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Abstract: A high-dimensional r-factor model for an n-dimensional vector
time series is characterised by the presence of a large eigengap (increasing
with n) between the r-th and the (r+1)-th largest eigenvalues of the covari-
ance matrix. Consequently, Principal Component (PC) analysis is the most
popular estimation method for factor models and its consistency, when r is
correctly estimated, is well-established in the literature. However, popular
factor number estimators often suffer from the lack of an obvious eigengap
in empirical eigenvalues and tend to over-estimate r due, for example, to the
existence of non-pervasive factors affecting only a subset of the series. We
show that the errors in the PC estimators resulting from the over-estimation
of r are non-negligible, which in turn lead to the violation of the conditions
required for factor-based large covariance estimation. To remedy this, we
propose new estimators of the factor model based on scaling the entries of
the sample eigenvectors. We show both theoretically and numerically that
the proposed estimators successfully control for the over-estimation error,
and investigate their performance when applied to risk minimisation of a
portfolio of financial time series.
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1. Introduction

Factor modelling is a popular approach to dimension reduction in high-dimen-
sional time series analysis. It has been successfully applied to large panels of time
series for forecasting macroeconomic variables (Stock andWatson, 2002a), build-
ing low-dimensional indicators of the whole economic activity (Stock and Wat-
son, 2002b) and analysing dynamic brain connectivity using high-dimensional
fMRI data (Ting et al., 2017), to name a few.
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In this paper, we consider one of the most general factor models in the liter-
ature, the approximate dynamic factor model, which permits serial dependence
in the factors and both serial and cross-sectional dependence among the idiosyn-
cratic components. More specifically, given an n-dimensional vector time series
{xt = (x1t, . . . , xnt)

�, 1 ≤ t ≤ T}, we investigate the problem estimating the
factor model

xit = λ�
i ft + εit, (1)

where λi and ft are r-dimensional vectors of loadings and factors, respectively.
We refer to χit = λ�

i ft as the common component and εit as the idiosyncratic
component, and assume the number of factors, r, to be fixed independent of n
and T .

The main assumption that guarantees the asymptotic identification under (1)
is the existence of a large (increasing with n) eigengap between the r leading
eigenvalues of the covariance matrix of xt and the remaining ones. Intuitively,
since the eigengap is assumed to increase with n, the more series are pooled
together, the more the contribution of the factors to the total co-variation in
the data is likely to emerge over the idiosyncratic components (‘blessing of
dimensionality’). As a consequence, a natural way of estimating (1) is via Prin-
cipal Component (PC) analysis, through which the common components are
estimated as the projection of the data onto the space spanned by the leading
eigenvectors of the sample covariance matrix, i.e., given some estimator r̂ of the
factor number r, the PC estimator of the common component is defined as

χ̂pc
it =

r̂∑
j=1

ŵx,ijŵ
�
x,jxt, (2)

where ŵx,j = (ŵx,1j , . . . , ŵx,nj)
� is the normalised eigenvector corresponding

to the j-th largest eigenvalue of the sample covariance matrix of xt. The PC
estimator (2) allows for consistent estimation of the common component of
model (1), provided that both n, T → ∞ (see Bai, 2003, and Fan, Liao and
Mincheva, 2013).

However, the theoretical properties of PC estimators have always been in-
vestigated conditional on r̂ being a consistent estimator of r, and the problem
of determining r has typically been treated separately. Many methods exist
for estimating the factor number: Bai and Ng (2002), Alessi, Barigozzi and
Capasso (2010), see Onatski (2010), Ahn and Horenstein (2013), Yu, He and
Zhang (2018), Trapani (2018), and Bai and Ng (2019), to name a few, all of
which exploit the postulated existence of the eigengap. On the other hand, it
is often difficult to identify the large gap from empirical eigenvalues. In par-
ticular, it is known that the presence of moderate cross-sectional correlations
in the idiosyncratic components shrinks the empirical eigengap by introducing
some so-called ‘weak’ factor (Onatski, 2012), and we empirically demonstrate
that commonly adopted factor number estimators often over-estimate r in such
situations. Moreover, as noted in Barigozzi, Cho and Fryzlewicz (2018), insta-
bilities in the factor structure tend to spuriously enlarge the factor space and
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introduce further difficulties to determining the number of factors. Finally, as
shown later in the paper, different estimators frequently return discordant re-
sults, thus making it ambiguous for the user to choose a single value to rely
on.

1.1. Our contributions

The question is, what do we do if we have a range of possible candidate esti-
mators of r, or if we believe that none of the estimators is reliable? One may
use the largest number of factors returned by available methods, or set it to be
even larger, with the expectation of avoiding the hazard of under-estimating the
factor-driven variation, which is a problem without any clear solution.

In this paper, we first show that over-estimation of r can incur non-negligible
estimation error when considering the worst case scenarios for individual com-
mon components (see Proposition 2). To the best of our knowledge, this problem
has not been investigated in the literature before. Identifying the theoretical dif-
ficulties arising under the time series factor model, we propose a novel blockwise
estimation technique that enables rigorous treatment of the PC-based estima-
tors which is another contribution made in this paper.

In order to mitigate the lack of a reliable estimator of r, we propose a modified
PC estimator which performs as well as the ‘oracle’ estimator constructed with
the knowledge of true r and, consequently, makes our estimation procedure free
from the difficult task of estimating r accurately.

More specifically, the factor model (1) is usually characterised by the following
eigengap conditions (see e.g. Fan, Liao and Mincheva, 2013):

(C1) there exist some fixed cj , c̄j such that for 1 ≤ j ≤ r,

0 < cj < lim
n→∞

inf
μχ,j

n
≤ lim

n→∞
sup

μχ,j

n
< c̄j < ∞

and c̄j+1 < cj for j ≤ r − 1,
(C2) με,1 < Cε < ∞ for any n,

where μχ,j and με,j denote the j-th largest eigenvalues of the covariance ma-
trices of the common and idiosyncratic components, respectively. The linear
divergence of eigenvalues in (C1) is a prevailing and natural assumption in
the factor model literature, implying that all series in the panel are equally
important for the recovery of the factors. From (C1), it follows that wχ,j =
(wχ,1j , . . . , wχ,nj)

�, the normalised eigenvector of the covariance matrix of χt

corresponding to μχ,j , has its coordinates asymptotically bounded as
max1≤i≤n |wχ,ij | = O(n−1/2) for all j ≤ r (see (6) below). Thanks to the eigen-
gap and the Davis-Kahan theorem (Yu, Wang and Samworth, 2015), the coordi-
nates of the r leading eigenvectors of the sample covariance matrix of the data,
ŵx,j , j ≤ r, are also bounded asymptotically as max1≤j≤r max1≤i≤n |ŵx,ij | =
Op(n

−1/2). On the other hand, precisely due to the lack of this eigengap, mean-
ingful control of the behaviour of ŵx,ij , j ≥ r + 1 is not obvious under the
dynamic factor model in (1).
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Motivated by these observations, we propose to modify ŵx,j via scaling as

ŵsc
x,j = ν−1

j ŵx,j with νj = max{1, δ−1
n max

1≤i≤n
|ŵx,ij |}, (3)

which ensures that the entries of the modified eigenvectors are bounded by
some δn of order n−1/2. By substituting ŵsc

x,j in place of ŵx,j in (2), we obtain a
novel scaled PC estimator of the common component. While conceptually and
computationally simple, the scaled PC estimator attains the same asymptotic
error bound as the oracle PC estimator obtained with the true r, successfully
curtailing the error attributed to spurious factors without requiring the accurate
estimation of the factor number beyond that r̂ ≥ r+1. We also propose a well-
motivated choice of the tuning parameter δn.

The good performance of the scaled PC estimator when r is over-estimated,
in contrast to that of the PC estimator, is demonstrated on simulated datasets.
In addition, we investigate the impact of the non-negligible errors in the PC
estimator (or lack thereof in the modified PC estimator) on large covariance
matrix estimation through an application to risk minimisation of a portfolio of
financial time series.

1.2. Relationship to the existing literature

Recently, Bai and Ng (2019) adopted the eigenvalue shrinkage for minimum-rank
factor analysis under time series factor models. Our approach is distinguished
from theirs in that we aim at avoiding the reliance on the accurate estimation
of the factor number itself in establishing the theoretical consistency of the
estimator of common components. Sharing the aim closer to ours, Fan and Liao
(2019) propose a diversified factor estimator obtained as cross-sectional averages
of the data with respect to pre-determined weights and show their robustness
to over-estimating the number of factors.

We mention two other approaches to time series factor analysis for which our
work can be relevant. First, assuming that all serial dependence in the data is
captured by the factors, Lam, Yao and Bathia (2011) and Lam and Yao (2012)
proposed an alternative approach to factor model analysis. Since their method
is also based on eigenanalysis of a suitable covariance matrix, our methodology
can be readily adapted to this case as well. Second, Forni et al. (2000) considered
a richer factor structure where factors are allowed to have lagged effects on the
data. Estimation of such model is in general based on spectral PC analysis, but
other approaches exist that require standard PC analysis at the initial or final
step (e.g., Forni et al., 2005, Bai and Ng, 2007, Forni et al., 2009, and Doz,
Giannone and Reichlin, 2011), and our proposed modifications can be easily
adopted for this purpose.

Finally, we note that there are some links between the model and the esti-
mators proposed here and the vast literature on statistical models and methods
based on random matrix theory, see El Karoui (2008), Cai, Ma and Wu (2013),
Donoho, Gavish and Johnstone (2018) and Donoho and Ghorbani (2018), and
also Paul and Aue (2014) for an overview.
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Structure of the paper

The rest of the paper is organised as follows. We introduce the approximate
factor model in Section 2, where we also discuss its estimation via PC, and
we investigate the behaviour of factor number estimators as well as the impact
of over-estimating the factor number on the PC estimator. In Section 3, we
motivate and introduce the modified PC estimator based on scaling, and study
its theoretical properties. Comparative simulation study of PC-based estimators
is conducted in Section 4, and we apply the proposed estimators to financial
data analysis in Section 5. All the proofs of the main theoretical results are
in Appendix A. An extended version of this manuscript containing additional
theoretical and simulation results is available as Barigozzi and Cho (2020).

Notation

For a given m × n matrix B with bij denoting its (i, j) element, its spectral

norm is defined as ‖B‖ =
√

μ1(BB�), where μk(C) denotes the k-th largest

eigenvalue of C, its Frobenius norm as ‖B‖F =
√∑m

i=1

∑n
j=1 b

2
ij , and also

‖B‖max = max1≤i≤m max1≤j≤n |bij |. The sub-exponential norm of a random
variable X is defined as ‖X‖ψ1 = infk{k : E[exp(|X|/k)] ≤ 2}. For a given set
Π, we denote its cardinality by |Π|. For any vector a = (a1, . . . , am) ∈ R

m, we
denote ‖a‖0 = |{1 ≤ i ≤ m : ai �= 0}| and ‖a‖∞ = max1≤i≤m |ai|. Also, we
use the notations a ∨ b = max(a, b) and a ∧ b = min(a, b). The notation a � b
indicates that a is of the order of b, and a � b indicates that a−1b → 0. We
denote an m×m-identity matrix by Im.

2. The approximate dynamic factor model

2.1. Model and assumptions

Recall the factor model in (1), where an n-dimensional vector time series xt =
(x1t, . . . , xnt)

� is divided into the common component χt = (χ1t, . . . , χnt)
� =

Λft driven by the vector of r latent factors ft = (f1t, . . . , frt)
�, with Λ =

[λ1, . . . ,λn]
� as the n× r matrix of loadings, and the idiosyncratic component

εt = (ε1t, . . . , εnt)
�. Without loss of generality, we assume E(fjt) = E(εit) = 0

for all i, j, t.
We now list and motivate the assumptions imposed on the approximate dy-

namic factor model (1) (see e.g., Fan, Liao and Mincheva (2013) and Barigozzi,
Cho and Fryzlewicz (2018) for similar conditions).

Assumption 1 (Identification).
(i) E(ftf

�
t ) = Ir for all t ≥ 1.

(ii) There exists a positive definite r × r matrix H with distinct eigenvalues
and such that n−1Λ�Λ → H as n → ∞.

(iii) There exists λ̄ ∈ (0,∞) such that ‖Λ‖max < λ̄.
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(iv) There exists Cε ∈ (0,∞) such that, for any t ≥ 1,

n∑
i=1

n∑
i′=1

aiai′E(εitεi′t) < Cε

for any sequence of coefficients {ai}ni=1 satisfying
∑n

i=1 a
2
i = 1.

(v) E(fjtεit′) = 0 for all i ≤ n, j ≤ r and t, t′ ≤ T .

We adopt the normalisation given in Assumption 1 (i)–(ii) for the purpose
of identification; in general, factors and loadings are recoverable up to a linear
invertible transformation only. Assumption 1 (iii) is a commonly found assump-
tion in the factor model literature (see Assumption B in Bai (2003)) which, to-
gether with Assumption 1 (ii), requires that factors influence all cross-sections
to a similar degree. Assumption 1 (iv) allows for mild cross-sectional depen-
dence across idiosyncratic components. In other words, we are considering an
approximate factor structure, as opposed to the classical exact factor model
where εt is assumed to be uncorrelated cross-sectionally. It is possible to relax
Assumption 1 (v) and allow for weak dependence between the factors and the
idiosyncratic components (c.f. Assumption D of Bai and Ng, 2002).

In order to motivate the assumptions further, we adopt the notations

Γχ = Λ

(
1

T

T∑
t=1

E(ftf
�
t )

)
Λ� = ΛΛ�, Γε =

1

T

T∑
t=1

E(εtε
�
t ), and

Γx = Γχ + Γε.

If ft and εt are covariance stationary, then these matrices are the correspond-
ing population covariance matrices. Also, we denote the eigenvalues (in non-
increasing order) of Γχ, Γε and Γx by μχ,j , με,j and μx,j , respectively. Then,
Assumption 1 leads to (C1)–(C2) in Section 1.1, i.e., μχ,j , j ≤ r diverge linearly
in n as n → ∞, whereas με,1 is bounded for any n. This condition coincides with
Definition 2 in Chamberlain and Rothschild (1983) and Assumption 2 in Fan,
Liao and Mincheva (2013), and it is also in the same spirit as Assumption C.4
in Bai (2003) where cross-sectional dependence of idiosyncratic components is
assumed to be weak.

Moreover, (C1)–(C2) imply that, due to Weyl’s inequality, the eigenvalues of
Γx, μx,j , satisfy the following eigengap conditions:

(C3) The r largest eigenvalues, μx,1, . . . , μx,r, diverge linearly in n as n → ∞;
(C4) the (r + 1)-th largest eigenvalue, μx,r+1, stays bounded for any n.

From (C1)–(C4) above, it is clear that for consistent estimation of the common
components, approximate factor models need to be considered in the asymptotic
limit where n → ∞, i.e., these models enjoy what is sometimes referred to as
the blessing of dimensionality. In particular, we require:

Assumption 2. n → ∞ as T → ∞, with n = O(Tκ) for some κ ∈ (0,∞).
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Under Assumption 2, we operate in a high-dimensional setting that permits
n � T , unlike in the random matrix theory literature where it is typically
assumed that n/T → y ∈ (0,∞) (Johnstone, 2001). Furthermore we assume:

Assumption 3 (Tail behaviour).
(i) max1≤j≤r max1≤t≤T ‖fjt‖ψ1 < Bf for some Bf ∈ (0,∞).
(ii) max1≤t≤T ‖εt‖ψ1 < Bε for some Bε ∈ (0,∞), where ‖εt‖ψ1 =

supv∈Rn: ‖v‖=1 ‖v�εt‖ψ1 .

Assumption 4 (Strong mixing). Denoting the σ-algebra generated by {(ft, εt),
s ≤ t ≤ e} by Fe

s , let α(k) = max1≤t≤T supA∈Ft
−∞,B∈F∞

t+k
|P(A)P(B) − P(A ∩

B)|. Then, there exist some fixed cα, β ∈ (0,∞), such that α(k) ≤ exp(−cαk
β)

for all k, T ∈ Z
+.

The sub-exponential tail conditions in Assumption 3, along with Assump-
tion 4, allow us to control the deviation of sample covariance estimates from their
population counterparts via Bernstein-type inequality (see Theorem 1 of Mer-
levède, Peligrad and Rio, 2011) under the approximate dynamic factor model.
We stress that either strict or weak stationarity of fjt and εit is not required
in performing the PC-based estimation, provided that the loadings are time-
invariant.

2.2. Estimation via principal component analysis

The most common way to estimate the approximate factor model (1) is by
means of PC analysis, and the asymptotic properties of the PC estimator have
been well-established: in particular, we refer to Fan, Liao and Mincheva (2013)
where a set-up similar to ours is considered.

Recall that the PC estimator of the common component: χ̂pc
it =∑r̂

j=1 ŵx,ijŵ
�
x,jxt, where ŵx,j denote the j-th leading normalised eigenvector

of the sample covariance Γ̂x = T−1
∑T

t=1 xtx
�
t , and r̂ is an estimator of the

number of factors r. Theorem 1 of Barigozzi, Cho and Fryzlewicz (2018), which
is a refinement of Corollary 1 of Fan, Liao and Mincheva (2013), establishes a
uniform bound on the estimation error over 1 ≤ i ≤ n and 1 ≤ t ≤ T of the PC
estimator when r is known, i.e., r̂ = r, under Gaussianity of the idiosyncratic
component. Here, we generalise the theorem to the case of sub-exponential dis-
tributions as specified in Assumption 3. Its proof can be found in Section B.2
of Barigozzi and Cho (2020).

Proposition 1. Under Assumptions 1–4, the PC estimator χ̂pc
it with r̂ = r

satisfies

max
1≤i≤n

max
1≤t≤T

|χ̂pc
it − χit| = Op

{(√ log(n)

T
∨ 1√

n

)
log(T )

}
.

Two key results are required for proving Proposition 1. First, we make use
of the eigengap between μx,r and μx,r+1 increasing linearly in n (see (C3)–
(C4)), which ensures that the eigenspace of Γχ is consistently estimated by the
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r leading eigenvectors of Γ̂x. More specifically, there exists a diagonal r × r
matrix S with entries ±1, such that

‖Ŵx −WχS‖ ≤ 23/2
√
r‖Γ̂x − Γχ‖
μχ,r

= Op

(√
log(n)

T
∨ 1

n

)
, (4)

where Ŵx = [ŵx,j , j ≤ r] and Wχ = [wχ,j , j ≤ r]. The result in (4) follows
from the modified Davis-Kahan theorem of Yu, Wang and Samworth (2015),

the lower bound of crn on μχ,r from (C1), and the closeness between Γ̂x and
Γx under Assumptions 2–4 (see Lemma 3 (i) in Section A.1). We can further
show that

√
n
∥∥∥ϕ�

i (Ŵx −WχS)
∥∥∥ = Op

(√
log(n)

T
∨ 1√

n

)
, (5)

where ϕi an n-vector of zeros except for its i-th element being one, see Lem-
ma 3 (iii).

Secondly, denoting the eigendecomposition of the covariance matrix of the
common components by Γχ = WχMχW

�
χ with Mχ = diag(μχ,1, . . . , μχ,r),

(C1) leads to

max
1≤i≤n

√√√√ r∑
j=1

w2
χ,ij = max

1≤i≤n
‖ϕ�

i Wχ‖ ≤ max
1≤i≤n

‖ϕ�
i Γχ‖ ‖Wχ‖ ‖M−1

χ ‖ = O

(
1√
n

)
,

(6)

i.e., asymptotically, each element of Wχ is O(n−1/2). This, combined with (5),
leads to

max
1≤i≤n

max
1≤j≤r

|ŵx,ij | = Op

(
1√
n

)
. (7)

The bound in (7) serves as the main motivation behind introducing the modified
PC estimators in Section 3.

Remark 1 (Optimality of PC). The PC estimator is appealing for the fol-
lowing reasons. First, under the assumption of spherical idiosyncratic compo-
nents, εt ∼iid Nn(0, σ

2In) for some σ2 > 0, the PC estimator of the loadings
is asymptotically equivalent to their Maximum Likelihood estimator (Tipping
and Bishop, 1999). Second, the sample principal subspace estimator is mini-
max rate optimal, see Theorem 5 of Cai, Ma and Wu (2013) which shows that

E‖ŴxŴ
�
x − WxW

�
x ‖2F � rn/(μχ,rT ). This, combined with (C1), is compa-

rable to the convergence rate reported in (4), although the latter is obtained
under the more general approximate dynamic factor model. Third, when allow-
ing for non-spherical and possibly correlated idiosyncratic components, the PC
estimator by definition delivers the linear combination of the data with largest

variance in the sense that, for the j-th PC, V̂ar(ŵ�
x,jxt) ≥ V̂ar(ω�xt) for any ω

satisfying ‖ω‖ = 1 and ω�ŵx,j′ = 0 for any j′ ≤ j − 1, where V̂ar(·) denotes
the sample variance operator.
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2.3. (Over-)estimation of the number of factors

In practice, the true number of factors r is unknown and its estimation has
been one of the most researched problems in the factor model literature (see the
references in the Introduction). Based on the conditions (C3)–(C4), a prevailing
approach is to identify a ‘large’ gap between the successive estimated eigenvalues
μ̂x,j , 1 ≤ j ≤ rmax of the sample covariance matrix Γ̂x, where rmax denotes the
maximum allowable number of factors often required as an input parameter to
the estimation procedure. Here we focus on two of the most popular methods.

The information criterion-based method proposed by Bai and Ng (2002) es-
timates r as

r̂ = argmin
1≤q≤rmax

IC(q), where IC(q) = log

⎛⎝ 1

n

n∑
j=q+1

μ̂x,j

⎞⎠+ q · g(n, T ), (8)

with a penalty function g(n, T ) satisfying g(n, T ) → 0 and {(n∧T ) · g(n, T )} →
∞ as n, T → ∞. The eigenvalue ratio-based estimator by Ahn and Horenstein
(2013), returns

r̂= argmax
1≤q≤rmax

GR(q), where GR(q)=
log(1+ μ̂∗

x,q)

log(1+ μ̂∗
x,q+1)

with μ̂∗
x,q =

μ̂x,q∑n
j=q+1 μ̂x,j

.

(9)

Implicitly, the information criterion in (8) performs thresholding on the scaled
sample eigenvalues μ̂∗

x,q with respect to g(n, T ), and selects an index q among
those that correspond to μ̂∗

x,q surviving the thresholding. On the other hand,
the eigenvalue ratio approach in (9) considers the ratio of the successive scaled
eigenvalues without taking into account the size of the eigenvalues. This differ-
ence frequently leads to distinct estimators from the different approaches, not
to mention that, as shown in Alessi, Barigozzi and Capasso (2010), the various
choices of g(n, T ) often result in different factor number estimators. Another
parameter whose choice may affect the estimation result for both of the esti-
mators (8)–(9) is rmax. Moreover, while (C3)–(C4) are asymptotic conditions,
the lack of an obvious eigengap in the empirical eigenvalues poses a challenge
in the estimation of r. Consequently, the estimated number of factors is highly
variable as the following quantities vary: the dimensions n and T , the degree of
cross-sectional correlations in the idiosyncratic components, and the signal-to-
noise ratio represented by the ratio between Var(χit) and Var(εit), see e.g., the
numerical studies in Ahn and Horenstein (2013) and Trapani (2018).

For an illustration, we conduct a comparative simulation study by applying
the two estimators (8) (with g(n, T ) = (n+ T ) log(n∧ T )/(nT ), i.e., IC2 of Bai
and Ng (2002)) and (9) with a generous but reasonable choice rmax = [

√
n ∧ T ],

to datasets simulated under Model 1 as described in Section 4. The results are
reported in Figure 1. It is apparent that the estimator (8) fails to return the true
number of factors r = 5 in the presence of moderate degree of cross-sectional cor-
relations in εt, especially when n is small. While (9) performs considerably better
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Fig 1. Box plots of r̂ returned by (8) (BN) and (9) (AH) over 1000 realisations gen-
erated under Model 1 with T ∈ {500, 1000, 2000} (top to bottom), n ∈ {200, 500, 1000}
(left to right) and φ ∈ {0.5, 1, 2} (left to right within each plot, controls the noise-to-
signal ratio); horizontal broken lines indicate the true factor number r = 5.

for this particular data generating process, we provide in Section C.1 of Barigozzi
and Cho (2020) the scenarios where this method also fails to return the correct
number of factors. We note that the performance of the estimators does not
improve with increasing sample size T . In almost all cases considered, the factor
number is over-estimated, i.e., r̂ ≥ r, with (9) occasionally delivering r̂ < r.

Obviously, when r̂ < r, the PC estimator (2) or indeed, any estimator of the
common component does not capture the contribution from one or more factors,
which inevitably incurs a non-negligible error and no remedy to this problem
exists. To circumvent this problem, the user may be tempted to increase r̂ based
on the reasoning that the contribution of spurious factors beyond the r-th one is
negligible and thus such a strategy would be risk averse. However, this reasoning
is incorrect as we show in the formal theoretical treatment of the impact of over-
estimation of r on factor analysis in the next section.

2.4. PC estimator when r is over-estimated

While Onatski (2015) shows in his Proposition 1 that the errors due to the
over-estimation of r is negligible once aggregated over cross-sections and time,
a formal analysis of the impact of the over-estimated factor number on the PC
estimators of individual common components has not yet been conducted to the
best of our knowledge.

Recalling the PC estimator (2), we have the following decomposition of the
estimation error when r̂ > r,

χ̂pc
it − χit =

⎛⎝ r∑
j=1

ŵx,ijŵ
�
x,jxt − χit

⎞⎠+

r̂∑
j=r+1

ŵx,ijŵ
�
x,jxt. (10)
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The rate of convergence for the error in the oracle PC estimator (first term in
the RHS of (10)) is given in Proposition 1. Our interest lies in the theoretical
treatment of the second term representing the over-estimation error. This faces
two main challenges.

(a) The large eigengap between μχ,r and μχ,r+1 = 0 (see (C1)) and Davis-
Kahan theorem play a key role in controlling the distance between the
empirical principal subspace spanned by the r leading eigenvectors of Γ̂x

and those of Γχ, as reported in (4). On the other hand, due to the lack
of eigengap between the successive μx,j , j ≥ r + 1 (see (C4)) or any other
structural assumptions, the behaviour of ŵx,j for j ≥ r + 1 cannot be
controlled in a meaningful way.

(b) The eigenvectors ŵx,j , 1 ≤ j ≤ r̂, are obtained from the full sample covari-
ance matrix and thus are dependent on xt, 1 ≤ t ≤ T , which, together with
the issue noted in (a), makes it difficult to analyse the stochastic properties
of ŵ�

x,jxt for j ≥ r + 1.

With these difficulties, we derive the following uniform but uninformative
upper bound on the over-estimation error:

max
1≤i≤n

max
1≤t≤T

∣∣∣∣∣∣
r̂∑

j=r+1

ŵx,ijŵ
�
x,jxt

∣∣∣∣∣∣ ≤
r̂∑

j=r+1

max
1≤i≤n

|ŵx,ij |‖ŵx,j‖ · max
1≤t≤T

‖xt‖

= Op(
√
n log(T )). (11)

In the next section, we propose modifications of the PC estimator which
directly address the issue raised in (a) but first, we introduce a novel ‘blockwise’
estimation technique which, under the time series factor model (1), allows for
bypassing the issue raised in (b) and hence enables a rigorous theoretical analysis
of the PC estimator when r̂ ≥ r + 1. For this, we split the data into blocks
of size bT , say {xt, t ∈ I�} for I� := {(� − 1)bT + 1, . . . ,min(�bT , T )}, � =
1, . . . , LT := �T/bT �. Also, denote by Ī� := {1, . . . , T} \

⋃
m∈{�,�±1} I�, i.e., the

set of indices that do not belong to I� or its adjacent blocks, and by ŵ
(�)
x,j the

j-th leading eigenvector of Γ̂
(�)
x = |Ī�|−1

∑
t∈Ī�

xtx
�
t , i.e., the sample covariance

matrix constructed by omitting the �-th and its adjacent blocks. Then, we obtain
the blockwise PC estimator of χit as

χ̂bpc
it =

r̂∑
j=1

ŵ
(�)
x,ij(ŵ

(�)
x,j)

�xt for t ∈ I�, 1 ≤ � ≤ LT . (12)

In other words, the common components are estimated in a blockwise manner
as projections of xt onto the principal subspace of the subsample obtained from
omitting the current block as well as its immediate neighbours. We select the
block size bT to balance between avoiding the asymptotic loss in efficiency by
having |Ī�| ≥ T − 3bT as large as possible, and ensuring that the dependence

between ŵ
(�)
x,j and xt, t ∈ I� is sufficiently weak under the strong mixing condi-
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tion in Assumption 4 (ii), hence permitting the rigorous theoretical treatment

of (ŵ
(�)
x,j)

�xt for j ≥ r + 1.

Proposition 2. Let Assumptions 1–4 hold and assume r+1 ≤ r̂ ≤ r̄ for some
fixed r̄. Additionally, assume that ft and εt are weakly stationary. Suppose

max
1≤i≤n

max
r+1≤j≤r̂

|ŵ(�)
x,ij | = Op(n

−α/2), (13)

for some 1 ≤ � ≤ LT and α ∈ [0, 1], and let bT = log1/β+δ T for β in Assump-
tion 4 and some fixed δ > 0. Then,

max
1≤i≤n

max
1≤t≤T

|χ̂bpc
it − χit| = Op

[
n(1−α)/2

(√
log(n)

T
∨ 1√

n

)
log(T )

]
. (14)

The proof of Proposition 2 is provided in Appendix A.2. Condition (13) is

very general and its motivation is as follows. Writing xit =
∑n∧T

j=1 ŵx,ijŵ
�
x,jxt,

we have

1

T

T∑
t=1

x2
it =

n∧T∑
j=1

ŵ2
x,ij μ̂x,j < ∞ a.s. for all 1 ≤ i ≤ n, (15)

which implies that max1≤i≤n |ŵx,ij | = O(μ̂
−1/2
x,j ). In addition, the rate of con-

vergence of the sample covariance matrix n−1‖Γ̂x−Γx‖ = Op(
√

log(n)/T ) (see

Lemma 3) and (C4) yields μ̂x,j = Op(n
√

log(n)/T ) = op(n) for j ≥ r+1. These
arguments hold for blockwise estimators as well, and indicate that there may

be (spuriously) large coordinates in the empirical eigenvectors ŵ
(�)
x,j , j ≥ r + 1

that fall in the regime of α < 1. In other words, (13) is merely a consequence of
the boundedness of μx,j , j ≥ r + 1 without any further structural assumptions
on the model (1).

It has been shown that for a random matrix M ∈ R
n×T with independent

entries, the eigenvectors of T−1M�M are ‘delocalised’ in probability with the
bound 1/

√
n up to a logarithmic factor (see Theorem B.3 of Vu and Wang

(2015) and a survey given in O’Rourke, Vu and Wang (2016)). In view of this,
when xt ∼iid (0,Γx) and follows an exact factor model with Γε = In, the con-
dition (13) is met with α = 1 up to a logarithmic factor, and the consistency of
the PC estimator derived in Theorem 1 carries over even with r̂ > r. However,
under the approximate time series factor model adopted in this paper, there is
no such theoretical guarantee to the best of our knowledge. In Section 4, we
verify that, under a variety of data generating models, the non-leading empiri-
cal eigenvectors indeed exhibit ‘sparsity’ with few very large coordinates, thus
corresponding to the regime α � 0.

The following Examples 1–2 provide the lower bounds complementing upper
bounds in (13) and (14) for a particular example where Γε follows a sparse
spiked covariance model. Together, Proposition 2 and Examples 1–2 are indica-
tive of the potential pitfalls stemming from the over-estimation of r for the PC
estimator of the common component.



2904 M. Barigozzi and H. Cho

Example 1 (Lower bound on max1≤i≤n maxr+1≤j≤r̂ |ŵx,ij |). We assume that
Γε = Δnvv

� + σ2In with ‖v‖0 � nα for some α ∈ [0, 1) and v�v = 1. Also, we
suppose n � Tκ for some κ > 0 (see Assumption 2). This leads to

Γx = WχMχW
�
χ +Δnvv

� + σ2In, (16)

where Wχ is the n × r matrix of normalised eigenvectors and Mχ the r × r
diagonal matrix of eigenvalues of Γχ. Further, we assume that Δn � nν for some
max(0, 1 − 1/(2κ) + α/2) < ν < 1, and let v�wχ,j = 0 for all j = 1, . . . , r. In
this model, the idiosyncratic component has a one-factor structure with a weakly
pervasive factor where its ‘strength’ Δn increases with α. We may interpret this
as the weak factor being prevalent in all the elements belonging to a group
defined by the support of v. In time series setting, such a structure has also
been considered by De Mol, Giannone and Reichlin (2008), Lam, Yao and Bathia
(2011) and Onatski (2012), among others.

When ν > 0, the model (16) does not fulfil Assumption 1 (iv). However, even
when ν ∈ (0, 1), the oracle PC estimator obtained with r̂ = r can be shown

to be consistent by adapting the proof of Proposition 1: From ‖Γ̂x − Γχ‖ ≤
‖Γ̂x − Γx‖+ ‖Γε‖, we yield

‖Ŵx −WχS‖ = Op

(√
log(n)

T
∨ 1

n1−ν

)
, and

max
1≤i≤n

max
1≤t≤T

|χ̂pc
it − χit| = Op

{(√ log(n)

T
∨ 1

n(1−ν)/2

)
log(T )

}
. (17)

Under model (16), for large enough n, we have

wx,j =

{
wχ,j for 1 ≤ j ≤ r,
v for j = r + 1,

with μx,j =

⎧⎨⎩ μχ,j + σ2 for 1 ≤ j ≤ r,
Δn + σ2 for j = r + 1,
σ2 for r + 2 ≤ j ≤ n.

As in (4), we apply Corollary 1 of Yu, Wang and Samworth (2015) and yield

‖ŵx,r+1 − sv‖ ≤ 23/2‖Γ̂x − Γx‖
min(μx,r − μx,r+1, μx,r+1 − μx,r+2)

= Op

(
n1−ν

√
log(n)

T

)
= op(n

−α/2) (18)

for some s ∈ {−1, 1}, i.e., ŵx,r+1 achieves consistency in estimating v albeit at
a slower convergence rate than that reported in (4). Also, the sparsity of v leads
to n−α/2(max1≤i≤n |vi|)−1 = O(1), and thus from (18), for some fixed C0 > 0,

max
1≤i≤n

|ŵx,i,r+1| = max
1≤i≤n

|vi|+Op

(
n1−ν

√
log(n)

T

)
≥ C0n

−α/2. (19)
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Example 2 (Lower bound on the estimation error in (14)). Continuing with the
model (16) imposed on Γx, we further assume that xt ∼iid Nn(0,Γx) and n � T
for simplicity (i.e., κ = 1) such that ν ∈ ((1+α)/2, 1). Under independence, we
simplify the blockwise estimator as

χ̂bpc
it =

r̂∑
j=1

ŵ
(�)
x,ij(ŵ

(�)
x,j)

�xt for t ∈ I�, � = 0, 1,

with I0 = {2u, 1 ≤ u ≤ �T/2�} = Ī1 and I1 = {2u + 1, 0 ≤ u ≤ �T/2�} = Ī0.
Suppose that r̂ = r + 1. Then there exist fixed Ck > 0, 1 ≤ k ≤ 4 such that

max
1≤i≤n

max
1≤t≤T

|χ̂bpc
it − χit| ≥ max

�=0,1
max
t∈I�

∣∣∣ŵ(�)
x,1,r+1

∣∣∣ ∣∣∣(ŵ(�)
x,r+1)

�xt

∣∣∣
− max

1≤i≤n
max
�=0,1

max
t∈I�

∣∣∣∣∣∣
r∑

j=1

ŵ
(�)
x,ij(ŵ

(�)
x,j)

�xt − χit

∣∣∣∣∣∣
≥ C1n

−α/2 max
�=0,1

max
t∈I�

∣∣∣(ŵ(�)
x,r+1)

�xt

∣∣∣− C2n
−(1−ν)/2

√
log(T )

≥ C3n
−α/2 ·

√
Δn log(T )− C2n

ν/2−1/2
√
log(T ) ≥ C4n

(ν−α)/2
√
log(T )

where all the inequalities except for the first are understood as holding with
probability tending to one. The second inequality follows from (17), (19) and
that n � T , with the rate

√
log(T ) due to the stronger Gaussian assumption

we impose here in place of the sub-exponential tail in Assumption 3 (ii). The
penultimate inequality holds by Theorem 3.4 of Hartigan (2014) since for each

� = 0, 1, we have (ŵ
(�)
x,r+1)

�xt ∼iid N (0, σ̃2) for t ∈ I� with

σ̃2 ≥ Δn

{
(ŵ

(�)
x,r+1)

�v
}2

+ σ2 ≥ Δn

{
1 + op(n

−α/2)
}
+ σ2

by applying Corollary 1 of Yu, Wang and Samworth (2015) as in (18). For
comparison, we derive the upper bound on the estimation error in this setting as

in Proposition 2. From (19), we have max�=0,1 max1≤i≤n |ŵ(�)
x,i,r+1| � n−α/2 and

by adopting the arguments analogous to those used in the proof of Proposition 2,
it is readily seen that

max
1≤i≤n

max
1≤t≤T

|χ̂bpc
it − χit| = Op(n

(ν−α)/2
√

log(T )),

i.e., the lower bound matches the upper bound in terms of the rate.

Examples 1–2 demonstrate that in the presence of weak factors, the PC
estimator can incur non-negligible error increasing with n due to the ‘localised’
behaviour of ŵx,j , j ≥ r + 1 when the factor number is over-estimated. In
practice, such situations can emerge when the idiosyncratic component exhibits
a group structure that induces the presence of weak factors. Chudik, Pesaran
and Tosetti (2011) discuss the plausibility of semi-weak and semi-strong factors
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corresponding to ‖Γε‖ � nν with ν ∈ (0, 1) in real datasets. In Section 5,
the daily returns of the stocks comprising the Standard & Poor’s 100 index
are analysed where Figure 6 shows a clear group structure in the idiosyncratic
component which is in line with the model (16). We also refer to Barigozzi and
Hallin (2017) where the network structure in the idiosyncratic component of the
similar dataset has been analysed in detail.

Remark 2 (Large covariance matrix estimation). Fan, Lv and Qi (2011) and
Fan, Liao and Mincheva (2013) investigate the problem of large covariance ma-
trix estimation with an estimator comprised of a factor-driven covariance matrix
of the common component and a thresholded idiosyncratic covariance matrix
under the assumption of sparsity on Γε (see (30)); in the former, the factors
are assumed to be observable and the latter extends the estimator to the case
of unobservable factors. For the consistency of the thresholded idiosyncratic
covariance matrix, Assumption 2.2 of Fan, Lv and Qi (2011) requires ε̂it, an
estimator of εit, to satisfy

max
1≤i≤n

1

T

T∑
t=1

|ε̂it − εit|2 = op(1) and max
1≤i≤n

max
1≤t≤T

|ε̂it − εit| = Op(1), (20)

and Lemma C.11 of Fan, Liao and Mincheva (2013) verifies the conditions for the
PC estimator combined with the estimator of r proposed in Bai and Ng (2002).
However, Proposition 1 indicates that the second condition in (20) may be
violated when r̂ > r. Moreover, our numerical studies in Section 4 demonstrate
that neither of the conditions in (20) are fulfilled by the PC estimator when the
idiosyncratic components are moderately correlated, which in turn implies that
the covariance matrix estimator of Fan, Liao and Mincheva (2013) will suffer
from relying on the accurate estimation of r. We further explore this point by
applying our methodology to estimating the covariance of a panel of financial
time series in Section 5.

3. Modification of the PC estimator

3.1. Scaled PC estimator

Recall that due to the presence of an eigengap (C3)–(C4) and the consistency

of the r leading eigenvectors of Γ̂x (see (4)), we obtain the uniform bound of
Op(n

−1/2) on |ŵx,ij |, j ≤ r, see (7). In other words, with large probability,
there exists some fixed cw > 0 such that |ŵx,ij |, j ≤ r is bounded by cwn

−1/2

uniformly in 1 ≤ i ≤ n and 1 ≤ j ≤ r. Motivated by these observations, we
propose the scaled PC estimator

χ̂sc
it =

r̂∑
j=1

ŵsc
x,ij(ŵ

sc
x,j)

�xt, where (21)

ŵsc
x,j = ν−1

j ŵx,j with νj = max

{
1,

√
n

cw
max
1≤i≤n

|ŵx,ij |
}
. (22)
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We can choose cw such that with large probability, the proposed scaling does
not alter the contribution from ŵx,j , j ≤ r to χ̂sc

it by yielding νj = 1 for j ≤ r,
even though it is applied without knowing r. On the contrary, for ŵx,j , j ≥ r+1,
any large contribution from the spurious factors is scaled down by the factor of
νj .

Remark 3 (Choice of cw). In our numerical analysis, we observe that the
performance of the scaled PC estimator does not vary much with respect to
reasonably chosen cw, see Figure 2 (the details of the experiment is deferred to
Section C.5 of Barigozzi and Cho (2020)). Unlike e.g., the methods based on
singular value thresholding, our scaled PC estimator does not ‘kill’ any factors
including the spurious ones, and thus avoids the hazard of under-estimating the
contribution of the factors completely provided that r̂ ≥ r. We find the choice of
cw = 1.1×√

n max1≤i≤n |ŵx,i1| works reasonably well and adopt it throughout
the numerical studies, which is shown to work well for a range of models in
Section 4.

Fig 2. Box plots of the estimation errors of χ̂bsc
it (cw) averaged over 1000 realisa-

tions generated under Model 1 of Section 4.1 with φ = 1, n ∈ {200, 500, 1000}
(left to right) and T ∈ {500, 1000, 2000} (top to bottom), for cw ∈ {0.8, . . . , 1.5} ×√
n max1≤i≤n |ŵx,i1| and the cross-validated choice (‘CV’) (left to right within each

plot).

Scaling preserves the orthogonality among ŵsc
x,j , j ≤ r̂, which facilitates the

theoretical treatment of the scaled PC estimator. Following the same reasoning
as in Section 2.4, we continue the discussion on the theoretical properties of the
scaled PC estimator by considering its blockwise counterpart, which, recalling



2908 M. Barigozzi and H. Cho

the notations from Section 2.4, is given by

χ̂bsc
it =

r̂∑
j=1

ŵ
sc,(�)
x,ij (ŵ

sc,(�)
x,j )�xt for t ∈ I�, 1 ≤ � ≤ LT , (23)

where ŵ
sc,(�)
x,j is defined analogously as in (22) with ŵ

(�)
x,j in place of ŵx,j .

Proposition 3. Let Assumptions 1–4 hold and suppose r+1 ≤ r̂ ≤ r̄ for some
fixed r̄. Additionally, assume that ft and εt are weakly stationary. Then, there
exists a fixed constant cw satisfying

cw ≥
√
n× max

1≤�≤LT

max
1≤i≤n

max
1≤j≤r

|ŵx,ij |

such that

max
1≤i≤n

max
1≤t≤T

|χ̂bsc
it − χit| = Op

{(√
log(n)

T
∨ 1√

n

)
log(T )

}
. (24)

The proof is provided in Appendix A.3. Compared to Propositions 1 and 2,
Proposition 3 establishes that under the same conditions, the scaled PC esti-
mator attains the same rate of convergence as the oracle PC estimator obtained
with the true number of factors, without requiring such knowledge and regardless
of the behaviour of ŵx,j , j ≥ r + 1.

3.2. Relationship to capped PC estimator

Similarly motivated by the uniform boundedness of |ŵx,ij | for j ≤ r (see (7)),
Barigozzi, Cho and Fryzlewicz (2018) proposed the capped PC estimator of χit:

χ̂cp
it =

r̂∑
j=1

ŵcp
x,ij(ŵ

cp
x,j)

�xt, (25)

where each element of ŵcp
x,j is obtained by capping ŵx,ij as

ŵcp
x,ij = ŵx,ij I

(
|ŵx,ij | ≤

cw√
n

)
+ sign(ŵx,ij) ·

cw√
n
I

(
|ŵx,ij | >

cw√
n

)
(26)

for some fixed cw > 0. Capping can be viewed as the projection of each ŵx,j

onto the �∞-sphere of radius cwn
−1/2. As with scaling, asymptotically, capping

does not alter the contribution from the leading r eigenvectors of Γ̂x, while
it truncates any large contribution from spurious factors when r̂ ≥ r + 1, all
without the knowledge of the true r. We generalise Theorem 2 of Barigozzi, Cho
and Fryzlewicz (2018) whereby lifting the assumption of Gaussianity imposed
on εt in the latter; the proof can be found in Section B.3 of Barigozzi and Cho
(2020).

Proposition 4. Let Assumptions 1–4 hold and suppose r + 1 ≤ r̂ ≤ r̄ for
some fixed r̄. Then, there exists a fixed constant cw satisfying cw ≥ √

n ×
max1≤i≤n max1≤j≤r |ŵx,ij | such that max1≤i≤n max1≤t≤T |χ̂cp

it − χit| =
Op(log T ).
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Refinement of the upper bound given in Proposition 4 is a difficult task as
reasoned in (a)–(b) of Section 2.4, even when considering its blockwise version,

χ̂bcp
it , due to the lack of orthogonality of the capped eigenvectors. Nevertheless,

Proposition 4 shows that the capped estimator χ̂cp
it improves upon the worst

case performance of the PC estimator reported in (11).
Unlike the capped PC estimator, the scaled PC estimator shrinks down the

eigenvectors after modification from ‖ŵx,j‖2 = 1 to ‖ŵsc
x,j‖2 = ν−1

j , which
further curtails the spurious contribution from ŵx,j , j ≥ r+1 as demonstrated
in the following example.

Example 3. For simplicity, let us ignore the stochastic nature of ŵx,j and sup-
pose that ŵx,j′ for some j′ ≥ r+1 is approximately sparse. That is, there exists
S ⊂ {1, . . . , n} with |S| = O(1) and a fixed c0 > 0 such that |ŵx,ij′ | ≥ c0, i ∈ S,
while maxi/∈S |ŵx,ij′ | = O(n−1/2). Then, we have ‖ŵsc

x,j′‖2 ≤ cw(c0
√
n)−1, which

shrinks the overall contribution of the j′-th estimated factor to χ̂sc
t by the fac-

tor of
√
n, in comparison with that to the PC estimator. In the same sce-

nario, however, capping does not always lead to ‖ŵcp
x,j′‖ = o(1). Consider e.g.,

ŵx,j′ = (1/
√
2, 1/

√
2(n− 1), . . . , 1/

√
2(n− 1))� and cw/

√
n ≥ 1/

√
2(n− 1),

in which case ‖ŵcp
x,j′‖ ≥ 1/

√
2.

3.3. Relationship to eigenvalue shrinkage

Recalling that max1≤i≤n |ŵx,ij | = O(μ̂
−1/2
x,j ) (see the discussion following (15)),

we may re-write the scaling factor νj using the choice

cw = 1.1×
√
n max

1≤i≤n
|ŵx,i1|

as suggested in Remark 3:

νj = max

{
1,

max1≤i≤n |ŵx,ij |
1.1×max1≤i≤n |ŵx,i1|

}
= max

{
1,

√
Cj μ̂x,1

μ̂x,j

}
, such that

χ̂sc
it =

r̂∑
j=1

min

{
1,

√
μ̂x,j

Cj μ̂x,1

}
ŵx,ijŵ

�
x,jxt

with some fixed Cj > 0. In other words, for some choice of cw, the scaled
PC estimator admits a representation as a PC estimator combined with the
eigenvalue-based shrinkage. Ideal choices for Cj are Cj � μ̂x,j/μ̂x,1 for j ≥ r+1,
and Cj ≤ μ̂x,j/μ̂x,1 for j ≤ r which, however, are infeasible since they require
the knowledge of r. We consider a simpler but feasible choice of Cj = 1 for all
j, and define the modified PC estimator based on eigenvalue shrinkage:

χ̂sh
it =

r̂∑
j=1

√
μ̂x,j

μ̂x,1
· ŵx,ij(ŵx,j)

�xt. (27)

Its blockwise version χ̂bsh
it is defined analogously with ŵ

(�)
x,j and the correspond-

ing eigenvalues μ̂
(�)
x,j replacing ŵx,j and μ̂x,j , respectively. This estimator is ex-
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pected to keep under control the over-estimation error, since μ̂x,j/μ̂x,1 = op(1)
for j ≥ r + 1 while being asymptotically bounded away from zero for j ≤ r.
Hence, χ̂sh

it preserves the contribution of the leading PCs although with a pos-
sible bias. From the simulation studies in Section 4, we observe that any bias
incurred by over-shrinkage is well compensated by its effectiveness in shrinking
down the spuriously large over-estimation error.

Remark 4 (Eigenvalue shrinkage). The good performance of the shrinkage es-
timator in (27) may be explained by its link to the literature on eigenvalue
shrinkage-based estimators. Donoho, Gavish and Johnstone (2018) and Donoho
and Ghorbani (2018) investigate the optimal eigenvalue shrinkage for spiked co-
variance matrix estimation when xt ∼iid Nn(0,Γx) with μx,1 ≥ . . . ≥ μx,r > 1
and μx,j = 1, j ≥ r + 1. It has been shown that for any loss function consid-
ered therein, the optimal eigenvalue shrinkage function η yields η(μ̂x,j) < μ̂x,j .
Heuristically, shrinkage of eigenvalues not only accounts for the upward shift
of empirical eigenvalues, but also the inconsistency in empirical eigenvectors
(Donoho, Gavish and Johnstone, 2018).

4. Simulation studies

4.1. Set-up

We consider the following data generating model which allows for serial corre-
lations in fjt and both serial and cross-sectional correlations in εit.

xit = r−1/2
r∑

j=1

λijfjt +
√
φεit, 1 ≤ i ≤ n; 1 ≤ t ≤ T, where (28)

fjt = ρf,jfj,t−1 + ujt, εit = ρε,iεi,t−1 + vit,

with factor loadings λij ∼iid N (0, 1), factor innovations ujt ∼iid N (0, 1/(1 −
ρ2f,j)), and the autoregressive parameters as ρf,j = ρf−0.05(j−1) with ρf = 0.5.
For the idiosyncratic innovations vit, we consider the following two models.

Model 1. With H = 10, eit ∼iid N (0, 1−ρ2ε,i) and βi ∼iid Unif{−0.15, 0.15},
we generate vit = (1 + 2β2

i H)−1/2(eit + βi

∑i+H
l=i−H,l �=i elt), and set ρε,i ∼iid

Unif{0.2,−0.2}. This model has been taken from Bai and Ng (2002) except
that we select the parameters ρε,i, βi and H of smaller magnitude such that the
problem of identifying r is in fact easier here than in the original paper.

Model 2 (Cai, Ma and Wu, 2015). The vector vt = (v1t, . . . , vnt)
� is

such that vt = Γ
1/2
v et, where Γv = VΔV�+In, and et ∼iid Nn(0, (1−ρ2ε,i)In).

The diagonal matrix Δ has r non-zero eigenvalues taking equidistant values
from 20 to 10, and V is chosen as the r leading left singular vectors of a matrix
M ∈ R

n×r, whose first [�n] rows are drawn independently from N (0, 1) and
the rest are set to zero. By construction, this models adds r additional ‘weak’
factors stemming from the large (although bounded for all n) eigenvalues of Γv.
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Model 1 provides a benchmark as it is popularly adopted in the factor model
literature, while Model 2 mimics the case of weak factors considered in Exam-
ples 1–2.

We control the ‘noise-to-signal’ ratio with φ ∈ {0.5, 1, 2} such that larger
values of φ correspond to the low signal-to-noise ratio. Throughout, we set
r = 5, and consider T ∈ {500, 1000, 2000} and n ∈ {200, 500, 1000}, and � ∈
{0.2, 0.5, 0.9} for Model 2.

We explore the in-sample estimation accuracy of the PC estimator χ̂pc
it in

(2), the scaled estimator χ̂sc
it in (21), the capped estimator χ̂cp

it in (25) and
the shrinkage estimator χ̂sh

it in (27), with and without blockwise estimation for
which we set bT = [log2 T ]. For estimating r, we consider the two estimators
(8) (‘BN’) and (9) (‘AH’), setting rmax = [

√
n ∧ T ]. For comparison, we also

investigate the performance of the oracle estimator χ̂oracle
it defined as the PC

estimator (2) obtained with the true r. For each setting, 1000 realisations have
been generated. We provide the results obtained under Model 1 in the main
text, and additional simulation results under Model 2 are available in Section C
of Barigozzi and Cho (2020). Based on Figure 1, we report the results when the
factor number estimator (8) is used, in order to contrast the behaviour of the
proposed modified PC estimators to that of the PC estimator in terms of their
‘insensitivity’ to the over-estimation of r.

4.2. Results

Fig 3. Box plots of ‖ŵsc
x,j‖ averaged for 2 ≤ j ≤ r (‘≤ r’) against that averaged

for r + 1 ≤ j ≤ r̂ (‘> r’) averaged 1000 realisations generated under Model 1 with
n ∈ {200, 500, 1000} (left to right), T ∈ {500, 1000, 2000} (top to bottom) and φ ∈
{0.5, 1, 2} (left to right within each plot).

First, we investigate the amount of scaling and capping applied to ŵx,j when
j ≤ r and j ≥ r+1, in order to verify whether the asymptotic argument in (7) is
valid for finite n and T . Figure 3 plots the norm of the scaled eigenvectors ‖ŵsc

x,j‖
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in (22) averaged over 2 ≤ j ≤ r and r+1 ≤ j ≤ r̂, respectively, for varying T , n
and �. The results confirm that across different scenarios, scaling does not alter
the contribution from the leading r eigenvectors of Γ̂x, while curtailing that
from ŵx,j , j ≥ r + 1 by yielding ‖ŵsc

x,j‖ � ‖ŵx,j‖ = 1, j ≥ r + 1 especially for
large n. This in turn indicates that there are a few spuriously large coordinates
in ŵx,j , j ≥ r + 1, corresponding to the regime α � 0 in Proposition 2. As
shown below, this leads to the undesirable behaviour of the PC estimator while
affecting the modified PC estimators to a much lesser degree.

Fig 4. erravg(χ̂
◦
it) and errmax(χ̂

◦
it) of χ̂pc

it , χ̂
cp
it , χ̂

sc
it and χ̂sh

it estimated using the entire
sample (‘all’), and their blockwise counterparts (‘block’), averaged over 1000 realisa-
tions generated under Model 1 with T = 500, n ∈ {200, 500, 1000} (top to bottom) and
φ ∈ {0.5, 1, 2} (left to right within each plot). The vertical errors bars represent the
standard deviations.

Next, we evaluate the accuracy of an estimator χ̂◦
it of χit relative to that of

the oracle estimator, using the following error measures

erravg =
n−1

∑n
i=1

∑T
t=1(χ̂

◦
it − χit)

2

Ê{n−1
∑n

i=1

∑T
t=1(χ̂

oracle
it − χit)2}

,

errmax =
max1≤i≤n

∑T
t=1(χ̂

◦
it − χit)

2

Ê{max1≤i≤n

∑T
t=1(χ̂

oracle
it − χit)2}

,

where Ê denotes the average over all Monte Carlo repetitions, and ◦ denotes the
use of PC, capped, scaled or shrinkage estimator and their blockwise counter-
parts. We note that errmax is specifically to capture the possible deterioration
in the estimators for individual i due to the over-estimation of r, and both mea-
sures are closely related to the conditions in (20). Figures 4–5 show the average
and standard deviation of erravg and errmax over 1000 Monte Carlo realisations.
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Fig 5. erravg(χ̂
◦
it) and errmax(χ̂

◦
it) under Model 1 with T = 2000.

Overall, blockwise estimators do not lose efficiency compared to their whole
sample counterparts or, even perform slightly better in terms of the relative
efficiency compared to the oracle PC estimator. It is evident that PC estimator
exhibits the worst performance in almost all cases, in terms of both the average
and variability of the two different error measures. Indeed, errpcmax indicates
that the PC estimator with an over-estimated factor number can be worse by
hundredfold than the oracle PC estimator for some coordinates.

Capping and scaling lead to considerable improvement with respect to both
error measures, with and without blockwise estimation, and marginally the
scaled PC estimator tends to return smaller estimation errors. We note that
χ̂sh
it yields the smallest estimation error in many scenarios. Exceptions occur

when n is relatively larger than T : the PC-based estimator of the factor space
is expected to be highly accurate in this setting due to the blessing of dimen-
sionality, and the bias introduced by eigenvalue shrinkage tends to deteriorate
the performance of χ̂sh

it (see Figure C.8 in Barigozzi and Cho (2020)).
As the signal-to-noise ratio decreases, the gap between the performance of χ̂pc

it

and our modified estimators gets closer, as the consistent estimation of χit itself
becomes more challenging, i.e., the error due to the over-estimation of r in (10)
becomes dominated by the first term. Increasing n also tends to close this gap as
the performance of the estimator of r improves. This, however, has the opposite
effect on errmax(χ̂

pc
it ) since the maximum is taken over the n cross-sections. In

general, erravg and errmax evaluated at modified PC estimators exhibit much less
fluctuations as n and T vary. Noting the close relationship between erravg(χ̂

pc
it )

and errmax(χ̂
pc
it ) and the conditions in (20), the results reported here indicate

that the popularly adopted covariance matrix estimator based on factor analysis
will suffer from the over-estimation of r.
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5. Real data analysis

We consider risk minimisation for a portfolio consisting of the log returns of
the daily closing values of the stocks comprising the Standard & Poor’s 100
(S&P100) index between July 2006 and September 2013 (denoted by {xit, i ≤
n, t ≤ T} with n = 90 and T = 1814) following the exercise conducted in Lam
(2016). The dataset is available from Yahoo Finance.

As evidence of structural changes has been observed in a similar financial
data dataset (Barigozzi, Cho and Fryzlewicz, 2018), we choose to adopt a rolling

window of size T̃ = 253 (number of trading days each year) and evaluate the
performance of a portfolio on a monthly basis (with 21 as the number of trad-
ing days each month). At the beginning of each month, different methods are
adopted to estimate the covariance matrix of stock returns using one year of
past returns. Each portfolio has weights given by

ω̂◦
k = arg min

ω∈Rn:ω�1n=1
ω�Σ̂◦

kω =
Σ̂◦

k1n

1�
n Σ̂

◦
k1n

for k = 1, . . . ,M = �(T − T̃ )/21�,

where Σ̂◦
k denotes some covariance matrix estimator based on the k-th rolling

window Rk = [21(k− 1) + 1, 21(k − 1) + T̃ ], and 1n denotes a vector consisting
of n ones. At the end of each month, we compute the total excess return, the
out-of-sample variance and the mean Sharpe ratio, given by

τ̂(Σ̂◦) =
M∑
k=1

min(21k,T−T̃ )∑
t=21(k−1)+1

(ω̂◦
k)

�xT̃+t,

σ̂2(Σ̂◦) =
1

T − T̃

M∑
k=1

min(21k,T−T̃ )∑
t=21(k−1)+1

{(ω̂◦
k)

�xT̃+t − μ̂(Σ̂◦
k)}2 and

SR(Σ̂◦) =
1

M

M∑
k=1

τ̂(Σ̂◦
k)

σ̂(Σ̂◦
k)

,

where τ̂(Σ̂◦
k), μ̂(Σ̂

◦
k) and σ̂2(Σ̂◦

k) denote the total and mean excess return and

the out-of-sample variance calculated for each portfolio from Σ̂◦
k.

For covariance matrix estimation, we consider the following two approaches
that separately estimate the factor-driven and idiosyncratic contributions.

Exact factor modelling (EFM). We force the covariance matrix of the id-
iosyncratic component to be diagonal and obtain

Σ̂pc
k = T̃−1

∑
t∈Rk

(χ̂pc
t )�χ̂pc

t + diag
(
T̃−1

∑
t∈Rk

(ε̂pct )�ε̂pct

)
, (29)

where the operator diag(A) returns a diagonal matrix with the diago-

nal elements of A in its diagonal, χ̂pc
t , t ∈ Rk is obtained from Γ̂x,k =
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T̃−1
∑

t∈Rk
xtx

�
t and ε̂pct = xt − χ̂pc

t . Similarly, we yield Σ̂cp
k , Σ̂sc

k and

Σ̂sh
k with χ̂cp

t , χ̂sc
t and χ̂sh

t replacing χ̂pc
t in (29), respectively. Also, we

consider their blockwise versions Σ̂bpc
k , Σ̂bcp

k , Σ̂bsc
k and Σ̂bsh

k with the size

of blocks b = �log2 T̃ �.
POET (Fan, Liao and Mincheva, 2013). We adopt the POET estimator

Σ̂poet
k = T̃−1

∑
t∈Rk

(χ̂pc
t )�χ̂pc

t + T
(
T̃−1

∑
t∈Rk

(ε̂pct )�ε̂pct

)
, (30)

where T (·) performs an element-wise hard-thresholding (except for its
diagonals) with an adaptively chosen threshold recommended by Fan, Liao
and Mincheva (2013) including a constant selected via cross-validation.

The results obtained for varying r̂ are reported in Table 1; note that r̂ = 6
is selected by the information criterion of Bai and Ng (2002) applied to the
whole data. We note that r̂ = 2 may already be over-estimating the number
of factors, in that the idiosyncratic component estimated with r̂ = 1 exhibits a
prominent group structure and this may be falsely detected as a factor via PCA,
see Figure 6. As demonstrated in Example 1, possibly highly structured nature
of the idiosyncratic component may lead to some elements of ŵx,j , j ≥ 2 being
(spuriously) large, and poor performance of the corresponding PC estimator
(see also Proposition 2 and Example 2). The EFM-based method combined
with the PC estimator with r̂ = 2 performs the best among all the methods.
With r̂ = 6, the POET yields large negative total excess returns and large
out-of-sample variance, which confirms our observation in Remark 2 that the
covariance (precision) matrix estimation based on factor modelling is susceptible
to the errors arising from factor number estimation. Overall, the methods based
on EFM perform better than the POET according to all measures considered.
Among the modified PC estimators, the one that applies the largest amount
of shrinkage (χ̂sh

t ) achieves the most consistent performance with regards to
the choice of r̂. Interestingly, the blockwise approach yields marginally better
performance than the corresponding whole sample counterparts.

Table 1

Performance of portfolios constructed with different covariance estimators.

r̂ = 2 r̂ = 4 r̂ = 6
method τ̂ σ̂2 SR τ̂ σ̂2 SR τ̂ σ̂2 SR

EFM χ̂pc
t 25.032 0.917 0.932 -28.321 0.936 0.003 -22.515 0.818 0.460

χ̂cp
t 22.513 0.922 0.865 -31.045 0.883 -0.028 -21.691 0.753 0.439

χ̂sc
t 20.164 0.900 0.888 -24.468 0.832 0.133 -27.461 0.742 0.301

χ̂sh
t 14.072 0.890 0.809 4.079 0.861 0.652 4.618 0.835 0.703

χ̂bpc
t 21.288 0.835 0.907 -17.115 0.813 0.331 -14.934 0.750 0.468

χ̂bcp
t 20.807 0.842 0.888 -19.331 0.818 0.270 -14.538 0.756 0.478

χ̂bsc
t 20.626 0.833 0.886 -16.133 0.804 0.367 -13.939 0.760 0.469

χ̂bsh
t 18.866 0.828 0.859 10.638 0.825 0.766 10.605 0.822 0.777

POET -76.446 6.061 -0.315 -299.643 69.678 -0.331 -355.691 85.428 0.254



2916 M. Barigozzi and H. Cho

Fig 6. Heatmap of the correlation matrix of the idiosyncratic component estimated
with r̂ ∈ {1, 2, 4, 6} (from left to right, top to bottom). The variables are ordered via
hierarchical clustering with the complete linkage method.

6. Conclusions

Factor number estimation is a challenging task due to the lack of a clear gap
in empirical eigenvalues, and various estimators tend to over-estimate r in the
presence of moderate cross-sectional correlations in the idiosyncratic component.
In this paper, we make the first attempt at establishing the non-negligibility of
the error due to the over-estimation of r in the widely adopted PC estimator.
In doing so, we propose a novel blockwise estimation technique, which enables
rigorous treatment of this over-estimation error under a time series factor model.
Also, we propose the modified PC estimators which are easily implemented and
perform as well as the oracle PC estimator with obtained with r known, and
verify this via extensive simulation studies. In practice, we recommend the use
of χ̂sh

it unless n is much greater than T (an unlikely setting for e.g., economic and
financial data), which shows very good practical performance both on simulated
and real-life datasets.

Appendix A: Proofs

A.1. Preliminaries

The following lemmas hold under Assumptions 1–4. Their proof can be found
in Section B.1 of Barigozzi and Cho (2020).
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Lemma 1. max1≤i≤n max1≤t≤T |χit|=Op(log(T )), max1≤i≤n max1≤t≤T |εit| =
Op(log(T )), and max1≤i≤n max1≤t≤T |xit| = Op(log(T )).

Lemma 2. Let bT satisfy bT → ∞ and T−1bT → 0, and LT = �T/bT �.
(i) max1≤�≤LT

n−1‖Γ̂(�)
x − Γχ‖ = Op

(√
log(n)

T ∨ 1
n

)
.

(ii) max1≤�≤LT
max1≤i≤n n

−1/2‖ϕ�
i (Γ̂

(�)
x − Γχ)‖ = Op

(√
log(n)

T ∨ 1√
n

)
.

Also, there exists an orthonormal matrix S� ∈R
r×r which, for Ŵ

(�)
x = [ŵ

(�)
x,j , j ≤

r], satisfies

(iii) max1≤�≤LT
‖Ŵ(�)

x −WχS�‖ = Op

(√
log(n)

T ∨ 1
n

)
;

(iv) max1≤�≤LT
max1≤i≤n

√
n ‖ϕ�

i (Ŵ
(�)
x −WχS�)‖ = Op

(√
log(n)

T ∨ 1√
n

)
.

Lemma 3.

(i) n−1‖Γ̂x − Γχ‖ = Op

(√
log(n)

T ∨ 1
n

)
.

(ii) max1≤i≤n n
−1/2‖ϕ�

i (Γ̂x − Γχ)‖ = Op

(√
log(n)

T ∨ 1√
n

)
.

(iii) max1≤i≤n
√
n ‖ϕ�

i (Ŵx −WχS)‖ = Op

(√
log(n)

T ∨ 1√
n

)
for some ortho-

normal r × r matrix S.

Lemma 4. Let �(t) denote the index of the block for which t ∈ I�(t), and bT =

log1/β+δ T for some δ > 0. Then, max1≤t≤T |(ŵ�(t)
x,j )

�εt| = Op(log(T )).

A.2. Proof of Proposition 2

Recall the definition of �(t) in Lemma 4. Note that

max
1≤i≤n

max
1≤t≤T

|χ̂bpc
it − χit| ≤ max

1≤i≤n
max
1≤t≤T

∣∣∣ r∑
j=1

ŵ
�(t)
x,ij(ŵ

�(t)
x,j )

�xt − χit

∣∣∣
+ max

1≤i≤n
max
1≤t≤T

∣∣∣ r̂∑
j=r+1

ŵ
�(t)
x,ij(ŵ

�(t)
x,j )

�χt

∣∣∣+ max
1≤i≤n

max
1≤t≤T

∣∣∣ r̂∑
j=r+1

ŵ
�(t)
x,ij(ŵ

�(t)
x,j )

�εt

∣∣∣
=: I + II + III.

From Lemmas 1 and 2 (iii)–(iv), using the analogous arguments as those
adopted in the proof of Proposition 1 in Section B.2 of Barigozzi and Cho
(2020),

I ≤ max
1≤i≤n

max
1≤t≤T

|ϕ�
i Ŵ

�(t)
x (Ŵ�(t)

x )�xt −ϕ�
i WχS�(t)(Ŵ

�(t)
x )�xt|

+ max
1≤i≤n

max
1≤t≤T

|ϕ�
i WχS�(t)(Ŵ

�(t)
x )�xt −ϕ�

i WχW
�
χ xt|

+ max
1≤i≤n

max
1≤t≤T

|ϕ�
i WχW

�
χ εt|
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=Op

{(√
log(n)

T
∨ 1√

n

)
log(T )

}
. (31)

Let Ŵ
�(t)
x,(r+1):k = [ŵ

�(t)
x,j , r + 1 ≤ j ≤ k]. Under Assumption 1 (i), it fol-

lows that W�
χΛΛ�Wχ = Mχ and hence Wχ may be regarded as the left

singular vectors of Λ. Then, from the orthogonality of eigenvectors, (C1) and
Lemma 2 (iii),

max
1≤�≤LT

‖(Ŵ(�)
x,(r+1):k)

�Λ‖ = max
1≤�≤LT

‖(Ŵ(�)
x,(r+1):k)

�WχM
1/2
χ ‖

≤ max
1≤�≤LT

‖(Ŵ(�)
x,(r+1):k)

�(WχS� − Ŵ(�)
x )‖ ‖M1/2

χ ‖ = Op

(√
n log(n)

T
∨ 1√

n

)
(32)

for any fixed k ≥ r+1. Together with the condition (13) and Lemma 1, it yields

II = Op

{
n−α/2 ·

(√n log(n)

T
∨ 1√

n

)
· log(T )

}

= Op

{(√n1−α log(n)

T
∨
√

1

n(1+α)

)
log(T )

}
.

Finally, from Lemma 4, III = Op(n
−α/2 log(T )), and the conclusion follows.

A.3. Proof of Proposition 3

Recall the definition of �(t) in Lemma 4. Note that

max
1≤i≤n

max
1≤t≤T

|χ̂bsc
it − χit| ≤ max

1≤i≤n
max
1≤t≤T

∣∣∣ r∑
j=1

ŵ
sc,�(t)
x,ij (ŵ

sc,�(t)
x,j )�xt − χit

∣∣∣
+ max

1≤i≤n
max
1≤t≤T

∣∣∣ r̂∑
j=r+1

ŵ
sc,�(t)
x,ij (ŵ

sc,�(t)
x,j )�χt

∣∣∣
+ max

1≤i≤n
max
1≤t≤T

∣∣∣ r̂∑
j=r+1

ŵ
sc,�(t)
x,ij (ŵ

sc,�(t)
x,j )�εt

∣∣∣
=: I + II + III.

Since scaling does not alter the r leading eigenvectors with probability tending
to one, thanks to the arguments leading to (7) and Lemma 2, we derive that
I = Op{(

√
log(n)/T ∨ 1/

√
n) log(T )} as in (31). Next, due to the orthogonality

of ŵ
sc,�(t)
x,j , j ≤ r̂,

II = max
1≤i≤n

max
1≤t≤T

∣∣∣ r̂∑
j=r+1

ŵ
sc,�(t)
x,ij (ŵ

sc,�(t)
x,j )�{χt − Ŵ

�(t)
x,1:r(Ŵ

�(t)
x,1:r)

�xt}
∣∣∣
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= Op

{(√ log(n)

T
∨ 1√

n

)
log(T )

}

from the bound on I and the uniform boundedness of |ŵsc,�(t)
x,ij |. Finally, Lemma 4

and the definition of |ŵsc,�(t)
x,ij | yield III = Op(log(T )/

√
n), which concludes the

proof.
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