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Abstract: Random coefficient regression (RCR) models are the regres-
sion versions of random effects models in analysis of variance and panel
data analysis. Optimal detection of the presence of random coefficients
(equivalently, optimal testing of the hypothesis of constant regression coef-
ficients) has been an open problem for many years. The simple regression
case has been solved recently and the multiple regression case is considered
here. The latter poses several theoretical challenges: (a) a nonstandard
ULAN structure, with log-likelihood gradients vanishing at the null; (b)
cone-shaped alternatives under which traditional optimality concepts are
no longer adequate; (c) nuisance parameters that are not identified un-
der the null but have a significant impact on local powers. We propose a
new (local and asymptotic) concept of optimality for this problem and, for
specified error densities, derive parametrically optimal procedures. A suit-
able modification of the Gaussian version of the latter is shown to qualify
as a pseudo-Gaussian test. The asymptotic performances of those pseudo-
Gaussian tests, however, are quite poor under skewed and heavy-tailed
densities. We therefore also construct rank-based tests, possibly based on
data-driven scores, the asymptotic relative efficiencies of which are remark-
ably high with respect to their pseudo-Gaussian counterparts.
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1. Introduction

1.1. Random coefficients regression models

Random coefficients regression (RCR) models are the regression versions of ran-
dom effects models in analysis of variance and panel data analysis. RCR models
have been considered as early as Wald (1947), and received some interest in the
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seventies, with contributions by Hildreth and Houck (1968), Swamy (1971), Raj
(1975) or Breusch and Pagan (1979), to quote only a few; see also the surveys
and monographs by Raj and Ullah (1981), Nicholls and Pagan (1985), and New-
bold and Bos (1985). The ultimate objective in RCR models is the estimation of
the distribution of the random regression parameters; that delicate problem has
been addressed, among others, by Mallet (1986), Beran and Hall (1992), Beran
and Millar (1994), Beran et al. (1996); goodness-of-fit testing is considered by
Delicado and Romo (1999, 2004).

An important issue in this context is the detection of the random nature
of regression coefficients. Before entering the complexities of RCR modeling,
indeed, one should make sure that traditional regression models with constant
coefficients are to be rejected in favor of the more involved random coefficients
approach. Surprisingly, the problem of optimal random coefficients detection
until very recently (Fihri, Akharif, Mellouk, and Hallin 2017) had never been
considered in full generality. Newbold and Bos (1985), on heuristic grounds,
propose a Gaussian Lagrange Multiplier test, and Ramanathan and Rajarshi
(1992) a locally most powerful (under logistic densities) signed-rank test of the
Wilcoxon type. Adopting a more general Le Cam approach, Fihri et al. (2020)
derive locally asymptotically optimal, optimal pseudo-Gaussian, and optimal
rank-based tests for the same problem; based on local power evaluations, they
also provide evidence of the poor performance of pseudo-Gaussian procedures in
the presence of non-Gaussian (skew or leptokurtic densities), and recommend the
use of rank-based tests with data-driven scores (Section 8.4) which significantly
outperform the pseudo-Gaussian one.

All those methods, including the analysis by Fihri et al. (2020), unfortu-
nately, are limited to simple regression models. Desirable as it is, an extension
to multiple regression is far from obvious, though, with three major sources of
complexity:

(a) the ULAN structure of the problem remains, as in simple RCR, of a non-
standard type, with central sequences (first-order quadratic mean deriva-
tives) involving second-order derivatives of the density;

(b) alternatives, which were one-sided in the simple regression context, are
now cone-shaped, so that the usual tests (such as the Neyman C(α), La-
grange multiplier, or Rao efficient score tests), based on quadratic statistics
are inappropriate;

(c) the correlation matrix of the random regression coefficients, which is not
identified under the null, has a significant impact on local powers.

While (a), thanks to the fact that quadratic mean differentiability reduces
to partial quadratic mean differentiability, can be taken care of along the same
lines as in Fihri et al. (2020), (b) and (c), which are specific to the multiple re-
gression case, are more challenging and require new solutions. Inspired by a di-
rectional concept recently proposed by Novikov (2011), we propose an adequate
optimality concept, then derive locally asymptotically optimal pseudo-Gaussian
and rank-based tests for the hypothesis of constant coefficients in the multiple
regression setting.
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The problem considered here is a particular case of the more general problem
of testing for homogeneity in mixture models: see Gu (2016) and Gu et al. (2018)
for a recent account and a survey of the literature. The dominant approaches
in that literature are based on Neyman’s C(α) (Lagrange multiplier) tests1 and
likelihood ratio tests. The C(α) tests2 are particularly attractive due to the
fact that, unlike the likelihood ratio tests, they do not require the (unpleasant)
estimation of the model under the alternative. Unfortunately, C(α) tests are
quite inefficient against cone-shaped alternatives.

1.2. The model

The model considered throughout is the random coefficients multiple regression
(RCR) model

Yj = μ+ β′
jxj + εj , with βj = b+P′ΛP ξj , j = 1, . . . , n, (1.1)

where

– Yj is the observed response, xj =
(
x1j , . . . , xpj

)′
, j = 1, . . . , n a non-

stochastic vector of exogenous regressors;
– μ and b = (b1, . . . , bp)

′ are real-valued parameters (the null values of the
regression coefficients);

– εj , j = 1, . . . , n is an i.i.d. sequence of error terms with mean zero, vari-
ance σ2, and probability density function z �→ f(z) := (1/σ)f1(z/σ);

– ξj := (ξ1j , . . . , ξpj)
′, j = 1, . . . , n is an (unobserved) n-tuple of indepen-

dent copies of some random vector ξ with mean 0, identity covariance,
and probability density h;

– βj =
(
β1j , . . . , βpj

)′
, j = 1, . . . , n are random regression coefficients,

that is, n independent copies of a random vector β = (β1, . . . , βp)
′ with

mean b =
(
b1, . . . , bp

)′
and covariance matrixP′Λ2P (Λ2 diagonal with di-

agonal elements λ2
1, . . . , λ

2
p; P orthogonal); write λ2 and λ for (λ2

1, . . . , λ
2
p)

′

and (λ1, . . . , λp)
′, respectively;

– ξj and εk are independent for all j, k = 1, . . . , n.

Model (1.1) clearly reduces to the classical multiple regression model

Yj = μ+

p∑
i=1

bixij + εj , j = 1, . . . , n (1.2)

with constant coefficients μ and bi (i = 1, . . . , p) if and only if λ2 = 0. The
detection problem we are addressing thus reduces to testing the null hypothesis
that λ2 is zero against the alternative that it has at least one strictly positive
component, that is, belongs to the blunt (i.e., deprived of the origin) positive
orthant C+ of Rp; μ, b, σ2, P, f1, and h throughout are nuisance parameters.
Moreover, P and h are not identified under the null hypothesis.

1In Le Cam’s LAN terminology, those tests are locally asymptotically most stringent pro-
vided, however, that the null value of the parameter belongs to the interior of the parameter
space—which is not the case here.

2The Newbold and Bos (1985) tests belong to that type.
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1.3. A nonstandard ULAN property

In order to construct optimal tests, we first establish (Section 2) the uniform
local asymptotic normality (ULAN), with respect to μ, b, σ2, and λ2, in the
vicinity of λ2 = 0, of the family of distributions associated with (1.1) (under
specified f1, h, and P). Unfortunately, the log-likelihood gradient with respect
to λ2 vanishes at λ2 = 0. Quadratic mean differentiability of f1/2, however,
still holds, with second-order derivatives entering the quadratic mean gradient,
under the same atypical (but mild) regularity assumptions as in the simple
regression case.

ULAN characterizes the form of limiting local experiments, and allows us
to deal, in a “classical” way, with the nuisance parameters μ, b, and σ2. Two
serious difficulties arise, however, which are specific to the problem considered
here: (i) as far as λ2 is concerned, ULAN is “cone-shaped”—namely, only those
local perturbations of λ2 that belong to C+ are meaningful—so that the classical
maximin and stringency arguments, leading to quadratic test statistics with
asymptotic Neyman C(α) structure, do not apply; (ii) the correlation matrix P
of the random regression parameter, which plays an essential role under the
alternative, is not identified, hence cannot be estimated, under the null. We
therefore consider the local and asymptotic version of an extension of the locally
asymptotically directionally maximin tests proposed by Novikov (2011), closely
related to the local and asymptotic version of the most stringent somewhere
most powerful ideas described by Kudo (1963) and Schaafsma and Smid (1966).

1.4. Pseudo-Gaussian and rank-based tests

While the proposed directionally maximin tests no longer involve the unspeci-
fied h and P, their form and validity still strongly depends on the (standardized)
noise density f1. Assuming f1 to be known, as a rule, is not reasonable, and the
true nature of the problem thus is semiparametric. We therefore propose pseudo-
Gaussian and rank-based procedures that remain valid under a broad class of
densities f1. The resulting tests yield the same asymptotic relative efficiencies
(AREs) as the locally asymptotically one-sided optimal ones in Fihri et al.
(2020), to which they reduce in the particular case of simple regression. Those
ARE values (with respect to the pseudo-Gaussian procedure)—especially, those
of rank tests based on data-driven scores—can be quite high, demonstrating the
poor performances of pseudo-Gaussian tests under non-Gaussian densities and,
more particularly, the skewed and heavy-tailed ones. Rank-based tests accord-
ingly are highly recommended in this context.

1.5. Outline of the paper

The paper is organized as follows. Section 2.1 provides the main definitions and
assumptions. The uniform local asymptotic normality (ULAN), with respect
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to μ, b, σ2, and λ2, in the vicinity of λ2 = 0, of the family of distributions asso-
ciated with (1.1) is established (under specified f1) in Section 2.2. Sections 3.1
and 3.2 extend (still, for specified f1) the concept of locally asymptotically direc-
tionally maximin tests (Novikov, 2011). The parametric version of those tests
is obtained in Sections 3.3 and 3.4. Sections 4 and 5 propose pseudo-Gaussian
and rank-based alternatives that remain valid irrespective of f1. Asymptotic
relative efficiencies are investigated in Section 6. Proofs, some technical details,
a simulation study, and an empirical illustration are given in Sections 8 and 9.
Section 10 concludes.

2. Uniform local asymptotic normality

2.1. Notation and main assumptions

The null hypothesis we are interested in is the traditional multiple linear re-
gression model, that is, the hypothesis under which λ2

i = 0 in (1.1) for all i =
1, . . . , p. The orthogonal matrix P and the density h playing no role under the

null, we denote by P
(n)
(μ,b,σ2),0;f1

=: P
(n)
ϑ,0;f1

the null distribution of Y(n) :=(
Y

(n)
1 , . . . , Y

(n)
n

)′
. The same distribution under the (cone-shaped) alternative

that λ2
i > 0 for at least one value of i = 1, . . . , p is denoted by

P
(n)
(μ,b,σ2),λ2,P;f1,h

=: P
(n)
ϑ,λ2,P;f1,h

.

Throughout, we consider the class of nonvanishing standardized densities

F0 :=
{
f1 : f1(z) > 0 for all z ∈ R,

∫ 1

−1

f1(z)dz = 0.5 =

∫ 0

−∞
f1(z)dz

}
.

For f1 ∈ F0, the median and the median absolute deviation are 0 and 1, respec-
tively; hence, for f such that f1 ∈ F0, 0 is the median and σ the median absolute
deviation. This standardization, contrary to the usual one based on the mean
and the standard deviation, avoids moment assumptions; an identification con-
straint, it has no impact on subsequent results. For instance, the standardized
version of the normal density takes the form

f1(z) = φ1(z) :=
√
a/2π exp(−az2/2) with a ≈ 0.4549.

The main technical tool in our derivation is the Uniform Local Asymptotic
Normality (ULAN) property, with respect to (μ,b, σ2,λ2), of the families (here
and in the sequel, C+ denotes the (blunt) positive orthant in R

p)

P(n)
P;f1,h

:=
{
P
(n)
(μ,b,σ2),λ2,P;f1,h

: (μ,b) ∈ R
p+1, σ2 > 0, λ2 ∈ {0} ∪ C+

}
in the vicinity of (μ,b, σ2,0) =: (ϑ,0) for given f1, h, and P.

As in Fihri et al. (2020), this ULAN property is not the standard one based
on a second-order Taylor expansion of log-likelihoods—traditional log-likelihood



Random coefficients detection 4213

derivatives with respect to λ2 indeed vanish at λ2 = 0. It rather exploits the
quadratic mean differentiability (with respect to λ2) of f1/2, with quadratic
mean derivatives involving the second-order derivatives of f . Mild as they are,
the required regularity conditions, therefore, take atypical forms (see (A.1)
and (C.2) below).

Assumption (A)

(A.1) f1 ∈ F0; the mapping z �→ f1(z) is twice continuously differentiable on R,

with first and second derivatives
.

f1 and
..

f1, respectively; letting ϕf1 :=

−
.

f1/f1 and ψf1 :=
..

f1/f1, assume that

Iϕ(f1) :=
∫
R

ϕ2
f1(z)f1(z)dz < ∞, Iψ(f1) :=

∫
R

ψ2
f1(z)f1(z)dz < ∞,

Jϕ(f1) :=

∫
R

z2ϕ2
f1(z)f1(z)dz < ∞, and Kϕϕ(f1) :=

∫
R

zϕ2
f1(z)f1(z)dz < ∞.

When considering rank statistics, we moreover need an additional very mild
assumption:

(A.2) ϕf1 and ψf1 are differences of monotone functions (that is, have bounded
variation).

Under (A.1), it follows from Cauchy-Schwarz that we also have

Iϕψ(f1) :=

∫
R

ϕf1(z)ψf1(z)f1(z)dz < ∞

and
Kϕψ(f1) :=

∫
R

zϕf1(z)ψf1(z)f1(z)dz < ∞.

Denote by FA the set of all densities satisfying Assumptions (A).
Turning to the asymptotic behavior of covariates, let

C
(n)
1 := n−1

n∑
j=1

xjx
′
j

and, for any orthogonal matrix P,

C
(n)
P;2 := n−1

n∑
j=1

(
Pxj

)�2(
Pxj

)�2′
and C

(n)
P;3 := n−1

n∑
j=1

xj

(
Pxj

)�2′
.

Also define x̄(n) :=n−1
n∑

j=1

xj , ‖x‖2
(n)

:=n−1
n∑

j=1

‖xj‖2, ‖x‖4
(n)

:=n−1
n∑

j=1

‖xj‖4,

and
(
Px

)�2
(n)

:= n−1
n∑

j=1

(
Pxj

)�2
. Here and in the sequel, M�k :=

(
Mk

ij

)
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stands for the kth Hadamard power of an arbitrary matrix M =
(
Mij

)
, and

M1/2 denotes the symmetric square root of a symmetric positive definite ma-
trix M.

Assumption (B)

(B.1) The limits lim
n→∞

C
(n)
1 =: C1, lim

n→∞
C

(n)
P;2 =: CP;2, and lim

n→∞
C

(n)
P;3 =: CP;3

exist; C1 and CP;2 are positive definite.

It follows that C
(n)
1 and C

(n)
P;2 are positive definite for n large enough; letting

K
(n)
1 :=

(
C

(n)
1

)−1/2
and K

(n)
P;2 :=

(
C

(n)
P;2

)−1/2
,

note that lim
n→∞

K
(n)
1 =: K1 = C

−1/2
1 and lim

n→∞
K

(n)
P;2 =: KP;2 also exist, and

that K
(n)
1 and K

(n)
P;2 have full rank (n large enough);

(B.2) the limits lim
n→∞

x̄(n) =: μx, lim
n→∞

‖x‖2(n) =: μ‖x‖2

, lim
n→∞

‖x‖4(n) =: μ‖x‖4

,

and lim
n→∞

(
Px

)�2
(n)

=:μ(Px)�2

exist and are finite;

(B.3) the classical Noether conditions hold, namely,

lim
n→∞

max1≤j≤n(xij − x
(n)
i )2∑n

j=1(xij − x
(n)
i )2

= 0 with x
(n)
i := n−1

n∑
j=1

xij , i = 1, . . . , p.

In (B.1) and (B.2), the existence of finite limits (the value of which remains
unknown anyway) is assumed as a convenience; this can be dispensed with by
stating asymptotic results along appropriate subsequences. None of the assump-
tions listed under (B) has any finite-sample implication.

Assumption (C)

(C.1)

∫
ξ h(ξ) dξ = 0 and

∫
ξξ′ h(ξ) dξ = Ip×p.

(C.2) Denoting by hi, i = 1, . . . , p the marginal densities of h and letting

Ix
iψ(f1; y) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1

y2

∫ ∞

z=−∞

[∫ y

w=0

∫ ..

f1(z − xvw)x2v2hi(v)dvdw
]2∫

f1(z − xyv)hi(v)dv
dz y > 0

x4Iψ(f1) y = 0

(2.1)

=

⎧⎪⎪⎨⎪⎪⎩
1

y2

∫ ∞

z=−∞

[∫ .

f1(z − xyv)xvhi(v)dv
]2∫

f1(z − xyv)hi(v)dv
dz, y > 0

x4Iψ(f1), y = 0,

the couple (f1, h) is such that the function y �→ Ix
iψ(f1; y) is continuous

from the right at y = 0 for all x and i = 1, . . . , p.
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Such assumptions go back to Hájek (1972). Noting that (C.2) involves the
couple (f1, h), define, for f1 ∈ FA satisfying (C.1), the class of densities FC|f1 :={
h| (f1, h) satisfies (C.2)

}
; the quantity Ix

iψ(f1; 0), as we shall see, is closely

related to the Fisher information for λ2.

2.2. ULAN

In this section, ULAN with respect to (μ,b, σ2,λ2)′ of the family P(n)
P;f1,h

is

established, for specified P and f1, in the vicinity of (μ,b, σ2,0) = (ϑ,0). For

this, consider local sequences (ϑ,0) + n−1/2ν
(n)
P τ (n) of perturbations of (ϑ,0),

where

ν
(n)
P :=

⎛⎜⎜⎝
1 0 0 0

0 K
(n)
1 0 0

0 0 1 0

0 0 0 K
(n)
P;2

⎞⎟⎟⎠ (2.2)

and τ (n) :=
(
τ
(n)
1 , τ

(n)
2

′
, τ

(n)
3 , τ

(n)
4

′)′ ∈ R
p+2 ×R

p
+ such that supn τ

(n)′τ (n) < ∞.

Incorporating K
(n)
1 and K

(n)
P;2 in the contiguity rates simplifies asymptotic state-

ments; since K
(n)
1 and K

(n)
P;2 converge, under (B.1), to finite full-rank matrices,

contiguity rates in (2.2) are of the traditional root-n magnitude.

Writing Z
(n)
j for the standardized residuals

Z
(n)
j (ϑ) = Z

(n)
j (μ,b, σ2) := σ−1

(
Yj − μ−

p∑
i=1

bixij

)
, j = 1, . . . , n (2.3)

(note that, under the null hypothesis, Z
(n)
j coincides with σ−1εj), we have the

following result.

Proposition 2.1 (ULAN). Let Assumptions (A)–(C) hold. Fix f1 ∈ FA and

h ∈ FC|f1 . Then, the family P(n)
P;f1,h

is ULAN, with (2p+2)-dimensional central
sequence

Δ
(n)
P;f1

(ϑ) :=

⎛⎜⎜⎜⎜⎜⎜⎝
Δ

(n)
f1;1

(ϑ)

Δ
(n)
f1;2

(ϑ)

Δ
(n)
f1;3

(ϑ)

Δ
(n)
P;f1;4

(ϑ)

⎞⎟⎟⎟⎟⎟⎟⎠ = n−1/2

⎛⎜⎜⎜⎜⎜⎜⎝

1
σ

∑n
j=1 ϕf1(Zj)

1
σ

∑n
j=1 ϕf1(Zj)K

(n)
1 xj

1
2σ2

∑n
j=1 (Zjϕf1(Zj)− 1)

1
2σ2

∑n
j=1 ψf1(Zj)K

(n)
P;2

(
Pxj

)�2

⎞⎟⎟⎟⎟⎟⎟⎠
(2.4)

and (2p+ 2)× (2p+ 2) information matrix
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ΓP;f1(ϑ)

:=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

Iϕ(f1)

σ2
Iϕ(f1)

σ2 μx ′K1
Kϕϕ(f1)

2σ3

Iϕψ(f1)

2σ3 μ(Px)�2′KP;2

Iϕ(f1)

σ2 K1μ
x Iϕ(f1)

σ2 Ip×p
Kϕϕ(f1)

2σ3 K1μ
x Iϕψ(f1)

2σ3 K1CP;3KP;2

Kϕϕ(f1)

2σ3
Kϕϕ(f1)

2σ3 μx ′K1
Jϕ(f1)−1

4σ4

Kϕψ(f1)

4σ4 μ(Px)�2′KP;2

Iϕψ(f1)

2σ3 KP;2μ
(Px)�2 Iϕψ(f1)

2σ3 KP;2C
′
P;3K1

Kϕψ(f1)

4σ4 KP;2μ
(Px)�2 Iψ(f1)

4σ4 Ip×p

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(2.5)
More precisely, for any sequence of the form

(ϑ(n),0) := (μ(n),b(n), σ2(n),0)

such that μ(n) − μ,
(
K

(n)
1

)−1 (
b(n)− b

)
, and σ2(n) − σ2 are O

(
n−1/2

)
, and for

any bounded sequence τ (n) :=
(
τ
(n)
1 , τ

(n)
2 , τ

(n)
3 , τ

(n)
4

)
in R

p+2 × C+, we have,

under P
(n)

ϑ(n),0;f1
,

Λ
(n)

(ϑ(n),0)+n−1/2ν
(n)
P τ (n)/(ϑ(n),0),P;f1,h

:= log
dP

(n)

(ϑ(n),0)+n−1/2ν
(n)
P τ (n),P;f1,h

dP
(n)

(ϑ(n),0);f1

=τ (n)′Δ
(n)
P;f1

(ϑ(n))− 1

2
τ (n)′ΓP;f1(ϑ)τ

(n) + oP(1),

(2.6)

and Δ
(n)
P;f1

(ϑ(n))
L−→ N

(
02p+2,ΓP;f1(ϑ)

)
, as n → ∞.

See Section 7.1 for a proof.

3. Locally asymptotically optimal parametric tests

3.1. Locally asymptotically directionally maximin tests

This section is about the local asymptotic optimality, in general multiparameter
LAN families, of tests with cone-shaped alternatives involving nuisances that are
not identified under the null.

Let {P(n)
θ : θ ∈ Θ} be some LAN family, with p-dimensional parameter θ,

root-n contiguity rates, central sequence Δ
(n)
θ , and information matrix Γθ. Re-

call that Δ
(n)
θ , under sequences of parameter values of the form θ + n−1/2τ

(local alternatives), converges in distribution (as n → ∞) to a Gaussian ran-
dom vector Δ ∼ N

(
Γθτ ,Γθ

)
. Let κ(Δ) be some optimal test in the Gaussian

shift model
{
N (Γθτ ,Γθ) |τ ∈ R

p
}
(Γθ specified) describing some (hypotheti-

cal) observation Δ: then, the sequence of tests κ(Δ(n)(θ)) enjoys a local (at θ)
and asymptotic form of the same optimality property: if κ(Δ) is uniformly most
powerful, κ(Δ(n)(θ)) is locally asymptotically most powerful ; if κ(Δ) is most
stringent, κ(Δ(n)(θ)) is locally asymptotically most stringent, etc. See Le Cam
(1986) or Le Cam and Yang (2000) for details and a justification.
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Next, consider the Gaussian shift experiment
{
N (Γτ ,Γ) |τ ∈ R

p
}
with ob-

servation Δ. Fix u ∈ Sp−1, where Sp−1, as usual, denotes the unit sphere
in R

p, and consider the test κu(Δ) rejecting the null hypothesis τ = 0 in favor

of τ = τu, τ > 0 whenever u′Δ > zα (u′Γu)1/2 (with zα the standard normal
quantile of order 1− α). That test is uniformly most powerful at probability
level α: call it directionally most powerful. The power of κu(Δ) against τ = τv
(that is, against Δ ∼ N (τΓv,Γ)), where τ > 0 and v ∈ Sp−1, is

1− Φ
(
zα − τu′Γv/(u′Γu)1/2

)
where Φ, as usual, stands for the standard normal distribution function. At τ = 0,
the derivative with respect to τ of this power—a directional derivative in di-
rection v—is φ(zα)u

′Γv/(u′Γu)1/2 which, for given α and u, is a monotone
increasing function of u′Γv, hence of the cosine cos(v,Γu).

In the same Gaussian shift, consider testing τ = 0 against the multidirec-
tional alternative τ ∈ C, where C is some given blunt closed convex half-cone
with vertex at the origin (recall that a blunt closed cone is a closed cone deprived
of its vertex). For any u ∈ C ∩ Sp−1, denote by vu the least favorable direction
for κu within C, namely,

vu = argminv∈C∩Sp−1
u′Γv = argminv∈C∩Sp−1

cos(v,Γu).

Such vu exists, as v �→ u′Γv is continuous and C
⋂

Sp−1 is compact; it is not
unique, though, and can be chosen as any unit vector at the intersection of C
and the surface of the cone of revolution with axis Γu circumscribing C (that
is, the smallest cone of revolution with given axis Γu containing C).

Now, let u∗ ∈ C
⋂
Sp−1 be such that the power at τ = τvu∗ of κu∗ be

maximal for any given τ > 0, that is,

1− Φ
(
zα − τu∗′Γvu∗/(u∗′Γu∗)1/2

)
≥ 1− Φ

(
zα − τu′Γvu/(u

′Γu)1/2
)

(3.1)

for all u∈C
⋂
Sp−1 and τ > 0 or, equivalently,

u∗ = argmaxu∈C∩Sp−1
minv∈C∩Sp−1 cos(v,Γu). (3.2)

Again, due to continuity and the compactness of C
⋂

Sp−1, such u∗ exists, and
is such that Γu∗ is the axis of the cone of revolution circumscribing C—provided
that this axis belongs to C. If it does not, then Γu∗ should be chosen as the axis
of the cone of revolution circumscribing the subpolyhedral cone CJ spanned by
a subset of J vertices of C and such that (i) this axis belongs to CJ , and (ii)
the angle of this axis with any of the vertices of C that do not belong to CJ is
less than the J equal angles between this axis and the J vertices spanning CJ :
see Abelson and Tukey (1963) for details and an algorithmic solution. That u∗

clearly does not depend on α nor τ .
The test κ∗(Δ) := κu∗(Δ) is called directionally maximin, as it maximizes,

for any given τ > 0, the minimum power over the class of all directionally
optimal tests with size α. Accordingly, with the notation previously adopted

for LAN families (and with Γ = Γθ), the sequence of tests κ
∗(Δ

(n)
θ ) is locally
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asymptotically directionally maximin at θ and asymptotic probability level α—
as well as any asymptotically equivalent sequence of tests.

This intuitively appealing concept of directionally maximin test has been pro-
posed, for C = C+, by Novikov (2011) in a broader context, where densities are
not necessarily Gaussian, and optimality is described in terms of derivatives of
power functions. Gaussian models are treated as a particular case in Section 3
(same reference); the characterization of the solution in terms of cones of rev-
olution, which is not provided there, follows from previous results by Abelson
and Tukey (1963) and Schaafsma and Smid (1966).

The concept of most stringent somewhere most powerful test was introduced
by Kudo (1963) and Schaafsma and Smid (1966). Unlike Novikov’s, Schaafsma
and Smid’s concept is restricted to Gaussian densities. On the other hand, the
hypotheses considered by Schaafsma and Smid are of a more general form. In
the notation adopted here, their null hypothesis is H′Γτ = 0, where H is some
given p × q matrix of rank 1 ≤ q ≤ p, while under the alternative the q com-
ponents of H′Γτ are non-negative, with one of them at least strictly positive
(a blunt cone with apex at the origin, thus). For each direction in that cone,
one-sided uniformly most powerful directional tests could be derived similarly as
above. The terminology “most stringent” is used instead of “maximin” because,
when applied to a cone of τ values, the maximin argument leads to a trivial
maximin power α (corresponding to ‖τ‖ → 0)—something Novikov avoids by
considering directions whereas the stringency argument recurs to Wald’s con-
cept of minimal regret. This is, however, a formal terminological detail: the two
concepts, in the Gaussian case, coincide—and so do their local and asymptotic
versions in LAN families (see Akharif and Hallin (2003) for an application in the
context of random coefficients autoregressive models). For the sake of simplicity,
we adopt Novikov’s directionally maximin terminology.

3.2. Gaussian shift with nuisance

In the present context, however, we need yet a slight extension of the optimality
concept just described, due to the fact that, besides the parameter of interest τ ,
the limiting Gaussian shifts in the ULAN experiments of Proposition 2.1 also
involve a nuisance parameter P ∈ Π, say (here, the class Πp of p×p orthogonal
matrices), which is not identified under τ = 0. Accordingly, directionally most
powerful, in the sequel, does not reduce to (locally asymptotically)most powerful
along some τ , but is to be understood as (locally asymptotically) most powerful
along some τ for some value P of the nuisance; the directional maximin argu-
ment then is applied to the set of possible values of (τ ,P). More precisely, denote
by κu,P the directionally most powerful test for τ = 0 in favor of τ = τu, τ > 0
under the value P of the nuisance, and let βu,P(τv,Q) be the power of that test
under the alternative characterized by the parameter and nuisance values τv,

τ > 0 and Q, respectively. Assuming that it exists, denote by
.

βu,P(v,Q) the
value at τ = 0 of the derivative with respect to τ of this power.

The test κ
∗ := κu∗,P∗ will be called directionally maximin for the cone
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alternative C if

(u∗,P∗) = argmax(u,P)∈(C∩Sp−1)×Πmin(v,Q)∈(C∩Sp−1)×Π

.

βu,P(v,Q).

Depending on the role of P in the Gaussian shift, such κ
∗ may or may not exist.

Proposition 3.1 shows that, for the specific problem considered here, such tests
do exist and admit an explicit form.

3.3. Optimal parametric tests: specified parameters

To start with, let us assume that the parameters μ, b, and σ2 (to be considered as
nuisance parameters in Section 3.4) are specified, as well as the densities f1 ∈ FA

and h ∈ FC|f1 . We are thus testing the sequence of simple null hypothe-

ses
{
P
(n)
(μ,b,σ2),0;f1

}
against the parametric alternatives

⋃
λ2,P

{
P
(n)
(μ,b,σ2),λ2,P;f1,h

}
where λ2 and P range over C+ and the set Πp of p × p full-rank orthogonal
matrices, respectively. The following result shows that, quite remarkably, a very
simple maximin element exists within the collection of directionally most pow-
erful tests for this problem, based on the test statistic

T
(n)
f1

(ϑ) :=
(
Iψ(f1)

n∑
j=1

‖xj‖4
)−1/2 n∑

j=1

ψf1(Zj)‖xj‖2. (3.3)

More precisely, we prove the following result.

Proposition 3.1. Let Assumptions (B) hold, fix f1 ∈ FA, and assume that h ∈
FC|f1 . Then,

(i) the test statistic T
(n)
f1

(ϑ) defined in (3.3) is asymptotically normal, with

mean zero and variance one under P
(n)
ϑ,0;f1

;

(ii) under P
(n)

ϑ,n−1/2K
(n)
P;2τ4,P;f1,h

, and along subsequences such that the limit

exists, T
(n)
f1

(ϑ) is asymptotically normal with variance one, but with mean

μf1 :=
(
I1/2
ψ (f1)/2σ

2
)
lim

n→∞
1

n

n∑
j=1

‖xj‖2
(
Pxj

)�2′
K

(n)
P;2τ4; (3.4)

(iii) the sequence of tests rejecting the null hypothesis P
(n)
ϑ,0;f1

whenever T
(n)
f1

exceeds the standard normal (1 − α)-quantile zα is locally asymptotically
directionally maximin at asymptotic size α, against alternatives of the
form ⋃

λ2∈C+

⋃
P∈Πp

⋃
h∈FC|f1

{
P
(n)
(μ,b,σ2),λ2,P;f1,h

}
.

See Section 7.2 for the proof.



4220 A. Akharif et al.

3.4. Optimal parametric tests: unspecified parameters

The test described in Proposition 3.1 settles the efficiency bounds, but is of
theoretical interest only, as in practice neither the nuisance parameters μ, b,
and σ2 nor the density f1 are known. First, let us deal with the parametric
nuisances μ, b, and σ2, under specified f1. The null hypothesis then is⋃

μ∈R

⋃
b∈Rp

⋃
σ2∈R+

{
P
(n)
(μ,b,σ2),0;f1

}
,

with alternative⋃
μ∈R

⋃
b∈Rp

⋃
σ2∈R+

⋃
P∈Πp

⋃
h∈FC|f1

⋃
λ2∈C+

{
P
(n)
(μ,b,σ2),λ2,P;f1,h

}
. (3.5)

The problem thus is about testing a p-tuple of linear constraints (viz., λ2 = 0)
on a parameter (ϑ,λ2) = (μ,b, σ2,λ2) ranging over R

1+p × R
+
0 × ({0} ∪ C+).

Proposition 3.2 below shows that an optimal test for this can be based on a

test statistic of the form T
(n)∗
f1

(ϑ̂(n)), where ϑ̂(n) = (μ̂(n), b̂(n), σ̂2(n),0)′, as

an estimator of ϑ, is n1/2-consistent and locally asymptotically discrete (see
Section 7.3 for a definition), and

T
(n)∗
f1

(ϑ) :=
(
Γ
(n)∗
f1

(ϑ)
)−1/2

⎡⎢⎢⎣ 1

2σ2
√
n

n∑
j=1

ψf1(Zj)‖xj‖2

× 1

2σ3

⎛⎜⎝ Iϕψ(f1)‖x‖2
(n)

Iϕψ(f1)
1
n

∑n
j=1 ‖xj‖2x′

jK
(n)
1

1
2σKϕψ(f1)‖x‖2

(n)

⎞⎟⎠
′

(3.6)

×

⎛⎜⎝Γ
(n)
f1;11

(ϑ) Γ
(n)
f1;12

(ϑ) Γ
(n)
f1;13

(ϑ)

Γ
(n)′

f1;12
(ϑ) Γ

(n)
f1;22

(ϑ) Γ
(n)
f1;23

(ϑ)

Γ
(n)
f1;13

(ϑ) Γ
(n)′

f1;23
(ϑ) Γ

(n)
f1;33

(ϑ)

⎞⎟⎠
−1⎛⎜⎝ Δ

(n)
f1;1

(ϑ)

Δ
(n)
f1;2

(ϑ)

Δ
(n)
f1;3

(ϑ)

⎞⎟⎠
⎤⎥⎥⎦,

(which does not depend on λ2 nor P), with

Γ
(n)∗
f1

(ϑ) :=
Iψ(f1)
4σ4

‖x‖4(n)− 1

4σ6

⎛⎜⎜⎝ Iϕψ(f1)‖x‖2
(n)

Iϕψ(f1)
1
n

∑n
j=1‖xj‖2x′

jK
(n)
1

Kϕψ(f1)
2σ ‖x‖2(n)

⎞⎟⎟⎠
′

×

⎛⎜⎝Γ
(n)
f1;11

(ϑ) Γ
(n)
f1;12

(ϑ) Γ
(n)
f1;13

(ϑ)

Γ
(n)′
f1;12

(ϑ) Γ
(n)
f1;22

(ϑ) Γ
(n)
f1;23

(ϑ)

Γ
(n)
f1;13

(ϑ) Γ
(n)′

f1;23
(ϑ) Γ

(n)
f1;33

(ϑ)

⎞⎟⎠
−1⎛⎜⎝ Iϕψ(f1)‖x‖2

(n)

K
(n)
1

Iϕψ(f1)
n

∑n
j=1 xj‖xj‖2

Kϕψ(f1)
2σ ‖x‖2(n)

⎞⎟⎠ .
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Writing Γ
(n)∗
f1

and Γ̂
(n)∗
f1

, respectively, for Γ
(n)∗
f1

(ϑ) and Γ
(n)∗
f1

(ϑ̂(n)), the con-
tinuous mapping theorem then implies, since the mapping ϑ �→ Γf1(ϑ) is con-

tinuous, that Γ̂
(n)∗
f1

− Γ
(n)∗
f1

is oP(1).

The properties of T
(n)∗
f1

(ϑ̂(n))-based tests are summarized as follows; see Sec-
tion 7.3 for Assumptions (D) and a proof.

Proposition 3.2. Let Assumptions (B) and (C) hold. Assume that ϑ̂(n) sat-
isfies Assumptions (D). Fix f1 ∈ FA and h ∈ FC|f1 . Then, for any ϑ of the
form (μ,b, σ2,0)′,

(i) T
(n)∗
f1

(ϑ̂(n)) = T
(n)∗
f1

(ϑ) + oP(1) is asymptotically normal, with mean zero

under P
(n)
ϑ;f1

, mean

μ∗
T := lim

n→∞

(
Γ
(n)∗
f1

(ϑ)
)−1/2

⎡⎢⎢⎣Iψ(f1)4nσ4

n∑
j=1

‖xj‖2
(
Pxj

)�2′
K

(n)
P;2 (3.7)

− 1

2σ3

⎛⎝Iϕψ(f1)

n

n∑
j=1

‖xj‖2
Iϕψ(f1)

n

n∑
j=1

‖xj‖2x′
jK

(n)
1

Kϕψ(f1)

2nσ

n∑
j=1

‖xj‖2
⎞⎠

×

⎛⎜⎝Γ
(n)
f1;11

(ϑ) Γ
(n)
f1;12

(ϑ) Γ
(n)
f1;13

(ϑ)

Γ
(n)′
f1;12

(ϑ) Γ
(n)
f1;22

(ϑ) Γ
(n)
f1;23

(ϑ)

Γ
(n)
f1;13

(ϑ) Γ
(n)′

f1;23
(ϑ) Γ

(n)
f1;33

(ϑ)

⎞⎟⎠
−1⎛⎜⎝Γ

(n)
P;f1;14

(ϑ)

Γ
(n)
P;f1;24

(ϑ)

Γ
(n)
P;f1;34

(ϑ)

⎞⎟⎠
⎤⎥⎥⎦τ4

under P
(n)

(μ,b,σ2),n−1/2K
(n)
P;2τ4,P;f1,h

(and along subsequences such that the

limit exists), and variance one under both;

(ii) the sequence of tests rejecting
⋃

μ∈Rp

⋃
b∈Rp

⋃
σ2∈R+

{
P
(n)
(μ,b,σ2),0;f1

}
whenever the

test statistic T
(n)∗
f1

(ϑ̂(n)) exceeds the (1−α) standard normal quantile zα is
locally asymptotically directionally maximin at asymptotic level α against
alternatives of the form⋃

μ∈Rp

⋃
b∈Rp

⋃
σ2∈R+

⋃
P∈Πp

⋃
h∈FC|f1

⋃
λ2∈C+

{
P
(n)
(μ,b,σ2),λ2,P;f1,h

}
.

Since the model, under the null hypothesis, reduces to the traditional regres-
sion model, the traditional MLE is a natural option for ϑ̂(n)—provided that f
can be assumed to have finite variance. A finite-variance density f , however, is
not required here, so that a more robust ϑ̂(n), such as the LAD estimator, may
be preferable.

Now, the resulting T
(n)∗
f1

-based tests, typically, are valid under a correctly
specified density only—that is, under g1 = f1 where g1 stands for the actual
density. An important exception is the case of a Gaussian f1, though: in the
next section, we show that an adequately modified version of the Gaussian test
enjoys the pseudo-Gaussian property, and remains valid under non-Gaussian g1.
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4. Pseudo-Gaussian test

The Gaussian version of T
(n)∗
f1

(ϑ) is easily obtained by letting f1 = φ1 (φ1 the
standard normal density; see Section 2.1) in (3.7), yielding

T
(n)∗
φ1

(ϑ) =
(
Γ
(n)∗
φ1

)−1/2 a2

2σ2
√
n

n∑
j=1

(
Z

(n)
j

)2 (‖xj‖2 − ‖x‖2(n)
)
. (4.1)

with Z
(n)
j = Z

(n)
j (ϑ) as in (2.3). If, however, a pseudo-Gaussian test is to be per-

formed, the standardization constant in (4.1) is no longer correct under g1 �= φ1:
letting

V
(n)
‖x‖2 :=

1

n

n∑
j=1

(
‖xj‖2 − ‖x‖2(n)

)2
, μ(g1) :=

∫
zg1(z)dz,

and

μj(g1) :=

∫
(z − μ(g1))

jg1(z)dz, j = 2, 3, 4,

the variance Γ
(n)∗
φ1

in (4.1) is to be replaced with

Γ
(n)∗
φ1;g1

:=
a4

4σ4

(
μ4(g1)− μ2

2(g1)
)
V

(n)
‖x‖2

(provided that μ4(g1) < ∞) or any consistent estimator thereof. Putting

Z̄(n) :=
1

n

n∑
i=1

Z
(n)
i and m

(n)
j :=

1

n

n∑
i=1

(
Z

(n)
i − Z̄(n)

)j
,

and assuming that g1 is in the class F (4)
A of densities in FA with μ4(g1) < ∞,

Γ̂
(n)∗
φ1

:=
a4

4σ4

(
m

(n)
4 − (m

(n)
2 )2

)
V

(n)
‖x‖2

is such a consistent estimator of Γ
(n)∗
φ1;g1

. Denote by T
(n)•
φ1

(ϑ) the statistic resulting

from substituting Γ̂
(n)∗
φ1

for Γ
(n)∗
φ1

in (4.1). Then, for any g1 ∈ F (4)
A and ϑ̂(n)

satisfying Assumptions (D), T
(n)•
φ1

(ϑ̂(n)) under P
(n)
ϑ;g1

is asymptotically standard
normal, hence qualifies as a pseudo-Gaussian test statistic. We thus have shown
the following.

Proposition 4.1. Let Assumptions (B) and (C) hold; assume h ∈ FC|φ1
and

that ϑ̂(n) satisfies Assumptions (D) under P
(n)
ϑ,0;g1,h

for any g1 ∈ F (4)
A . Then,

for any ϑ = (μ,b, σ2,0)′,

(i) T
(n)•
φ1

(ϑ̂(n)) = T
(n)•
φ1

(ϑ) + oP(1) is asymptotically normal, with mean zero

under P
(n)
ϑ;f1

, mean

μ•
T = μ•

T (P; g1) := lim
n→∞

1
n

∑n
j=1

(
‖xj‖2 − ‖x‖2(n)

) (
Pxj

)�2′

σ2
√
(μ4(g1)− μ2

2(g1))V‖x‖2

K
(n)
P;2τ4

= σ2μ•
T (P; g) (4.2)



Random coefficients detection 4223

with V‖x‖2 := limn→∞ V
(n)
‖x‖2 = μ‖x‖4 −

(
μ‖x‖2)2

under P
(n)

ϑ,n−1/2K
(n)
P;2τ4;g1,h

(along subsequences such that the limit exists), and variance one under
both;

(ii) the sequence of tests rejecting
⋃

μ∈Rp

⋃
b∈Rp

⋃
σ2∈R+

⋃
g1∈F(4)

A

{
P
(n)
(μ,b,σ2),0;g1

}
when-

ever T
(n)•
φ1

(ϑ̂(n)) exceeds the (1 − α) standard normal quantile zα is lo-
cally asymptotically directionally maximin at asymptotic level α against
the Gaussian alternative⋃

μ∈Rp

⋃
b∈Rp

⋃
σ2∈R+

⋃
P∈Πp

⋃
h∈FC|f1

⋃
λ2∈C+

{
P
(n)
(μ,b,σ2),λ2,P;φ1,h

}
.

In view of Proposition 4.1, the test based on T
(n)•
φ1

, at first sight, looks quite
reasonable. Unfortunately, its non-Gaussian local asymptotic powers (especially
under skew and heavy-tailed g) can be extremely poor; see Section 9.1 and
Tables 9.1 and 9.2 for empirical evidence of this fact.

5. Rank-based tests

Pseudo-Gaussian tests are common practice in semiparametric problems with
unspecified error or innovation densities where Gaussian central sequences en-
joy the so-called Fisher consistency property—remaining centered under a broad
class of densities g. Typically, the Gaussian is the only density satisfying, in this
context, that property, which implies that it is least favorable. A classical alter-
native to pseudo-Gaussian methods is provided by the semiparametric theory
developed, e. g., in Bickel et al. (1993). The tests described there are semipara-
metrically optimal under any g, but their implementation is rather heavy, as it
requires tangent space projection, kernel estimation of g1,

.
g1, and

..
g1, and, in

most cases, sample splitting.
Rank tests, as we shall see, offer an intermediate and easily implementable

solution. Just as the pseudo-likelihood ones, rank tests are based on the choice of
a reference density f1. The crucial difference is that this reference density now
needs not satisfy the Fisher consistency property; it even can be data-driven
(Section 8.4), as long as it only depends on the order statistic of residuals—
kernel estimation is possible but not required, thus, and sample splitting is
useless. Moreover, μ and σ2 have no impact on residual ranks, whence the no-

tation Z
(n)
j (b) for Z

(n)
j (ϑ) (R

(n)
j (b), Δ

∼

(n)
P;f (b), etc).

Throughout this section, we tacitly assume that f also satisfies Assump-

tion (A.2). Let R
(n)
j = R

(n)
j (b) be the rank of Z

(n)
j among Z

(n)
1 (b), . . . , Z

(n)
n (b),

and write R(n)(b) for
(
R

(n)
1 (b), . . . , R

(n)
n (b)

)
.

Define

Δ
∼

(n)
P;f (b) :=

(
Δ
∼

(n)
f ;2(b)

Δ
∼

(n)
P;f ;4(b)

)
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:=
1√
n

⎛⎜⎜⎜⎜⎜⎝
n∑

j=1

[
ϕf

(
F−1

( R
(n)
j

n+ 1

))
− ϕ

(n)
f

]
K

(n)
1 xj

1
2

n∑
j=1

[
ψf

(
F−1

( R
(n)
j

n+ 1

))
− ψ

(n)

f

]
K

(n)
P;2(Pxj)

�2

⎞⎟⎟⎟⎟⎟⎠ (5.1)

=
1√
n

⎛⎜⎜⎜⎜⎜⎝
n∑

j=1

ϕf

(
F−1

( R
(n)
j

n+ 1

))
K

(n)
1

[
xj − x̄(n)

]
1
2

n∑
j=1

ψf

(
F−1

( R
(n)
j

n+ 1

))
K

(n)
P;2

[
(Pxj)

�2 − (Px)�2
(n)
]
⎞⎟⎟⎟⎟⎟⎠

=
1√
n

⎛⎜⎜⎜⎜⎜⎝
n∑

j=1

ϕf

(
F−1

( R
(n)
j

n+ 1

))
K

(n)
1 xj

1
2

n∑
j=1

ψf

(
F−1

( R
(n)
j

n+ 1

))
K

(n)
P;2(Pxj)

�2

⎞⎟⎟⎟⎟⎟⎠+ oP(1),

with

ϕ
(n)
f :=

1

n

n∑
i=1

ϕf

(
F−1

( i

n+ 1

))
and ψ

(n)

f :=
1

n

n∑
i=1

ψf

(
F−1
1

( i

n+ 1

))
.

The last equality in (5.1) follows from the square-integrability of ϕf and ψf ,
which implies (see, e.g., Appendix B2 in Hallin and La Vecchia (2017))

n∑
j=1

ϕf

(
F−1

( R
(n)
j

n+ 1

))
=

n∑
j=1

ϕf

(
F−1

( j

n+ 1

))
= o(n1/2)

(a similar result holds for ψf ). It also shows that Δ
∼

(n)
P;f (b) actually constitutes

the approximate score version of the conditional expectations

(
Ef

[
Δ

(n)
P;f1;2

∣∣R(n)(b)
]

Ef

[
Δ

(n)
P;f1;4

∣∣R(n)(b)
] ) =

1√
n

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
σ

n∑
j=1

Ef

[
ϕf1

(
Z

(n)
j (b)

)∣∣∣R(n)(b)
]

×K
(n)
1 xj

1
2σ2

n∑
j=1

Ef

[
ψf1

(
Z

(n)
j (b)

)∣∣∣R(n)(b)
]

×K
(n)
P;2(Pxj)

�2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(5.2)

of the b and λ2 blocks of the central sequence Δ
(n)
P;f1

(ϑ) = Δ
(n)
P;f1

(μ,b, σ2)

conditional on R(n)(b) (which constitute the exact score version of the same).
The same expectations, for the μ and σ2 blocks, is zero, hence safely can be
omitted.

Classical asymptotic representation results for linear rank statistics (see, e.g.,
Chapter V of Hájek and Šidák (1967), or the very clear exposition by Lombard
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(1986)) entail, under P
(n)
ϑ,0;g, the asymptotic equivalence of the exact score ver-

sion (5.2), the approximate score version (5.1), and

Δ
(n)
P;f,g(b) :=

1√
n

⎛⎜⎜⎜⎜⎝
n∑

j=1

ϕf

(
F−1◦G1

(
Z

(n)
j (b)

))
K

(n)
1

[
xj − x̄(n)

]
1
2

n∑
j=1

ψf

(
F−1◦G1

(
Z

(n)
j (b)

))
K

(n)
P;2

[
(Pxj)

�2 − (Px)�2
(n)
]
⎞⎟⎟⎟⎟⎠

(5.3)
(F and G1 the distribution functions associated with f and g1, respectively).

Now, Hallin and Werker (2003) establish the asymptotic equivalence, un-

der P
(n)
ϑ,0;f , of the conditional expectation (5.2) and the semiparametrically ef-

ficient central sequence at (ϑ,0) and f (namely, the tangent space projection

of
(
Δ

(n)′
P;f ;2(ϑ),Δ

(n)′
P;f ;4(ϑ)

)′
); see their Example 4.2 for the case of traditional

regression. It follows that both Δ
(n)
P;f,f (b) and Δ

∼

(n)
P;f (b) are versions of that

semiparametrically efficient central sequence; being rank-based, however, the

latter is distribution-free. The first and third components of Δ
(n)
P;f (ϑ) are not

taken into account since their conditional expectations, as explained, are zero.

Note that the b-components of Δ
(n)
P;f,f (b) and Δ

(n)′
P;f (ϑ) asymptotically coin-

cide iff x̄(n) is o(1). But, since (Px)�2
(n)

under Assumption (B.1) cannot be o(1),
the same equivalence is impossible for the λ2-components: the detection problem
we are considering, thus, is nonadaptive with respect to the non-specification
of f , irrespective of the regression design.

Under P
(n)
ϑ,0;g, the F−1 ◦G1

(
Z

(n)
j (b)

)
’s are i.i.d. with density f . This implies

that Δ
∼

(n)
P;f (b) is asymptotically normal, with mean zero and covariance (limits

in P
(n)
ϑ,0;g-probability)

Γ
∼P;f :=

(
Γ
∼f ;22 Γ

∼P;f ;24

Γ
∼

′
P;f ;24 Γ

∼P;f ;44

)
= lim

n→∞

(
Γ
∼

(n)
f ;22 Γ

∼

(n)
P;f ;24

Γ
∼

(n)′
P;f ;24 Γ

∼

(n)
P;f ;44

)
=: lim

n→∞
Γ
∼

(n)
P;f

(5.4)
where Γ

∼f ;22 := Iϕ(f)
(
Ip×p −K1μ

xμx′K1

)
= limn→∞ Γ

∼

(n)
f ;22,

Γ
∼P;f ;24 :=

Iφψ(f)
2

K1

(
CP;3 − μxμ(Px)�2′

)
KP;2 = lim

n→∞
Γ
∼

(n)
P;f ;24,

and Γ
∼P;f ;44 :=

Iψ(f)
4

(
Ip×p−KP;2μ

(Px)�2

μ(Px)�2′KP;2

)
= limn→∞ Γ

∼

(n)
P;f ;44; the

empirical counterpart Γ
∼

(n)
P;f of Γ

∼P;f (which cannot be computed from the sample)

is obtained by replacing, in an obvious fashion, K1 and KP;2 with K
(n)
1 and

K
(n)
P;2, CP;3 with C

(n)
P;3, μ

x and μ(Px)�2

with x̄(n) and (Px)�2
(n)

, respectively.

5.1. The rank-based test statistic: specified P

To start with, fix some value for P. Let f be some chosen reference density
(under which optimality is to be achieved), the actual density being g. The
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qualification of Δ
∼

(n)
f (b) as a semiparametrically efficient central sequence im-

plies that Γ
∼P;f is the information matrix settling the values of semiparametric

efficiency bounds in the contiguous vicinity of P
(n)
ϑ,0;f , while testing procedures

reaching those bounds are obtained, mutatis mutandis, by treating Δ
∼

(n)
f as we

did Δ
(n)∗
f1

in Section 3. Accordingly, a test achieving local and asymptotic opti-
mality under density f and for given P, in the presence of an unspecified b, is

to be based on Δ
∼

(n)†
P;f (b̂

(n)), where

(a) Δ
∼

(n)†
P;f (b) denotes the residual of the regression of Δ

∼

(n)
P;f ;4(b) with respect

to Δ
∼

(n)
f ;2(b) in the covariance structure Γ

∼P;f given in (5.4) (equivalently,

its consistent empirical counterpart Γ
∼

(n)
P;f ), and

(b) b̂(n)is an estimator of b satisfying (with ν(n)= K
(n)
1 ) Assumptions (D).

SinceΔ
∼

(n)†
P;f (b), by construction, is asymptotically uncorrelated, under P

(n)
ϑ,0;f ,

with Δ
∼

(n)
f ;2(b), it is asymptotically insensitive, under P

(n)
ϑ,0;f and contiguous al-

ternatives, to the replacement of b with b̂(n)—a particular case of Lemma 8.1.

Thus, Δ
∼

(n)†
P;f (b̂

(n)), under P
(n)
ϑ,0;f and contiguous alternatives, is asymptotically

equivalent to Δ
∼

(n)†
P;f (b) and enjoys, under density f , the same semiparametric

optimality properties.
While taking care of the asymptotic validity and optimality under density f

of tests based on Δ
∼

(n)†
P;f (b̂

(n)), this does not entail their validity under den-

sity g �= f . Therefore, rather than Δ
∼

(n)†
P;f (b̂

(n)), consider Δ
∼

(n)∗
P;f (b̂(n)), where

Δ
∼

(n)∗
P;f (b) := Δ

∼

(n)
P;f ;4(b)− Γ̂

∼

(n)′
P;f ;24

(
Γ̂
∼

(n)

f ;22

)−1
Δ
∼

(n)
f ;2(b)

results from substituting the estimators

Γ̂
∼

(n)

f ;22 :=
1

n
I(n)
ϕ (f)K

(n)
1

n∑
j=1

[
xj − x̄(n)

][
xj − x̄(n)

]′
K

(n)
1

= I(n)
ϕ (f)

[
Ip −K

(n)
1 x̄(n)x̄(n)′K

(n)
1

] (5.5)

and

Γ̂
∼

(n)

P;f ;24 :=
1

2n
I(n)
ψϕ (f)K

(n)
1

n∑
j=1

[
xj− x̄(n)

][
(Pxj)

�2 − (Px)�2
(n)
]′
K

(n)
P;2

=
1

2
I(n)
ψϕ (f)K

(n)
1

[
C

(n)
P;3 − x̄(n)(Px)�2

(n)′]
K

(n)
P;2, (5.6)

for Γ
∼

(n)
f ;22 and Γ

∼

(n)
P;f ;24, in the definition of Δ

∼

(n)†
P;f (b); I

(n)
ϕ (f) and I(n)

ψϕ (f) in (5.5)

and (5.6) denote consistent, under P
(n)
ϑ,0;g, estimators of

Iϕ(f, g) :=
∫ 1

0

ϕf (F
−1(u))ϕg(G

−1(u))du
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and

Iψϕ(f, g) :=

∫ 1

0

ψf (F
−1(u))ϕg(G

−1(u))du,

respectively; such estimators are provided in Section 8.2.
Since, for g = f , Iϕ(f, f) = Iϕ(f) and Iψϕ(f, f) = Iψϕ(f), the difference

between Γ̂
∼

(n)

P;f ;ij and Γ
∼

(n)
P;f ;ij is oP(1), under P

(n)
ϑ,0;f , for (i, j) = (2, 2) and (2, 4).

Hence, still under P
(n)
ϑ,0;f , Δ∼

(n)∗
P;f (b̂(n)) − Δ

∼

(n)†
P;f (b̂

(n)) too is oP(1) (hence also

under contiguous alternatives); Δ
∼

(n)∗
P;f (b̂(n)) thus retains, under density f , the

optimality properties of Δ
∼

(n)†
P;f (b̂

(n)) and Δ
∼

(n)†
P;f (b).

More generally, Γ̂
∼

(n)

f ;22 and Γ̂
∼

(n)

P;f,;24 are converging, in P
(n)
ϑ,0;g-probability, to

Γ
∼f,g;22 := Iϕ(f, g)

(
Ip×p −K1μ

xμx′K1

)
and

Γ
∼P;f,g;24 :=

1

2
Iϕψ(f, g)K1

(
CP;3 − μxμ(Px)�2′

)
KP;2,

respectively. This (see Lemma 8.1) implies that the difference

Δ
∼

(n)∗
P;f (b̂(n))−Δ

∼

(n)∗
P;f (b)

is oP(1) under P
(n)
ϑ,0;g—not just under P

(n)
ϑ,0;f . Hence, irrespective of b and g,

substituting b̂(n) for b has no asymptotic impact on Δ
∼

(n)∗
P;f (b). Therefore, tests

reaching, for specified P and density f , asymptotic optimality against given
directions u in the λ2 space (see Section 3.3) while remaining asymptotically

valid under any density g can be based on adequate projections of Δ
∼

(n)∗
P;f (b̂(n)).

Those tests play the role of directionally (i.e., for some given choice of P and u)
optimal tests.

5.2. The rank-based test statistic: unspecified P

Now, just as in Section 3.3, P and u are to be selected in order to obtain a
directionally maximin test. The same reasoning as in the proof of Proposition 3.1

leads to projecting Δ
∼

(n)∗
P;f (b̂(n)) onto a unit vector u such that K

(n)
P;2u = 1p.

Letting

W
(n)
‖x‖2;x :=

1

n

n∑
j=1

[
‖xj‖2 −

1

n

n∑
l=1

‖xl‖2
]
xj

and

W
(n)
‖x‖2;(Px)�2 :=

1

n

n∑
j=1

[
‖xj‖2 −

1

n

n∑
l=1

‖xl‖2
](
Pxj

)�2
,

this yields, after some easy algebra,
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u′Δ
∼

(n)∗
P;f (b̂(n)) =

1

2
√
n

n∑
j=1

ψf

(
F−1

( R
(n)
j

n+ 1

))(
‖xj‖2 −

1

n

n∑
l=1

‖xl‖2
)

−
I(n)
ψϕ (f)

2
√
nI(n)

ϕ (f)
W

(n)′
‖x‖2;x

[
C

(n)
1 − x̄(n)x̄(n)′

]−1

×
n∑

j=1

ϕf

(
F−1

( R
(n)
j

n+ 1

))[
xj − x̄(n)

]
=: T

∼

(n)∗
1p;f

(b̂(n)),

which no longer depends on P and has asymptotic variance limn→∞ Γ
∼

(n)∗
f ;1p

, with

Γ
∼

(n)∗
1p;f

:=
Iψ(f)

4
V

(n)
‖x‖2 −

I(n)
ψϕ (f)

4I(n)
ϕ (f)

)2 (2I(n)
ϕ (f)Iϕψ(f)− I(n)

ψϕ (f)Iϕ(f)
)

×W
(n)′
‖x‖2;x

[
C

(n)
1 − x̄(n)x̄(n)′

]−1

W
(n)
‖x‖2;x.

The test statistic we are proposing is the standardized version

T
∼

(n)
f (b̂(n)) :=

(
Γ
∼

(n)∗
1p;f

)−1/2

T
∼

(n)∗
1p;f

(b̂(n)) (5.7)

of T
∼

(n)∗
1p;f

(β̂(n)). Summing up, we established the following results (see Section 8.3

for a proof).

Proposition 5.1. Let Assumptions (B) and (C) hold, denote by b̂(n) an esti-
mator satisfying Assumptions (D), and fix f such that f1 ∈ FA. Then,

(i) T
∼

(n)
f (b̂(n)) = T

∼

(n)
f (b) + oP(1) is asymptotically normal, with mean zero

under P
(n)
ϑ,0;g, mean

μ
∼

∗
P;f,g

:= Γ
∼

∗−1/2
1p;f,g

{Iψ(f, g)
4

lim
n→∞

W
(n)
‖x‖2;(Px)�2 −

Iϕψ(f, g)Iψϕ(f, g)

4Iϕ(f, g)

× lim
n→∞

W
(n)′
‖x‖2;x

[
C1 − μxμx′

]−1[
CP;3 − μxμ(Px)�2′

]}
KP;2τ4

under P
(n)

ϑ,n−1/2K
(n)
P;2τ4;g,h

(along subsequences such that limn→∞ W
(n)
‖x‖2;x

and limn→∞ W
(n)
‖x‖2;(Px)�2 exist), and variance one under both;

(ii) the sequence of tests rejecting
⋃
μ∈R

⋃
b∈Rp

⋃
σ2∈R+

⋃
g

{
P
(n)
(μ,b,σ2),0;g

}
whenever

the test statistic T
∼

(n)
f (b̂(n)) exceeds the (1 − α) standard normal quan-

tile zα is locally asymptotically directionally maximin at asymptotic level α
against alternatives of the form⋃

μ∈R

⋃
b∈Rp

⋃
σ2∈R+

⋃
P∈Πp

⋃
h∈FC|f1

⋃
λ2∈C+

{
P
(n)
(μ,b,σ2),λ2,P;f,h

}
.
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6. Asymptotic relative efficiencies (AREs)

The asymptotic relative efficiencies of the rank-based tests developed in the pre-
vious section, with respect to the pseudo-Gaussian tests of Section 4 are easily
obtained as the ratios of the standardized asymptotic shifts μ

∼

∗
P;f,g

and μ•
T =

μ•
T (P; g1) obtained in Propositions 4.1 and 5.1, respectively. Those shifts, unfor-

tunately, depend on the unspecified P, and the perturbation τ4 does not cancel
out when taking ratios—unless P and τ4 are such that KP;2τ4 = 1p. Table 6.1 is
listing, for various scores and under various densities, some of those ARE values.

Inspection of Table 6.1 reveals the dramatic gains achieved by considering
ranks in this context. The van der Waerden test which, under Gaussian alterna-
tives, is asymptotically equivalent to the pseudo-Gaussian one, reaches a huge
ARE of 360% under Student densities with 5 degrees of freedom! ARE values
as high as 569% are attained under Student t5 by the Wilcoxon test—meaning
that the pseudo-Gaussian test requires five times more observations than the
Wilcoxon test in order to achieve the same large-sample performance.

All AREs in the van der Waerden row of the table are larger than one. This
might be the empirical indication that the celebrated Chernoff-Savage prop-
erty3 holds for this problem. Due to the complicated form of the asymptotic
shifts μ

∼

∗
P;f,g

and μ•
T = μ•

T (P; g1) in Propositions 4.1 and 5.1, however, a theo-

retical confirmation is hard to obtain, and we were not able to prove nor disprove
the property. Whether the Chernoff-Savage property holds in this context, thus,
remains unknown.

7. Proofs for Sections 2 and 3

7.1. Proof of Proposition 2.1

The result is obtained by checking that the six conditions of Lemma 2 in Swensen
(1985) are satisfied. As usual, the only delicate one is the quadratic mean differ-
entiability of the square root of the density, computed at the residual—here, the
quadratic mean differentiability, at any (μ,b, σ2,0) and for all (y,x) in R×R

p,

of (μ,b, σ2,λ2) �−→ q
1/2
μ,b,σ2,λ2,P;f1,h

(y), where

qμ,b,σ2,λ2,P;f1,h(y) :=
1

σ

∫
Rp

f1

( 1
σ

(
y − μ−

p∑
i=1

bixi −
p∑

i=1

(
P′ΛP ξ

)
i
xi

))
h(ξ)dξ.

3Recall that Chernoff and Savage (1958) established the surprising fact that, in (univari-
ate) two-sample location models, the ARE of the van der Waerden (i.e., normal-score) rank
test with respect to its Gaussian competitor (the Student test) is strictly larger than one
under any density but the Gaussian one under which, of course, it equals one. That property
immediately extends to linear models (regression, ANOVA, etc.). Further and less obvious
extensions were obtained later on to ARMA models (Hallin, 1994; Hallin and Tribel, 2000),
then to elliptical location and VARMA models (Hallin and Paindaveine, 2002a,b). The same
property was established in Paindaveine (2006) for elliptical rank tests of shape and in Hallin
and Paindaveine (2008) for the the van der Waerden version of Wilks’ test of independence
between random vectors.
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Table 6.1

AREs, under Student (ν = 5, 8, and 10 degrees of freedom), logistic (�1), normal (φ1) and
skew-normal (sN (δ), δ = 2, 3) densities, for alternatives such that KP;2τ4 = 1p, of various
rank tests based on Student, Wilcoxon, van der Waerden, and skew-normal scores, with

respect to the pseudo-Gaussian test.

g1 t5 t8 t10 �1 φ1 sN (2) sN (3)
score f1

t5 5. 8333 1.7818 1.3749 1.6906 0.6187 0.7711 0.8287

t8 5.5878 1.8601 1.4836 1.7178 0.7858 1.0243 1.2753

t10 5.3709 1.8482 1.4932 1.6934 0.8440 1.1184 1.4603

�1 (Wilcoxon) 5.6947 1.8452 1.4601 1.7317 0.7599 0.9853 1.1932

φ1 (van der Waerden) 3.6089 1.4617 1.2603 1.3159 1.0000 1.4278 2.2396

sN (2) 2.5411 1.0765 0.9435 0.9640 0.8068 1.7698 3.4093

sN (3) 1.3393 0.6573 0.6042 0.5725 0.6207 1.6721 3.6088

In view of Theorem 2.1 in Lind and Roussas (1972) (independently rediscovered
by Garel and Hallin (1995), Lemma 2.1), the existence of partial derivatives in
quadratic mean is sufficient for quadratic mean differentiability to hold. There-
fore, quadratic mean differentiability for arbitrary p follows from quadratic mean
differentiability for p = 1—a result which is established in Lemma A.1 of Fihri
et al. (2020), where we refer to for details. Proposition 2.1 follows. �

7.2. Proof of Proposition 3.1

The main difficulty in the proof of Proposition 3.1 is with the role of the ma-
trix P, which is not identified, hence cannot be estimated under the null hy-

pothesis
{
P
(n)
(μ,b,σ2),0;f1

}
(nor can h; but the latter, as we shall see, does not play

any role).
In order to obtain (locally asymptotically) directionally most powerful tests,

a one-dimensional subhypothesis has to be selected within the alternative⋃
λ2,P

{
P
(n)
(μ,b,σ2),λ2,P;f1,h

}
by specifying a value of P and a direction u λ2/‖λ2‖. A locally asymptotically
(uniformly) most powerful test against this sub-alternative consists in rejecting
whenever

T
(n)
P,u;f1

(ϑ) :=
(
nIψ(f1)

)−1/2(
K

(n)
P;2u

)′ n∑
j=1

ψf1(Zj)
(
Pxj

)�2
(7.1)

(with ϑ = (μ,b, σ2)) exceeds the (1− α) standard normal quantile zα.
It follows from Le Cam’s Third Lemma that the asymptotic power, un-

der alternatives of the form P
(n)

ϑ,n−1/2K
(n)
Q;2τ4,P;f1,h

and along appropriate sub-

sequences (such that the limits exist), of the directionally most powerful test
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based on (7.1) is

1− Φ
(
zα − lim

n→∞
(2nσ2)−1/2I1/2

ψ (f1)u
′K

(n)
P;2

n∑
j=1

(
Pxj

)�2(
Qxj

)�2′
K

(n)
Q;2τ4

)
.

For τ4 = τv, τ ≥ 0 and v ∈ Sp−1, the derivative with respect to τ of that
power, at τ = 0, is (up to a positive multiplicative constant) the limit of

u′K
(n)
P;2

n∑
j=1

(
Pxj

)�2(
Qxj

)�2′
K

(n)
Q;2v, (7.2)

that is, the limit of the scalar product 〈K(n)
P;2u,

∑n
j=1

(
Pxj

)�2(
Qxj

)�2′
K

(n)
Q;2v〉.

Note that K
(n)
P;2C+ = K

(n)
Q;2C+ = C+; similarly, for any choice of P, we have

n∑
j=1

(
Pxj

)�2(
Qxj

)�2′C+ = C+.

For given n, u, P, Q, and τ , the moduli of K
(n)
P;2u and

n∑
j=1

(
Pxj

)�2(
Qxj

)�2′
K

(n)
Q;2v

(both ranging over C+) are constant, so that (7.2) is minimal when the angle
between them is maximal. Irrespective of Q, the orthogonal matrices P and the

unit vectors u minimizing that maximal angle are those for which K
(n)
P;2u = 1p,

where 1p := (1, . . . , 1)′ (an infinite number of solutions). Although the values
of (7.2) at those solutions depend on Q, the resulting tests do not, with a test
statistic of the form

1′
p√

nIψ(f1)

n∑
j=1

ψf1(Zj)
(
Pxj

)�2
=

1√
nIψ(f1)

n∑
j=1

ψf1(Zj)1
′
p

(
Pxj

)�2
. (7.3)

Now, since P is orthogonal, 1′
p

(
Pxj

)�2
= ‖Pxj‖2 = ‖xj‖2, and (7.3) thus

reduces, after standardization, to the test statistic T
(n)
f1

(ϑ) defined in (3.3),
which no longer depends on P. This establishes part (iii) of the Proposition;
parts (i) and (ii) then are straightforward. �

7.3. Proof of Proposition 3.2

Before turning to the proof of Proposition 3.2, let us recall some classical
facts on rate-optimal locally asymptotically discrete estimators—a classical con-
cept when dealing with the estimation of nuisance parameters in ULAN fam-
ilies. Denoting by η̂(n) a sequence of estimators of η in a sequence of experi-

ments {P(n)
η | η ∈ Θ} with contiguity rates n−1/2(ν(n)), recall that η̂(n) is
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called n1/2(ν(n))−1-consistent and locally asymptotically discrete if it satisfies
the following assumptions.

Assumption (D) Under P
(n)
η , as n → ∞,

(D.1) (ν(n))−1
(
η̂(n) − η

)
= OP(n

−1/2);

(D.2) the number of possible values of η̂(n) in balls with O(n−1/2ν(n)) radius
centered at η is bounded as n → ∞.

Assumption (D.2) is quite mild, as any estimator η̂(n) = (η̂
(n)
1 , . . . , η̂

(n)
q )′

satisfying (D.1) can be discretized into

η̂
(n)
# := ν(n)(cn1/2)−1

⎛⎜⎜⎝
sign(η̂

(n)
1 )�cn1/2‖η̂(n)

1 ‖�
...

sign(η̂
(n)
q )�cn1/2‖η̂(n)

q ‖�

⎞⎟⎟⎠
satisfying both (D.1) and (D.2) (c > 0 is some arbitrary constant tuning the
discretization; �‖η‖�, as usual, stands for the smallest integer larger than or
equal to ‖η‖). Such discretization is needed in the statement of asymptotic
results, although it has no practical consequences for fixed n (as c can be chosen
arbitrarily large). Note that ν(n) being O(1) as n → ∞, it safely can be omitted
in (D.1) and (D.2).

The problem of testing the null hypothesis
⋃
μ∈R

⋃
b∈Rp

⋃
σ2∈R+

{
P
(n)
(μ,b,σ2),0;f1

}
against the alternative⋃

μ∈R

⋃
b∈Rp

⋃
σ2∈R+

⋃
P∈Πp

⋃
h∈FC|f1

⋃
λ2∈C+

{
P
(n)
(μ,b,σ2),λ2,P;f1,h

}
is thus a classical problem of testing linear restrictions on the parameter (ϑ,λ2)
under ULAN. Locally and asymptotically optimal (at (ϑ,0)) inference should
be based (see Chapter 11.9 in Le Cam (1986) ) on the residual

Δ
(n)∗
P;f1;4

(ϑ) = Δ
(n)
P;f1;4

(ϑ)− 1

2σ3

⎛⎜⎜⎝ Iϕψ(f1)K
(n)
P;2(Px)�2

(n)

Iϕψ(f1)
n K

(n)
P;2

∑n
j=1

(
Pxj

)�2
x′
jK

(n)
1

1
2σKϕψ(f1)K

(n)
P;2(Px)�2

(n)

⎞⎟⎟⎠
′

×

⎛⎜⎝ Γ
(n)
f1;11

(ϑ) Γ
(n)
f1;12

(ϑ) Γ
(n)
f1;13

(ϑ)

Γ
(n)′

f1;12
(ϑ) Γ

(n)
f1;22

(ϑ) Γ
(n)
f1;23

(ϑ)

Γ
(n)
f1;13

(ϑ) Γ
(n)′

f1;23
(ϑ) Γ

(n)
f1;33

(ϑ)

⎞⎟⎠
−1⎛⎜⎝ Δ

(n)
f1;1

(ϑ)

Δ
(n)
f1;2

(ϑ)

Δ
(n)
f1;3

(ϑ)

⎞⎟⎠(7.4)

of the regression on
(
Δ

(n)
f1;1

(ϑ),Δ
(n)
f1;2

(ϑ),Δ
(n)
f1;3

(ϑ)
)
of Δ

(n)
f1;4

(ϑ), in the metric

induced by Γf1(ϑ) or any sequence Γ
(n)
f1

(ϑ) converging in probability to Γf1(ϑ);
the purpose of that projection is to neutralize the impact of local perturba-

tions τ
(n)
1 , τ

(n)
2 , and τ

(n)
3 of μ, b, and σ2. From there, the reasoning runs along

the same lines as in the proof of Proposition 3.1, and we only briefly sketch it.
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For any u ∈ Sp−1, a (locally and asymptotically) directionally most pow-

erful Δ
(n)∗
P;f1;4

(ϑ)-based test statistic against P
(n)
ϑ,λ2,P;f1,h

with specified P and
λ2

‖λ2‖ = u can, parallel to (7.1), be based on the standardized version of

u′Δ
(n)∗
P;f1;4

(ϑ) =
(
K

(n)
P;2u

)′ ⎡⎢⎢⎣ 1

2σ2
√
n

n∑
j=1

ψf1(Zj)
(
Pxj

)�2

− 1

2σ3

⎛⎜⎝ Iϕψ(f1)(Px)�2
(n)

Iϕψ(f1)
1
n

∑n
j=1(Pxj)

�2x′
jK

(n)
1

1
2σKϕψ(f1)(Px)�2

(n)

⎞⎟⎠
′

×

⎛⎜⎝ Γ
(n)
f1;11

(ϑ) Γ
(n)
f1;12

(ϑ) Γ
(n)
f1;13

(ϑ)

Γ
(n)′

f1;12
(ϑ) Γ

(n)
f1;22

(ϑ) Γ
(n)
f1;23

(ϑ)

Γ
(n)
f1;13

(ϑ) Γ
(n)′

f1;23
(ϑ) Γ

(n)
f1;33

(ϑ)

⎞⎟⎠
−1⎛⎜⎝ Δ

(n)
f1;1

(ϑ)

Δ
(n)
f1;2

(ϑ)

Δ
(n)
f1;3

(ϑ)

⎞⎟⎠
⎤⎥⎥⎦.

The local (at (ϑ,0)) problem is thus the same as in the specified parameter case

of Section 3.3, with, however,Δ
(n)∗
P;f1;4

(ϑ) replacingΔ
(n)
P;f1;4

(ϑ). As in the proof of

Proposition 3.1, the power is maximal for (u,P) such thatK
(n)
P;2u = 1p, where1p

stands for (1, . . . , 1)′. Since, again, 1′
p

(
Pxj

)�2
reduces to ‖Pxj‖2 = ‖xj‖2, this

yields (similar to (7.3)) the test statistic T
(n)∗
f1

(ϑ) defined in (3.7).

The asymptotic distribution of T
(n)∗
f1

(ϑ) is normal, with mean 0 and variance

one under the null. Under alternatives of the form P
(n)

(ϑ,0)+n−1/2ν
(n)
P τ ,P;f1,h

, it

is still normal, still with variance one, but (applying Le Cam’s third lemma
along any subsequence such that the limit exists) with mean μ∗

T . Now, the

test statistic T
(n)∗
f1

(ϑ) still depends on the unspecified value of ϑ. An estima-

tor ϑ̂(n)∗of ϑ can be plugged in provided, however, that it is n1/2(ν(n))−1-
consistent and asymptotically discrete (see Assumptions (D) in Section 7.3),

yielding T
(n)∗
f1

(ϑ̂(n)∗) = T
(n)∗
f1

(ϑ) + oP(1) under P
(n)
ϑ,0;f1

and contiguous al-
ternatives; this follows from ULAN, which implies the asymptotic linearity
(with respect to (ϑ,λ2), under density f) of central sequences, combined with
Lemma 4.2 in Kreiss (1987). The asymptotic distribution, under the null and

contiguous alternatives, of T
(n)∗
f1

(ϑ̂(n)∗) thus is the same as that of T
(n)∗
f1

(ϑ),
from which it inherits the same asymptotic optimality properties. �

8. Asymptotic linearity and cross-information quantities

8.1. Asymptotic linearity

The following lemma shows that, under Assumptions (D), substituting b̂(n) for b

in the rank-based central sequence Δ
∼

(n)∗
P;f has no asymptotic impact.



4234 A. Akharif et al.

Lemma 8.1. Under P
(n)
ϑ,0;g, Δ∼

(n)∗
P;f (b̂(n)) − Δ

∼

(n)∗
P;f (b) = oP(1) as n → ∞, for

any b ∈ R
p.

Proof. It follows from classical asymptotic linearity results (see, e.g., Jurečková,
1969) that, for any bounded sequence τ (n),

Δ
∼

(n)
P;f (b+ n−1/2K

(n)
1 τ (n))−Δ

∼

(n)
P;f (b) +

(
Γ
∼f,g;22

Γ
∼

′
P;f,g;24

)
τ (n) = oP(1)

under P
(n)
ϑ,0;g and contiguous alternatives. This and Lemma 4.2 by Kreiss (1987)

then entail, for b̂(n) satisfying Assumptions (D),

Δ
∼

(n)
P;f (b̂

(n))−Δ
∼

(n)
P;f (b) = −

(
Γ
∼

(n)
f ;22

Γ
∼

(n)′
P;f ;24

)
n1/2

(
K

(n)
1

)−1
(b̂(n)− b) + oP(1).

Now,

Δ
∼

(n)∗
P;f (b) =

(
−Γ

∼

(n)′
P;f,g;24(Γ∼

(n)
f,g;22)

−1, Ip×p

)( Δ
∼

(n)
f ;2(b)

Δ
∼

(n)
P;f ;4(b)

)
=
(
−Γ

∼

(n)′
P;f,g;24(Γ∼

(n)
f,g;22)

−1, Ip×p

)
Δ
∼

(n)
P;f (b).

Hence,

Δ
∼

(n)∗
P;f (b̂(n))−Δ

∼

(n)∗
P;f (b) =

(
−Γ

∼

(n)′
P;f,g;24(Γ∼

(n)
f,g;22)

−1, Ip×p

)(
Δ
∼

(n)
P;f (b̂

(n))−Δ
∼

(n)
P;f (b)

)
= −

(
−Γ

∼

(n)′
P;f,g;24(Γ∼

(n)
f,g;22)

−1, Ip×p

)( Γ
∼

(n)
f,g;22

Γ
∼

(n)′
P;f,g;24

)
×
(
K

(n)
1

)−1
n1/2(b̂(n)− b) + oP(1)

= 0 + oP(1) = oP(1).

The result follows—under P
(n)
ϑ,0;g, not just under P

(n)
ϑ,0;f .

8.2. Cross-information quantities

The following lemma provides the consistent estimators of Iϕ(f, g) and Iψϕ(f, g)
required in Section 5.2.

Lemma 8.2. Under P
(n)
ϑ,0;g,

I(n)
ϕ (f) :=

1

p
1′
p

(
K

(n)
1

1

n

n∑
j=1

[
xj − x̄(n)

][
xj − x̄(n)

]′
K

(n)
1

)−1

×
(
Δ
∼

(n)
f ;2(b̂

(n))−Δ
∼

(n)
f ;2(b̂

(n) + n−1/2K
(n)
1 1p)

) (8.1)
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and

I(n)
ψϕ (f) :=

2

p
1′
p

(
K

(n)
I;2

1

n

n∑
j=1

[
x�2
j − x�2

][
xj − x̄(n)

]′
K

(n)
1

)−1

×
(
Δ
∼

(n)
I;f ;4(b̂

(n))−Δ
∼

(n)
I;f ;4(b̂

(n) + n−1/2K
(n)
1 1p)

) (8.2)

are such that I(n)
ϕ (f) = Iϕ(f, g) + oP(1) and I(n)

ψϕ (f) = Iψϕ(f, g) + oP(1).

Proof. For any d ∈ R
p and any orthogonal P, asymptotic linearity implies

Δ
∼

(n)
P;f (b̂

(n))−Δ
∼

(n)
P;f (b̂

(n) + n−1/2K
(n)
1 d)

=Δ
∼

(n)
P;f (b̂

(n))−Δ
∼

(n)
P;f (b) +Δ

∼

(n)
P;f (b)−Δ

∼

(n)
P;f (b̂

(n) + n−1/2K
(n)
1 d)

=−
(

Γ
∼

(n)
f,g;22

Γ
∼

(n)′
P;f,g;24

)
n1/2(K

(n)
1 )−1(b̂(n) − b)

+

(
Γ
∼

(n)
f,g;22

Γ
∼

(n)′
P;f,g;24

)
n1/2(K

(n)
1 )−1(b̂(n) + n−1/2K

(n)
1 d− b) + oP(1)

=

(
Γ
∼

(n)
f,g;22

Γ
∼

(n)′
P;f,g;24

)
d+ oP(1)

=

(
Iϕ(f, g)

[
Ip −K

(n)
1 x̄(n)x̄(n)′K

(n)
1

]
d

Iψϕ(f,g)
2 K

(n)
1

[
C

(n)
P;3 − x̄(n)(Px)�2

(n)′]
K

(n)
P;2d

)
+ oP(1).

Particularizing d = 1p and P = I yields (8.1) and (8.2).

8.3. Proof of Proposition 5.1

Proposition 5.1 follows by piecing together the Hájek asymptotic representa-
tion theorem for linear rank statistics (Chapter V of Hájek and Šidák (1967)),
asymptotic linearity, and Le Cam’s third lemma, then proceeding as in the proof
of Proposition 3.1. Substituting b̂(n) for b has no asymptotic impact in view
of local asymptotic linearity and Lemma 8.1. The estimation of information
and cross-information coefficients is taken care of by Lemma 8.2. Then, the
asymptotic null distribution in (i) follows from the classical asymptotic normal-
ity results for linear rank statistics (same reference to Hájek and Šidák), the
asymptotic distribution under the alternative from a standard application of Le
Cam’s third lemma. The directional maximin property in (ii) is obtained along
the same argument as in the proof of of Proposition 3.1. �

8.4. Data-driven scores

Thanks to the independence, under the null (hence under contiguous alterna-
tives), between the residual ranks and the residual order statistic, data-driven
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scores, based on the residual order statistic, safely can be used. Computing
asymptotic α-level critical values for rank statistics based on such data-driven
scores as if they were deterministic yields tests with asymptotic conditional
level α, hence asymptotic unconditional level α as well (conditional here means
conditional on the order statistic of the residuals). Starting from that idea (de-
veloped, e.g., in Dodge and Jurečková, 2000), Hallin and Mehta (2015), in the
totally different context of R-estimation for independent component analysis,
propose selecting the reference density f by fitting a skew-t distribution (see
Azzalini and Capitanio, 2003) with location zero, scale one, and density

fδ,ν(z) = 2tν(z)Tν+1

(
δz
( ν + 1

ν + z2

)1/2)
(8.3)

to the residuals Z
(n)
j ; δ ∈ R here is a skewness parameter, and ν > 0 the de-

grees of freedom governing the tails, while tν and Tν+1 stand for the density
distribution and cumulative distribution functions of the classical Student-t dis-
tributions with ν and ν+1 degrees of freedom, respectively. Estimators δ̂ and ν̂

are obtained from the (order statistic of the) residuals Z
(n)
j using a routine max-

imum likelihood method (namely, maximizing a skew-t likelihood with respect
to (δ, ν)). The f -score functions to be used in the testing procedure then are
those associated with the skew-t density fδ̂,ν̂ . Although the actual density g,
in general, does not belong to the skew- t family, those fδ̂,ν̂ scores profitably
adapt to its skewness and tailweight features: see Tables 9.3 and 9.4 below for
empirical evidence.

9. Finite-sample performance

Sections 9.1 and 9.2 report simulations results establishing (i) the poor relative
performance of the pseudo-Gaussian methods described in Proposition 4.1 and
(ii) the good finite-sample performance of our rank tests. Section 9.3 develops
a short application to real data.

A small Monte-Carlo experiment was conducted based on 2500 replications
of a sample of size n = 100 generated from

Yj = μ+ [b+P′ΛP ξj ]
′
xj + εj , j = 1, . . . , n = 100, (9.1)

where ε1, . . . , ε100 are i.i.d. with Gaussian density φ1, logistic �1, Student t5,
skew-normal sN (5), and skew-t st5(5), respectively, with

μ = 1, b =

(
1
2

)
, ξ ∼ N (0, I), P =

(
1/

√
2 1/

√
2

1/
√
2 −1/

√
2

)
,

Λ =

(
λ1 0
0 λ2

)
, and x :=

(
x1

x2

)
∼ N

((
0
0

)
,

(
10 1
1 20

))
.
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9.1. The poor performance of pseudo-Gaussian tests

The simulation results in Tables 9.1 (spherical Λ) and 9.2 (eccentric Λ) be-
low reveal the poor performance of the pseudo-Gaussian methods described in
Proposition 4.1 under two- and three-dimensional skew normal densities.

Table 9.1

Rejection frequencies, under skew-normal f (f1 = sN (2) and f1 = sN (3)), of the

parametric optimal test based on T
(n)∗
f1

and the pseudo-Gaussian test based on T
(n)•
φ1

, for

various values of Λ = λI, n = 100, and α = 5%; 2500 replications.

test λ1 = λ2 = λ

f1 statistic 0 0.05 0.075 0.1 0.125

sN (2) T
(n)∗
f1

0.0480 0.1712 0.3648 0.5532 0.7420

T
(n)•
φ1

0.0500 0.1080 0.2220 0.3740 0.5360

sN (3) T
(n)∗
f1

0.0596 0.2492 0.4644 0.6928 0.8424

T
(n)•
φ1

0.0516 0.1128 0.2072 0.3612 0.4960

Table 9.2

Rejection frequencies, under skew-normal f (f1 = sN (2) and f1 = sN (3)), of the

parametric optimal test based on T
(n)∗
f1

and the pseudo-Gaussian test based on T
(n)•
φ1

, for

various values of λ = (λ1, λ2), n = 100, and α = 5%; 2500 replications.

test (λ1, λ2)

f1 statistic (0.075, 0.05) (0.1, 0.05) (0.125, 0.05) (0.125, 0.075) (0.125, 0.1)

sN (2) T
(n)∗
f1

0.2596 0.3964 0.5400 0.5984 0.6708

T
(n)•
φ1

0.1624 0.2592 0.3648 0.3968 0.4484

sN (3) T
(n)∗
f1

0.3796 0.5252 0.6856 0.7336 0.8028

T
(n)•
φ1

0.1760 0.2388 0.3396 0.4056 0.4500

This weakness of the pseudo-Gaussian method is particularly marked under
high-eccentricity covariance matrices PΛ2P′: in Table 9.2, rejection frequencies
of the optimal parametric test, under skew-normal densities sN (3), are about
twice those of the pseudo-Gaussian test.

9.2. A comparison of the finite-sample performance of
pseudo-Gaussian and rank-based tests

Tables 9.3 and 9.4 report rejection frequencies (α = 5%), for various values of Λ
(sphericalΛ in Table 9.3, eccentricΛ in Table 9.4), of the following tests: pseudo-

Gaussian(based on T
(n)•
φ1

), van der Waerden (based on T
∼

(n)
vdW), Wilcoxon (based

on T
∼

(n)
W ), Student-t5 (based on T

∼

(n)
t5

), and the test based on T
∼

(n)

stν̂(δ̂)
involving

data-driven skew Student stν̂(δ̂) scores (see Section 8.4).
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Table 9.3

Rejection frequencies (2500 replications), for λ1 = λ2 = 0 (null hypothesis),
0.05, 0.1, 0.15, 0.2 and (λ1, λ2) = (0.05, 0), (0.1, 0), and (0.2, 0) (local alternatives), with
normal (φ1), logistic (�1), Student (t5), skew-normal (sN (5)) and skew Student (st5(5))

error distributions, of the pseudo-Gaussian test (T
(n)•
φ1

), the van der Waerden test (T
∼

(n)
vdW),

the Wilcoxon test (T
∼

(n)
W ), the Student (t5-score) test (T

∼

(n)
t5

), and the test T
∼

(n)

stν̂(δ̂)
based on

data-driven skew Student stν̂(δ̂) scores, for n = 100 and α = 5%.

λ1 = λ2 (λ1, 0)

g1 Test 0 0.05 0.1 0.15 0.2 0.05 0.1 0.2

T
(n)•
φ1

0.0484 0.1104 0.3836 0.6928 0.8480 0.0872 0.2236 0.6512

T
∼

(n)
vdW 0.0468 0.1040 0.3524 0.6600 0.8288 0.0800 0.1980 0.6136

φ1 T
∼

(n)
W 0.0428 0.0888 0.2860 0.5904 0.7736 0.0644 0.1664 0.5220

T
∼

(n)
t5

0.0432 0.0872 0.2644 0.5400 0.7388 0.0668 0.1536 0.4748

T
∼

(n)

stν̂ (δ̂)
0.0480 0.1040 0.3300 0.6040 0.8040 0.0784 0.1844 0.5448

T
(n)•
φ1

0.0516 0.0684 0.1208 0.2404 0.3908 0.0628 0.0916 0.2392

T
∼

(n)
vdW 0.0448 0.0728 0.1204 0.2500 0.4052 0.0652 0.0876 0.2408

�1 T
∼

(n)
W 0.0460 0.0688 0.1160 0.2440 0.3896 0.0604 0.0836 0.2284

T
∼

(n)
t5

0.0468 0.0692 0.1100 0.2324 0.3756 0.0628 0.0820 0.2220

T
∼

(n)

stν̂ (δ̂)
0.0480 0.0560 0.1040 0.2100 0.3560 0.0508 0.0796 0.1804

T
(n)•
φ1

0.0616 0.0824 0.1952 0.4192 0.6208 0.0748 0.1320 0.4000

T
∼

(n)
vdW 0.0572 0.0932 0.2280 0.4760 0.6828 0.0768 0.1460 0.4500

t5 T
∼

(n)
W 0.0512 0.0940 0.2416 0.4672 0.6620 0.0736 0.1540 0.4212

T
∼

(n)
t5

0.0504 0.0924 0.2380 0.4504 0.6392 0.0744 0.1516 0.4000

T
∼

(n)

stν̂ (δ̂)
0.0440 0.0800 0.2120 0.42400 0.6160 0.0548 0.1124 0.3840

T
(n)•
φ1

0.0592 0.1204 0.3464 0.6564 0.8084 0.1468 0.4660 0.8744

T
∼

(n)
vdW 0.0596 0.2388 0.5560 0.8056 0.8964 0.1828 0.5052 0.8748

sN (5) T
∼

(n)
W 0.0448 0.1840 0.5192 0.7836 0.8844 0.1324 0.4040 0.8128

T
∼

(n)
t5

0.0440 0.1600 0.4856 0.7504 0.8652 0.1092 0.3648 0.7704

T
∼

(n)

stν̂ (δ̂)
0.0560 0.4440 0.7560 0.8160 0.9080 0.2224 0.4808 0.8224

T
(n)•
φ1

0.0516 0.2344 0.6988 0.9088 0.9640 0.0880 0.1972 0.6176

T
∼

(n)
vdW 0.0508 0.2856 0.7216 0.9060 0.9660 0.1508 0.3620 0.7436

st5(5) T
∼

(n)
W 0.0436 0.2208 0.6452 0.8744 0.9468 0.1108 0.3116 0.7076

T
∼

(n)
t5

0.0400 0.1996 0.6056 0.8496 0.9280 0.0976 0.2836 0.6804

T
∼

(n)

stν̂ (δ̂)
0.0480 0.3560 0.7240 0.8960 0.9360 0.2008 0.3928 0.6844
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Table 9.4

Rejection frequencies (2500 replications), for various values of (λ1, λ2), with normal (φ1),
logistic (�1), Student (t5), skew-normal (sN (5)) and skew Student (st5(5)) error

distributions, of the pseudo-Gaussian test (T
(n)•
φ1

), the van der Waerden test (T
∼

(n)
vdW), the

Wilcoxon test (T
∼

(n)
W ), the Student (t5-score) test (T

∼

(n)
t5

), and the test T
∼

(n)

stν̂ (δ̂)
based on

data-driven skew Student stν̂(δ̂) scores, for n = 100 and α = 5%.

(λ1, λ2)

g1 Test (0.1, 0.05) (0.15, 0.05) (0.2, 0.05) (0.3, 0.05) (0.2, 0.1)

T
(n)•
φ1

0.2640 0.4576 0.6748 0.8508 0.7260

T
∼

(n)
vdW 0.2444 0.4184 0.6372 0.8344 0.6916

φ1 T
∼

(n)
W 0.2008 0.3548 0.5548 0.7720 0.6184

T
∼

(n)
t5

0.1836 0.3172 0.5050 0.7332 0.5732

T
∼

(n)

stν̂(δ̂)
0.1560 0.2840 0.4240 0.6840 0.5040

T
(n)•
φ1

0.0956 0.1544 0.2724 0.4888 0.2660

T
∼

(n)
vdW 0.1032 0.1588 0.2696 0.4804 0.2964

�1 T
∼

(n)
W 0.1008 0.1600 0.2468 0.4456 0.2824

T
∼

(n)
t5

0.0976 0.1568 0.2368 0.4136 0.2724

T
∼

(n)

stν̂(δ̂)
0.0760 0.1440 0.2240 0.4040 0.2520

T
(n)•
φ1

0.1436 0.2708 0.4384 0.6852 0.4512

T
∼

(n)
vdW 0.1664 0.3052 0.4748 0.7260 0.5000

t5 T
∼

(n)
W 0.1696 0.3124 0.4608 0.6912 0.5088

T
∼

(n)
t5

0.1668 0.3004 0.4368 0.6628 0.4892

T
∼

(n)

stν̂(δ̂)
0.1360 0.2640 0.4240 0.6440 0.4700

T
(n)•
φ1

0.5484 0.7740 0.8864 0.9416 0.9144

T
∼

(n)
vdW 0.5792 0.7752 0.8844 0.9496 0.9204

sN (5) T
∼

(n)
W 0.4868 0.7132 0.8308 0.9272 0.8808

T
∼

(n)
t5

0.4436 0.6624 0.7940 0.9100 0.8580

T
∼

(n)

stν̂(δ̂)
0.5640 0.7760 0.8800 0.9240 0.9160

T
(n)•
φ1

0.2608 0.4484 0.6396 0.8308 0.6800

T
∼

(n)
vdW 0.4504 0.6308 0.7784 0.8996 0.8264

st5(5) T
∼

(n)
W 0.4044 0.5692 0.7524 0.8796 0.7991

T
∼

(n)
t5

0.3776 0.5384 0.7244 0.8564 0.7724

T
∼

(n)

stν̂(δ̂)
0.5120 0.5600 0.7760 0.8640 0.8440
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Inspection of those two tables reveals that under the null all rank-based
tests have rejection frequencies quite close to the nominal size of 5%, while the
pseudo-Gaussian test significantly over-rejects under Student and skew-normal
densities; van der Waerden slightly outperforms the pseudo-Gaussian test under
logistic and t5 densities, quite significantly so under a skew-normal one; the same
van der Waerden has similar performances as the data-driven-score test based

on T
∼

(n)

stν̂(δ̂)
under Gaussian and logistic densities (under t5, it is not valid), but

does much worse under skew-normal and skew-t. The test based on T
∼

(n)

stν̂(δ̂)
has

excellent overall performance, and constitutes the best choice in the presence of
skewness and heavier-than-normal tails.

9.3. An empirical illustration

As an empirical illustration, we consider the housing price dataset HPRICE1.RAW
studied byWooldridge (2012) (available at https://www.cengage.com/cgi-wadsworth/
course_products_wp.pl?fid=M20b&product_isbn_issn=9781111531041), consisting of n =
88 observations of the variables price=house price in thousands of dollars,
assess= assessed value in thousands of dollars, and sqrft= size of house in
square feet. The prices price play the role of dependent variable.

On this dataset, we implemented the classical Breusch-Pagan test TBP and

some of the tests proposed in this paper: the pseudo-Gaussian test (T
(n)•
φ1

),

the van der Waerden test (T
∼

(n)
vdW), the Wilcoxon test (T

∼

(n)
W ), and the Student

(t5-score) test.

Table 9.5 provides the various p-values: unlike TBP and T
(n)•
φ1

, T
∼

(n)
vdW, T

∼

(n)
W ,

and the Student (t5-score) test all quite significantly reject the hypothesis of
constant regression coefficients.

Table 9.5

p-values of the Breusch-Pagan (TBP), pseudo-Gaussian (T
(n)•
φ1

), van der Waerden (T
∼

(n)
vdW),

Wilcoxon (T
∼

(n)
W ), and Student (t5-score) tests for the housing price dataset HPRICE1.RAW in

the regression of price on assess and sqrft.

Test TBP T
(n)•
φ1

T
∼

(n)
vdW T

∼

(n)
W T

∼

(n)
t5

p-value 0.2174 0.1395 0.0022 0.0030 0.0038

10. Conclusions

The apparently simple problem of detecting random coefficients in multiple re-
gression proves to be surprisingly complex, with a nonstandard ULAN structure,
non-diagonal information matrices, cone-shaped alternatives, and nuisance pa-
rameters that are not identified under the null. Moreover, the pseudo-Gaussian
test appears to have quite poor performances under skewed and heavy-tailed
densities. We therefore construct rank-based tests, which exhibit remarkably

https://www.cengage.com/cgi-wadsworth/course_products_wp.pl?fid=M20b&product_isbn_issn=9781111531041
https://www.cengage.com/cgi-wadsworth/course_products_wp.pl?fid=M20b&product_isbn_issn=9781111531041
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high ARE values with respect to their pseudo-Gaussian counterpart. Their ex-
cellent performances are confirmed by simulations.
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