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1. Introduction

The main focus of the literature on optimal design is on the theory of opti-
mal estimation, usually in the context of the classical linear model. Within this
framework an optimal design is a design which either minimizes (or maximizes)
some functional of the variance matrix of the estimated parameter, cf., [17]
and [1]. For example, an A–optimal design is a design which minimizes the sum
of the eigenvalues of the variance matrix whereas a D–optimal design minimizes
their product, which equals of course, to the determinant of the variance ma-
trix. There are many other optimality criteria such as E, and MV optimality.
Collectively these are known as alphabetic optimality.

Optimal estimation, however, may not be the objective of every scientific
study. In fact, there are many situations in which researchers are interested in
designing an experiment tailored for optimal testing of hypotheses rather than
optimal estimation. In this context [20] recently proposed a maxi–min design
(MM–design) for optimal testing under order restrictions. In this communica-
tion we study the relationship between their MM–design and Bayesian designs
for unordered as well as ordered hypothesis testing problems. In addition we
show that the MM–design can be viewed as a Nash Equilibrium when the ex-
perimental design is viewed as game theoretic problem. For a broad perspective
on the Nash equilibrium see [11].

2. The maxi–min design for the ANOVA problem

We focus on the one way layout in which

Yij = μi + εij , (2.1)

where Yij is the response of the jth subject in the ith treatment group i =
1, . . . ,K and j = 1, . . . , ni. We further assume that the errors εij are independent
N (0, σ2) random variables (RVs) and without any loss of generality we fix σ2 =
1. A brief discussion of the situation where σ2 is unknown differed to Remark 2.2
appearing near the end of this Section.

Consider testing the standard ANOVA hypotheses

H0 : μ ∈ M0 versus H1 : μ /∈ M0, (2.2)

where M0 = {μ ∈ R
K : μ1 = μ2 = · · · = μK}, i.e., under the null all means are

equal, whereas under the alternative at least one pair of means is different, i.e.,
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μi �= μj for some i �= j. The standard test for (2.2) is the likelihood ratio test
(LRT) given by

TN =

K∑
i=1

ni(Ȳi − Ȳ )2, (2.3)

where Ȳi = n−1
i

∑ni

j=1 Yij is the average in the ith group when ni > 0 and 0 oth-

erwise, N =
∑K

i=1 ni, and Ȳ = N−1
∑K

i=1 Ȳi is the grand mean. It is well known
that (2.3) follows a non–central chi–square distribution, denote χ2

ν((N/2)λ) with

ν =
∑K

i=1 I{ni>0} − 1 degrees of freedom and non–centrality parameter (NCP)
(N/2)λ. Further note that

λ = λ(μ; ξ) =

K∑
i=1

ξi(μi − μ̄)2, (2.4)

where ξi = ni/N and μ̄ =
∑K

i=1 ξiμi. Clearly under the null λ = 0 so the null
distribution is the usual central chi–square. As a shorthand, and for convenience,
we will often refer to λ as the NCP.

The power of the LRT (2.3), as a function of (μ, ξ), is:

π(μ; ξ) = Pμ;ξ(TN ≥ cν,α) (2.5)

where the critical value cν,α, which solves supμ∈M0
Pμ;ξ(TN ≥ cν,α) = α, is

design dependent since ν = ν(ξ). In this communication we focus on what are
known in the literature (cf., [1]) as approximate designs. An approximate design
ξ ∈ Ξ, where ξ = (ξ1, ξ2, . . . , ξK)T is a vector of weights, i.e., ξi ≥ 0 and∑K

i=1 ξi = 1, in which each ξi represents the proportion of observations assigned
to the ith treatment. Naturally the design space Ξ is the unit simplex. It is
obvious that once an optimal approximate design is found, an exact design, i.e.,
a vector n = (n1, n2, . . . , nK)T such that

∑K
i=1 ni = N is fixed can be obtained

by efficient rounding, see [12].
A design ξ which maximizes the power function (2.5) at a given value of μ

is said to be locally optimal. A pair of treatments, i and j say, is maximally
separated if |μi − μj | = max{|μs − μt| : 1 ≤ s, t ≤ K}. Theorem 1 in [20]
states that if (i, j) is a maximally separated pair then the optimal design is
ξij = (ei + ej)/2, where el is the lth standard basis of RK . In other words,
given a maximally separated pair (i, j) the power of (2.3) for testing (2.2) is
maximized when half of the observations are assigned to group i and the other
half to group j. We refer to such a design as a two–point design. Incidentally,
this design maximizes the NCP while simultaneously minimizing the degrees of
freedom of the test statistic. Unfortunately, the value of μ or the identity of the
maximally separated pair are rarely known in advance. Moreover, as illustrated
below, a two–point design which is optimal for some vectors of means may be
grossly deficient for others.

Example 2.1. Consider an experiment with K = 4 treatment groups. First let
us suppose that the true population means are μT

1 = (−1, 1, 0, 0). By Theorem 1
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of [20] the design ξ1 = (1/2, 1/2, 0, 0) maximizes the power when μ = μ1. If,
however, the true vector of population means is μT

2 = (0, 0,−1, 1), then the
power maximizing design is ξ2 = (0, 0, 1/2, 1/2). Note that,

π(μ1; ξ1) = π(μ2; ξ2) = P(χ2
1(N/2) ≥ cα) > α

for all positive N and, as expected, in both cases the power increases to unity
when N → ∞. However,

π(μ1; ξ2) = π(μ2; ξ1) = P(χ2
1(0) ≥ cα) = α,

regardless of the total sample size N . This means that design ξ2 has no power
to detect a departure from the null if μ = μ1 and likewise the design ξ1 has no
power to detect a departure from the null if μ = μ2. We conclude that locally
optimal designs may perform poorly for values of μ for which they were not
designed.

It is clear from Example 2.1 that there does not exist a design ξ which is
globally optimal for all μ in the alternative. Moreover, locally optimal designs
may perform poorly globally. Thus, it is reasonable to seek a design which is
guaranteed to perform well for all values of μ; it is obvious that such a design
will trade local optimality for a fair overall performance. In other words we seek
a robust design which guarantees a minimal power, or equivalently, a design
which maximize the power in the worst–case scenario.

Formally, we define ξMM and μLFC as the pair of values satisfying:

π(μLFC; ξMM) = max
ξ∈Ξ

min
μ∈Mδ

π(μ; ξ). (2.6)

The maximization in (2.6) is over all designs ξ ∈ Ξ and the minimization is over
the set

Mδ = {μ ∈ R
K : max |μi − μj | ≥ δ} (2.7)

for some δ > 0. The restriction that μ ∈ Mδ implies that the distance within
the maximally separated pair is at least δ. Heuristically, one may view δ as
measuring the distance from the null; for a precise explanation see Remark 2.1
below. Further note that the restriction that μ ∈ Mδ is required for the existence
of minμ/∈M0

π(μ; ξ). For more details, as well as for the form of Mδ in other
testing problems, the reader is referred to [20]. The quantities ξMM and μLFC

are referred to as the maxi–min design (MM–design) and the least favourable
configuration (LFC), respectively. Theorem 2 in [20] states that:

Theorem 2.1. The balanced design is the MM–design in the standard ANOVA
setting.

By Theorem 2.1 the MM–design is the balanced design, i.e., ξMM =
(1/K, . . . , 1/K). Thus the MM–design allocates an equal proportion of observa-
tions to each of the treatment groups. It is well known that a balanced design
is an A–optimal design for pairwise multiple comparison and also a maxi–min
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design for estimating treatment differences under squared error loss ([26]). Fur-
ther note that ξMM is independent of δ. In the proof of Theorem 2.1 it is shown
that any permutation of the vector (−δ/2, δ/2, 0, . . . , 0) is a LFC with respect
to the balanced design hence the LFCs are functions of δ.

Remark 2.1 below provides a deeper understanding of the role of δ as a
distance measure.

Remark 2.1. For any δ > 0 set μ1 = (−(δ−ε)/2,−(δ−ε)/2, (δ−ε)/2, (δ−ε)/2)
and μ2 = (−δ/2, δ/2,−ε/2, ε/2). Observe that μ1 ∈ Mδ1 , where δ1 = δ − ε
whereas μ2 ∈ Mδ2 where δ2 = δ. The NCPs associated with the MM–design
and the means μ1 and μ2 are:

λ(μ1; ξMM) =
(δ − ε)2

K
and λ(μ2; ξMM) =

δ2

2K
+

ε2

2K
.

A little algebra shows that λ(μ1; ξMM) > λ(μ2; ξMM) when 0 < ε < δ(2−
√
3).

Since the power function is monotonically increasing in the NCP when the
degrees of freedom are fixed it also follows that

π(μ1; ξMM) > π(μ2; ξMM) when 0 < ε < δ(2−
√
3). (2.8)

Equation (2.8) shows that it is not necessarily true that for any given ξ the
power at μ ∈ Mδ1 is smaller than at μ ∈ Mδ2 even though δ1 < δ2. However,
it is not difficult to see that

λ(μLFC(δ1); ξMM) =
(δ − ε)2

2K
<

δ2

2K
= λ(μLFC(δ2); ξMM) (2.9)

where μLFC(δ) is any permutation of (−δ/2, δ/2, 0, . . . , 0)T. We conclude that
π(μLFC(δ); ξMM) is monotonically increasing in δ. Armed with this perspective
we can interpret δ as a “distance” from the null when the design is balanced
and μ = μLFC(δ).

Remark 2.2. Finally, we note that we have assumed that (2.1) holds and σ2 is
known and for convenience we set its value to unity. If, however, σ2 is unknown
then instead of using the statistic Tn given in (2.3) the hypotheses (2.2) will be
tested using the statistic

Sn =

∑K
i=1 ni(Ȳi − Ȳ )2/(K − 1)∑K

i=1

∑ni

j=1(Yij − Ȳi)2/(N −K)
, (2.10)

whose denominator is an unbiased estimator of σ2. The statistic Sn follows an
FK−1,N−K(φ) distribution where K − 1 and N −K are the degrees of freedom
associated with numerator and denominator respectively and φ is the non–
centrality parameter. It is well known that φ = (N/2)(λ/σ2) where λ is as
in (2.4). It immediately follows that the design which maximizes φ for any fixed
but possibly unknown value of σ2 will also maximize λ and visa versa. Hence
our results apply in full also to situations where σ2 is unknown and the proposed
solution will also maximize the power of the F -test.
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Next, in Sections 3 and 4 we examine the relationship between MM–designs
with: (i) Bayes–designs; and (ii) a game–theoretic formulation of the design
problem which we refer to as a Nash–designs.

3. Bayes designs

In this section we discuss the connection between MM–designs and Bayes de-
signs in the context of the ANOVA testing problem (2.2). As noted earlier
when the design criterion depends on an unknown parameter, e.g., μ in (2.5),
it is generally impossible to find a design that is globally optimal, i.e., a de-
sign which is optimal for all values of μ. One way of addressing this issue is
by using MM–designs, as discussed in Section 2, while another is to adopt a
Bayesian approach. In the fully Bayesian framework a design which optimizes a
functional of the posterior distribution is chosen, cf., [6]. Our approach, which is
not fully Bayesian, is rooted in decision theory and referred to in the literature
as the pseudo–Bayesian approach ([25]). It is also known as average optimal
design, e.g., [10]. The idea is simple; choose the design which optimizes the ex-
pected value of a design criterion with respect to some prior distribution on the
unknown parameter. Formally, we define the Bayes design as

ξΨQ = argmax
ξ∈Ξ

∫
M

Ψ(μ; ξ)dQ(μ), (3.1)

where μ ∈ M ⊂ R
K , Ψ(μ; ξ) is the design criterion, and Q is a given prior for

μ such that
∫
M

dQ(μ) = 1. For more examples, in the spirit of (3.1), see [16],
[25], [21], and [22]. As shown by [20] maximizing the power of the unconstrained
LRT is equivalent to maximizing the NCP. However, it is not clear that the
Bayes design with respect to the NCP will coincide with the Bayes design with
respect to the power. Therefore we shall explore both.

Let ξλQ and ξπQ denote the Bayes Q-optimal designs when Ψ(μ; ξ) in (3.1)
replaced by λ(μ; ξ) and π(μ; ξ) respectively, i.e.,

ξλQ = argmax
ξ∈Ξ

Λ(Q; ξ) = argmax
ξ∈Ξ

∫
λ(μ; ξ)dQ(μ) (3.2)

and

ξπQ = argmax
ξ∈Ξ

Π(Q; ξ) = argmax
ξ∈Ξ

∫
π(μ; ξ)dQ(μ). (3.3)

We start with the most natural prior.

Theorem 3.1. Consider a prior Q of the form N (μ01,Σ) where μ0 ∈ R and

Σ = (σij) =

{
β, if i = j

γ, otherwise.
(3.4)

Then,

ξλQ = ξπQ = (
1

K
, . . . ,

1

K
).
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Theorem 3.1 shows that the MM–design coincides with the NCP and power
based Bayes designs when the prior Q is the distribution function of a multi-
variate normal exchangeable random vector. This family of priors, which when
γ = 0, includes the independent components prior, is often used in applications.
As shown in the proof of Theorem 3.1 the value of μ0 is inconsequential so
henceforth we set it equal to 0.

The assumption of normality can be relaxed:

Theorem 3.2. If Q is any distribution of an exchangeable random vector with
a finite second moment, then

ξλQ = ξπQ = (
1

K
, . . . ,

1

K
).

Finally, a prior Q is called a least favourable prior (LFP), denoted QLFP, if

max
ξ∈Ξ

Λ(QLFP; ξ) = min
Q∈Q

max
ξ∈Ξ

Λ(Q; ξ),

where Q is the family of all possible priors.

Theorem 3.3. Fix δ > 0 and consider a prior Q which assigns equal mass to
each permutation of the vector (−δ/2, δ/2, 0, . . . , 0). Then we have:

ξλQ = ξπQ = (
1

K
, . . . ,

1

K
),

and Q is the LFP on (2.7).

Thus the MM–design is also the NCP and power based Bayes design with
respect to the LFP. Note that the LFP in Theorem 3.3 is the prior which
assigns the same probability to each one of the least favourable configurations
as discussed after the statement of Theorem 2.1.

As requested by a referee we briefly explore Bayes designs for two non–
exchangeable priors; Example 3.1 deals with unequal variances and Example 3.2
with unequal means. In both cases we consider K = 3 treatment groups. We
focus on NCP–based designs, i.e., ξλQ defined in (3.2), as these are much easier
to calculate.

Example 3.1. Let Q1 be the prior Q1 ≡ N (13,Σ) for μ where Σ =
diag(σ2

1 , σ
2
2 , σ

2
3). Using equation (A.2) in the proof of Theorem 3.1 we find that

Λ(Q1; ξ) =
3∑

i=1

ξi(1− ξi)σ
2
i .

Maximizing
∑3

i=1 ξi(1 − ξi)σ
2
i with respect to ξ ∈ Ξ subject to the constraint∑3

i=1 ξi = 1 yields

ξλQ1
= ((σ2

1σ
2
2 + σ2

1σ
2
3)/σ

2, (σ2
2σ

2
3 + σ2

2σ
2
1)/σ

2, (σ2
1σ

2
3 + σ2

2σ
2
3)/σ

2)
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where σ2 = 2(σ2
1σ

2
2 + σ2

2σ
2
3 + σ2

3σ
2
1). In particular, when σ2

i = σ2
j , i.e., Q1

is exchangeable, then ξλQ1
= (1/3, 1/3, 1/3) reduces to the balanced design. If

however σ2
i �= σ2

j for some i �= j then the resulting Bayes design will not be

balanced. Designs for some specific values of (σ2
1 , σ

2
2 , σ

2
3) are reported in Table 1.

It is clear from Table 1 that the optimal Bayes design assigns more observations
to groups with higher variances and vice versa. For example, when (σ2

1 , σ
2
2 , σ

2
3) =

(0.25, 0.50, 1.00) then ξλQ1
= (0.214, 0.357, 0.429).

Example 3.2. Let Q2 be the prior Q2 ≡ N (η, I3) for μ where η = (η1, η2, η3)
T

and I3 is an identity matrix. Using equation (A.2) in the proof of Theorem 3.1
we find that

Λ(Q2; ξ) =

3∑
i=1

ξiη
2
i − (

3∑
i=1

ξiηi)
2 + σ2.

which we can maximize with respect to ξ. Designs for some specific values of the
mean parameter η are reported in Table 1. Note that the optimal Bayes design
reduces to a balanced two–point design when the maximally separated pair is
unique. When η = (−1, 1, 1) there are two maximally separated pairs (η1, η2)
and (η1, η3) and the optimal Bayes design is not unique.

Table 1

Bayesian designs ξλQ1
and ξλQ2

based on non-exchangeable priors Q1 and Q2.

(σ2
1, σ2

2, σ2
3) ξλQ1

ηT ξλQ2
(0.25, 0.50, 1) (0.214, 0.357, 0.429) (−1, 0, 1) (0.5, 0, 0.5)

(3, 2, 1) (0.409, 0.364, 0.2273) (−1, 1, 1) (0.5, 0.25, 0.25)/(0.5, 0, 0.5)/(0.5, 0.5, 0)
(0.25, 0.75, 0.25) (0.286, 0.429, 0.286) (−0.25, 1, 0.5) (0.5, 0.5, 0)

4. Nash designs

As noted by [11] game theoretic ideas and, specifically, the notion of the Nash
Equilibrium is widely and insightfully used in numerous disciplines. Applications
of game–theory in statistics have a long, but far from voluminous, history. One
exception is statistical decision theory which is strongly rooted in the theory
of zero sum games, cf. [23] or [3] for a more modern treatment. An additional
important reference is the classic book by [4] which discussed a wide array of
statistical problems from a game theoretic perspective. We also mention the pa-
per by [18] which touches on the relationship between game theory and Bayesian
statistics. Unfortunately, a modern and vigorous applications of the ideas and
tools developed in game theory to bear on current statistical problems is lacking.
We believe that game theoretic ideas are well suited to address statistical design
problems. This section provides the first steps in that direction. In particular, we
explore the game theoretic formulation of the testing problem posed in (2.2).
Later on we also consider the hypothesis testing problem (4.5) comparing a
control with multiple treatments.
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4.1. Standard ANOVA: The game theoretic view

The main result of this Section is Theorem 4.3 which is the game–theoretic
equivalent of Theorem 2.1. The new formulation and proof are both mathemat-
ically simpler and more illuminating than the original ones, and moreover, may
serve as a method for reasoning about complex design problems and as a blue–
print for establishing future, even more demanding, results. For completeness,
as well as the integrity of the exposition, we will first introduce the relevant
terminology and notation with which we establish a sequence of results leading
to Theorem 4.3.

We begin with some game theoretic terminology ([14]). Consider a two person
game in which Player I is the statistician and Player II is nature. Player I
chooses a design ξ while Player II chooses a value μ. In the parlance of game
theory the choices available to the Players are called strategies. Initially we
shall assume that both Player I and II have at their disposal only a finite set
of distinct choices, called pure strategies, denoted by X and M, respectively.
We start by setting X = {ξij : 1 ≤ i < j ≤ K} with ξij = (ei + ej)/2 and
M = {μij : 1 ≤ i < j ≤ K}, with μij = (δ/2)(ej−ei). The set X is the collection
of all balanced two–point designs as discussed in Section 2 whereas the set M is
the set of all permutations of the vector (−δ/2, δ/2, 0, . . . , 0), where we restrict
the first non–zero element to be negative and the second to be positive. Note
that M is a subset of the LFCs on Mδ, i.e., if μ ∈ M then −μ /∈ M. We need
not consider all LFCs since λ(μ; ξ) = λ(−μ; ξ). See Example 4.1 for further
clarification.

Let I0 denote the set of pairs of indices {(i, j), (k, l)} where there are no
matches, i.e., i /∈ {k, l} and j /∈ {k, l}, I1 is the set of pairs with one match and
I2 is the set of pairs that are fully matched, i.e., (i, j) = (k, l). When Player I
chooses ξkl and Player II chooses μij we say that (μij , ξkl) is played. Suppose
now that when (μij , ξkl) is played the payoff to Player I is the value of the NCP,
i.e.,

λ(μij ; ξkl) =

⎧⎨
⎩

δ2/4 if {(i, j), (k, l)} ∈ I2
δ2/16 if {(i, j), (k, l)} ∈ I1
0 if {(i, j), (k, l)} ∈ I0

(4.1)

and to Player II it is−λ(μij ; ξkl). Formally, we denote this game byGA(λ,X,M),
where the subscript A indicates that we are playing the ANOVA game, λ is the
payoff function and X, M describe the strategies available to Players I and II,
respectively. Since the payoffs to Players I and II sum to zero the game is re-
ferred to as a zero–sum game. Similarly, GA(π,X,M) is the corresponding game
associated with the power function. Since the power function π(μ; ξ) depends
on (μ; ξ) only through the NCP we can write π(μ; ξ) ≡ π(N,λ(μ; ξ)) and fol-
lowing (4.1) we have

π(N,λ(μij ; ξkl)) =

⎧⎨
⎩

π(N, δ2/4) if {(i, j), (k, l)} ∈ I2
π(N, δ2/16) if {(i, j), (k, l)} ∈ I1
π(N, 0) if {(i, j), (k, l)} ∈ I0.
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Note that the games GA(λ,X,M) and GA(π,X,M) are motivated by our earlier
observations on maximally separated means and their relationship with two–
point designs.

By definition λ(μij ; ξkl) = 0 whenever {(i, j), (k, l)} ∈ I0 so the payoff matrix

will contain
(
K
2

)(
K−2
2

)
zeros when K > 3. When K ≤ 3, the payoff matrix

contains no zeros. For example when K = 3 the payoff matrix, or game matrix,
is given in Table 2.

Table 2

The NCP–based game matrix for ANOVA with K = 3.

I\II μ12 μ13 μ23 max
ξ12 δ2/4 δ2/16 δ2/16 δ2/4
ξ13 δ2/16 δ2/4 δ2/16 δ2/4
ξ23 δ2/16 δ2/16 δ2/4 δ2/4
min δ2/16 δ2/16 δ2/16

The objective of Player I is to maximize his gain, or payoff. Similarly, Player II
would like to minimize his loss. Observe that

max
ξ∈X

min
μ∈M

λ(μ; ξ) = δ2/16 �= δ2/4 = min
μ∈M

max
ξ∈X

λ(μ; ξ),

i.e., the max–min and min–max values do not agree. This means that the game
GA(λ,X,M) does not admit an equilibrium in pure strategies. Hence strategies
μ∗

ij and ξ∗ij such that

λ(μ∗
ij , ξ

∗
ij) ≥ λ(μij , ξ

∗
ij) and λ(μ∗

ij , ξ
∗
ij) ≥ λ(μ∗

ij , ξij)

for all μij ∈ M and ξij ∈ X do not exist; see the proof of Theorem 4.1 for more
details. A comprehensive discussion on the existence of equilibria can be found
in Chapters 4 and 5 of [14]. Suppose now that Player I may randomly select
a pure strategy from X using a probability law p = (p12, . . . , pK−1,K) where
pij is the probability of selecting the pure strategy ξij . Similarly, suppose that
Player II may independently select a pure strategy from M using a probability
distribution q. It is further assumed that Player I may choose p ∈ P where
P = P (X) are all discrete distributions supported on X and Player II may
choose q ∈ Q where Q = Q(M) are all discrete distributions supported on M.
The expected payoff when Players I and II choose the, so called, mixed strategies
(p,q) is

Γ(p,Λ,q) = pTΛq (4.2)

where Λ is the game matrix. The game in mixed strategies will be denoted
by GA(λ,P (X),Q(M)). It is well known that finite zero–sum games have an
equilibrium in mixed strategies. Thus, there are strategies p0 and q0 for Players
I and II such that

Γ(p0,Λ,q0) = min
q∈Q

max
p∈P

Γ(p,Λ,q) = max
p∈P

min
q∈Q

Γ(p,Λ,q),

i.e., the min–max and max–min adversarial optimization problems result in the
same outcome. The strategies p0 and q0 are said to be optimal mixed strategies
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and

v(λ,X,M) = Γ(p0,Λ,q0) (4.3)

is called the value of the game. Further note that an optimal mixed strategy
for Player I is a probability distribution p which guarantees (i.e., maximizes)
the minimal gain; whereas an optimal mixed strategy for Player II is a proba-
bility distribution q which guarantees (i.e., minimizes) the maximal loss. The
strategies p0 and q0 are said to be a Nash equilibrium if deviating from them
is detrimental, i.e., if Γ(p0,Λ,q0) ≤ Γ(p0,Λ,q) and Γ(p0,Λ,q0) ≥ Γ(p,Λ,q0)
for all p ∈ P and q ∈ Q. The max–min and Nash equilibrium coincide in zero
sum games. The value of the game GA(π,P (X),Q(M)) and its optimal mixed
strategies are similarly defined by simply replacing λ by π in (4.3). Now,

Theorem 4.1. For any K ∈ N the pair

p = q = 1K(K−1)/2

(
K

2

)−1

is the unique Nash Equilibrium of the games GA(λ,P (X),Q(M)) and
GA(π,P (X),Q(M)).

Examples 4.1–4.3 show that adding any μ ∈ Mδ \ M to the strategies of
Player II, i.e., to the set M, will result in a game that reduces to
GA(λ,P (X),Q(M)), by which we mean that

v(λ,X,M) = v(λ,X,M′)

whenever M ⊂ M′ ⊂ Mδ. For simplicity we focus on the case where K = 3 and
denote the resulting game by G3.

Example 4.1. Let M′ = {(−δ/2, δ/2, 0), (−δ/2, 0, δ/2), (0,−δ/2, δ/2), (0, δ/2,
−δ/2)}. The game matrix is displayed in Table 3 below where μ′

23 =
(0, δ/2,−δ/2). It is easy to see that the strategies μ23 and μ′

23 satisfy μ′
23 =

−μ23 and are associated with the same payoffs. Thus they are equivalent from a
game–theoretic perspective. It is not hard to show that the pair p=(1/3, 1/3, 1/3),

Table 3

Game matrix of Example 4.1.

I\II μ12 μ13 μ23 μ′
23

ξ12 δ2/4 δ2/16 δ2/16 δ2/16
ξ13 δ2/16 δ2/4 δ2/16 δ2/16
ξ23 δ2/16 δ2/16 δ2/4 δ2/4

q = (1/3, 1/3, γ/3, (1−γ)/3), for any γ ∈ [0, 1] is a Nash Equilibrium. Thus the
Nash Equilibrium is not unique; however, the value of the game is independent
of γ and equal to the value of G3. So, without any loss, we may choose γ = 1 es-
sentially eliminating the strategy (0, δ/2,−δ/2) from the game. This shows that
the game associated with M′ reduces and is equivalent to G3.
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Example 4.2. Let M′ = {(−δ/2, δ/2, 0), (−δ/2, 0, δ/2), (0,−δ/2, δ/2),
(−δ/2, δ/2, δ/2)}. The corresponding game matrix, Λ, is displayed in Table 4
below where μ123 = (−δ/2, δ/2, δ/2).

Table 4

Game matrix of Example 4.2.

I\II μ12 μ13 μ23 μ123

ξ12 δ2/4 δ2/16 δ2/16 δ2/4
ξ13 δ2/16 δ2/4 δ2/16 δ2/4
ξ23 δ2/16 δ2/16 δ2/4 0

Suppose that Player I chooses the strategy p = (1/3, 1/3, 1/3). The best response
of Player II to this strategy is a mixed strategy q = (q12, q13, q23, q123) which
minimizes (4.2) which is nothing but (1/3)1TΛq. A bit of algebra shows that in
this case

Γ(p,Λ,q) =
δ2

8
(q12 + q13 + q23) +

2δ2q123
12

=
δ2

8
(1− q123) +

2δ2q123
12

=
δ2

8
+

δ2q123
24

. (4.4)

The right hand side of (4.4) is minimized when q123 = 0. Thus, the strategy
μ123 can be eliminated and the game reduces to G3.

Example 4.3. Let M′={(−δ/2,δ/2, 0), (−δ/2, 0, δ/2), (0,−δ/2, δ/2), (−δ, 0, δ)}.
The corresponding game matrix, Λ, is displayed in Table 5 below where μ4 =
(−δ, 0, δ).

Table 5

Game matrix of Example 4.3.

I\II μ12 μ13 μ23 μ4

ξ12 δ2/4 δ2/16 δ2/16 δ2/4
ξ13 δ2/16 δ2/4 δ2/16 δ2

ξ23 δ2/16 δ2/16 δ2/4 δ2/4

It is not hard to see that λ(μ4, ξij) ≥ λ(μij , ξij) where i �= j ∈ {1, 2, 3} so μ4 is
an inferior, or dominated, strategy for Player II. It follows (cf. Theorem 5.20
in [14]) that it will be assigned zero probability, i.e., the game reduces to G3.

Examples 4.1 and 4.2 show that adding any strategy to ν to M which satisfies
max |νi − νj | = δ, i.e., ν lies on the boundary of the set Mδ, will result in a
game that is equivalent to G3. Example 4.3 shows that strategies in the interior
of Mδ are dominated and therefore will not be chosen by Player II.

Example 4.4. Let M′ = {(−δ/2, δ/2, 0), (−δ/2, 0, δ/2)}. The corresponding
game matrix is displayed in Table 6. It is easily observed that ξ23 is dom-
inated by a balanced mixture of the strategies ξ12 and ξ13. Thus, by Theo-
rem 5.20 in [14], ξ23 can be eliminated. The Nash Equilibrium of the result-
ing game (whose game matrix consists of the first two rows of Table 6) is
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Table 6

Game matrix of Example 4.4.

I\II μ12 μ13

ξ12 δ2/4 δ2/16
ξ13 δ2/16 δ2/4
ξ23 δ2/16 δ2/16

(p,q) = ((1/2, 1/2), (1/2, 1/2)) and the payoff of the game is 5δ2/32 which
is larger than the value of the Game G3 (δ2/8).

Example 4.4 shows that removing any strategy from M results in a game
which has higher value than the original game. To summarize, the preceding
examples show that:

Theorem 4.2. If Ml ⊂ M, then v(λ,X,M) < v(λ,X,Ml) and if Mb ⊃ M

where Mb ⊂ Mδ then v(λ,X,Mb) = v(λ,X,M).

Theorem 4.2 shows that the set of strategies M is complete with respect to
Mδ when Player I′s strategies are X. By this we mean that Player II can not find
any strategies in Mδ which will reduce the value of the game and, in addition,
the omission of any strategy from M will increase the value of the game.

Now, after fixing the strategies of Player II we examine the strategies of Player
I. First note that in expectation, or under repeated play, Player I allocates 1/K
of the experimental subject to each treatment group. However, in any specific
game Player I allocates 1/2 of the observations to group i and 1/2 to groups j

for some pair (i, j). Thus, the payoff is 0 with probability
(
K
2

)−1(K−2
2

)
, δ2/16

with probability
(
K
2

)−1{
(
K
2

)
−

(
K−2
2

)
− 1}, and equal to δ2/4 with probability(

K
2

)−1
. This set of possible outcomes is not satisfying and it suggest that the

strategy space for Player I should be expanded.

Therefore, we next consider the situation where Player I can choose any
ξ ∈ Ξ. The strategy space for Player I is no longer finite and games of this type
are called infinite games. As noted by a referee the action space of Player I, the
set Ξ, is convex and therefore Player I need not consider any mixed strategies.
We shall denote such games by GA(·,Ξ,Q(M)). We have:

Theorem 4.3. The pair ξ = K−11K and q =
(
K
2

)−1
1K(K−1)/2 is the unique

Nash Equilibrium of the games GA(λ,Ξ,Q(M)) and GA(π,Ξ,Q(M)).

Theorem 4.3 is the game theoretic equivalent of Theorem 2.1. It provides a
new perspective on a classical design problem. In light of the Examples 4.1–4.3,
it is also clear that Theorem 4.3 applies to the infinite games GA(λ,Ξ,Mδ) and
GA(π,Ξ,Mδ) where the optimal strategy for Player II is to randomly select
strategies from M using the probability mass function q.
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4.2. Comparison of multiple treatments with a control: The game
theoretic view

There are many experiments in which an inherent ordering among the experi-
mental groups exists. For example, in dose–response studies a large response is
often expected with a high dose. This ordering is referred to as the simple order.
When a control is compared to multiple treatments, each of which is expected
to outperform it, the resulting order is known as a tree order. There are many
other orders and a rich literature describing efficient statistical analysis under
order restriction. For more details see the books by [2], and [19].

In this section, we find the Nash–Design when testing under a tree order.
Formally, we would like to compare a control group to K − 1 treatment groups.
The hypothesis of interest in this case is:

H0 : μ ∈ M0 versus H1 : μ ∈ M1 \M0, (4.5)

where M0 was defined immediately after (2.2) and M1 = {μ ∈ R
K : μ1 ≤

μi, ∀i ∈ {2, . . . ,K}}. In this context it is natural to define

Mδ = {μ ∈ M1 :
K∑
i=2

(μi − μ1) ≥ δ}. (4.6)

Note that this Mδ is different than considered in (2.7). As earlier δ can be
viewed, in the sense described in Remark 2.1, as a distance from the null. Since
this testing problem is location invariant we may, without any loss of any gener-
ality, assume that μ1 = 0. One obvious choice for the set of strategies of Player II
is the set M = {μi : μi = δei; i = 2, . . . ,K}. Note that elements of M are on
the boundary of Mδ and lie on the extreme rays of the M1. A natural set of
strategies for Player I are X = {ξ1i : ξ1i = 1/2(e1 − ei); i = 2, . . . ,K}, i.e., the
two point strategies comparing the control to treatment i. The payoff to Player
I is assumed to be the NCP, λ, or the power, π, of the test (2.3). As noted
by a referee the test (2.3) is not the classic constrained test for testing for the
tree order [19]. However, as shown by [20] designs for constrained testing prob-
lems and unconstrained testing problems coincide asymptotically. Therefore in
this manuscript we shall consider only payoffs derived from the unconstrained
test. Let p and q be the probability laws by which Player I and II of choose
their strategies from X and M respectively. It can be shown, by repeating the
arguments made in the proof of Theorem 4.1, that when K ≥ 2 the Nash Equi-
librium for the games GT (λ,P (X),Q(M)) and GT (π,P (X),Q(M)), where the
subscript T on GT (·, ·, ·) indicates that these games are associated with the tree
order, is

p = q = (K − 1)−11K−1.

The value of the game GT (λ,P (X),Q(M)) is δ2/4(K − 1).
We now extend the strategy space of Player II by adding the strategy μcentral=

(0, δ/(K−1), . . . , δ/(K−1)) to M. Note that μcentral is the equal weights convex
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combination of the strategies X. Further assume that Player I chooses the strate-
gies from X using the probability law p = (K−1)−11 whereas Player II chooses
from the strategies (μ2, . . . ,μcentral) with probability law q = (q2, . . . , qK , qc).
The game matrix for this augmented game is presented in Table 7.

Table 7

Game matrix for the augmented tree order.

I\II μ2 μ3 · · · μK μcentral

ξ12 δ2/4 0 · · · 0 δ2/4(K − 1)2

ξ13 0 δ2/4 · · · 0 δ2/4(K − 1)2

.

..
.
..

.

..
. . .

.

..
.
..

ξ1K 0 0 · · · δ2/4 δ2/4(K − 1)2

The payoff of this game is

Γ(p,Λ,q) = (K − 1)−11TΛq =
δ2

4(K − 1)

{
1 +

(2−K)qc
K − 1

}
, (4.7)

which is minimized at δ2/4(K − 1)2 when qc = 1. In fact, it is not difficult
to show that μcentral minimizes the loss of Player II over all μ ∈ Mδ when
Player I chooses among the strategies in Table 7 with equal probability. Thus,
p = (K − 1)−11 and qc = 1 is a Nash Equilibrium. In fact, it can be verified
that any convex combination of Player I’s strategies, including all pure strategies
result in a Nash Equilibrium.

However, most of these solutions are not satisfactory when considering re-
peated experiments. To illustrate, consider a design ξ1 obtained using some
convex combination of {ξ12, . . . , ξ1K} satisfying ξ1i > ξ1j for some i, j �= 1. Let
ξ2 be the strategy obtained from ξ1 by switching its ith and jth components, i.e.,
ξ2i = ξ1j , ξ2j = ξ1i and ξ2k = ξ1k for all k /∈ {i, j}. Further set ξ = (ξ1 + ξ2)/2.
Let μi = δei and μj = δej . Observe that λ(μi; ξ1) > λ(μi; ξ) > λ(μi; ξ2) and
λ(μj ; ξ2) > λ(μj ; ξ) > λ(μj ; ξ1) from which we conclude that

min
μ∈{μi,μj}

λ(μ; ξ) > min
μ∈{μi,μj}

λ(μ; ξk) for k = 1, 2.

Hence ξ1 and ξ2 can not be Nash designs for this game in which Player II chooses
{μi,μj}. Since the exercise above can be carried out for any two indices it follows
that if ξ is Nash then ξi = ξj for all pairs i and j. Consequently the Nash design
must be of the form ξγ = (γ, (1 − γ)/(K − 1), · · · , (1 − γ)/(K − 1)) for some
γ ∈ [0, 1]. Clearly, to find such a design, we should extend the strategy space of
Player I. It is not hard to show that ξ1/2 = (1/2, 1/2(K − 1), . . . , 1/2(K − 1))
is the only design which satisfies the above conditions and attains the mini–
max value of the game. It is also interesting to note that, ξ1/2 is also the design
obtained by averaging the designs ξ12, . . . , ξ1K . Using arguments similar to those
above, we get the same Nash Equilibrium for this game when λ(μ; ξ) is replaced
by π(μ; ξ). We summarize the results in the following theorem:

Theorem 4.4. The pair ξ = (1/2, 1/2(K − 1), . . . , 1/2(K − 1)) and μ =
(0, δ/(K − 1), . . . , δ/(K − 1)) is the unique Nash Equilibrium of the games
GT (λ,Ξ,Mδ) and GT (π,Ξ,Mδ).
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5. Summary and discussion

In this article we considered optimal designs for two simple, but widely used,
hypotheses testing problems, i.e., (2.2) and (4.5). Initially MM–designs for the
one–way ANOVA problem were discussed. Then the corresponding Bayes and
Nash designs were introduced and explored. A pseudo–Bayesian approach, in
which an integrated version of the design criteria was optimized, was proposed
in Section 3. It was shown that the Bayes design coincides with the maxi–min
design for exchangeable priors with a finite second moment, which is a large
class of reasonable priors. We also show that if the prior is not exchangeable then
a balanced design is not obtained. The Bayesian approach can be extended to
deal with many other testing problems. For example, consider the experiment in
which multiple treatments are compared to a control, as discussed in Section 4.2.
As noted this type of comparison is referred to as the simple tree order and the
associated hypothesis testing problem is defined in (4.5). In this setting, it is
reasonable to consider a prior Q for μ which is equally supported on {ej − δe1}
for j = 2, . . . ,K. A simple calculation shows that

Λ(Q; ξ) = ξ1δ
2 +

1

K − 1

( K∑
j=2

ξj −
K∑
j=2

(ξj − δξi)
2
)
. (5.1)

Maximizing (5.1) with respect to ξ leads to

ξ1 =
(K − 1)2δ2 + 2δ(K − 1) + 3−K

2(1 + δ(K − 1))2
, and ξi = ξj for all i, j ≥ 2.

Further observe that ξ1 → 1/2 as δ → ∞. Thus, there is a sequence of priors,
and Bayes optimal designs which converge to the MM–design for the tree order.
Finding such sequences of priors for more complicated testing problems, is of
yet, an open problem. Within the Bayesian framework it is also interesting to
consider the design criteria

ξ
λ

Q =

∫
argmax

ξ∈Ξ
λ(μ; ξ)dQ(μ)

and

ξ
π

Q =

∫
argmax

ξ∈Ξ
π(μ; ξ)dQ(μ)

which are, nothing but, Q–weighted locally optimal designs. For obvious reasons
we shall refer to such designs as weighted designs. It is not hard to see that if
qij = PQ(Eij), where Eij is the event that the means μi and μj are maximally
separated, then any exchangeable prior would lead in the ANOVA setting to:

ξ
λ

Q =

∫
{argmax

ξ∈Ξ
λ(μ; ξ)}dQ(μ) =

∑
i<j

∫
Eij

{argmax
ξ∈Ξ

λ(μ; ξ)}dQ(μ)

=
∑
i<j

∫
Eij

ξijdQ(μ) =

(
K

2

)−1 ∑
i<j

ξij =
( 1

K
, . . . ,

1

K

)
,
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with a similar result for ξ
λ

Q. Thus the weighted design coincides with the Bayes
design under exchangeable priors. A similar equivalence can be shown to hold
also under the tree order and even more general settings. Finally, as noted by
a referee under a large class of priors Bayes factors in ANOVA settings are
either exactly or asymptotically functions of the F -test statistic ([8] and [5]).
Therefore, large values of the F -test are associated with large probabilities for
the alternative. Hence, maximising the power of frequentist F -test maximizes
the power of these Bayesian tests.

In Section 4 the experimental design problem was formulated, and solved,
as a game theoretic problem in which the Nash Equilibrium is shown to co-
incide with the MM–design as well as the Bayes and Weighted designs. Apart
from the simplicity and elegance of the solution the proposed approach suggests
that game theoretic ideas and methods should play a more prominent role in
statistics, especially within the broad field of experimental design. We are not
familiar with any other papers in the statistical literature which apply game the-
oretic ideas to experimental design problems. There are however some papers in
the engineering literature cf. [9] and [7] dealing with design allocation problems
which are addressed by finding the Nash equilibrium of a “design game”. The
game theoretic view provides a set of tools and method for reasoning in com-
plex situations, which, we believe, will prove useful in solving variety of other
problems in statistics.

It is well know that the Nash equilibrium coincides with the maxi–min so-
lution in zero sum games. In some situations it may be difficult to compute
the maxi–min solution but relatively easy, using symmetry say, to show that
a particular set of strategies is a Nash equilibrium. Moreover it is possible to
imagine design problems which are not maxi–min. For example, these could oc-
cur if sampling cost vary among units receiving different treatments. In such
situations Nash designs are relevant whereas MM–designs are not.

Although the focus of this paper has been on the classical one–way ANOVA
we believe that the proposed approach is applicable to two–way designs, as
well as problems involving covariates, heteroscedastic errors and so forth. In
each case the relevant payoff function needs to be defined and then a game pit-
ting the statistician versus nature set–up, see [4] for a collection of problems
viewed through this prism. We have already begun exploring various problems
using this approach and believe that it can be extended to other areas of statis-
tics. We realize that viewing nature as a strategizing agent may seem odd at
first. However, it is common practice in a various disciplines including statis-
tics ([4]) and in particular statistical decision theory ([3]). One benefit of the
game theoretic approach is that it transforms a complicated optimization prob-
lems into a game, in which reasoning about outcomes is often easier and more
natural.

Appendix

We begin with a remark which will be useful.
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Remark 1. In the proofs of Theorem 3.1 and Theorem 3.3 we make use of an
elegant result of [24] known as The Purkiss Principle. The principle, adapted to
our setting, states that if f is a function which is symmetric in its arguments
x1, . . . , xn then max{f(x1, . . . , xn) :

∑n
i=1 xi = 1} is obtained when xi = xj for

all i and j provided that the Hessian of f does not vanish at the optimum.

Proof of Theorem 3.1

Following lemma is required to prove Theorem 3.1.

Lemma 1. Let A = M(ξ)−M(ξ)JM(ξ), where M(ξ) = diag(ξ1, . . . , ξK), J =
1K1T

K and 1K is K dimensional vector of one’s. Then trace(Am) is permutation
symmetric in (ξ1, . . . , ξK) for any non–negative integer m.

Proof. Let X follow a multinomial distribution with parameters K and ξ =
(ξ1, . . . , ξK)T . It is clear that A is the variance matrix of X. Let S be any
permutation matrix and define Y = SX. Observe that Y follows a multinomial
distribution with parameters K and p = Sξ. The variance matrix of Y is B =
SAST. Now for any non–negative integer m and using the fact that STS = I,
where I is the identity matrix, we have

trace(Bm) = trace((SAST)m) = trace((SAST) · · · (SAST))

= trace(SAmST) = trace(STSAm) = trace(Am).

Since the latter holds for all permutation matrices S the function trace(Am) is
permutation symmetric in (ξ1, . . . , ξK) as required.

We now continue with the proof of Theorem 3.1.

Proof. Observe that the NCP given in (2.4) can be written in matrix form as

λ(μ; ξ) = μTAμ, (A.1)

where A is defined in the statement of Lemma 1. It follows from (A.1) and the
definition of Λ(Q; ξ) that

Λ(Q; ξ) = EQ(μ)
TAEQ(μ) + trace(VQ(μ)A), (A.2)

where EQ(μ) and VQ(μ) are the mean and variance of the random vector μ
with respect to the distribution function Q. By assumption μ is distributed as
N (μ01,Σ) where Σ has a compound symmetry structure as described in the
statement of the Theorem. It follows from (3.4) that (A.2) reduces to

Λ(Q; ξ) = β
∑
i

ξi(1− ξi)− 2γ
∑
i<j

ξiξj . (A.3)

A simple calculation, using the method of Lagrange multipliers, shows that the
maximizer of (A.3) under the constraint

∑K
i=1 ξi = 1 is
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ξλQ = (1/K, . . . , 1/K) ,

as stated.
The average power with respect to the prior Q can be expressed as

Π(Q; ξ) =

∫
P(Tn > cK−1,α)dQ(μ) =

∫
P(χ2

K−1(λ) > cK−1,α)dQ(μ)

=

∫ ∞∑
k=0

e−λ/2(λ/2)k

k!
P(χ2

K−1+2k > cK−1,α)dQ(μ)

=

∞∑
k=0

P(χ2
K−1+2k > cK−1,α)

∫
e−λ/2(λ/2)k

k!
dQ(μ) (A.4)

=

∞∑
k=0

P(χ2
K−1+2k > cK−1,α)

∫
Ik(λ)dQ(μ),

where

Ik(λ) =
e−λ/2(λ/2)k

k!
.

Under the assumption of normality∫
Ik(λ(μ; ξ))dQ(μ) =

∫
1

k!

∞∑
i=0

(−1)i(λ(μ; ξ)/2)k+idQ(μ)

=
1

k!

∞∑
i=0

(−1)i(1/2)k+i
E(μTAμ)k+i,

where A = M(ξ)−M(ξ)JM(ξ). Following [13] the moment E(μTAμ)k are of
the form

k∑
i=1

νi

k∏
j=1

(trace(AΣ)sj)rj ,

where νi are integers and the product is over all integers sj and rj such that∑
j sjrj = k. It is easy to verify that if Σ is defined as in the statement of

the Theorem then AΣ = (β − γ)A. Furthermore by Lemma 1, the quantity
trace(As) is symmetric in (ξ1, . . . , ξK) for any positive integer s. Consequently
so are (5), and Π(Q; ξ). Thus, by Remark 1, max{Π(Q; ξ) :

∑
i ξi = 1} is

attained when ξi = ξj for all i, j which gives a balanced design. This concludes
the proof.

Proof of Theorem 3.2

Proof. It is obvious that Equation (A.3) holds for all distribution functions Q
which are exchangeable with respect to the random variable (μ1, . . . , μK) from
which the conclusion, ξλQ = (1/K, . . . , 1/K), follows immediately. Now, observe
that

Π(Q; ξ) =

∫
Υ(μ, ξ)dQ(μ)
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where Υ(μ, ξ) = P(χ2
K−1(Nλ(μ; ξ)/2) > cK−1,α) and

λ(μ; ξ) =

K∑
i=1

ξi(μi − μ̄)2 =
∑
i<j

ξiξj(μi − μj)
2.

Observe that μ is a realization from an exchangeable prior Q so λ(μ; ξ) is a RV.
Consider a design ξ′ obtained from ξ by switching its ith and jth elements. For
example, if we exchange the first and second elements we get

ξ′k =

⎧⎪⎨
⎪⎩
ξ1 if k = 2

ξ2 if k = 1

ξk if k �= 1, 2

(A.5)

It follows that

λ(μ; ξ′) =
∑
i<j

ξ′iξ
′
j(μi − μj)

2

= ξ′1ξ
′
2(μ1 − μ2)

2 +
∑
j �=1,2

ξ′1ξ
′
j(μ1 − μj)

2 +
∑
j �=1,2

ξ′2ξ
′
j(μ2 − μj)

2

+
∑

2<i<j

ξ′iξ
′
j(μi − μj)

2

= ξ1ξ2(μ1 − μ2)
2 +

∑
j �=1,2

ξ2ξj(μ1 − μj)
2 +

∑
j �=1,2

ξ1ξj(μ2 − μj)
2

+
∑

2<i<j

ξiξj(μi − μj)
2

d
= ξ1ξ2(μ1 − μ2)

2 +
∑
j �=1,2

ξ2ξj(μ2 − μj)
2 +

∑
j �=1,2

ξ1ξj(μ1 − μj)
2

+
∑

2<i<j

ξiξj(μi − μj)
2 = λ(μ; ξ),

where the equality in distribution follows from exchangeability of Q. Since the
indices we choose in (A.5) are arbitrary it follows that

λ(μ; ξ)
d
= λ(μ;σ(ξ)),

where σ(ξ) is any permutation of ξ. Consequently Υ(μ, ξ)
d
= Υ(μ, σ(ξ)) from

which it follows that

Π(Q; ξ) = Π(Q;σ(ξ)), (A.6)

thus, by (A.6), Π(Q; ξ) is permutation symmetric. Therefore, by Remark 1,

max{Π(Q; ξ);
∑K

i=1 ξi = 1} is attained when ξi = ξj for all i, j. Hence ξπQ =
(1/K, . . . , 1/K).
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Proof of Theorem 3.3

Proof. For i < j let μij = (δ/2)(ej − ei) denote a permutation of (−δ/2, δ/2, 0,
. . . , 0). Given Q in the statement of the Theorem we have

Λ(Q; ξ) =

∫
λ(μ; ξ)dQ(μ) =

1

2

(
K

2

)−1 ∑
i �=j

λ(μij ; ξ)

=

(
K

2

)−1 ∑
i<j

λ(μij ; ξ) =
δ2

4

(
K

2

)−1 ∑
i<j

{(ξi + ξj)− (ξj − ξi)
2}.

Now maximizing
∑

i<j{ξi+ξj)−(ξj−ξi)
2} is equivalent to minimizing

∑
i<j(ξj−

ξi)
2 which subject to

∑
i ξi = 1 and ξi ≥ 0 is minimized at

(1/K, . . . , 1/K).

It is easy to verify that λ(μ; ξMM) ≥ Λ(QLFP; ξ) for all μ ∈ Mδ and ξ ∈ Ξ.
Thus, by Theorem 1 of [15] we get

ξλQ = (1/K, . . . , 1/K)

and Q is the least favourable prior on Mδ.
A general expression for average power with respect to the prior Q has been

already given in equation (A.5) where Ik(λ) is defined in (5). Integrating (5)
with respect to the specified prior Q, yields,∫

Ik(λ(μ; ξ))dQ(μ) =
1

K(K − 1)

∑
i<j

exp(−λ(μij ; ξ))(λ(μij ; ξ))
k

k!
, (A.7)

where
λ(μij ; ξ) = (δ2/4){(ξi + ξj)− (ξj − ξi)

2},
and μij = (δ/2)(−ei + ej). Observe that the expression given in the right
hand side of (A.7) is a symmetric function of {ξ1, . . . , ξK}. Thus, by Remark 1,
max{Π(Q; ξ) :

∑
i ξi = 1} is attained when ξi = ξj for all i, j. Again using

Theorem 1 of [15], we get the desired result.

Proof of Theorem 4.1

Proof. First consider the gameGA(λ,P (X),Q(M)). Suppose that μij is Player’s
II strategy in a Nash Equilibrium. Clearly Player I best response to μij is ξij .
However, Player II best response to ξij is any μlk where (l, k) �= (i, j) and it
follows that μij can not be a strategy in a Nash Equilibrium. Since the latter
argument applies to all indices (i, j), it follows that Player I does not have a
Nash Equilibrium in pure strategies. A similar argument shows that neither
does Player II. It is straightforward to check that if

p0 = 1K(K−1)/2

(
K

2

)−1
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then for any two distinct strategies of Player II, e.g., μij and μkl, the expected
payoff to Player I, denoted by Ep(·), satisfies

Ep0(λ(μij ; ξ)) =

(
K

2

)−1 ∑
s<t

λ(μij ; ξst) =

(
K

2

)−1 ∑
s<t

λ(μkl; ξst)

= Ep0(λ(μkl; ξ)). (A.8)

Thus by Theorem 5.18 in [14], p0 is an optimal mixed strategy for Player I.
Similarly, if

q0 = 1K(K−1)/2

(
K

2

)−1

then for any two distinct strategies of Player I, e.g., ξij and ξkl the expected
payoff of Player II satisfies

Eq0(−λ(μ; ξij)) = −
(
K

2

)−1 ∑
s<t

λ(μij ; ξst) = −
(
K

2

)−1 ∑
s<t

λ(μst; ξkl)

= Eq0(−λ(μ; ξkl)),

which shows that q0 is an optimal mixed strategy for Player II. It follows that
(p0,q0) is a Nash Equilibrium.

Next we prove the solution (p0,q0) is unique. As in Equation (4.1) let I1
denote the set of indices {(i, j), (k, l)} for which λ(μij , ξkl) = δ2/16 and let |I1|
denote its cardinality. It can be shown that |I1| = K(K−1)(K−2). The payoff
at (p, q) is

Γ(p,Λ,q) =
δ2

4

(∑
i<j

pijqij +
1

4

∑
{(i,j),(k,l)}∈I1

pijqkl
)
. (A.9)

Therefore, the payoff at (p0,q0) is

Γ(p0,Λ,q0) =
δ2

4

{
2

K(K − 1)
+

|I1|
4

(
2

K(K − 1)

)2
}

=
δ2

4(K − 1)
. (A.10)

Suppose that (p′,q′) �= (p0,q0) is a different Nash Equilibrium. Let

S0 = {(i, j) : p′ij =
(
K

2

)−1

}

S− = {(i, j) : p′ij =
(
K

2

)−1

− aij , where aij > 0}

S+ = {(i, j) : p′ij =
(
K

2

)−1

+ bij , where bij > 0}

The sets S0, S− and S+ are mutually exclusive and their union is the set of

all pairs (i, j). Since p′ �=
(
K
2

)−1
1K(K−1)/2, the sets S− and S+ are not empty.
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In response to the mixed strategy p′ Player II may choose a mixed strategy q′

satisfying

q′ij =

⎧⎪⎪⎨
⎪⎪⎩
(
K
2

)−1
+ aij if (i, j) ∈ S−(

K
2

)−1
if (i, j) ∈ S0(

K
2

)−1 − bij if (i, j) ∈ S+

Note that∑
i<j

p′ijq
′
ij =

∑
(i,j)∈S−

p′ijq
′
ij +

∑
(i,j)∈S0

p′ijq
′
ij +

∑
(i,j)∈S+

p′ijq
′
ij

= |S−|
(
K

2

)−2

−
∑

(i,j)∈S−

a2ij + |S0|
(
K

2

)−2

+ |S+|
(
K

2

)−2

−
∑

(i,j)∈S+

b2ij

=

(
K

2

)−1

− (
∑

(i,j)∈S−

a2ij +
∑

(i,j)∈S+

b2ij) (A.11)

and ∑
{(i,j),(k,l)}∈I1

p′ijq
′
kl =

∑
{(i,j),(k,l)}∈S−∩I1

p′ijq
′
kl +

∑
{(i,j),(k,l)}∈S0∩I1

p′ijq
′
kl

+
∑

{(i,j),(k,l)}∈S+∩I1

p′ijq
′
kl

= |S− ∩ I1|
(
K

2

)−2

−
∑

{(i,j),(k,l)}∈S−∩I1

aijakl + |S0 ∩ I1|
(
K

2

)−2

+|S+ ∩ I1|
(
K

2

)−2

−
∑

{(i,j),(k,l)}∈S+∩I1

bijbkl

= |R|
(
K

2

)−2

−
∑

{(i,j),(k,l)}∈S−∩I1

aijakl

−
∑

{(i,j),(k,l)}∈S+∩I1

bijbkl), (A.12)

where (A.12) holds since |S− ∩ I1| + |S0 ∩ I1| + |S+ ∩ I1| = |I1|. So, it now
follows from (A.9), (A.10), (A.11), and (A.12) that Γ(p′,Λ,q′) < Γ(p0,Λ,q0)
so p′ can not be a min–max optimal strategy for Player I. A similar argument
holds for Player II. Since the game is a zero sum game the maxi–min solutions
coincide with the Nash Equilibria we conclude that (p0,q0) is the unique Nash
Equilibrium in GA(λ,P (X),Q(M)). Repeating the arguments above shows that
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(p0,q0) is also the unique Nash Equilibrium in GA(π,P (X),Q(M)). This com-
pletes the proof.

Proof of Theorem 4.2

Proof. We start by showing that if Ml ⊂ M then v(λ,X,Ml) > v(λ,X,M).
Recall first that by Theorem 4.1

p = q =

(
K

2

)−1

1(K2 )

is the Nash equilibrium of the game GA(λ,P (X),Q(M)) whose value is

v(λ,X,M) =
δ2

4

1

(K − 1)
. (A.13)

Let Ml ⊂ M be the strategies available to Player II after removing the T
pure strategies μi1j1 , . . . ,μi

T
j
T
from M. Since the value of any zero sum game

can not decrease when the strategy space for Player II is restricted we have

v(λ,X,Ml) ≥ v(λ,X,M). (A.14)

It follows that if (A.14) holds with a strict inequality for T = 1, i.e., when
only one strategy is removed, then it will hold with a strict inequality for all
T ∈ {2, . . . ,K − 1}. Symmetry considerations imply that the identity of the
removed strategy is immaterial. Hence, without any loss of generality, we may
restrict our attention to the case where the strategy μK−1,K is removed form M.
Furthermore, it is clear that

v(λ,X,M\μK−1,K) ≥ v(λ,X\ξK−1,K ,M\μK−1,K). (A.15)

We now continue with an analysis of the game GA(λ,P (X\ξK−1,K),
Q(M\μK−1,K)). By Theorem 5.22 in [14] the value of this game is equal to
the solution of the linear program

v = max {v12, . . . , vK−2,K}

subject to the inequalities ∑
i<j

pijλ(μst; ξij) ≥ vst (A.16)

for all pairs 1 ≤ s < t ≤ K excluding the pair (s, t) = (K − 1,K). As
usual

∑
i<j pij = 1 with pij ≥ 0 for all (i, j) and recall that in the game

GA(λ,P (X\ξK−1,K),Q(M\μK−1,K)) we have pK−1,K = 0. Further note that
by (14) we may rewrite (A.16) as

δ2

4

⎧⎨
⎩pst +

1

4

∑
(i,j)∈G(s,t)

pij

⎫⎬
⎭ ≥ vst (A.17)
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where G (s, t) = {(i, j) : i /∈ {s, t} ∨ j /∈ {s, t}}. Now, let

A =
{
ξij : i /∈ {K − 1,K} ∧ j /∈ {K − 1,K}

}
,

B =
{
ξij : i ∈ {K − 1,K} ∨ j ∈ {K − 1,K}

}
i.e., A is the collections of strategies indexed by pairs (i, j) in which both i
and j are distinct from {K − 1,K}, whereas B is the collections of strategies
in which either i or j but not both are in {K − 1,K}. It is clear, by symmetry
considerations, that at equilibrium

pst = puv

when (s, t) and (u, v) are either both in A or both in B. Therefore at equilibrium
we have

pij =

{
α
(
K
2

)−1
if (i, j) ∈ A

β
(
K
2

)−1
(i, j) ∈ B

(A.18)

for some α and β to be determined. Equation (A.18) shows that the mass
associated with ξK−1,K is redistributed among the strategies in A and B. Since∑

i<j pij = 1 we have

Aα+Bβ =

(
K

2

)
, (A.19)

where A =
(
K
2

)
− B − 1 and B = 2(K − 2) are the cardinalities of the sets A

and B respectively. Carefully substituting (A.18) into (A.17) we find that

vij =

⎧⎨
⎩

δ2

4 (α
(
K
2

)−1
+ 1

4

{
Bβ

(
K
2

)−1
}
) if (i, j) ∈ A

δ2

4 (β
(
K
2

)−1
+ 1

4

{
α
(
K
2

)−1
+ (B − 2)β

(
K
2

)−1
}
) (i, j) ∈ B

.

(A.20)
At the optimum v = v12 = v13 = · · · = vK−2,K . In particular vij = vi′j′ when
(i, j) ∈ A and (i′, j′) ∈ B which implies that

α+
1

4
{Bβ} = β +

1

4
{α+ (B − 2)β} (A.21)

Solving (A.19) and (A.21) for α and β we find that

α =
2

3
β and β =

3

2

K(K − 1)

K2 +K − 6
. (A.22)

Plugging (A.22) into (A.20) and with a bit of algebra we find that

v(λ,X\ξK−1,K ,M\μK−1,K) =
δ2

4

3K − 2

2(K2 +K − 6)
. (A.23)

It is straightforward to verify that (A.23) is larger than (A.13) for all K ≥ 3
which together with (A.15) completes the first part of the proof.
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Next, we show that if M ⊂ Mb ⊂ Mδ then v(λ,X,M) = v(λ,X,Mb). The
reasoning here is quite simple. Suppose that Player I uses the mixed strategy

p =
(
K
2

)−1
1K(K−1)/2. Then for any strategy μ of Player II the payoff to Player I

∑
i<j

(
K

2

)−1

λ(μ; ξij) =
1

2K(K − 1)

∑
i<j

(μi − μj)
2. (A.24)

Now, it is not hard to see that min{
∑

i<j(μi − μj)
2 : μ ∈ Mδ} is attained

at any permutation of the LFC (−δ/2, δ/2, 0, . . . , 0) in which case the value
of

∑
i<j(μi − μj)

2 is δ2K/2. It follows that the right hand side of (A.24) is

larger or equal to δ2/4(K − 1) which is nothing but v(λ,X,M). Moreover if
μ ∈ Mδ\M then the right hand side of (A.24) is strictly larger than v(λ,X,M).
However, when (A.24) holds with a strict inequality then Player II will as-
sign 0 probability to this strategy, otherwise his loss is expected to increase.
Thus v(λ,X,M) = v(λ,X,Mb). If (A.24) holds with an equality then assign-
ing a positive probability to it will not change the value of the game so again
v(λ,X,M) = v(λ,X,Mb). This completes the proof.

Proof of Theorem 4.3

Proof. First we consider the game GA(λ,Ξ,M). The Nash Equilibrium in this
case is the the pair (ξ0,q0) which solves

max
ξ∈Ξ

min
q∈Q

Eq(λ(μ; ξ)), (A.25)

where Eq(λ(μ; ξ)) =
∑

i<j qijλ(μij ; ξ). Let ξ ∈ Ξ and q0 = 1K(K−1)/2

(
K
2

)−1

and note that

Eq0(λ(μ; ξ)) =

(
K

2

)−1 ∑
i<j

λ(μij ; ξ) =
δ2

4

(
K

2

)−1 ∑
i<j

(
(ξi + ξj)− (ξi − ξj)

2
)

is maximized when ξi = ξj for all pairs (i, j) as in the proof of Theorem 3.3).
Thus,

max
ξ∈Ξ

Eq0(λ(μ; ξ)) = Eq0(λ(μ;K
−11K)),

so ξ0 = K−11K is the unique best response to q0. The uniqueness of Nash
Equilibrium (ξ0,q0) can be proved by adopting and appropriately modifying
the method used in the proof of Theorem 4.1.

Next consider the game GA(π,Ξ,M). Let ξ ∈ Ξ and q0 = 1K(K−1)/2

(
K
2

)−1
.

From (A.4), it follows that

π(ξ;q0) = Eq0(π(μ; ξ))

=

∞∑
k=0

P(χ2
K−1+2k > cK−1,α)

⎧⎨
⎩ 1(

K
2

) ∑
i<j

e−λij/2(λij/2)
k

k!

⎫⎬
⎭ (A.26)
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where λij is the NCP given by

λij =
δ2

4
(ξi + ξj)− (ξi − ξj)

2). (A.27)

From equations (A.27) and (A.26), it is observed that Eq0(π(μ; ξ)) is sym-
metric in (ξ1, . . . , ξK). Thus, by Remark 1, max{Eq0(π(μ; ξ)) :

∑
i ξi = 1} is

attained when ξi = ξj for all i, j, i.e., ξ = K−11K is an optimal solution. The
uniqueness of the solution can be proved similarly as we proved for the game
GA(π,Ξ,M).
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ysis (D. Uciński and A. C. Atkinson, eds.) 187–194. Springer, Heidelberg.

[16] Pronzato, L. and Walter, E. (1985). Robust experiment design
via stochastic approximation. Mathematical Biosciences 75 103–120.
MR0800967

[17] Pukelsheim, F. (1993). Optimal Design of Experiments. Wiley, New York.
MR1211416

[18] Schwarz, G. (1994). Game theory and statistics. In Handbook of Game
Theory, (R. J. Aumann and S. Hart, eds.) 2 21, 769–779. Elsevier, New
York. MR1313217

[19] Silvapulle, M. and Sen, P. (2005). Constrained Statistical Infer-
ence: Order, Inequality, and Shape Constraints. Hoboken, NJ, New York.
MR2099529

[20] Singh, S. P. and Davidov, O. (2019). On the design of experiments with
ordered treatments. Journal of Royal Statistical Society: Series B 81 881–
900. MR4025401

[21] Singh, S. P. and Mukhopadhyay, S. (2016a). Bayesian crossover designs
for generalized linear models. Computational Statistics and Data Analysis
104 35–50. MR3540985

[22] Singh, S. P. and Mukhopadhyay, S. (2016b). Bayesian optimal cluster
designs. Statistical Methodology 32 36–52.

[23] Wald, A. (1949). Statistical decision functions. Annals of Mathematical
Statistics 20 165–205. MR0044802

[24] Waterhouse, W. C. (1983). Do symmetric problems have symmetric so-
lutions? The American Mathematical Monthly 90 378–388. MR0707152

[25] Woods, D. C. and Van de Ven, P. M. (2011). Blocked designs for
experiments with correlated non-normal response. Technometrics 53 173–
182. MR2808343

[26] Wu, C. F. (1981). On the robustness and efficiency of some randomized
designs. The Annals of Statistics 9 1168–1177. MR0630100

http://www.ams.org/mathscinet-getitem?mr=1454123
http://www.ams.org/mathscinet-getitem?mr=2044851
http://www.ams.org/mathscinet-getitem?mr=0350985
http://www.ams.org/mathscinet-getitem?mr=0528403
http://www.ams.org/mathscinet-getitem?mr=3154588
http://www.ams.org/mathscinet-getitem?mr=0800967
http://www.ams.org/mathscinet-getitem?mr=1211416
http://www.ams.org/mathscinet-getitem?mr=1313217
http://www.ams.org/mathscinet-getitem?mr=2099529
http://www.ams.org/mathscinet-getitem?mr=4025401
http://www.ams.org/mathscinet-getitem?mr=3540985
http://www.ams.org/mathscinet-getitem?mr=0044802
http://www.ams.org/mathscinet-getitem?mr=0707152
http://www.ams.org/mathscinet-getitem?mr=2808343
http://www.ams.org/mathscinet-getitem?mr=0630100

	Introduction
	The maxi–min design for the ANOVA problem
	Bayes designs
	Nash designs
	Standard ANOVA: The game theoretic view
	Comparison of multiple treatments with a control: The game theoretic view

	Summary and discussion
	Appendix
	Proof of Theorem 3.1
	Proof of Theorem 3.2
	Proof of Theorem 3.3
	Proof of Theorem 4.1
	Proof of Theorem 4.2
	Proof of Theorem 4.3
	Acknowledgments
	References

