎡⎢⎣
⎛⎝ 0{

∂3H(Ztj−1 , θ
′
3)

+2−1h∂3LH(Ztj−1 , θ
′
1, θ

′
2, θ

′
3)

} ⎞⎠⊗2
⎤⎥⎦ ,

Φ33,2(θ1, θ3, θ
′
1, θ

′
2, θ

′
3, θ

′′
1 , θ

′′
2 , θ

′′
3 )

=

n∑
j=1

S(Ztj−1 , θ1, θ3)
−1

[
Dj(θ

′
1, θ

′
2, θ

′
3)

⊗
(

0
∂2
3H(Ztj−1 , θ

′′
3 ) + 2−1h∂2

3LH(Ztj−1 , θ
′′
1 , θ

′′
2 , θ

′′
3 )

)]
.

Lemma 7.3. Suppose that [A1] with (iA, jA, iB, jB , iH , jH) = (1, 3, 2, 1, 3, 1),
[A2] and [A4�] are satisfied. Then

sup
(θ2,θ3)∈B′

n

∣∣n−1h−1 ∂2
2H(2,3)

n (θ2, θ3) + Γ22

∣∣ →p 0

as n → ∞.

Proof. We have

n−1h−1 ∂2
2H(2,3)

n (θ2, θ3) = n−1Φ22,1(θ̂
0
1, θ̂

0
3, θ̂

0
1, θ2, θ3)

+n−1h−1/2Φ22,2(θ̂
0
1, θ̂

0
3, θ̂

0
1, θ2, θ3, θ2, θ3) (7.2)

Apply Lemma 5.6 and Lemma 5.5 (b) to obtain

sup
(θ1,θ3)∈B′′

n

sup
(θ′

1,θ
′
2,θ

′
3)∈Bn

sup
(θ′′

2 ,θ′′
3 )∈B′

n

∣∣n−1h−1/2Φ22,2(θ1, θ3, θ
′
1, θ

′
2, θ

′
3, θ

′′
2 , θ

′′
3 )

−n−1h−1/2Φ22,2(θ1, θ3, θ
∗
1 , θ

∗
2 , θ

∗
3 , θ

′′
2 , θ

′′
3 )
∣∣

= op(1).

(7.3)

Here we used the assumption that the functions are bounded by a polynomial
in z uniformly in the parameters, and the count

n−1h−1/2 × n× h−1/2 × n−1/2h1/2 log(nh) =
log(nh)√

nh



Adaptive estimation for degenerate diffusion processes 1453

to estimate the error when replacing θ′3 by θ∗3 , as well a similar count when
replacing (θ′1, θ

′
2) by (θ∗1 , θ

∗
2).

We apply Lemmas 5.4 and 5.5 (a) to obtain

sup
(θ1,θ3)∈B′′

n

sup
(θ′′

2 ,θ′′
3 )∈B′

n

∣∣n−1h−1/2Φ22,2(θ1, θ3, θ
∗
1 , θ

∗
2 , θ

∗
3 , θ

′′
2 , θ

′′
3 )

−n−1h−1/2Φ̃22,2(θ1, θ3, θ
∗
1 , θ

∗
2 , θ

∗
3 , θ

′′
2 , θ

′′
3 )
∣∣

= Op

(
(nh)−1/2 log(nh)

)
= op(1). (7.4)

Since D̃j(θ
∗
1 , θ

∗
2 , θ

∗
3) in Φ̃22,2 are martingale differences with respect to a suitable

filtration, we can conclude by the random field argument with the Sobolev space
of index (1, p), p > 1, that

sup
(θ1,θ3)∈B′′

n

sup
(θ′′

2 ,θ′′
3 )∈B′

n

∣∣n−1h−1/2Φ̃22,2(θ1, θ3, θ
∗
1 , θ

∗
2 , θ

∗
3 , θ

′′
2 , θ

′′
3 )
∣∣

= Op((nh)
−1/2) = op(1) (7.5)

On the other hand,

sup
(θ1,θ3)∈B′′

n

sup
(θ′

1,θ
′
2,θ

′
3)∈Bn

∣∣∣∣n−1Φ22,1(θ1, θ3, θ
′
1, θ

′
2, θ

′
3)

−n−1Φ22,1(θ
∗
1 , θ

∗
3 , θ

∗
1 , θ

∗
2 , θ

∗
3)

∣∣∣∣ = op(1) (7.6)

From (7.2)-(7.6) and [A4�] (i), (iii), we obtain

sup
(θ2,θ3)∈B′

n

∣∣n−1h−1 ∂2
2H

(2,3)
n (θ2, θ3)− n−1Φ22,1(θ

∗
1 , θ

∗
3 , θ

∗
1 , θ

∗
2 , θ

∗
3)
∣∣ = op(1).

(7.7)

Now the assertion of the lemma is easy to obtain if one uses [A1], [A2] and
Lemma 5.1.

Let

i(z, θ) =

(
∂2A(z, θ2)

� 2−1∂2LH(z, θ1, θ2, θ3)
�

O ∂3H(z, θ3)
�

)
S(z, θ1, θ3)

−1

×
(

∂2A(z, θ2) O
2−1∂2LH(z, θ1, θ2, θ3) ∂3H(z, θ3)

)
.

(7.8)

Then simple calculus with (3.3) and

∂2LH(z, θ1, θ2, θ3) = Hx(z, θ3)
[
∂2A(z, θ2)

]
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yield

i(z, θ) = diag
[
i(z, θ)22, i(z, θ)33

]
, (7.9)

where

i(z, θ)22 = ∂2A(z, θ2)
�C(z, θ1)

−1∂2A(z, θ2)

and

i(z, θ)33 = 12∂3H(z, θ3)
�V (z, θ1, θ3)

−1∂3H(z, θ3).

Lemma 7.4. Suppose that [A1] with (iA, jA, iB, jB , iH , jH) = (1, 1, 2, 1, 3, 1),
[A2] and [A4�] are satisfied. Then

sup
(θ2,θ3)∈B′

n

∣∣n−1 ∂3∂2H
(2,3)
n (θ2, θ3)

∣∣ →p 0

as n → ∞.

Proof. From (7.8), we see

S(z, θ1, θ3)
−1

[(
0

∂3H(z, θ3)

)
,

(
∂2A(z, θ2)

2−1∂2LH(z, θ1, θ2, θ3)

)]
= 0.

Then,

n−1 ∂3∂2H
(2,3)
n (θ2, θ3) = n−1hΦ23,1(θ̂

0
1, θ3, θ̂

0
1, θ2, θ3, θ2, θ3)+en(θ2, θ3)

+n−1h1/2Φ23,2(θ̂
0
1, θ̂

0
3, θ̂

0
1, θ2, θ3, θ2, θ3)

where

sup
(θ2,θ3)∈B′

n

∣∣en(θ2, θ3)∣∣ = Op(n
−1/2h1/2)

as n → ∞. Indeed, first replace Ŝ(Ztj−1 , θ̂
0
3)

−1 by Ŝ(Ztj−1 , θ3)
−1, and next use

the above equality to remove the term ∂3H(Ztj−1 , θ3). Now it is not difficult to
show the desired result.

Lemma 7.5. Suppose that [A1] with (iA, jA, iB, jB , iH , jH) = (1, 1, 2, 1, 3, 2),
[A2] and [A4�] are satisfied. Then

sup
(θ2,θ3)∈B′

n

∣∣n−1h ∂2
3H(2,3)

n (θ2, θ3) + Γ33

∣∣ →p 0

as n → ∞.

Proof. By definition,

n−1h ∂2
3H(2,3)

n (θ2, θ3) = n−1Φ33,1(θ̂
0
1, θ̂

0
3, θ̂

0
1, θ2, θ3)

+n−1h1/2Φ33,2(θ̂
0
1, θ̂

0
3, θ̂

0
1, θ2, θ3, θ̂

0
1, θ2, θ3).

Φ33,1 involves the first derivative ∂3, and Φ33,2 does the second derivative ∂2
3 .

First applying Lemma 5.6 and Lemma 5.5 (b), and next Lemma 5.3 (b), we
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have

sup
(θ2,θ3)∈B′

n

∣∣n−1h1/2Φ33,2(θ̂
0
1, θ̂

0
3, θ̂

0
1, θ2, θ3, θ̂

0
1, θ2, θ3)

∣∣
≤ sup

(θ2,θ3)∈B′
n

∣∣n−1h1/2Φ33,2(θ̂
0
1, θ̂

0
3, θ

∗
1 , θ

∗
2 , θ

∗
3 , θ̂

0
1, θ2, θ3)

∣∣
+Op(n

−1/2h1/2 log(nh))

= Op(h
1/2).

Moreover, it is easy to show

sup
(θ2,θ3)∈B′

n

∣∣n−1Φ33,1(θ̂
0
1, θ̂

0
3, θ̂

0
1, θ2, θ3)+Γ33

∣∣ →p 0

from [A1], [A2] and [A4�] with the aid of Lemma 5.1.

Let

an =

(
n−1/2h−1/2 0

0 n−1/2h1/2

)
.

Lemma 7.6. Suppose that [A1] with (iA, jA, iB, jB , iH , jH) = (1, 3, 2, 1, 3, 2),
[A2] and [A4�] are satisfied. Then

sup
(θ2,θ3)∈B′

n

∣∣an∂2
(θ2,θ3)

H(2,3)
n (θ2, θ3)an + Γ(2,3)(θ∗)

∣∣ →p 0 (7.10)

where

Γ(2,3)(θ∗) =

(
Γ22 O
O Γ33

)
.

Proof. The convergence (7.10) follows from Lemmas 7.3, 7.4 and 7.5.

Lemma 7.7. Suppose that [A1] with (iA, jA, iB, jB , iH , jH) = (1, 3, 2, 1, 3, 2),

[A2] and [A4�] are satisfied. If Γ(2,3)(θ∗) is invertible, then P [X ∗(2,3)
n ] → 1 as

n → ∞.

Proof. By Lemmas 7.1 and 7.2,

an∂(θ2,θ3)H
(2,3)
n (γ̂0) = Op(1)

and by Lemma 7.6, (
an∂

2
(θ2,θ3)

H(2,3)
n (γ̂0)an

)−1
= Op(1).

Therefore, (
∂2
(θ2,θ3)

H(2,3)
n (γ̂0)

)−1
∂(θ2,θ3)H

(2,3)
n (γ̂0) = Op((nh)

−1/2)

as n → ∞. This means P [X ∗(2,3)
n ] → 1.
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Let

M (2)
n = n−1/2

n∑
j=1

S(Ztj−1 , θ
∗
1 , θ

∗
3)

−1

[(
h−1/2B(Ztj−1 , θ

∗
1)Δjw

h−3/2κ(Ztj−1 , θ
∗
1 , θ

∗
3)ζj

)

⊗
(

∂2A(Ztj−1 , θ
∗
2)

2−1∂2LH(Ztj−1 , θ
∗
1 , θ

∗
2 , θ

∗
3)

)]

= n−1/2
n∑

j=1

C(Ztj−1 , θ
∗
1)

−1
[
h−1/2B(Ztj−1 , θ

∗
1)Δjw, ∂2A(Ztj−1 , θ

∗
2)
]
.

(7.11)

Lemma 7.8. Suppose that [A1] with (iA, jA, iB, jB , iH , jH) = (1, 1, 2, 1, 3, 1),
[A2] and [A4�] are satisfied. Then

n−1/2h−1/2 ∂2H
(2,3)
n (θ∗2 , θ

∗
3)−M (2)

n →p 0

as n → ∞.

Proof. By using Lemma 5.5 (b) together with the convergence rate of the esti-

mators θ̂01 and θ̂03, and next by Lemma 5.5 (a) and Lemma 5.4, we have

n−1/2h−1/2 ∂2H
(2,3)
n (θ∗2 , θ

∗
3)

= n−1/2
n∑

j=1

Ŝ(Ztj−1 , θ̂
0
3)

−1

[
Dj(θ̂

0
1, θ

∗
2 , θ

∗
3)

⊗
(

∂2A(Ztj−1 , θ
∗
2)

2−1∂2LH(Ztj−1 , θ̂
0
1, θ

∗
2 , θ

∗
3)

)]

= n−1/2
n∑

j=1

Ŝ(Ztj−1 , θ̂
0
3)

−1

[
Dj(θ

∗
1 , θ

∗
2 , θ

∗
3)

⊗
(

∂2A(Ztj−1 , θ
∗
2)

2−1∂2LH(Ztj−1 , θ̂
0
1, θ

∗
2 , θ

∗
3)

)]
+Op(h

1/2)

= n−1/2
n∑

j=1

Ŝ(Ztj−1 , θ
∗
3)

−1

[
D̃j(θ

∗
1 , θ

∗
2 , θ

∗
3)

⊗
(

∂2A(Ztj−1 , θ
∗
2)

2−1∂2LH(Ztj−1 , θ̂
0
1, θ

∗
2 , θ

∗
3)

)]
+Op(

√
nh) +Op(h

1/2). (7.12)

Here we used the derivative ∂1H.
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We consider the random field

Φ(7.13)
n (u1) = n−1/2Ψ̃2(θ1(u1), θ

∗
2 , θ

∗
3 , θ

∗
1 , θ

∗
2 , θ

∗
3)

(7.13)

on {u1 ∈ Rp1 ; |u1| < 1}, where θ1(u1) = θ∗1 + n−1/2(logn)u1. Then Lp-estimate
of

∂i
1{Φ(7.13)

n (u1)− Φ(7.13)
n (0)} (i = 0, 1)

yields
sup

u1∈U(0,1)

∣∣Φ(7.13)
n (u1)− Φ(7.13)

n (0)
∣∣ →p 0,

in particular,
Φ(7.13)

n (u†
1)− Φ(7.13)

n (0) →p 0

where u†
1 = n1/2(logn)−1(θ̂1− θ∗1). Obviously, M

(2)
n −Φ

(7.13)
n (0) →p 0. Since the

first term on the right-hand side of (7.12) is nothing but Φ
(7.13)
n (u†

1) on an event
the probability of which goes to 1, we have already obtained the result.

Lemma 7.9. Suppose that [A1] with (iA, jA, iB, jB , iH , jH) = (1, 1, 2, 1, 3, 1),
[A2] and [A4] are satisfied. Then

n−1/2h1/2 ∂3H
(2,3)
n (θ∗2 , θ

∗
3)−M (3)

n →p 0

as n → ∞.

Proof. We have

n−1/2h1/2 ∂3H
(2,3)
n (θ∗2 , θ

∗
3)

= n−1/2
n∑

j=1

S(Ztj−1 , θ̂
0
1, θ̂

0
3)

−1

[
Dj(θ̂

0
1, θ

∗
2 , θ

∗
3)

⊗
(

0

∂3H(Ztj−1 , θ
∗
3) + 2−1h∂3LH(Ztj−1 , θ̂

0
1, θ

∗
2 , θ

∗
3)

)]
.

Then this lemma can be proved in the same way as Lemma 7.8.

Let

M (2,3)
n =

(
M

(2)
n

M
(3)
n

)
.

Combining Lemmas 7.8 and 7.9, with the identity in the proof of Lemma 7.4,
we obtain the following lemma.

Lemma 7.10. Suppose that [A1] with (iA, jA, iB, jB , iH , jH) = (1, 1, 2, 1, 3, 1),
[A2] and [A4�] are satisfied. Then

an∂(θ2,θ3)H
(2,3)
n (θ∗2 , θ

∗
3)−M (2,3)

n →p 0

and M
(2,3)
n →d N(0,Γ(2,3)(θ∗)) as n → ∞. In particular,

an∂(θ2,θ3)H
(2,3)
n (θ∗2 , θ

∗
3) →d N(0,Γ(2,3)(θ∗))

as n → ∞.
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Theorem 7.11. Suppose that [A1] with (iA, jA, iB, jB , iH , jH) = (1, 3, 2, 1, 3, 2),
[A2] and [A4�] are satisfied. If Γ(2,3)(θ∗) is invertible, then

a−1
n (γ̂ − γ∗)− (Γ(2,3)(θ∗))−1M (2,3)

n →p 0 (7.14)

as n → ∞. In particular,

a−1
n (γ̂ − γ∗) →d N(0, (Γ(2,3)(θ∗))−1) (7.15)

as n → ∞.

Proof. Let

X ∗∗(2,3)
n = X ∗(2,3)

n ∩
{
(θ̂01, γ̂

0) ∈ Bn

}
∩
{

sup
γ∈B′

n

∣∣an∂2
(θ2,θ3)

H(2,3)
n (γ)an+Γ(2,3)(θ∗)

∣∣ < c

}
.

Here c is a postive constant and we will make it sufficiently small. Then

P [X ∗∗(2,3)
n ] → 1

thanks to Lemmas 7.7 and 7.6. On the event X ∗∗(2,3)
n , we apply Taylor’s formula

to obtain

a−1
n (γ̂ − γ∗)

=
[
an∂

2
(θ2,θ3)

H(2,3)
n (γ̂0)an

]−1
{
− an∂(θ2,θ3)H

(2,3)
n (γ∗)

+an

∫ 1

0

[
∂2
(θ2,θ3)

H(2,3)
n (γ̂0)− ∂2

(θ2,θ3)
H(2,3)

n (γ̂(u))
]
duan a−1

n

(
γ̂0 − γ∗)}

where γ̂(u) = γ∗+u(γ̂0− γ∗). Then Lemmas 7.6 and 7.10 give (7.14). Then the
martingale central limit theorem gives (7.15).

The following notation for random fields will be used.

Ψ1,1(θ1, θ2, θ3, θ
′
1, θ

′
2, θ

′
3)

=

n∑
j=1

S(Ztj−1 , θ1, θ3)
−1

[
Dj(θ

′
1, θ

′
2, θ

′
3),

(
0

2−1∂1LH(Ztj−1 , θ1, θ2, θ3)

)]

=

n∑
j=1

S(Ztj−1 , θ1, θ3)
−1

[
Dj(θ

′
1, θ

′
2, θ

′
3)

⊗
(

0
4−1Hxx(z, θ3)[∂1C(Ztj−1 , θ1)]

)]
,

Ψ1,2(θ1, θ3, θ
′
1, θ

′
2, θ

′
3)

=
1

2

n∑
j=1

(
S−1(∂1S))S

−1
)
(Ztj−1 , θ1, θ3)

[
Dj(θ

′
1, θ

′
2, θ

′
3)

⊗2 − S(Ztj−1 , θ1, θ3)
]
,
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Ψ11,1(θ1, θ3, θ
′
1, θ

′
2, θ

′
3)

=
n∑

j=1

S(Ztj−1 , θ1, θ3)
−1

[(
0

2−1∂1LH(Ztj−1 , θ
′
1, θ

′
2, θ

′
3)

)⊗2
]
,

Ψ11,2(θ1, θ3, θ
′
1, θ

′
2, θ

′
3, θ

′′
1 , θ

′′
2 , θ

′′
3 )

=

n∑
j=1

S(Ztj−1 , θ1, θ3)
−1

[
Dj(θ

′
1, θ

′
2, θ

′
3),

(
0

2−1∂2
1LH(Ztj−1 , θ

′′
1 , θ

′′
2 , θ

′′
3 )

)]
,

Ψ11,3(θ1, θ3, θ
′
1, θ

′
2, θ

′
3)

=

n∑
j=1

∂1
{
S−1(∂1S)S

−1(Ztj−1 , θ1, θ3)
}[
Dj(θ

′
1, θ

′
2, θ

′
3)

⊗2 − S(Ztj−1 , θ
′
1, θ

′
3)
]
,

Ψ11,4(θ1, θ3) =

n∑
j=1

(S−1(∂1S)S
−1)(Ztj−1 , θ1, θ3)

[
∂1S(Ztj−1 , θ1, θ3)

]
,

Ψ11,5(θ1, θ3, θ
′
1, θ

′
2, θ

′
3, θ

′′
1 , θ

′′
2 , θ

′′
3 )

= 2

n∑
j=1

(S−1(∂1S)S
−1)(Ztj−1 , θ1, θ3)

[
Dj(θ

′
1, θ

′
2, θ

′
3)

⊗
(

0
2−1∂1LH(Ztj−1 , θ

′′
1 , θ

′′
2 , θ

′′
3 )

)]
.

We sometimes keep parameters in notation even when some of them do not ap-
pear in a specific expression of the formula, if such an expression is not necessary
for later use; e.g.. Ψ1,1 does not depend on θ2 in fact.

Lemma 7.12. Suppose that [A1] with (iA, jA, iB, jB , iH , jH) = (1, 1, 2, 3, 3, 1),
[A2] and [A4�] are satisfied. Then, for any sequence of positive numbers rn
tending to 0,

sup
θ1∈U(θ∗

1 ,rn)

∣∣n−1 ∂2
1H(1)

n (θ1) + Γ11

∣∣ →p 0 (7.16)

as n → ∞.

Proof. By definition,

n−1 ∂2
1H(1)

n (θ1) = −n−1hΨ11,1(θ1, θ̂
0
3, θ1, θ̂

0
2, θ̂

0
3)

+n−1h1/2Ψ11,2(θ1, θ̂
0
3, θ1, θ̂

0
2, θ̂

0
3, θ1, θ̂

0
2, θ̂

0
3)

+
1

2
n−1Ψ11,3(θ1, θ̂

0
3, θ1, θ̂

0
2, θ̂

0
3)

−1

2
n−1Ψ11,4(θ1, θ̂

0
3) (this term will remain)

−n−1h1/2Ψ11,5(θ1, θ̂
0
3, θ1, θ̂

0
2, θ̂

0
3, θ1, θ̂

0
2, θ̂

0
3)
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We will use Condition [A4�] for θ̂02 and θ̂03, and the estimate |θ1 − θ∗1 | < rn
for θ1 ∈ U(θ∗1 , rn). Then

sup
θ1∈U(θ∗

1 ,rn)

∣∣n−1 ∂2
1H

(1)
n (θ1) + Γ11

∣∣
≤ Op(h)

+n−1h1/2 sup
θ1∈U(θ∗

1 ,rn)

∣∣Ψ11,2(θ1, θ̂
0
3, θ

∗
1 , θ

∗
2 , θ

∗
3 , θ1, θ̂

0
2, θ̂

0
3)
∣∣

+h1/2Op(n
−1/2 + h1/2) (Lemmas 5.6 and 5.5(b))

+n−1 sup
θ1∈U(θ∗

1 ,rn)

∣∣Ψ11,3(θ1, θ̂
0
3, θ

∗
1 , θ

∗
2 , θ

∗
3)
∣∣+Op(h

1/2 + n−1/2) +Op(rn)

(Lemmas 5.6 and 5.5(b))

+

∣∣∣∣− 1

2
n−1Ψ11,4(θ

∗
1 , θ

∗
3) + Γ11

∣∣∣∣+Op(rn)+Op(n
−1/2h1/2)

+n−1h1/2 sup
θ1∈U(θ∗

1 ,rn)

∣∣Ψ11,5(θ1, θ̂
0
3, θ1, θ

∗
2 , θ

∗
3 , θ1, θ̂

0
2, θ̂

0
3)
∣∣

+h1/2Op(h
1/2 + n−1/2) (Lemmas 5.6 and 5.5(b))

= Op(h)

+Op(h
1/2) (Lemma 5.3(b))

+Op(h
1/2) +Op(n

−1/2) +Op(rn)

(random field argument with orthogonality)

+op(1) (Lemma 5.1(a))

+Op(h
1/2) (Lemma 5.5(b))

= op(1)

We remark that the used lemmas and appearing functions here require the
regularity indices (iA, jA, iB, jB , iH , jH) for [A1] as follows: (1, 0, 1, 0, 3, 0) for
Lemma 5.3(b); (1, 1, 2, 1, 2, 0) for Lemma 5.5(b); (0, 0, 0, 0, 2, 1) for Lemma 5.6;
jB = 3, jH = 1 for random field argument for Ψ11,3.

Lemma 7.13. Suppose that [A1] with (iA, jA, iB, jB , iH , jH) = (1, 1, 2, 1, 2, 1),
[A2] and [A4�] are satisfied. Then

n−1/2∂1H
(1)
n (θ̂01) = Op(1) (7.17)

as n → ∞.

Proof. We have the expression

n−1/2∂1H
(1)
n (θ̂01) = n−1/2h1/2Ψ1,1(θ̂

0
1, θ̂

0
2, θ̂

0
3, θ̂

0
1, θ̂

0
2, θ̂

0
3)

+n−1/2Ψ1,2(θ̂
0
1, θ̂

0
3, θ̂

0
1, θ̂

0
2, θ̂

0
3).

We use [A4�] together with Lemmas 5.6 and 5.5 (b) to show

n−1/2h1/2Ψ1,1(θ̂
0
1, θ̂

0
2, θ̂

0
3, θ̂

0
1, θ̂

0
2, θ̂

0
3)
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= n−1/2h1/2Ψ1,1(θ̂
0
1, θ̂

0
2, θ̂

0
3, θ

∗
1 , θ

∗
2 , θ

∗
3) + op(1)

= op(1) = Op(1)

and

n−1/2Ψ1,2(θ̂
0
1, θ̂

0
3, θ̂

0
1, θ̂

0
2, θ̂

0
3) = n−1/2Ψ1,2(θ̂

0
1, θ̂

0
3, θ

∗
1 , θ

∗
2 , θ

∗
3) +Op(1)

= Op(1)

as n → ∞. Here random field argument was used.

Lemma 7.14. Suppose that [A1] with (iA, jA, iB, jB , iH , jH) = (1, 1, 2, 1, 3, 1),
[A2] and [A4�] are satisfied. Then

n−1/2∂1H
(1)
n (θ∗1)−M (1)

n →p 0 (7.18)

as n → ∞. In particular,

n−1/2∂1H
(1)
n (θ∗1) →d N

(
0,Γ11

)
(7.19)

as n → ∞.

Proof. We have

Ej(θ2, θ3)

:= Dj(θ
∗
1 , θ2, θ3)−Dj(θ

∗
1 , θ

∗
2 , θ

∗
3)

=

⎛⎝ h1/2
(
A(Ztj−1 , θ

∗
2)−A(Ztj−1 , θ2)

){
h−1/2

(
H(Ztj−1 , θ

∗
3)−H(Ztj−1 , θ3)

)
+2−1h1/2

(
LH(Ztj−1 , θ

∗
1 , θ

∗
2 , θ

∗
3)− LH(Ztj−1 , θ

∗
1 , θ2, θ3)

) } ⎞⎠ .

Define the random field Ξn(u2, u3) on (u2, u3) ∈ U(0, 1)2 by

Ξn(u2, u3)

= n−1/2
n∑

j=1

(
S−1(∂1S)S

−1
)
(Ztj−1 , θ

∗
1 , θ

∗
3 + r(3)n u3)

·
[
Dj(θ

∗
1 , θ

∗
2 , θ

∗
3)⊗ Ej(θ

∗
2 + r(2)n u2, θ

∗
3 + r(3)n u3)

]
where r

(2)
n = (nh)−1/2 log(nh) and r

(3)
n = n−1/2h1/2 log(nh). Then the Burk-

holder-Davis-Gundy inequality gives

lim
n→∞

sup
(u2,u3)∈U(0,1)2

∑
i=0,1

∥∥∂i
(u2,u3)

Ξn(u2, u3)
∥∥
p
= 0,

which implies

sup
(u2,u3)∈U(0,1)2

∣∣Ξn(u2, u3)
∣∣ →p 0,
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and hence under [A4�],

n−1/2
n∑

j=1

(
S−1(∂1S)S

−1
)
(Ztj−1 , θ

∗
1 , θ̂

0
3)

[
Dj(θ

∗
1 , θ

∗
2 , θ

∗
3)⊗ Ej(θ̂

0
2, θ̂

0
3)

]
→p 0

(7.20)

as n → ∞. It is easier to see

n−1/2
n∑

j=1

(
S−1(∂1S)S

−1
)
(Ztj−1 , θ

∗
1 , θ̂

0
3)
[
Ej(θ̂

0
2, θ̂

0
3)

⊗2
]
→p 0 (7.21)

as n → ∞. From (7.20) and (7.21),

n−1/2Ψ1,2(θ
∗
1 , θ̂

0
3, θ

∗
1 , θ̂

0
2, θ̂

0
3)

= n−1/2Ψ1,2(θ
∗
1 , θ̂

0
3, θ

∗
1 , θ

∗
2 , θ

∗
3) + op(1)

= n−1/2Ψ1,2(θ
∗
1 , θ

∗
3 , θ

∗
1 , θ

∗
2 , θ

∗
3) + op(1) (7.22)

as n → ∞, where the last equality is by [A4�].
On the other hand, by [A4�] and Lemmas 5.6 and 5.5 (b), we obtain

n−1/2h1/2Ψ1,1(θ
∗
1 , θ̂

0
2, θ̂

0
3, θ

∗
1 , θ̂

0
2, θ̂

0
3)

= n−1/2h1/2Ψ1,1(θ
∗
1 , θ̂

0
2, θ̂

0
3, θ

∗
1 , θ

∗
2 , θ

∗
3) + op(1). (7.23)

By random field argument applied to the first term on the right-hand side of
(7.23),

n−1/2h1/2Ψ1,1(θ
∗
1 , θ̂

0
2, θ̂

0
3, θ

∗
1 , θ̂

0
2, θ̂

0
3) = op(1). (7.24)

Consequently, from (7.22) and (7.24), we obtain the convergence (7.18) since

n−1/2∂1H
(1)
n (θ∗1) = n−1/2h1/2Ψ1,1(θ

∗
1 , θ̂

0
2, θ̂

0
3, θ

∗
1 , θ̂

0
2, θ̂

0
3)

+n−1/2Ψ1,2(θ
∗
1 , θ̂

0
3, θ

∗
1 , θ̂

0
2, θ̂

0
3)

= n−1/2Ψ1,2(θ
∗
1 , θ

∗
3 , θ

∗
1 , θ

∗
2 , θ

∗
3) + op(1)

= M (1)
n + op(1)

by using Lemmas 5.4 and 5.5 (a). Convergence (7.19) follows from this fact and
Lemma 5.1 with [A2],

Proof of Theorem 4.1. Let

X ∗∗∗
n = X (1)

n ∩ X ∗∗(2,3)
n ∩

{
sup

θ1∈B′′′
n

∣∣n−1∂2
1H

(1)
n (θ1)+Γ11

∣∣ < c1

}
where B′′′

n = U(θ∗1 , n
−1/2 logn), and c1 is a sufficiently small number such that

|A+Γ11| < c1 implies detA �= 0 for any p1×p1 matrix A. We obtain P [X ∗∗∗
n ] → 1

from Lemmas 7.13 and 7.12 as well as the proof of Lemma 7.11.
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For large n, on the event X ∗∗∗
n , we apply Taylor’s formula to obtain

n1/2(θ̂1 − θ∗1)

=
[
n−1∂2

θ1H
(1)
n (θ̂01)

]−1
{
− n−1/2∂θ1H

(1)
n (θ∗1)

+n−1

∫ 1

0

[
∂2
1H(1)

n (θ̂01)− ∂2
1H(1)

n (θ̂1(u))
]
du n1/2

(
θ̂01 − θ∗1

)}
where θ̂1(u) = θ∗1 + u(θ̂01 − θ∗). Then we obtain

n1/2
(
θ̂1 − θ∗1

)
− Γ−1

11 M
(1)
n →p 0 (7.25)

as n → ∞ from Lemmas 7.12 and 7.14. Therefore the convergence of b−1
n (θ̂−θ∗)

follows from the martingale central limit theorem and the relations (7.14) and
(7.25).

8. Discussion on the estimation of θ3 when only information of ΔjY
is available

In Sections 3 and 4, the estimators for θ3 used the information of ΔjX as well
as ΔjY , given covariates (Ztj )j=0,...,n. Then a natural question is what occurs
when only the information of ΔjY , i.e., the martingale part of ΔjY , is available?

It is possible to construct a QMLE ϑ̂3 for θ3 based on the quasi-log likelihood
function

H(3)
n (θ3)

= −1

2

n∑
j=1

{
3V (Ztj−1 , θ̂

0
1, θ3)

−1
[{
h−3/2

(
ΔjY − hGn(Ztj−1 ,θ̂

0
1, θ̂

0
2, θ3)

)}⊗2]
+ log det

(
3−1V (Ztj−1 , θ̂

0
1, θ3)

)}
with some initial estimators θ̂0i for θi, i = 1, 2.

Let
Y(3)
n (θ3) = n−1h

{
H(3)

n (θ3)−H(3)
n (θ∗3)

}
and let

Y(3)(θ3) = −3

2

∫
V (z, θ∗1 , θ3)

−1
[(
H(z, θ3)−H(z, θ3)

)⊗2]
ν(dz).

Consistency of ϑ̂3 is obtained if the initial estimators are consistent.

Proposition 8.1. Suppose that [A1] with (iA, jA, iB, jB , iH , jH)= (1, 1, 2, 1, 3, 1)
and [A2] (i), (ii), (iv) are satisfied. Then

sup
θ3∈Θ3

∣∣Y(3)
n (θ3)− Y(3)(θ3)

∣∣ →p 0 (8.1)

as n → ∞, if θ̂01 →p θ∗1 and θ̂02 →p θ∗2. Moreover, ϑ̂3 →p θ∗3 if [A3] (iii) is
additionally satisfied.
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Proof. We have a decomposition of Y(3)
n (θ3):

Y(3)
n (θ3) = − 1

2n

n∑
j=1

3V (Ztj−1 , θ̂
0
1, θ3)

−1

·
[{

Gn(Ztj−1 ,θ̂
0
1, θ̂

0
2, θ3)−Gn(Ztj−1 ,θ̂

0
1, θ̂

0
2, θ

∗
3)
}⊗2

]
+R(8.3)

n (θ3) (8.2)

where

R(8.3)
n (θ3) =

h

n

n∑
j=1

3V (Ztj−1 , θ̂
0
1, θ3)

−1

[
h−3/2

(
ΔjY − hGn(Ztj−1 ,θ̂

0
1, θ̂

0
2, θ

∗
3)
)

⊗h−1/2
(
Gn(Ztj−1 , θ̂

0
1, θ̂

0
2, θ3)−Gn(Ztj−1 , θ̂

0
1, θ̂

0
2, θ

∗
3)
)]

− h

2n

n∑
j=1

{(
3V (Ztj−1 , θ̂

0
1, θ3)

−1 − 3V (Ztj−1 , θ̂
0
1, θ

∗
3)

−1
)

·
[{

h−3/2
(
ΔjY − hGn(Ztj−1 ,, θ̂

0
1, θ̂

0
2, θ

∗
3

))}⊗2
]

+ log
detV (Ztj−1 , θ̂

0
1, θ3)

detV (Ztj−1 , θ̂
0
1, θ

∗
3)

}
(8.3)

Applying Lemma 5.5 (a), we see the first sum on the right-hand side of (8.3) is
Op(h

1/2) and the second sum is Op(h) as n → ∞. These estimates are uniform

in θ3 ∈ Θ3. In particular, supθ3∈Θ3

∣∣R(8.3)
n (θ3)

∣∣ = op(1). For the first sum on the

right-hand side of (8.2), one can remove the terms involving LH(Ztj−1 , θ̂
0
1, θ̂

0
2, θ3)

uniformly in θ3. Then, similarly to the proof of Theorem 3.2, the convergence
(8.1) follows from (8.2), (5.3), [A2] (ii) and consistency of the initial estimators.

Remark that in the last part, we used tightness of
(
Y(3)
n

)
n∈N

derived by the
estimate of ∂3H.

To go further, some consideration is needed for the initial estimator θ̂02. In

our question, mathematically, the “martingale part” of θ̂02 must be orthogonal
to that of ΔjY . Otherwise, the information of ΔjX is mixed and it is out of the

question. To avoid self-contradiction, we can not consider the initial estimator θ̂02
that uses the first chaos of (wt)t∈[0,nh], that gives additional information to ΔjY .
In order to understand this, it is necessary to go back to the proof of Theorem
3.6 though omitted in this article. In reality, the orthogonality means that the
estimator θ̂02 is a function of a prior information, e.g., an estimator based on the
data sampled at time jh (j = 0,−1,−2, ...,−mn) when the process Z is extended
as a stationary process on R. The ideal case is we know the value θ∗2 a priori,

that is, θ̂02 = θ∗2 . Even when θ∗2 is unknown, if θ̂02 is naturally constructed from
the data Ztj (j = 0,−1,−2, ...,−mn) for example, the case where mn/n → ∞
is the same in the first order inference, while they are distinguishable in the
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higher-order inference (Sakamoto and Yoshida [41]). Then, under a certain set
of conditions, we have

n1/2h−1/2
(
ϑ̂3 − θ∗3

)
→d N(0, 4Γ−1

33 ). (8.4)

Therefore θ̂03 is superior to ϑ̂3. Remark that θ̂03 was given an initial estimator

of θ2 with error rate Op((nh)
−1/2) but not given the above θ̂02 having the faster

rate Op((mnh)
−1/2). In what follows, we will consider slightly more general θ̂02

and show a convergence including (8.4) as a special case.

[A4x ] (i) θ̂01 − θ∗1 = Op(n
−1/2) as n → ∞.

(ii) θ̂2 is F0-measurable and

√
nh

(
θ̂2 − θ∗2

)
→d L

as n → ∞ for some random variable L.

Lemma 8.2. Suppose that [A1] with (iA, jA, iB, jB , iH , jH) = (1, 2, 2, 1, 3, 1),
[A2] and [A4x] are satisfied. Then

n−1/2h1/2 ∂3H(3)
n (θ∗3) →d N +AL (8.5)

as n → ∞, where N ∼ N(0, 4−1Γ33) independent of L, and

A = −3

2

∫
V (z, θ∗1 , θ

∗
3)

−1
[
Hx(z, θ

∗
3)∂2A(z, θ

∗
2), ∂3H(z, θ∗3)

]
ν(dz).

Proof. We have the following decomposition:

n−1/2h1/2 ∂3H(3)
n (θ∗3) = R(8.7)

n (θ̂01, θ̂
0
1) +R(8.8)

n (θ̂01, θ̂
0
2)

+R(8.9)
n (θ̂01, θ̂

0
2, θ̂

0
1, θ̂

0
2) +R(8.10)

n (θ̂01, θ̂
0
1, θ̂

0
2) (8.6)

where

R(8.7)
n (θ1, θ

′
1)

= n−1/2
n∑

j=1

3V (Ztj−1 , θ1, θ
∗
3)

−1

[
h−3/2

(
ΔjY − hGn(Ztj−1 , θ

′
1, θ

∗
2 , θ

∗
3)
)

⊗∂3H(Ztj−1 , θ
∗
3)
)]
, (8.7)

R(8.8)
n (θ1, θ2) = −n−1/2

n∑
j=1

3V (Ztj−1 , θ1, θ
∗
3)

−1

·
[
2−1h1/2Hx(Ztj−1 , θ

∗
3)
[
A(Ztj−1 , θ2)−A(Ztj−1 , θ

∗
2)
]

⊗∂3H(Ztj−1 , θ
∗
3)
)]
, (8.8)
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R(8.9)
n (θ1, θ2, θ

′
1, θ

′
2)

= n−1/2
n∑

j=1

3V (Ztj−1 , θ1, θ
∗
3)

−1

[
h−3/2

(
ΔjY − hGn(Ztj−1 , θ

′
1, θ

′
2, θ

∗
3)
)
,

2−1h∂3LH(Ztj−1 , θ1, θ2, θ
∗
3)
)]

(8.9)

and

R(8.10)
n (θ1, θ

′
1, θ

′
2)

=
3

2
n−1/2h1/2

n∑
j=1

(
V −1(∂3V )V −1

)
(Ztj−1 , θ1, θ

∗
3)

·
[{
h−3/2

(
ΔjY − hGn(Ztj−1 , θ

′
1, θ

′
2, θ

∗
3)
)}⊗2

−3−1V (Ztj−1 , θ
′
1, θ

∗
3)
]
. (8.10)

Then we have the following estimates:

R(8.7)
n (θ̂01, θ̂

0
1)

= R(8.7)
n (θ̂01, θ

∗
1) +Op(h

1/2) (Lemma 5.5 (b) and [A4x] (i))

= n−1/2
n∑

j=1

3V (Ztj−1 , θ̂
0
1, θ

∗
3)

−1

[
h−3/2

(
ξ
(5.17)
j + ξ

(5.18)
j

)
,

∂3H(Ztj−1 , θ
∗
3)
)]

+Op(
√
nh)

(Lemma 5.5 (a))

= n−1/2
n∑

j=1

3V (Ztj−1 , θ
∗
1 , θ

∗
3)

−1

·
[
h−3/2κ(Ztj−1 , θ

∗
1 , θ

∗
3)ζj , ∂3H(Ztj−1 , θ

∗
3)
)]

+op(1) (random field argument, and orthogonality between {ξ(5.18)j }j).
(8.11)

and

R(8.8)
n (θ̂01, θ̂

0
2)

= −n−1/2
n∑

j=1

3V (Ztj−1 , θ̂
0
1, θ

∗
3)

−1

·
[
2−1h1/2Hx(Ztj−1 , θ

∗
3)
[
A(Ztj−1 , θ̂

0
2)−A(Ztj−1 , θ

∗
2)
]
, ∂3H(Ztj−1 , θ

∗
3)
)]

= −n−1
n∑

j=1

3V (Ztj−1 , θ̂
0
1, θ

∗
3)

−1
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·
[
2−1Hx(Ztj−1 , θ

∗
3)

[ ∫ 1

0

∂2A(Ztj−1 , θ
∗
2 + s(θ̂02 − θ∗2))ds

√
nh(θ̂02 − θ∗2)

]
,

∂3H(Ztj−1 , θ
∗
3)
)]

= A
[√

nh(θ̂02 − θ∗2)
]
+ op(1) (use [A2] and ∂2

2A). (8.12)

Moreover,

R(8.9)
n (θ̂01, θ̂

0
2, θ̂

0
1, θ̂

0
2) = R(8.9)

n (θ∗1 , θ
∗
2 , θ

∗
1 , θ

∗
2) +Op(h)

([A4x], Lemmas 5.3 (b) and 5.5 (b))

= Op(h) (orthogonality and Lemma 5.3 (b)) (8.13)

and
R(8.10)

n (θ̂01, θ̂
0
1, θ̂

0
2) = Op(h

1/2). (8.14)

We apply the martingale central limit theorem to (8.11), and use [A4x] (ii)
to (8.12). Then we obtain the convergence (8.5) from [A4x], (8.6) and (8.11)-
(8.14).

Lemma 8.3. Suppose that [A1] with (iA, jA, iB, jB , iH , jH) = (1, 1, 2, 1, 3, 2),
[A2] and [A4x] are satisfied. Then

sup
θ3∈Bn

∣∣∣n−1h ∂2
3H(3)

n (θ3) + 4−1Γ33

∣∣∣ →p 0

for any sequence of balls Bn in Rp3 shrinking to θ∗3.

Proof. A useful decomposition in this situation is:

n−1h ∂2
3H(3)

n (θ3) = n−1R33,1(θ3) + n−1h1/2R33,2(θ3) + n−1hR33,3(θ3)

+n−1h1/2R33,4(θ3) + n−1hR33,5(θ3),

where

R33,1(θ3) = −
n∑

j=1

3V (Ztj−1 , θ̂
0
1, θ3)

−1

·
[(
∂3H(Ztj−1 , θ3) + 2−1h∂3LH(Ztj−1 , θ̂

0
1, θ̂

0
2, θ3)

)⊗2]
,

R33,2(θ3) =

n∑
j=1

3V (Ztj−1 , θ̂
0
1, θ3)

−1
[
h−3/2

(
ΔjY − hGn(Ztj−1 , θ̂

0
1, θ̂

0
2, θ3)

)
,

∂2
3H(Ztj−1 , θ3) + 2−1h∂2

3LH(Ztj−1 , θ̂
0
1, θ̂

0
2, θ3)

]
,

R33,3(θ3) = −1

2

n∑
j=1

(
V −1(∂3V )V −1

)
(Ztj−1 , θ̂

0
1, θ3)

[
∂3V (Ztj−1 , θ̂

0
1, θ3)

]
,
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R33,4(θ3) = −6

n∑
j=1

(
V −1(∂3V )V −1

)
(Ztj−1 , θ̂

0
1, θ3)

·
[
h−3/2

(
ΔjY − hGn(Ztj−1 , θ̂

0
1, θ̂

0
2, θ3)

)
,

∂3H(Ztj−1 , θ3) + 2−1h∂3LH(Ztj−1 , θ̂
0
1, θ̂

0
2, θ3)

]
and

R33,5(θ3) =
1

2

n∑
j=1

∂3
{(

V −1(∂3V )V −1
)
(Ztj−1 , θ̂

0
1, θ3)

}
·
[
3
{
h−3/2

(
ΔjY − hGn(Ztj−1 , θ̂

0
1, θ̂

0
2, θ3)

)}⊗2

−V (Ztj−1 , θ̂
0
1, θ3)

]
.

Obviously,
sup

θ3∈Θ3

∣∣n−1hR33,3(θ3)
∣∣ = Op(h)

By using Lemma 5.5 (b) with [A4x] (only rates of convergence), Lemma 5.3 (b),
and orthogonality, we see

sup
θ3∈Bn

∣∣n−1h1/2R33,4(θ3)
∣∣ = Op(n

−1/2h1/2) +Op(diamBn) +Op(h) = op(1)

and similarly

sup
θ3∈Bn

∣∣n−1hR33,5(θ3)
∣∣ = Op(n

−1/2h) +Op(diamBn) +Op(h) = op(1).

Estimate of R33,2(θ3) is similar to that of R33,4(θ):

sup
θ3∈Bn

∣∣n−1h1/2R33,2(θ3)
∣∣ = op(1).

Using ∂i
3H (i = 1, 2) and ∂3Hx for tightness, we obtain

sup
θ3∈Bn

∣∣n−1R33,1(θ3)− n−1R33,1(θ
∗
3)
∣∣ = op(1).

Moreover, it is easy to see

sup
θ3∈Bn

∣∣n−1R33,1(θ
∗
3) + 4−1Γ33

∣∣ = op(1).

Thus, the proof is completed.

Remark that Condition [A4] is sufficient for Lemma 8.3 since only rate of

convergence of θ̂01 and θ̂02 used in the above proof. Denote by L{ξ} the distribu-
tion of a random variable ξ. A “convolution theorem” follows from Proposition
8.1 and Lemmas 8.2 and 8.3.
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Theorem 8.4. Suppose that [A1] with (iA, jA, iB , jB , iH , jH) = (1, 2, 2, 1, 3, 2),
[A2], [A3] (iii) and [A4x] are satisfied. Then

n1/2h−1/2
(
ϑ̂3 − θ∗3

)
→d N(0, 4Γ−1

33 ) ∗ L{4Γ−1
33 AL}

as n → ∞.

The convergence (8.4) is a special case of Theorem 8.4 when L = 0 a.s. Like

Hájek, the result shows the superiority of θ̂03 to ϑ̂3.

Apart from this problem, we can also ask what occurs if we use θ̂02 depending

on (Xtj )j=0,...,n. It is natural but another question. The resulting ϑ̂3 obviously

exploits ΔjX through θ̂02. Moreover, ϑ̂3 must initially pay 4Γ−1
33 , as it can be

observed in the above proof. This means ϑ̂3 does not dominate θ̂03, besides, if

θ̂02 performs well having a small asymptotic variance, then ϑ̂3 is not admissible
(in the sense of the decision theory) at least locally in Θ3. Furthermore, the

behavior of ϑ̂3 strongly depends on that of the error of θ̂02. In other words, the

asymptotic property of ϑ̂3 cannot separate from the properties of the initial
estimators even when their convergence rates are ensured.
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