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1. Introduction

Owen [17] proposed the empirical likelihood approach for making inference from
independent and identically distributed random samples. He showed that the
empirical likelihood ratio statistic for the population mean has a standard limit-
ing chi-squared distribution, and used this result to obtain confidence intervals
for the population mean similar to the classical parametric method. The shape
and orientation of the empirical likelihood ratio confidence intervals are deter-
mined entirely by the data and the intervals are range preserving and trans-
formation invariant, unlike the normal theory intervals. Qin and Lawless [18]
demonstrated that empirical likelihood can be combined with estimating equa-
tions for statistical inferences on more general parameters. The development
of empirical likelihood as a general inferential tool has been one of the major
advances in statistics in the past three decades.

Empirical likelihood was in fact first introduced in the sample survey con-
text by Hartley and Rao [13] as the scale-load likelihood, but their focus was
on point estimation of a finite population mean under simple random sampling
and stratified simple random sampling. Chen and Qin [6] studied empirical like-
lihood under simple random sampling using the formulation of Owen [17], and
Zhong and Rao [32] studied empirical likelihood confidence intervals on the
finite population mean under stratified simple random sampling. For general
sampling designs involving unequal probability sampling with or without strat-
ification, there have been several proposed approaches on empirical likelihood
for complex surveys, including the pseudo empirical likelihood method of Chen
and Sitter [7] and Wu and Rao [28], the population empirical likelihood method
of Chen and Kim [9], and the empirical likelihood method of Berger and Torres
[3] and Oguz-Alper and Berger [16]. However, all existing methods require the
first order inclusion probabilities from the initial survey design and are devel-
oped under the setting that detailed design information is available. In addition,
the use of calibration constraints for inference with existing approaches requires
that auxiliary information, such as variables with known population means or
totals used for calibration, is available to survey data users.
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In practice, public-use survey data are released to users and such data sets
often report only the variables of interest and the final survey weights {wi, i ∈
S} obtained by adjusting for unit nonresponse and calibration on auxiliary
variables selected by the producer of the data, where S denotes the set of units
included in the released data file. Furthermore, the data file provides B columns

of final replication weights {w(b)
i , i ∈ S}, b = 1, · · · , B designed for variance

estimation. The following table shows a typical format of public-use survey data
files available to the users, where (y1, y2) are the study variables and (x1, x2, x3)
are the associated covariates used in the analysis.

i yi1 yi2 xi1 xi2 xi3 wi w
(1)
i · · · w

(B)
i

1 y11 y12 x11 x12 x13 w1 w
(1)
1 · · · w

(B)
1

2 y21 y22 x21 x22 x23 w2 w
(1)
2 · · · w

(B)
2

3 y31 y32 x31 x32 x33 w3 w
(1)
3 · · · w

(B)
3

.

..
.
..

.

..
.
..

.

..
.
..

.

..
.
..

.

..
.
..

n yn1 yn2 xn1 xn2 xn3 wn w
(1)
n · · · w

(B)
n

The final replication weights {w(b)
i , i ∈ S} are one of the most crucial parts in

creating public-use survey data files. Different versions of bootstrap replication
weights, such as those developed by Rao and Wu [22] and Rao, Wu and Yue
[23] for stratified multi-stage designs, are commonly reported with the data
file. Final replication weights are typically obtained by subjecting the basic
replication weights (such as the bootstrap weights) to the same unit nonresponse
adjustment and calibration procedures. None of the existing empirical likelihood
methods is applicable for statistical inferences with public-use data files because
the first order inclusion probabilities, the calibration variables and the associated
known population means or totals are not reported on the data file and are not
available to users. Under multistage sampling, the primary sampling units or
clusters are also not identified on the data file.

The main purpose of this article is to present empirical likelihood methods
for statistical analysis with public-use survey data files. We consider two general
approaches: the first is based on the pseudo empirical likelihood and the second
uses the sample empirical likelihood, to be described in Sections 2 and 3. We
present design-based inferential procedures and theoretical results on two gen-
eral statistical inference problems with the vector of finite population parameters
defined through the census estimating equations: the maximum empirical likeli-
hood estimators and the empirical likelihood ratio test on a general linear or non-
linear hypothesis. Design-based variable selection through a penalized pseudo or
sample empirical likelihood is discussed. We also present a bootstrap procedure
under single stage survey designs for creating valid replication weights with theo-
retical justifications. Simulation results and an application to the General Social
Survey 2016 public-use data file released by Statistics Canada are included.

The contributions of the paper include (i) discussions on the general format
and framework for creating public-use data files; (ii) presentations of empirical
likelihood inferential procedures for public-use datasets; (iii) theoretical justi-
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fications of a bootstrap procedure under calibration weighting, which partially
addresses the question of how to create replication weights for public-use data
files; and (iv) demonstrations of empirical likelihood methods through simu-
lation studies and real data analysis. Our presentation on sample empirical
likelihood follows Zhao, Haziza and Wu [30], and the discussion on pseudo em-
pirical likelihood follows Zhao and Wu [29]. Proofs and technical details of main
theoretical results have similarities to Qin and Lawless [18] and Zhao, Haziza
and Wu [30], and are presented in the online version of the paper (Zhao, Rao
and Wu, [31]). The topics of how to deal with item nonresponse and how to
create replication weights under imputation for missing data are not addressed
in the paper. They belong to a very broad research area that has been actively
pursued by many researchers.

The basic settings are described in Section 2. Main theoretical results on
empirical likelihood methods are presented in Section 3. A bootstrap calibration
procedure under single stage survey designs to create valid replication weights
is described in Section 4 with theoretical justification given in the Appendix A.
Results from simulation studies are reported in Section 5. An application to the
General Social Survey 2016 public-use data file is presented in Section 6. We
conclude with some additional remarks in Section 7.

2. Empirical likelihood and estimating equations for complex
surveys

Let U = {1, 2, · · · , N} be the set of units in the finite population, where N is
the population size. Let (yi,xi) be the measures of the study variable y and
auxiliary variables x for unit i. Let FN = {(yi,xi), i = 1, · · · , N} represent
the survey population and let {(yi,xi), i ∈ S} be the survey sample data. Let
πi = P (i ∈ S), i = 1, · · · , N be the first order inclusion probabilities.

Survey data are a major source of information for official statistics, where
the focus is often on descriptive population quantities such as population means
or quantiles. Complex surveys are also frequently used by researchers in social
sciences and medical and health studies for statistical modelling. Under both
scenarios, the finite population parameters θN of dimension p can be defined as
the solution to the census estimating equations

UN(θ) =

N∑
i=1

g(xi, yi,θ) = 0 , (2.1)

where g(x, y, θ) is a vector of estimating functions of dimension r, and θ ∈ Θ, a
compact subset of Rp with 1 ≤ p ≤ r. Under normal circumstances we have r =
p but over-identified scenarios with r > p do arise in practice due to additional
calibration constraints or known moment conditions over certain variables.

Standard empirical likelihood inference with independent observations, as
introduced by Owen [17] and with parameters defined by estimating equations,
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as discussed by Qin and Lawless [18], consists of three ingredients:

�(p) =
∑
i∈S

log(pi) , (2.2)

∑
i∈S

pi = 1 , (2.3)

∑
i∈S

pig(xi, yi,θ) = 0 , (2.4)

where �(p) given by (2.2) is the empirical log-likelihood function and p =
(p1, · · · , pn)′ is the probability measure over the n sampled units, equation (2.3)
is the normalization constraint to ensure that p is a discrete probability mea-
sure, and equations (2.4) are the constraints induced by the parameters θ. The
use of log(pi) implicitly requires that pi > 0.

Naive applications of the standard empirical likelihood methods to complex
survey data do not produce valid results under the design-based framework.
There have been three major modified approaches in the survey sampling lit-
erature on using the empirical likelihood method for complex survey data, and
their relations to the standard empirical likelihood ingredients (2.2), (2.3) and
(2.4) can be described as follows.

(1) The pseudo empirical likelihood approach (PEL): Chen and Sitter [7] sug-
gested to replace �(p) by �PEL0(p) =

∑
i∈S di log(pi), where di = π−1

i are the ba-
sic design weights, while constraints (2.3) and (2.4) remain unchanged. The use
of �PEL0(p) is motivated by the fact that �PEL0(p) is the Horvitz-Thompson esti-

mator for the conceptual census empirical log-likelihood function
∑N

i=1 log(pi).

Wu and Rao [28] used a modified version �PEL1(p) = n
∑

i∈S d̃i(S) log(pi), where
d̃i(S) = di/

∑
j∈S dj , which facilitates the construction of the pseudo empirical

likelihood ratio confidence intervals for population parameters.

(2) The population empirical likelihood approach (POEL): Chen and Kim [9]

defined the population empirical log-likelihood function as �POEL =
∑N

i=1 log(ωi)

with normalization constraint
∑N

i=1 ωi = 1. The survey data and parameters
are forced into the “population system” through the constraints

∑
i∈S ωiπ

−1
i =

1 and
∑

i∈S ωi{g(xi, yi,θ)π
−1
i } = 0. Chen and Kim [9] focused on Poisson

sampling and rejective sampling, and the method has not been developed for
general unequal probability sampling designs or general inferential problems for
analytical uses of survey data.

(3) The sample empirical likelihood approach (SEL): The method was first
mentioned very briefly by Chen and Kim [9] as a remark but detailed explo-
ration was not pursued in their paper. The idea is to use the standard empirical
log-likelihood function �SEL0(p) =

∑
i∈S log(pi) from (2.2) and the standard

normalization constraint (2.3) but modify the constraints induced by the pa-
rameters as

∑
i∈S pi{g(xi, yi,θ)π

−1
i } = 0. A related formulation was presented

by Berger and De La Riva Torres ([1], [2] and [3]) and Oguz-Alper and Berger
[16]. They used l(m) =

∑
i∈S log(mi), where the mi satisfy the so-called design
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constraint
∑

i∈S miπi = n. The constraints for the parameters are specified as∑
i∈S mig(xi, yi,θ) = 0. It can be seen that, if we let pi = miπin

−1, the for-
mulation is equivalent to the one proposed by Chen and Kim [9]. The sample
empirical likelihood method has been further developed in the paper by Zhao,
Haziza and Wu [30] as a general inference tool for survey data analysis under
the assumption that the first order inclusion probabilities πi and other related
design and population information are available.

Unfortunately, none of the existing empirical likelihood methods can be used
directly for statistical analysis with public-use survey data files since the ini-
tial inclusion probabilities πi are not available, and calibration variables along
with their known population totals are typically not given to the end users of
the data files. On the other hand, the availability of final survey weights and
associated replication weights for public-use datasets provides a unique oppor-
tunity to develop empirical likelihood as a general statistical tool for survey data
analysis.

3. Empirical likelihood inference with public-use survey data

3.1. Public-use survey data and basic assumptions

Consider the following version of a micro survey data file, which is released by
the survey agency for public use:{(

yi,xi, wi, w
(1)
i , . . . , w

(B)
i

)
, i = 1, 2, . . . , n

}
,

where the yi and xi are possibly vector-values survey variables included in
the dataset, the wi is the final survey weight for unit i after unit nonresponse
adjustment and/or calibration weighting, and n is the final sample size. Also

included in the data file are B final replication weights w
(1)
i , . . ., w

(B)
i associated

with unit i. The detailed survey design information such as the original design
weights di = 1/πi and the known auxiliary population information are assumed
to be unavailable to the users of the data file. It is also assumed that the finite
population size N is unknown.

The survey weighted estimating equations for the vector of parameters θN

defined by the census estimating equations (2.1) are given by

Ûn(θ) =
∑
i∈S

wi g(xi, yi,θ) = 0 . (3.1)

For standard scenarios where r = p, i.e., the number of equations is the same
as the number of parameters, the survey weighted estimator θ̂N for θN is the
solution to (3.1). Let gi(θ) = g(xi, yi,θ) and assume that gi(θ) is a smooth

function of θ. The approximate design-based variance of θ̂N has the well-known
sandwich form (Binder, [4])

V ar
(
θ̂N

) .
= Γ−1V ar

{
N−1Ûn(θN)

}(
Γ−1

)′
,
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where Γ = Γ(θN), Γ(θ) = N−1
∑N

i=1 ∂gi(θ)/∂θ and V ar
{
N−1Ûn(θN)

}
is the

design-based variance. There have been attempts to address hypothesis testing
problems involving a single component of the vector of parameters θN under the
estimating equations framework, see, for instance, Binder and Patak [5], but
general hypothesis testing procedures are not available in the literature.

We consider smooth estimating functions and allow over-identified estimating
equations system with r ≥ p. Practically useful results for the special case r = p
and for a scalar parameter (i.e., p = 1) will also be spelled out. For asymptotic
development, we assume that there is a sequence of finite populations and a
sequence of survey designs with both the population size N and the sample size
n going to infinity; see Isaki and Fuller [14] for further detail. We use N → ∞
to denote the limiting process. Note that θN refers to the true vector of the
finite population parameters. Throughout the paper, we use ‖ · ‖ to denote

the Euclidean norm and
L→ to denote convergence in distribution under the

design-based framework. Let Op(·) and op(·) be the stochastic orders under the
same framework. We consider the following basic assumptions for the public-use
survey data file and the estimating functions gi(θ).

Assumption 1. The final survey weights (w1, w2, . . . , wn) and the finite pop-
ulation values FN = {(yi,xi), i = 1, · · · , N} satisfy conditions that ensure
Ûn(θN) =

∑
i∈S wigi(θN) is asymptotically normally distributed with mean zero

and variance-covariance matrix of the order O(N2/n).

Let η̂(b)(θN)=
∑

i∈S w
(b)
i gi(θN) be the replicate version of the initial Ûn(θN)=∑

i∈S wigi(θN) using the bth set of replication weights (w
(b)
1 , w

(b)
2 , · · · , w(b)

n ),
b = 1, 2, . . . , B and treating θN as a known number.

Assumption 2. The final replication weights ensure that the replication vari-
ance estimator

v
{
Ûn(θN)

}
=

1

B

B∑
b=1

{
η̂(b)(θN)− Ûn(θN)

}{
η̂(b)(θN)− Ûn(θN)

}′
(3.2)

is a design-consistent estimator of the true but unknown variance-covariance
matrix V ar

{
Ûn(θN) | FN

}
.

The original design weights, the nonresponse adjusted weights and the cal-
ibration weights usually satisfy Assumption 1. It is part of the foundation for
design-based inference. Assumption 2 is the guiding principle for public-use data
file producers on how to create replication weights and for research activities
on replication methods for variance estimation in surveys. Note that Assump-
tion 2 does not necessarily require a large B for the given dataset, as shown by
the results presented in Kim and Wu [15]. Most survey organizations, including
Statistics Canada, use B = 500 for producing public-use survey data files in
their current practice. See the example of General Social Survey presented in
Section 6.

Assumption 3. (i) limN→∞(n/N) = γ ∈ (0, 1); (ii) c1 < wiN/n < c2, i ∈ S
for some positive constants c1 and c2; (iii) N−1

∑
i∈S wi − 1 = Op(n

−1/2).
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Assumption 4. (i) supθ∈Θ N−1
∑

i∈S ‖gi(θ)‖κ < c for some κ > 2 and some

positive constant c; (ii) maxi∈S supθ∈Θ ‖gi(θ)‖ = op(n
1/2).

Assumption 5. (i) The matrices W1(θN) = N−1
∑N

i=1 gi(θN)gi(θN)
′, W2(θN) =

nN−2E{
∑

i∈S w2
i gi(θN)gi(θN)

′ | FN} and Ω(θN) = nN−2V ar{
∑

i∈S wigi(θN) |
FN} are all positive definite; (ii) Γ(θN) = N−1 ∑N

i=1 ∂gi(θ)/∂θ|θ=θN
has full column

rank p.

Assumptions 3–5 are standard regularity conditions for asymptotic develop-
ment for finite populations with complex survey data. The inclusion of the fac-
tors N−1 or N−2 in the quantities presented in Assumption 5 is for convenience
in asymptotic orders. They are not required for computational purposes as they
all cancel out in the main results to be presented in the next two subsections.
It should be noted that the pseudo empirical likelihood approach of Section 3.2
and the sample empirical likelihood approach of Section 3.3 are formulated us-
ing the final weights wi which contain partial information on the survey design
and the creation of the dataset. The empirical likelihood ratio statistics for both
approaches do not have standard χ2 asymptotic distributions, and information
from additional columns of replication weights in the dataset is required for
computing the variance components involved.

3.2. The pseudo empirical likelihood approach

Let w̃i(S) = wi/
∑

k∈S wk, i ∈ S be the normalized final survey weights. The
pseudo empirical log-likelihood function is defined as

�PEL(p) = n
∑
i∈S

w̃i(S) log(pi) .

Maximizing �PEL(p) subject to the normalization constraint (2.3), i.e.,
∑

i∈S pi =
1, gives p̂ = (p̂1, . . . , p̂n)

′, where p̂i = w̃i(S). Let p̂(θ) = (p̂1(θ), . . . , p̂n(θ))
′

be the maximizer of �PEL(p) under the normalization constraint (2.3) and the
parameter constraint (2.4), i.e.,

∑
i∈S pi gi(θ) = 0, for a fixed value of θ. It

can be shown that p̂i(θ) = w̃i(S)/{1 + λ′gi(θ)} for i ∈ S, where the Lagrange
multiplier λ = λ(θ) is the solution to

gPEL(λ) =
∑
i∈S

w̃i(S)gi(θ)

1 + λ′gi(θ)
= 0 , (3.3)

which can be solved using the modified Newton-Raphson method presented in
Chen, Sitter and Wu [8] and the R code described in Wu [26]. The maximum

pseudo empirical likelihood estimator θ̂PEL is the maximizer of �PEL

{
p̂(θ)

}
=

n
∑

i∈S w̃i(S) log
{
p̂i(θ)

}
with respect to θ. For the special case r = p, the

estimator θ̂PEL is the solution to

∑
i∈S

p̂i gi(θ) =
∑
i∈S

w̃i(S) gi(θ) = 0 ,
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which is the same as the customary survey weighted estimating equations esti-
mator θ̂N.

The pseudo empirical log-likelihood ratio statistic for θ is given by

rPEL(θ) = �PEL

{
p̂(θ)

}
− �PEL

(
p̂
)
= −n

∑
i∈S

w̃i(S) log
{
1 + λ′gi(θ)

}
.

We can re-write the maximum pseudo empirical likelihood estimator of θN as
θ̂PEL = argmaxθ∈Θ rPEL(θ). Theorem 1 presents asymptotic properties of the

estimator θ̂PEL. Note that the quantitiesW1(θN), Γ(θN) and Ω(θN) in Theorem 1
are defined in Assumption 5.

Theorem 1. Under Assumptions 1, 3, 4 and 5, we have

n1/2(θ̂PEL − θN) | FN

L−→ N(0, V1) ,

where V1 = Σ1Γ
′W−1

1 ΩW−1
1 ΓΣ1, Σ1 = (Γ′W−1

1 Γ)−1, W1 = W1(θN), Γ = Γ(θN)
and Ω = Ω(θN).

Proofs of Theorem 1 and Theorems 2–6 presented below resemble the proofs
in Zhao et al. [30]. Details are available in the online version of the paper at
arXiv (Zhao et al., [31]). Proofs of Theorems 1 and 4 are also similar to the
proof of Theorem 1 in Qin and Lawless [18].

Corollary 1. Under the assumptions in Theorem 1 and r = p (i.e., the number
of equations is the same as the number of parameters), the asymptotic variance-

covariance matrix V1 of θ̂PEL reduces to V1 = Γ−1Ω(Γ′)−1.

Suppose we want to test the simple hypothesis: H0 : θN = θN0 against H1 :
θN �= θN0. The pseudo empirical log-likelihood ratio statistic for testing H0 is
given by

LRPEL(θN0) = 2
{
rPEL(θ̂PEL)− rPEL(θN0)

}
= 2

{
�PEL(θ̂PEL)− �PEL(θN0)

}
.

The asymptotic distribution of LRPEL(θN0) is given in Theorem 2.

Theorem 2. Suppose that Assumptions 1, 3, 4 and 5 hold. Then

LRPEL(θN0) | FN

L−→ Q′Δ1Q ,

where Q ∼ N(0, Ir), Ir is the r × r identity matrix, r is the dimension of
the estimating functions gi(θ), and Δ1 = Ω1/2W−1

1 ΓΣ1Γ
′W−1

1 Ω1/2 with Σ1 =
(Γ′W−1

1 Γ)−1.

Corollary 2. Under the assumptions in Theorem 2 and r = p, we have Δ1 =
Ω1/2W−1

1 Ω1/2. In particular, if r = p = 1, then

LRPEL(θN0) | FN

L−→ (Ω/W1)χ
2(1) ,

where χ2(1) denotes the standard χ2 random variable with one degree of freedom.
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We further consider a pseudo empirical log-likelihood ratio test for a gen-
eral linear or nonlinear hypothesis H0: R(θN) = 0 against H1: R(θN) �= 0,
where R(θN) is a k × 1 vector-valued functions with k ≤ p and R(θN) = 0
imposes k constraints on the vector of parameters θN. Let ΘR =

{
θ | θ ∈

Θ and R(θ) = 0
}
be the restricted parameter space under H0. The restricted

maximum pseudo empirical likelihood estimator of θ under H0 is defined as

θ̂
R

PEL = argmaxθ∈ΘR rPEL(θ). The pseudo empirical log-likelihood ratio statistic
for testing H0 versus H1 is given by

LRPEL(θN | H0) = 2
{
rPEL(θ̂PEL)− rPEL(θ̂

R

PEL)
}
= 2

{
�PEL(θ̂PEL)− �PEL(θ̂

R

PEL)
}
.

Theorem 3. Suppose that Assumptions 1, 3, 4 and 5 hold. If the function R(θ)
is twice continuously differentiable and Φ(θN) = ∂R(θ)/∂θ|θ=θN

has rank k, then

LRPEL(θN | H0) | FN

L−→ Q′ΔR

1Q ,

where Q ∼ N(0, Ir), Δ
R
1 = Ω1/2W−1

1 ΓΣ1Φ
′(ΦΣ1Φ)

−1ΦΣ1Γ
′W−1

1 Ω1/2 and Φ =
Φ(θN).

Let δj , j = 1, · · · , p be the non-zero eigenvalues of the r × r matrix Δ1. The
asymptotic distribution of LRPEL(θN) given in Theorem 2 can be alternatively
represented by

∑p
j=1 δjχ

2
j (1), where χ

2
j (1), j = 1, · · · , p are independent random

variables, all following the same distribution as χ2(1). Similarly, the distribution
of the quadratic form QTΔR

1Q given in Theorem 3 can be alternatively repre-

sented by
∑k

j=1 δ
R
j χ

2
j (1), where δR

j , j = 1, · · · , k are the non-zero eigenvalues of
the matrix ΔR

1 .
Practical implementations of the theoretical results generally require the

estimation of the asymptotic variance V1 for Theorem 1, the matrix Δ1 for
Theorem 2 and ΔR

1 for Theorem 3. This amounts to estimating the involved
components W1, Γ, Ω and Φ. By the simple “plug-in” method, we can esti-
mate the term W1 by Ŵ1 = N−1

∑
i∈S wigi(θ̂PEL)gi(θ̂PEL)

′, the term Γ by

Γ̂PEL = N−1 ∑
i∈S wi∂gi(θ)/∂θ|

θ=
ˆθPEL

, and estimate Φ = Φ(θN) by Φ̂ = Φ(θ̂PEL).

The most critical component Ω can be estimated by Ω̂PEL = nN−2v
{
Ûn(θ̂PEL)

}
,

where v
{
Ûn(θ̂PEL)

}
is the replication variance estimator outlined in Assump-

tion 2 using the replication weights from the survey data file.
The distribution of the quadratic forms Q′Δ1Q and Q′ΔR

1Q may also be
approximated by the Rao-Scott (RS) correction method (Rao and Scott, [19],

[20]). For instance, the first-order RS correction leads to LRPEL(θN) | FN

L−→
aχ2(p), where a =

∑p
j=1 δj/p. The second-order RS correction gives LRPEL(θN) |

FN

L−→ cχ2(k∗), where c =
∑p

j=1 δ
2
j /

∑p
j=1 δj and k∗ = (

∑p
j=1 δj)

2/
∑p

j=1 δ
2
j .

3.3. The sample empirical likelihood approach

The sample empirical likelihood approach described in Section 2 can be adapted
for public-use survey data. We start with the standard empirical log-likelihood
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function �SEL(p) =
∑

i∈S log(pi). Maximizing �SEL(p) under the normalization
constraint (2.3), i.e.,

∑
i∈S pi = 1, gives p̂i = n−1, i ∈ S. The constraints for the

parameters θ defined through (2.1) are formed using the weighted estimating
functions wigi(θ) and are given by

∑
i∈S

pi
{
wigi(θ)

}
= 0 . (3.4)

Let p̂(θ) = (p̂1(θ), . . . , p̂n(θ))
′ be the maximizer of �SEL(p) under the normaliza-

tion constraint (2.3) and the parameter constraints (3.4) for a fixed θ. It follows
from standard empirical likelihood method that p̂i(θ) = n−1[1+λ′{wigi(θ)}]−1

for i ∈ S, where the Lagrange multiplier λ = λ(θ) is the solution to

gSEL(λ) =
1

n

∑
i∈S

wigi(θ)

1 + λ′{wigi(θ)}
= 0 . (3.5)

The empirical log-likelihood ratio statistic for θ under the current setting is
given by

rSEL(θ) = �SEL

{
p̂(θ)

}
− �SEL

(
p̂
)
=

∑
i∈S

log{np̂i(θ)} = −
∑
i∈S

log{1 + λ′wigi(θ)} .

Let θ̂SEL = argmaxθ∈Θ rSEL(θ) be the maximum sample empirical likelihood

estimator of θN. Theorem 4 gives the asymptotic distribution of θ̂SEL where W2

is defined in Assumption 5.

Theorem 4. Suppose that Assumptions 1, 3, 4 and 5 hold. Then

n1/2(θ̂SEL − θN) | FN

L−→ N(0, V2) ,

where V2 = Σ2Γ
′W−1

2 ΩW−1
2 ΓΣ2 with Σ2 = (Γ′W−1

2 Γ)−1.

The result presented in Theorem 4 under the sample empirical likelihood
is similar to those in Theorem 1 for the pseudo empirical likelihood, with the
crucial differences in defining W1 for Theorem 1 and W2 in Theorem 4. For the
special case r = p, the estimator θ̂SEL is attained as the global maximum point
with p̂i = n−1 and is the solution to

∑
i∈S wigi(θ) = 0, which coincides with

the survey weighted estimating equations estimator.

Corollary 3. Suppose that the assumptions of Theorem 4 hold. If r = p,
then the asymptotic variance-covariance matrix V2 for θ̂SEL reduces to V2 =
Γ−1Ω(Γ′)−1.

The sample empirical log-likelihood ratio statistic for testing H0 : θ = θN is
defined as

LRSEL(θ) = 2
{
rSEL(θ̂SEL)− rSEL(θ)

}
= 2

{
�SEL(θ̂SEL)− �SEL(θ)

}
for the given θ. We have the following results parallel to Theorem 2 and Corol-
lary 2. Once again, the differences are between W1 and W2 involved in the
asymptotic distributions.
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Theorem 5. Suppose that Assumptions 1, 3, 4 and 5 hold. Then

LRSEL(θN) | FN

L−→ Q′Δ2Q ,

where Q ∼ N(0, Ir) and Δ2 = Ω1/2W−1
2 ΓΣ2Γ

′W−1
2 Ω1/2 with Σ2 = (Γ′W−1

2 Γ)−1.

Corollary 4. Suppose that the assumptions of Theorem 5 hold. If r = p, then

Δ2 = Ω1/2W−1
2 Ω1/2. In particular, if r = p = 1, we have LRSEL(θN)

L−→
(Ω/W2)χ

2(1).

For a general linear or nonlinear hypothesis H0: R(θN) = 0 versus H1:
R(θN) �= 0, the restricted maximum sample empirical likelihood estimator of

θ under H0 is defined as θ̂
R

SEL = argmaxθ∈ΘR rSEL(θ), where ΘR =
{
θ | θ ∈

Θ and R(θ) = 0
}
. The sample empirical log-likelihood ratio statistic for testing

H0 against H1 is given by

LRSEL(θN | H0) = 2
{
rSEL(θ̂SEL)− rSEL(θ̂

R

SEL)
}
= 2

{
�SEL(θ̂SEL)− �SEL(θ̂

R

SEL)
}
.

Theorem 6. Suppose that the assumptions of Theorem 3 hold. If the function
R(θ) is twice continuously differentiable and Φ(θN) = ∂R(θ)/∂θ|θ=θN

has rank k,
then

LRSEL(θN | H0) | FN

L−→ Q′ΔR

2Q ,

where Q ∼ N(0, Ir), Δ
R
2 = Ω1/2W−1

2 ΓΣ2Φ
′(ΦΣ2Φ

′)−1ΦΣ2Γ
′W−1

2 Ω1/2, and Φ =
Φ(θN).

The term W2 for the sample empirical likelihood is different from W1 for the
pseudo empirical likelihood and can be estimated by

Ŵ2 = nN−2
∑
i∈S

w2
i gi(θ̂SEL)gi(θ̂SEL)

′ .

The other two component Γ and Ω can be respectively estimated by Γ̂SEL =

N−1 ∑
i∈S wi∂gi(θ)/∂θ|

θ=
ˆθSEL

and Ω̂SEL = nN−2v
{
Ûn(θ̂SEL)

}
, where v

{
Ûn(·)

}
is

given in Assumption 2.

3.4. Design-based variable selection

Public-use survey data may contain observations on many variables. Variable
selection is a useful technique when fitting a statistical model involving many
covariates. The pseudo empirical likelihood and the sample empirical likeli-
hood provide design-based approaches to variable selection through a penalized
pseudo or sample empirical likelihood method.

Suppose that θ = (θ1, · · · , θp)′ and pτn(·) is a pre-specified penalty function
with regularization parameter τn. The penalized pseudo empirical likelihood
(PPEL) function of θ is defined as

lPPEL(θ) = −n
∑
i∈S

w̃i(S) log
{
1 + λ′gi(θ)

}
− n

p∑
j=1

pτn(|θj |) ,
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where the Lagrange multiplier λ solves gPEL(λ) = 0 given by (3.3). The penal-
ized sample empirical likelihood (PSEL) function is defined as

lPSEL(θ) = −
∑
i∈S

log{1 + λ′wigi(θ)} − n

p∑
j=1

pτn(|θj |) ,

where the Lagrange multiplier λ solves gSEL(λ) = 0 given by (3.5).
The tuning parameter τn for the penalized pseudo empirical likelihood or the

penalized sample empirical likelihood needs to be appropriately selected by a
data-driven method. Various techniques have been proposed in the literature,
including the generalized cross-validation method and the BIC method. Further
details can be found in Fan and Li [10] and Wang et al. [25].

Let θN = (θN1, · · · , θNp)
′ be defined by (2.1). The maximum penalized pseudo

empirical likelihood estimator of θN is defined as θ̂PPEL = argmaxθ lPPEL(θ) and
the maximum penalized sample empirical likelihood estimator of θN is defined
as θ̂PSEL = argmaxθ lPSEL(θ). Both estimators enjoy the design-based oracle

property for variable selection in the sense that Pr(θ̂Nj = 0 | FN) → 1 as

N → ∞ if θNj = 0, where θ̂Nj is the corresponding component of θ̂PPEL or θ̂PSEL

for estimating θNj.

4. Bootstrap calibrated empirical likelihood methods

One of the most crucial features of public-use survey data files is the inclusion of
replication weights. The guiding principle for the creation of replication weights
is that they provide valid results on variance estimation, as outlined in Assump-
tion 2. The major results presented in Section 3 involve the estimation of the
design-based variance Ω using the replication weights, and inferential procedures
are developed based on the limiting distributions presented in the theorems and
corollaries.

A promising approach for practical implementations of the EL-based tests
is the bootstrap calibration method. The asymptotic distributions are approx-
imated by the empirical distribution of the replicate copies of the empirical
likelihood ratio statistic using the bootstrap weights. However, theoretical justi-
fications of the bootstrap calibration method can be a challenging task and need
to be developed case-by-case. In this section, we describe a bootstrap procedure
for scenarios where the survey design is single-stage PPS sampling with small
sampling fractions and the final survey weights are the calibration weights. The
auxiliary variables with known population totals used for calibration are avail-
able to the producers of the data files but unavailable to data users. Theoretical
justifications of the procedure are given in the Appendix A.

The set of variables used for calibration weighting, denoted by z, often differs
from the set of covariates (x) appearing in the final dataset. Let Tz be the known
population totals for auxiliary variables z. Let di = 1/πi be the original design
weights and let

{
(yi,xi, zi, di), i ∈ S

}
be the preliminary survey dataset for

weight construction. The calibration weights wi are obtained by minimizing a
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distance measure D(w,d) between w = (w1, . . . , wn)
′ and d = (d1, . . . , dn)

′

subject to the calibration constraints
∑

i∈S wizi = Tz. There are different
distance measures available for calibration weighting. Wu and Lu [27] con-
tains an overview on computational algorithms and finite sample behaviours of
weights from alternative calibration weighting methods. We consider the simple

chisquare distance D(w,d) =
∑

i∈S
(
wi − di

)2
/di, which leads to closed form

expressions for the final calibrated weights wi. Let
{
(yi,xi, zi, wi, di), i ∈ S

}
be

the transitional survey dataset under construction without replication weights.
We present bootstrap procedures for the sample empirical likelihood method

on testing H0: θN = θN0 against H1: θN �= θN0. The procedures are also valid
for the pseudo empirical likelihood method. The proposed bootstrap procedures
consist of the following steps.

1. Select a bootstrap sample S∗ of size n from the original sample S using
simple random sampling with replacement. Denote the bootstrap sample data
by {(yi,xi, zi, wi, di), i ∈ S∗}. Note that S∗ may contain duplicated units from
S.

2. Compute the set of bootstrap weights {w∗
i , i ∈ S∗} by minimizing the dis-

tance measure D(w∗,d) =
∑

i∈S∗
(
w∗

i −di
)2
/di subject to the bootstrap version

of the calibration constraints
∑

i∈S∗ w∗
i zi = Tz. Note that Tz =

∑
i∈S wizi.

3. Define the bootstrap version of the sample empirical likelihood ratio func-
tion rSEL(θ) as

r∗SEL(θ) = −
∑
i∈S∗

log{1 + λ′w∗
i gi(θ)} ,

where λ is the solution to g∗SEL(λ) = n−1
∑

i∈S∗{w∗
i gi(θ)}/[1 +λ′{w∗

i gi(θ)}] =
0. Compute the bootstrap version of the estimator θ̂

∗
SEL = argmaxθ∈Θ r∗SEL(θ)

and the bootstrap version of the SEL ratio statistic LR∗
SEL(θ̂SEL)= 2

{
r∗SEL(θ̂

∗
SEL)−

r∗SEL(θ̂SEL)
}
, where θ̂SEL is the estimator obtained from the original survey

dataset {(yi,xi, wi), i ∈ S}.
4. Repeat Steps 1-3 a large number B times, independently, to obtain B

values of the bootstrap version of the SEL ratio statistic as {LR∗(1)
SEL (θ̂SEL), · · · ,

LR∗(B)
SEL (θ̂SEL)}.

Let bα be the upper α quantile from the empirical distribution of the values
of the bootstrap version {LR∗(1)

SEL (θ̂SEL), · · · , LR∗(B)
SEL (θ̂SEL)}. The α-level SEL

ratio test rejects H0: θN = θN0 if LRSEL(θN) > bα. The bootstrap calibrated
1 − α level confidence region for θN is given by CBT =

{
θ | LRSEL(θ) ≤ bα

}
.

It is shown in the Appendix that this confidence region has correct asymptotic
coverage probability.

The bootstrap procedures described above can be implemented through ad-
ditional columns of replication weights to produce a public-use data file. Let
{w∗

i , i ∈ S∗} be a set of bootstrap weights described in Step 2. Let hi be the
number of times that unit i ∈ S is selected in S∗. Note that 0 ≤ hi ≤ n and∑

i∈S hi = n. The bth set of replication weights are constructed as {w(b)
i =

hiw
∗
i , i ∈ S}. Repeat the process for b = 1, · · · , B, independently, to create B
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sets of replication weights. The bootstrap version LR∗
SEL(θ̂SEL) of the SEL ratio

statistic can be computed by using the (x, y) from the data file in conjunction
with the set of replication weights.

5. Simulation studies

In this section we report results from simulation studies on the finite sample per-
formances of our proposed methods. The finite population {(yi, xi1, xi2, xi3), i =
1, 2, . . . , N} with size N was generated from the following super population
model

yi = x′
iθ + σεi , i = 1, 2, . . . , N ,

where θ = (θ0, θ1, θ2, θ3)
′ = (1, 1, 1, 1)′, xi = (1, xi1, xi2, xi3)

′, xi1 ∼ Bernoulli
(0.5), xi2 ∼ Uniform(0, 1), xi3 ∼ 0.5 + Expomential(2), and the εi’s are iid
N(0, 1). We consider three cases for the variance σ2 of the error terms: (i) σ =
σ1 = 1; (ii) σ = σ2 = 3; and (iii) σ = σ3 = [V ar(η)(1/ρ2 − 1)]1/2 with η = x′θ
and ρ = 0.8. This is the controlled correlation coefficient between y and the
linear predictor η.

The finite population parameters θN = (θN0, θN1, θN2, θN3)
′ under the linear

regression model are defined as the solution to the census estimating equations∑N
i=1 g(xi, yi,θN) = 0, where g(x, y,θ) = x(y−x′θ). With a largeN , the values

of θN are almost identical to the model parameters for the superpopulation.
Our simulation studies focus on examining the size and power of the proposed
pseudo and sample empirical likelihood ratio tests. We consider α-level tests for
two hypotheses: (1) H0: θN1 = 1.0 versus H1: θN1 = b; and (2) H0: θN1 − θN2 = 0
versusH1: (θN1, θN2) = (b1, b2), for selected values of b and (b1, b2), with α = 0.05
for both cases.

In survey practice, the process of creating the final survey weights wi and the

final replication weights w
(b)
i , b = 1, 2, . . . , B can be very complicated. It depends

on the original survey design, the scenarios for nonresponse, and the amount of
known auxiliary information for calibration weighting. The replication weights
often involve ad hoc approximations since many complex survey designs do not
have precise bootstrap procedures or other resampling methods to produce final
replication weights for general inferences. Rao and Wu [22] and Rao, Wu and
Yue [23] contain further details on the topic. To make repeated simulation runs
feasible, we consider single stage unequal probability sampling for the initial
survey design, with the inclusion probabilities πi proportional to xi3. The final
survey weights and the final replication weights are created under two scenarios:

A. The final survey weights are calibrated over the known population totals
of the x1 and x2 variables but unit nonresponse is not involved.

B. The final survey weights are adjusted for uniform unit nonresponse and
calibrated over the known population totals of the x1 and x2 variables.

For each of the two scenarios, there are two major tasks for each simulated
sample: compute the final survey weights wi and create valid final replication

weights w
(b)
i , i ∈ S. For single stage PPS sampling without replacement with
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a negligible sampling fraction, the with-replacement bootstrap procedures de-
scribed in Section 4 produce final replication weights that satisfy Assumption 2
and are also valid for the bootstrap calibration method described in Section 4.
Let S0 be the set of initial sampled units and n0 be the initial sample size under
the original survey design and let S be the set of units included in the final
sample and n be the final sample size.

Under Scenario A, we have S = S0 and n = n0 in the absence of unit
nonresponse. The final weights are calibrated over the known population totals
of x1 and x2. The replication weights are created based on the method described
in Section 4. Under Scenario B, let di = 1/πi be the initial design weights, i ∈ S0.
With uniform unit nonresponse, each unit in S0 has a constant probability to
be a respondent, and the final set S of respondents has a random sample size.
The unit nonresponse adjusted survey weights are computed as

d0i = di

(∑
k∈S0

dk

)
/

(∑
j∈S

dj

)
, i ∈ S .

This is the so-called ratio adjustment for uniform unit nonresponse and the
adjusted survey weights satisfy

∑
i∈S d0i =

∑
j∈S0

dj . Treating the set of ad-
justed weights {d0i, i ∈ S} as the “original” design weights, the final survey
weights and replication weights under the calibration constraints are created by
following the same procedures used in Scenario A.

Simulation samples of size n = 400 are selected for Scenario A from the
population by the randomized systematic PPS sampling method (Goodman
and Kish, [11]; Hartley and Rao, [12]). For Scenario B, initial samples of size
n0 = 571 are selected by the same PPS sampling method. The unit response
probabilities are set to be uniform at 0.7, resulting in final samples with expected
sample size E(n) = 400. For both scenarios, we choose the finite population sizes
as N = 20, 000 and 4, 000 such that the sampling fractions are n/N = 2% and
10%, the first case represents negligible sampling fractions and the second case is
for non-negligible sampling fractions. The final survey weights and the B = 500
sets of final replication weights are created for the given scenario.

Table 1

Size of the PEL and SEL ratio tests assuming standard χ2 limiting distributions

PEL SEL
n/N σ1 σ2 σ3 σ1 σ2 σ3

H0: θN1 = 1.0 versus H1: θN1 = b
2% b = 1.0 0.191 0.167 0.189 0.167 0.141 0.167
10% b = 1.0 0.194 0.170 0.193 0.164 0.141 0.164

H0: θN1 = θN2 versus H1: (θN1, θN2) = (b1, b2)
2% b1 = b2 = 1.0 0.262 0.227 0.260 0.204 0.186 0.206
10% b1 = b2 = 1.0 0.261 0.248 0.264 0.205 0.197 0.210

We compute the power of the PEL and SEL ratio tests for H0: θN1 = 1.0 ver-
sus H1: θN1 = b and for H0: θN1 = θN2 versus H1: (θN1, θN2) = (b1, b2) for selected
values of b and (b1, b2). The power for b = 1.0 and (b1, b2) = (1.0, 1.0) represents
the size of the test, which is set at the level 0.05. Results are based on 2, 000
simulation runs. As a warning message for possible misuse of the PEL and SEL
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Table 2

Power of the PEL tests for H0: θN1 = 1.0 versus H1: θN1 = b when n/N = 2%

b = 0.50 0.75 1.00 1.25 1.50
A I σ1 0.991 0.647 0.046 0.637 0.994

σ2 0.385 0.142 0.056 0.102 0.316
σ3 0.833 0.330 0.054 0.304 0.840

II σ1 0.992 0.637 0.053 0.633 0.993
σ2 0.340 0.118 0.051 0.124 0.332
σ3 0.834 0.345 0.050 0.302 0.841

III σ1 0.989 0.656 0.056 0.635 0.996
σ2 0.359 0.123 0.057 0.112 0.316
σ3 0.836 0.320 0.054 0.300 0.840

IV σ1 0.986 0.654 0.050 0.638 0.996
σ2 0.352 0.152 0.052 0.104 0.324
σ3 0.818 0.314 0.044 0.254 0.828

V σ1 0.992 0.635 0.053 0.626 0.993
σ2 0.334 0.115 0.048 0.123 0.328
σ3 0.831 0.343 0.049 0.300 0.834

B I σ1 0.913 0.395 0.050 0.373 0.921
σ2 0.226 0.094 0.040 0.087 0.181
σ3 0.613 0.207 0.048 0.186 0.576

II σ1 0.916 0.403 0.055 0.378 0.926
σ2 0.199 0.079 0.038 0.078 0.191
σ3 0.581 0.207 0.052 0.173 0.574

III σ1 0.923 0.413 0.049 0.380 0.913
σ2 0.202 0.099 0.053 0.083 0.194
σ3 0.577 0.214 0.042 0.193 0.569

V σ1 0.921 0.416 0.059 0.397 0.929
σ2 0.207 0.084 0.045 0.083 0.203
σ3 0.601 0.213 0.056 0.186 0.593

based tests, we first show that naively assuming the limiting distributions of the
PEL and the SEL ratio tests with public survey data files as standard chisquares
leads to invalid results. The sizes of the tests under Scenario A with different
settings are presented in Table 1. It is apparent from Table 1 that the test sizes
are off by a large margin relative to the nominal value 0.05 for all cases ranging
from 0.141 to 0.194 for the first test and 0.186 to 0.264 for the second test.

The limiting distributions of the PEL and the SEL ratio tests generally fol-
low the distribution of a quadratic form presented in Section 3. We consider
four methods to determine the critical region for each test: I. Monte Carlo
approximations to the distribution of the quadratic form using the estimated
eigenvalues and the weighted χ2 distribution; II. The first-order Rao-Scott cor-
rection method; III. The second-order Rao-Scott correction method; IV. The
Bootstrap calibration method as described in Section 4. We also included a fifth
method for comparisons: V. The Wald-test based on the point estimator θ̂ and
the variance estimator v(θ̂) for θ = θN1 or θ = θN1 − θN2 using standard normal

approximation to (θ̂ − θ)/{v(θ̂)}1/2. Method I uses the limiting distributions
presented in Section 3. Methods I, II and III all require the estimation of eigen-
values of the matrix Δ1, Δ

R
1 , Δ2 or ΔR

2 . The bootstrap calibration method IV
is extremely time consuming for repeated simulations and the results are only
included for Scenario A with 500 simulation runs.
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Table 3

Power of the SEL tests for H0: θN1 = 1.0 versus H1: θN1 = b when n/N = 2%

b = 0.50 0.75 1.00 1.25 1.50
A I σ1 0.995 0.678 0.058 0.664 0.995

σ2 0.393 0.150 0.059 0.116 0.331
σ3 0.851 0.345 0.062 0.326 0.853

II σ1 0.994 0.674 0.062 0.665 0.994
σ2 0.353 0.130 0.058 0.140 0.353
σ3 0.857 0.362 0.057 0.336 0.857

III σ1 0.995 0.667 0.059 0.664 0.996
σ2 0.353 0.131 0.070 0.140 0.352
σ3 0.848 0.346 0.066 0.342 0.845

IV σ1 0.986 0.652 0.050 0.634 0.996
σ2 0.344 0.150 0.046 0.100 0.316
σ3 0.816 0.308 0.040 0.248 0.818

V σ1 0.992 0.635 0.053 0.626 0.993
σ2 0.334 0.115 0.048 0.123 0.328
σ3 0.831 0.343 0.049 0.300 0.834

B I σ1 0.943 0.469 0.076 0.447 0.938
σ2 0.264 0.118 0.057 0.115 0.218
σ3 0.662 0.245 0.066 0.236 0.630

II σ1 0.939 0.472 0.075 0.448 0.942
σ2 0.228 0.101 0.059 0.105 0.236
σ3 0.647 0.241 0.073 0.225 0.632

III σ1 0.940 0.490 0.071 0.454 0.936
σ2 0.247 0.128 0.068 0.110 0.238
σ3 0.651 0.232 0.063 0.227 0.631

V σ1 0.921 0.416 0.059 0.397 0.929
σ2 0.207 0.084 0.045 0.083 0.203
σ3 0.601 0.213 0.056 0.186 0.593

Tables 2 and 3 summarize the results on the size and power of the tests forH0:
θN1 = 1.0 versus H1: θN1 = b for PEL and SEL, respectively, with n/N = 2%.
The results for b = 1.0 correspond to the size of the test with nominal value
0.05 and the results for b �= 1.0 represent the actual power of the test. Tables 4
and 5 summarize the results on the size and power of the tests for H0: θN1 = θN2

versus H1: (θN1, θN2) = (b1, b2). The results for (b1, b2) = (1.0, 1.0) correspond
to the size of the test and the results for other values of (b1, b2) represent the
power of the test. Simulation results corresponding to n/N = 10% are reported
in the online version of the paper (Zhao et al., [31]).

Major observations of the simulation results in Tables 2–5 can be summarized
as follows. (1) All three approaches (i.e., PEL, SEL and Wald) have test sizes
close to the nominal value 0.05 for almost all cases. The PEL based tests perform
the best in terms of valid test size while the SEL based tests have a few cases
with sizes bigger than 0.065. (2) The tests are generally more powerful when
the error variance σ2 is smaller (the cases with σ1 and σ2), where the auxiliary
variables used for calibration weighting have stronger correlation to the response
variable. (3) Both the first and the second order Rao-Scott corrections (entries
under II and III) provide similar results compared to the ones using the actual
limiting distributions (entries under I). (4) The validity of the replication weights
is justified for cases with small sampling fractions but the results based on the
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Table 4

Power of the PEL tests for H0: θN1 = θN2 versus H1: (θN1, θN2) = (b1, b2) when n/N = 2%

(b1, b2) = (1.0, 2.0) (1.0, 1.5) (1.0, 1.0) (1.5, 1.0) (2.0, 1.0)
A I σ1 0.997 0.658 0.056 0.987 1.000

σ2 0.357 0.117 0.041 0.248 0.784
σ3 0.866 0.306 0.055 0.754 1.000

II σ1 0.998 0.672 0.054 0.985 1.000
σ2 0.339 0.129 0.053 0.263 0.779
σ3 0.876 0.312 0.055 0.762 1.000

III σ1 0.997 0.642 0.055 0.988 1.000
σ2 0.339 0.113 0.062 0.255 0.779
σ3 0.862 0.321 0.056 0.737 1.000

IV σ1 0.998 0.638 0.048 0.992 1.000
σ2 0.318 0.118 0.054 0.242 0.816
σ3 0.822 0.272 0.040 0.742 1.000

V σ1 0.998 0.724 0.059 0.558 0.991
σ2 0.364 0.148 0.050 0.110 0.320
σ3 0.867 0.370 0.058 0.294 0.823

B I σ1 0.931 0.381 0.051 0.864 1.000
σ2 0.169 0.079 0.055 0.145 0.506
σ3 0.561 0.179 0.051 0.444 0.974

II σ1 0.937 0.408 0.054 0.863 0.999
σ2 0.182 0.080 0.039 0.143 0.465
σ3 0.599 0.177 0.058 0.461 0.980

III σ1 0.937 0.392 0.052 0.855 1.000
σ2 0.194 0.067 0.046 0.134 0.516
σ3 0.593 0.177 0.053 0.451 0.981

V σ1 0.941 0.486 0.050 0.342 0.896
σ2 0.236 0.101 0.049 0.090 0.187
σ3 0.638 0.232 0.053 0.174 0.570

estimated eigenvalues (entries under I, II and III) seem to work well even if
n/N = 10%. (5) The bootstrap calibration method (entries under IV) works
very well for n/N = 2% for all cases. For cases with the large sampling fraction
n/N = 10%, the size of the test for H0: θN1 = θN2 with σ = σ1 is around 0.02
for both PEL and SEL, showing the sensitivity of the replication weights on the
bootstrap calibrated tests. (6) The Wald test has similar performance to SEL
based tests in some cases but is less powerful in some other cases.

Results on the performance of the empirical likelihood methods for parame-
ters defined through nonsmooth estimating functions are reported in the online
version of the paper (Zhao et al., [31]).

6. An application to the GSS 2016 dataset

The General Social Survey (GSS) is an annual cross-sectional survey conducted
by Statistics Canada since 1985. The survey gathers data on social trends in or-
der to monitor changes in the living conditions and the well-being of Canadians,
and to provide information on specific social policy issues. The 2016 GSS focused
on Canadians at Work and Home, and collected information on the lifestyle be-
haviour of Canadians that affects their health and well-being, both in workplace
and home. The survey covered individuals aged 15 years and older living in pri-
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Table 5

Power of the SEL tests for H0: θN1 = θN2 versus H1: (θN1, θN2) = (b1, b2) when n/N = 2%

(b1, b2) = (1.0, 2.0) (1.0, 1.5) (1.0, 1.0) (1.5, 1.0) (2.0, 1.0)
A I σ1 0.997 0.669 0.065 0.988 1.000

σ2 0.376 0.135 0.049 0.269 0.798
σ3 0.865 0.322 0.064 0.771 1.000

II σ1 0.998 0.687 0.062 0.987 1.000
σ2 0.360 0.140 0.061 0.288 0.797
σ3 0.878 0.332 0.063 0.778 1.000

III σ1 0.998 0.664 0.063 0.989 1.000
σ2 0.361 0.131 0.069 0.278 0.789
σ3 0.868 0.337 0.068 0.756 1.000

IV σ1 0.998 0.624 0.040 0.990 1.000
σ2 0.294 0.112 0.046 0.232 0.812
σ3 0.798 0.252 0.038 0.732 1.000

V σ1 0.998 0.724 0.059 0.558 0.991
σ2 0.364 0.148 0.050 0.110 0.320
σ3 0.867 0.370 0.058 0.294 0.823

B I σ1 0.941 0.445 0.076 0.897 1.000
σ2 0.226 0.112 0.069 0.188 0.546
σ3 0.642 0.219 0.069 0.511 0.982

II σ1 0.947 0.470 0.079 0.897 1.000
σ2 0.227 0.120 0.057 0.192 0.522
σ3 0.645 0.219 0.079 0.526 0.986

III σ1 0.949 0.454 0.075 0.893 1.000
σ2 0.245 0.096 0.066 0.178 0.577
σ3 0.644 0.234 0.077 0.531 0.986

V σ1 0.941 0.486 0.050 0.342 0.896
σ2 0.236 0.101 0.049 0.090 0.187
σ3 0.638 0.232 0.053 0.174 0.570

vate households in the 10 provinces of Canada. Public-use GSS micro data files,
which include the final survey weights and 500 sets of bootstrap weights, can be
accessed through Statistics Canada’s Research Data Centre (RDC) or the Data
Liberation Initiative (DLI) at major Canadian universities.

We analyzed a subset of the GSS 2016 data file using the pseudo empiri-
cal likelihood and the sample empirical likelihood methods developed in this
paper. We explored the relationships between the response variable y on job
satisfaction and a set of 14 covariates through logistic regression analysis. The
y variable is dichotomized from the original 5-point likert scale, i.e., y = 1 if
either “Very satisfied” or “Satisfied” and y = 0 otherwise. The set of covariates
includes x1: Gender ; x2: Marital Status; x3: Landed Immigrant Status; x4: Cit-
izenship Status; x5: Number of Weeks Employed – Past 12 Months; x6: Number
of Weeks Worked at the Job – Past 12 Months; x7: Unionized Job or Covered by
Contract or Collective Agreement ; x8: Being Happy When Working Hard ; x9:
Employment Benefits – Workplace Pension Plan; x10: Employment Benefits –
Paid Sick Leave; x11: Employment Benefits – Paid Vacation Leave; x12: Unfair
Treatment/Discrimination – Past 12 Months; x13: Age Group; x14: Number of
Persons Employed at Work Location. The subset of the data file we used, de-
noted as S, consists of n = 1, 552 individuals who had valid responses to all 15
questions described above. Detailed descriptions of those questions are provided
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in the Supplementary Material. The final survey weights wi and the bth set of

bootstrap weights w
(b)
i are rescaled such that

∑
i∈S wi = n and

∑
i∈S w

(b)
i = n,

b = 1, · · · , 500. Note that the rescaling does not change the validity of the
bootstrap weights for variance estimation as specified in Assumption 2.

We considered the logistic regression model on y given x = (1, x1, · · · , x14)
′,

which models Pr(y = 1 | x) through the logit link function logit{Pr(y = 1 |
x)} = x′θ, where logit(p) = log{p/(1− p)} and θ = (θ0, θ1, · · · , θ14)′. It follows
that the odds for job satisfaction is given by

Pr(y = 1 | x)
Pr(y = 0 | x) =

14∏
j=0

exp(xjθj).

The value exp(θj) represents the odds ratio (OR) for job satisfaction when xj

changes from 0 to 1 given other covariates.

Table 6

GSS Data: Point Estimation, Hypothesis Testing and Variable Selection

Covariate Estimate SE OR
P-Value Variable Selection

PEL SEL PEL SEL
1 -0.029 0.716 0.971 0.967 0.962 0.000 0.000
x1 -0.261 0.211 0.770 0.202 0.165 0.000 0.000
x2 0.211 0.224 1.234 0.342 0.312 0.000 0.000
x3 0.091 0.329 1.095 0.779 0.750 0.000 0.000
x4 -0.250 0.258 0.778 0.319 0.305 0.000 0.000
x5 0.017 0.014 1.017 0.205 0.159 0.000 0.000
x6 -0.012 0.011 0.988 0.274 0.261 0.000 0.000
x7 0.060 0.235 1.061 0.792 0.785 0.000 0.000
x8 1.258 0.277 3.518 0.000 0.000 2.196 2.157
x9 0.095 0.268 1.099 0.704 0.693 0.000 0.000
x10 0.590 0.263 1.803 0.019 0.013 0.000 0.000
x11 0.152 0.260 1.164 0.550 0.536 0.000 0.000
x12 -1.422 0.266 0.241 0.000 0.676 0.000 0.000
x13 0.082 0.099 1.085 0.385 0.340 0.000 0.000
x14 0.032 0.059 1.032 0.586 0.566 0.000 0.000

Note: The values 0.000 in the last two columns indicate non-significant factors identified by
the variable selection procedure.

The estimating function for defining θ is given by g(x, y,θ) = x{y−μ(x′θ)},
where μ(x′θ) = exp(x′θ)/{1 + exp(x′θ)}. Let θN = (θN0, θN1, · · · , θN14)

′ be the
finite population parameters defined by the census estimating equations. We
computed the point estimates, the standard errors (SE), the odds ratios (OR)
and the p-values for testing H0: θNj = 0 versus H1: θNj �= 0, j = 0, 1, · · · , 14
using the pseudo empirical likelihood (PEL) and the sample empirical likelihood
(SEL) methods. Note that we have r = p in this case and the point estimates,
the SE and the OR are the same under the two methods. The p-values for
hypothesis tests were computed using the first-order Rao-Scott correction as
described at the end of Section 3.2. The SCAD penalty function proposed by
Fan and Li [10] was used for variable selection.

Results of estimation, hypothesis testing and variable selection are presented
in Table 6. The first major observation is that the pseudo empirical likelihood
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and the sample empirical likelihood provide similar results for almost all cases,
with only one noticeable exception on the p-value for testing H0: θN12 = 0.
The second observation is that only three covariates, x8: Being Happy When
Working Hard, x10: Employment Benefits – Paid Sick Leave, and x12: Unfair
Treatment/Discrimination – Past 12 Months, show significance to the response
variable on job satisfaction from individual tests given all other covariates in
the model. The variable selection results, however, point to the fact that x8 is
the most significant factor on job satisfaction.

7. Additional remarks

Public-use survey data files might be utilized by researchers with diverse back-
grounds and for different scientific objectives. Descriptive population parameters
such as means and proportions, especially at the level of user-defined domains,
are often of interest. However, complex survey data have also been used for an-
alytic purposes. One important application is hypothesis tests in the presence
of nuisance parameters. Binder and Patak [5] discussed an estimating equation
based test on one parameter in the presence of another nuisance parameter.
Oguz-Alper and Berger [16] presented a profile empirical likelihood test with
nuisance parameters under the setting that detailed design information such as
the first order inclusion probabilities and the population auxiliary information
used for calibration are available. They showed that the limiting distribution of
the empirical likelihood ratio statistic follows a standard chisquare for certain
sampling designs. General results, such as Theorems 1–6 presented in Section
3, for public-use survey data are not available in the existing literature. More
importantly, naively assuming standard chisquare limiting distributions for the
empirical likelihood ratio test statistics for public-use survey data files lead to
invalid results, as shown by the simulation results presented in Table 1.

A very important practical problem is variable selection when the survey
dataset is used to fit a model involving a large number of covariates. The design-
based variable selection techniques described in Section 3.4 are a major contri-
bution of the current paper. Another topic of interest is to test the correctness
of the specified model, which is equivalent to testing the unbiasedness of the
estimating functions used in the constraints. A pseudo empirical likelihood or a
sample empirical likelihood ratio test following Corollary 4 of Qin and Lawless
[18] seems to be possible. Detailed procedures are currently under investigation.

The empirical likelihood methods have been an active research topic during
the past three decades, with many new developments covering different areas.
Rao and Wu [21] contained an overview of empirical likelihood for complex sur-
veys up to 2009. There have been several advances in recent years on empirical
likelihood for complex surveys as evidenced by the additional references cited
in this paper. Reid [24] provided an overview of likelihood inference in complex
settings, and the development of empirical likelihood method for complex survey
data received high attention on her list. Our paper addresses a topic with both
theoretical and practical importance on analysis of public-use survey data files.
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Our proposed methods are valid for any public-use survey data files regardless
of the original survey design. However, the bootstrap calibrated tests described
in Section 4 put restrictions on how the final replication weights should be pro-
duced. Creating final replication weights for valid variance estimation (Assump-
tion 2) has been known to be a challenging task at the data file production stage
for complex surveys involving stratification and multi-stage unequal probability
sampling. Our simulation results show that constructing replication weights to
satisfy the requirements for the bootstrap calibration method is even harder.
Another important topic is on how to handle item nonresponse for public-use
data files. Single imputation methods are a popular approach among some sta-
tistical agencies to produce a single complete data file for public users. How to
create replication weights for data files in the presence of imputation for missing
values is a topic that deserves high attention in future research.

Appendix A: Theoretical justification of the bootstrap calibration
method

The justification of the bootstrap method essentially involves establishing the
bootstrap version of Theorem 5 on the sample empirical likelihood. We consider
cases where the final survey weights wi are calibrated over the known population
totals of the z variables using the chi-square distance D(w,d). The calibrated
weights are given by wi = di{1+z′

iλc}, where λc = (
∑

i∈S diziz
′
i)

−1(Tz−T̂zHT),

Tz =
∑N

i=1 zi and T̂zHT =
∑

i∈S dizi. Let B(θ) = (
∑N

i=1 ziz
′
i)

−1
∑N

i=1 zigi(θ)
′

and B̂(θ) = (
∑

i∈S diziz
′
i)

−1
∑

i∈S dizigi(θ)
′. Under regularity conditions sim-

ilar to Assumptions 3–5 on the original survey design, we have ‖B̂(θ)−B(θ)‖ =
Op(n

−1/2) uniformly for all θ ∈ Θ. Consequently, we have the following asymp-
totic expansion:

Ûn(θN) =
∑
i∈S

wigi(θN)

=
∑
i∈S

di[gi(θN) + gi(θN)z
′
iλc]

=
∑
i∈S

digi(θN) + B̂(θN)
′(Tz − T̂zHT)

=
∑
i∈S

digi(θN) +B(θN)
′(Tz − T̂zHT) + op(Nn−1/2)

=
∑
i∈S

di[gi(θN)−B(θN)
′zi] +B(θN)

′Tz + op(Nn−1/2) .

Let Û c
n(θ) =

∑
i∈S diei(θ) +B(θ)′Tz, where ei(θ) = gi(θ)−B(θ)′zi. We have

LRSEL(θN) = 2
{
rSEL(θ̂SEL)− rSEL(θN)

}
= nN−2Û c

n(θN)
′W−1

2 ΓΣ2Γ
′W−1

2 Û c
n(θN) + op(1) .
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The bootstrap weights {w∗
i ,∈ S∗} are created by the same calibration proce-

dure over zi and Tz. Using similar arguments for the asymptotic expansion to
LRSEL(θN) and conditional on the original sample, we have a similar expansion
to the bootstrap version of the SEL ratio statistic as

LR∗
SEL(θ̂SEL) = 2

{
r∗SEL(θ̂

∗
SEL)− r∗SEL(θ̂SEL)

}
= nN−2Û c∗

n (θ̂SEL)
′W−1

2 ΓΣ2Γ
′W−1

2 Û c∗
n (θ̂SEL) + op(1) ,

where Û c∗
n (θ) =

∑
i∈S∗ d∗i e

∗
i (θ) + B(θ)′Tz, and e∗i (θ) = g∗

i (θ) − B(θ)′z∗
i for

i ∈ S∗. To justify the proposed bootstrap calibration method, it suffices to show
that, as n → ∞,

V ar

{∑
i∈S

diei(θN) | FN

}
/V ar

{ ∑
i∈S∗

d∗i e
∗
i (θ̂SEL) | S

}
−→ 1 , (A.1)

where V ar(· | F) represents the design-based variance and V ar(· | S) denotes
the variance under the bootstrap sampling procedure, conditional on the original
survey sample S. The condition (A.1) ensures that both the bootstrap version

LR∗
SEL(θ̂SEL) and the original version LRSEL(θN) have the same asymptotic dis-

tribution.
Let η̂ =

∑
i∈S diei(θN) and η̂∗ =

∑
i∈S∗ d∗i e

∗
i (θ̂SEL); let ti = (ndi)

−1 and t∗i =
(nd∗i )

−1, which play the role of the size variable under PPS sampling. We can re-
write η̂ and η̂∗ as η̂ = n−1

∑
i∈S r̂i and η̂∗ = n−1

∑
i∈S∗ r̂

∗
i , respectively, where

r̂i = ei(θN)/ti and r̂∗i = e∗i (θ̂SEL)/t
∗
i . Under the proposed with-replacement

bootstrap procedure, we have V ar(η̂∗ | S) = S2
r/n, where S

2
r = n−1

∑
i∈S(ri −

η̂)(ri−η̂)′. If the original survey sample is selected by single-stage PPS sampling
with replacement method, then η̂ = n−1

∑
i∈S gi(θN)/ti is the standard Hansen-

Hurwitz estimator and the design-based variance V ar(η̂ | FN) can be unbiasedly
estimated by n−1{(n − 1)−1}

∑
i∈S(ri − η̂)(ri − η̂)′. It follows that V ar(η̂ |

FN)/V ar(η̂∗ | S∗) → 1 as n → ∞. The result also applies to single-stage PPS
sampling without replacement with small sampling fractions.

Acknowledgements

This research was supported by grants from the Natural Sciences and Engi-
neering Research Council (NSERC) of Canada and a Collaborative Research
Team Grant from the Canadian Statistical Sciences Institute (CANSSI). Zhao’s
research was also supported by the scientific research fund for high-level talents
of Yunnan University and the National Natural Science Foundation of China
(Grant Nos.: 11731011, 11871287).

References

[1] Berger, Y. G. and De La Riva Torres, O. (2012). A unified theory of
empirical likelihood ratio confidence intervals for survey data with unequal



2508 P. Zhao et al.

probabilities. Proceedings of the Survey Research Method Section of the
American Statistical Association, Joint Statistical Meeting, San Diego.

[2] Berger, Y. G. andDe La Riva Torres, O. (2014). Empirical likelihood
confidence intervals: an application to the EU-SILC household surveys.
Contribution to Sampling Statistics, Contribution to Statistics: F. Mecatti,
P. L. Conti, M. G. Ranalli (editors). Springer, pages 65–84.

[3] Berger, Y. G. and De La Riva Torres, O. (2016). Empirical likeli-
hood confidence intervals for complex sampling designs. Journal of Royal
Statistical Society, Ser. B, 78, 319–341. MR3454199

[4] Binder, D. A. (1983). The the variances of asymptotically normal estima-
tors from complex surveys. International Statistical Review, 51, 279–292.
MR0731144

[5] Binder, D. A. and Patak, Z. (1994). Use of estimating functions for
estimation from complex surveys. Journal of the American Statistical As-
sociation, 89, 1035–1043. MR1294748

[6] Chen, J. and Qin, J. (1993). Empirical likelihood estimation for finite
populations and the effective usage of auxiliary information. Biometrika,
80, 107–116. MR1225218

[7] Chen, J. and Sitter, R. R. (1999). A pseudo empirical likelihood ap-
proach to the effective use of auxiliary information in complex surveys.
Statistica Sinica, 9, 385–406. MR1707846

[8] Chen, J., Sitter, R. R. and Wu, C. (2002). Using empirical likelihood
methods to obtain range restricted weights in regression estimators for
surveys. Biometrika, 89, 230–237. MR1888365

[9] Chen, S. and Kim, J. K. (2014). Population empirical likelihood for non-
parametric inference in survey sampling. Statistica Sinica, 24, 335–355.
MR3183687

[10] Fan, J. and Li, R. (2001). Variable selection via nonconcave penalized
likelihood and its oracle properties. Journal of the American Statistical
Association, 96, 1348–1360. MR1946581

[11] Goodman, R. and Kish, L. (1950). Controlled selection – a technique in
probability sampling. Journal of the American Statistical Association, 45,
350–372.

[12] Hartley, H. O. and Rao, J. N. K. (1962). Sampling with unequal prob-
abilities and without replacement. Annals of Mathematical Statistics, 33,
350–374. MR0143312

[13] Hartley, H. O. and Rao, J. N. K. (1968). A new estimation theory for
sample surveys. Biometrika, 55, 547–557.

[14] Isaki, C. T. and Fuller, W. A. (1982). Survey designs under the regres-
sion superpopulation model. Journal of the American Statistical Associa-
tion, 77, 89–96. MR0648029

[15] Kim, J. K. and Wu, C. (2013). Sparse and efficient replication variance
estimation for complex surveys. Survey Methodology, 39, 91–120.

[16] Oguz-Alper, M. and Berger, Y. G. (2016). Modelling complex survey
data with population level information: An empirical likelihood approach.
Biometrika, 103, 447–459. MR3509898

http://www.ams.org/mathscinet-getitem?mr=3454199
http://www.ams.org/mathscinet-getitem?mr=0731144
http://www.ams.org/mathscinet-getitem?mr=1294748
http://www.ams.org/mathscinet-getitem?mr=1225218
http://www.ams.org/mathscinet-getitem?mr=1707846
http://www.ams.org/mathscinet-getitem?mr=1888365
http://www.ams.org/mathscinet-getitem?mr=3183687
http://www.ams.org/mathscinet-getitem?mr=1946581
http://www.ams.org/mathscinet-getitem?mr=0143312
http://www.ams.org/mathscinet-getitem?mr=0648029
http://www.ams.org/mathscinet-getitem?mr=3509898


Empirical likelihood for public-use survey data 2509

[17] Owen, A. B. (1988). Empirical likelihood ratio confidence intervals for a
single functional. Biometrika, 75, 237–249. MR0946049

[18] Qin, J. and Lawless, J. F. (1994). Empirical likelihood and general esti-
mating equations. The Annals of Statistics, 22, 300–325. MR1272085

[19] Rao, J. N. K. and Soctt, A. (1981). The analysis of categorical data from
complex sample surveys: chi-squared tests for goodness-of-fit and indepen-
dence in two-way tables. Journal of the American Statistical Association,
76, 221–230. MR0624328

[20] Rao, J. N. K. and Scott, A. (1984). On chi-squared tests for multi-
way tables with cell proportions estimated from survey data. Annals of
Statistics, 12, 46–60. MR0733498

[21] Rao, J. N. K. and Wu, C. (2009). Empirical likelihood methods. Hand-
book of Statistics, Volume 29B, Sample Surveys: Inference and Analysis,
edited by D. Pfeffermann and C. R. Rao , 189–207. MR2668352

[22] Rao, J. N. K. and Wu, C. F. J. (1988). Resampling inference with
complex survey data. Journal of the American Statistical Association, 83,
231–241. MR0941020

[23] Rao, J. N. K., Wu, C. F. J. and Yue, K. (1992). Some recent work on
resampling methods for complex surveys. Survey Methodology, 18, 209–217.

[24] Reid, N. (2012). Likelihood inference in complex settings. The Canadian
Journal of Statistics, 40, 731–744. MR2998859

[25] Wang, H., Li, R. and Tsai, C. L. (2007). Tuning parameter selectors for
the smoothly clipped absolute deviation method. Biometrika, 94, 553–568.
MR2410008

[26] Wu, C. (2005). Algorithms and r codes for the pseudo empirical likelihood
methods in survey sampling. Survey Methodology, 31, 239–243.

[27] Wu, C. and Lu, W. W. (2016). Calibration weighting methods for complex
surveys. International Statistical Review, 84, 79–98. MR3491280

[28] Wu, C. and Rao, J. N. K. (2006). Pseudo-empirical likelihood ratio con-
fidence intervals for complex surveys. The Canadian Journal of Statistics,
34, 359–375. MR2328549

[29] Zhao, P. and Wu, C. (2019). Some theoretical and practical aspects of
empirical likelihood methods for complex surveys. International Statistical
Review, 87, 239–256. MR3957353

[30] Zhao, P., Haziza, D. and Wu, C. (2018). Empirical likelihood inference
for complex surveys and the design-based oracle variable selection theory.
Submitted . MR3324425

[31] Zhao, P., Rao, J. N. K. and Wu, C. (2020). Empirical likelihood infer-
ence with public-use survey data. arXiv:2005.12172.

[32] Zhong, B. and Rao, J. N. K. (2000). Empirical likelihood inference
under stratified random sampling using auxiliary population information.
Biometrika, 87, 929–938. MR1813985

http://www.ams.org/mathscinet-getitem?mr=0946049
http://www.ams.org/mathscinet-getitem?mr=1272085
http://www.ams.org/mathscinet-getitem?mr=0624328
http://www.ams.org/mathscinet-getitem?mr=0733498
http://www.ams.org/mathscinet-getitem?mr=2668352
http://www.ams.org/mathscinet-getitem?mr=0941020
http://www.ams.org/mathscinet-getitem?mr=2998859
http://www.ams.org/mathscinet-getitem?mr=2410008
http://www.ams.org/mathscinet-getitem?mr=3491280
http://www.ams.org/mathscinet-getitem?mr=2328549
http://www.ams.org/mathscinet-getitem?mr=3957353
http://www.ams.org/mathscinet-getitem?mr=3324425
https://arxiv.org/abs/arXiv:2005.12172
http://www.ams.org/mathscinet-getitem?mr=1813985

	Introduction
	Empirical likelihood and estimating equations for complex surveys
	Empirical likelihood inference with public-use survey data
	Public-use survey data and basic assumptions
	The pseudo empirical likelihood approach
	The sample empirical likelihood approach
	Design-based variable selection

	Bootstrap calibrated empirical likelihood methods
	Simulation studies
	An application to the GSS 2016 dataset
	Additional remarks
	Theoretical justification of the bootstrap calibration method
	Acknowledgements
	References

