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Institut de Mathématiques de Toulouse
e-mail: loubes@math.univ-toulouse.fr

Vladimir Spokoiny

Weierstrass Institute, and HU Berlin,
IITP RAS, and HSE Moscow

e-mail: spokoiny@wias-berlin.de

Abstract: In this work, we propose a way to construct Gaussian pro-
cesses indexed by multidimensional distributions. More precisely, we tackle
the problem of defining positive definite kernels between multivariate dis-
tributions via notions of optimal transport and appealing to Hilbert space
embeddings. Besides presenting a characterization of radial positive def-
inite and strictly positive definite kernels on general Hilbert spaces, we
investigate the statistical properties of our theoretical and empirical ker-
nels, focusing in particular on consistency as well as the special case of
Gaussian distributions. A wide set of applications is presented, both using
simulations and implementation with real data.

MSC 2010 subject classifications: Primary 60G15.

Keywords and phrases: Kernel methods, Wasserstein distance, Hilbert
space embeddings.

Received March 2019.

2742

http://projecteuclid.org/ejs
https://doi.org/10.1214/20-EJS1725
mailto:francois.bachoc@math.univ-toulouse.fr
mailto:suvorikova@wias-berlin.de
mailto:david.ginsbourger@stat.unibe.ch
mailto:loubes@math.univ-toulouse.fr
mailto:spokoiny@wias-berlin.de


Gaussian processes via optimal transport 2743

1. Introduction

Gaussian process models are widely used in fields such as geostatistics, com-
puter experiments and machine learning [44, 46]. In a nutshell, Gaussian pro-
cess modelling consists in assuming for an unknown function of interest to be
one realisation of a Gaussian process, or equivalently of a Gaussian random
field indexed by the source space of the objective function, and is often cast as
part of the Bayesian arsenal for non-parametric estimation in function spaces.
For instance, in computer experiments, the input points of the function are
simulation input parameters and the output values are quantities of interest ob-
tained from simulation responses. Furthermore, there has been a huge amount
of literature dealing with the use of Gaussian processes in machine learning
over the last decade. We refer for instance to [44, 48] or [20] and references
therein.

Gaussian process models heavily rely on the specification of a covariance
function, or “kernel”, that characterizes linear dependencies between values of
the process at different observation points. In fact, the kernel, which can be
seen as a similarity measure between locations in the index space, also induces
a (pseudo-)metric on the index space often referred to as the “canonical met-
ric associated with the kernel” via the variogram function of geostatisticians.
A natural question for a given kernel is how those inherently associated notions
of similarity/dissimilarity interplay with prescribed metrics on the index space.
In Euclidean space, one often speaks of radial or isotropic kernel for those covari-
ance functions that are explicitly depending on the Euclidean distance between
points. Radial kernels with respect to other metrics have also been investigated,
see e.g. kernels writing as functions of the �1 distance in multivariate Euclidean
spaces [54].

In this paper we consider Gaussian processes indexed by distributions sup-
ported on R

p, and we investigate ways to build positive definite kernels based on
the Wasserstein distance. Distributional inputs can occur in a number of prac-
tical situations and exploring admissible kernels for using Gaussian process and
related methods in this context is a pressing issue. Situations of that kind include
the case of uncertain vector inputs to a vector-to-scalar deterministic function,
but also a variety of other settings such as histogram inputs standing for in-
stance for ratings from a panel of experts, compositional data in geosciences, or
randomized strategies in a Bayesian game-theoretic framework.

In some situations, distribution-valued inputs may arise as a convenient way
to describe complex objects and media, e.g. a number of physical simulations
require maps or parameter fields as inputs, and in some cases it can be ben-
eficial to reparametrize them so as to work with probability distributions. For
instance in [25], the computer model [29] is studied, where the input simulation
parameter consists of a set of disks located on a unit square [0, 1]2, modelling
a material, for which a stress output is associated. A Gaussian process model
on distributions enables to treat the input sets of disks as measures, and to
model the stress outputs as stemming from a random field indexed by the input
distributions.
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In this framework, a natural aim is to construct covariance functions for
Gaussian processes indexed by such inputs, that is constructing positive definite
kernels on sets of probability measures.

The simplest method is perhaps to compare a set of parametric features built
from the probability distributions, such as the mean or the higher moments. This
approach is limited, as the effect of such parameters does not take the whole
distribution into account. Specific positive definite kernels should instead be
designed so as to take their entire distribution inputs into account. This issue
has recently been considered in [39] or [31]. We aim at basing these kernels on
the Wasserstein, or transport-based, distance which was shown to be relevant
and insightful for comparing or studying distributions [53, 19, 42, 16].

This issue has been studied for the one dimensional case in [8] or in [51],
using the specific expression of the Wasserstein distance in dimension 1. Yet
this case uses the property of the optimal coupling with the uniform random
variable which is very specific to the one dimensional case. The positive definite
kernels provided in the one dimensional case are not necessarily positive defi-
nite any longer, when they are extended to higher dimensions, as we illustrate
numerically in Section 5. We refer to Remark 4 for a specific discussion of the
one-dimensional case.

In the general dimension case, in order to build a positive definite kernel from
the Wasserstein distance, we associate to each input distribution its optimal
transport map to a reference distribution. We then provide positive definite
kernels on the Hilbert space corresponding to the inverses of these optimal
transport maps. This results in a positive definite kernel for multidimensional
distributions. As a reference distribution, we recommend to take the empirical
Fréchet mean (or barycenter) of the distributions. We remark that the notion
of Wasserstein barycenters and their use in machine learning and in statistics
has been tackled recently, for instance, in [2, 13, 15]. Although computational
aspects of optimal transports are a difficult issue, substantial work has been
conducted to provide feasible algorithms to compute barycenters and optimal
transport maps, see for instance [32, 52], or [42] and references therein. Thus
our suggested procedure is feasible in practice, as is confirmed by our simulation
results on synthetic data and on the data from the CASTEM computer model
[29, 25].

We also present a characterization of all the continuous radial positive defi-
nite and strictly positive definite kernels on Hilbert spaces. This is carried out by
showing that they coincide with continuous radial positive definite and strictly
positive definite kernels on Euclidean spaces of arbitrary dimension, and by re-
visiting existing results for the Euclidean case [54]. In addition, we show that
when considering parametric families of covariance functions for Gaussian pro-
cesses on infinite dimensional Hilbert spaces, all the covariance parameters are
microergodic in general. Microergodicity is an important concept for the asymp-
totic analysis of Gaussian processes [50, 55, 5]. More precisely, in a parametric
family of covariance functions, a covariance parameter is said to be microergodic
if, for two different values of it, the two corresponding Gaussian measures in-
duced by the two covariance functions are orthogonal. If a covariance parameter
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is not microergodic, this means that there can not exist any consistent estima-
tor of it, and also that changing the value of this parameter will not have an
asymptotic impact on the predictions of the Gaussian process values [50, 55].
On the contrary, if a covariance parameter is microergodic, then the value it
takes is asymptotically important for prediction, and it is possible to construct
consistent estimators of it.

We provide furthermore statistical results related to our positive definite ker-
nel construction. We study the asymptotic closeness of the two kernels obtained
by taking the empirical barycenter and the population barycenter as reference
distributions. We obtain additional more quantitative results in the special case
of Gaussian input distributions. We also discuss stationarity and universality.

In the aforementioned simulations, we compare the Gaussian process regres-
sion model obtained from our suggested positive definite kernels with the distri-
bution regression procedure of [43]. The results show the benefit of our method.

The paper falls into the following parts. In Section 2 we recall some definitions
on kernels and on the notion of optimal transport, Wasserstein distance and
Wasserstein barycenter of distributions. We also provide our positive definite
kernel construction. The analysis of radial positive definite kernels and Gaussian
processes on Hilbert spaces is provided in Section 3. Section 4 is devoted to the
statistical results related to our kernel construction. The simulation results are
provided in Section 5. Conclusions are discussed in Section 6. The proofs are
postponed to the appendix.

2. Construction of positive definite kernels for distributions with
Hilbert space embedding and optimal transport

2.1. Some basic notions of optimal transport

In this paper we focus on Gaussian processes for which the input parameters are
in W2(R

p) ⊂ P(Rp), where P(Rp) is the set of distributions supported on R
p

and W2(R
p) is the subset of P(Rp) composed of distributions with finite second

moments. To study such models, Gaussian processes must be defined over the
set of distributions.

Let us recall that a Gaussian process (Yx)x∈E indexed by a set E is entirely
characterized by its mean and covariance functions. A covariance function is
defined by (x, y) ∈ E × E �→ Cov(Yx, Yy). In general, a symmetric function
K : E×E → R is actually the covariance of a (square-integrable) random process
if and only if it is a positive definite kernel, that is for every x1, · · · , xn ∈ E and
λ1, · · · , λn ∈ R,

n∑
i,j=1

λiλjK(xi, xj) ≥ 0. (2.1)

In this case we say that K is a covariance kernel. If the quadratic form (2.1) is
always strictly positive when x1, . . . , xn are two-by-two distinct and λ1, . . . , λn

are not all zero, then we say that K is a strictly positive definite kernel. We
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also say that K is a conditionally negative definite kernel if the quadratic form
in (2.1) is non-positive when

∑n
i=1 λi = 0.

Classical examples of strictly positive definite kernels, when E is an Euclidean
space, are the square exponential, Matérn and power exponential ones, that are
detailed below in (3.2) to (3.4). They can be extended to the case where E is
an Hilbert space, see Section 3. As discussed above, the core of this paper is
dedicated to the case where E is W2(R

p) or a subset of it.
The notions of Wasserstein distance and optimal transport will be central

to our construction of positive definite kernels with inputs in W2(R
p). Let us

introduce them now (see also [53]). For two μ, ν in W2 (R
p), we denote by

Π(μ, ν) the set of all probability measures π over the product set Rp ×R
p with

first (resp. second) marginal μ (resp. ν).
The transportation cost with quadratic cost function, or quadratic trans-

portation cost, between these two measures μ and ν is defined as

T2(μ, ν) = inf
π∈Π(μ,ν)

∫
‖x− y‖2 dπ(x, y). (2.2)

In the above display and throughout this paper, we let ‖ · ‖ be the Euclidean
norm on any Euclidean space. This transportation cost allows to endow the
set W2 (R

p) with a metric by defining the quadratic Monge-Kantorovich, or
quadratic Wasserstein distance between μ and ν as

W2(μ, ν) = T2(μ, ν)1/2. (2.3)

A probability measure π in Π(μ, ν) realizing the infimum in (2.2) is called an
optimal coupling. A random vector (X1, X2) with distribution π in Π(μ, ν)
realizing this infimum is also called an optimal coupling.

Our aim is to base our suggested covariance functions on the notion of optimal
transport, and in particular of Wasserstein distance and barycenter. Indeed, the
Wasserstein distance has been shown to be a very useful tool in statistics and
machine learning [42, 19].

2.2. Construction of positive definite kernels by Hilbert space
embedding of optimal transport maps

The class of positive definite kernels that we present here is based on the notion
of optimal transport map, that we now introduce. Consider a reference distribu-
tion η ∈ W2(R

p), which will typically be chosen as a Wasserstein barycenter (see
Section 2.3) and which is further discussed in Remark 3 below. For μ ∈ W2(R

p),
let Tμ : Rp → R

p be the optimal transportation map defined by

Tμ�μ = η

where f�π = π◦f−1 is the push-forward measure of a function f from a measure
π, and

||id− Tμ||L2(μ) = W2(μ, η).
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Note that the map Tμ is uniquely defined when μ is absolutely continuous
w.r.t. Lebesgue measure. Furthermore, Tμ is invertible from the support of μ to
the support of η if also η is absolutely continuous.

Remark 1. We point out that the existence of transportation maps that can be
considered as gradients of convex functions is commonly referred to as Brenier’s
theorem and originated from Y. Brenier’s work in the analysis and mechanics
literature in [18]. Much of the current interest in transportation problems em-
anates from this area of mathematics. We conform to the common use of the
name. It is worthwhile pointing out that a similar statement was established
earlier independently in a probabilistic framework in [21], where the authors
show the existence of an optimal transport map, for the quadratic cost, over Eu-
clidean and Hilbert spaces, and prove the monotonicity of this optimal map in
some sense (Zarantarello monotonicity).

We are now in position to construct a positive definite kernel, by associating
the transport map T−1

μ to each distribution μ, and by using positive definite
kernels on the Hilbert space L2(η), containing these transport maps. The follow-
ing proposition provides the explicit kernel construction, and proves the positive
definiteness and strict positive definiteness.

Proposition 1. Let η be a continuous distribution in W2(R
p). Consider a pos-

itive definite kernel K : L2(η)×L2(η) → R. Consider the function K on the set
of continuous distributions in W2(R

p) defined by

K(μ, ν) = K(T−1
μ , T−1

ν ).

Then K is positive definite. Furthermore, if the function K above is strictly
positive definite, then K is strictly positive definite.

Proof. We use the following classical mapping argument. For any λ1, . . . , λn ∈ R

and continuous distributions μ1, . . . μn,

n∑
i,j=1

λiλjK(μi, μj) =
n∑

i,j=1

λiλjK
(
T−1
μi

, T−1
μj

)
≥ 0 (2.4)

because K is positive definite on the Hilbert space L2(η). This proves the first
part of the proposition. Under the setting of the second part, if the (μi)i=1,...,n

are two-by-two distinct, then the (T−1
μi

)i=1,...,n are two-by-two distinct. Indeed
T−1
μi

= T−1
μj

implies μi = (T−1
μi

)�(Tμi�μi) = (T−1
μi

)�η = (T−1
μj

)�η =

(T−1
μj

)�(Tμj�μj) = μj . Thus (2.4) is strictly positive when λ1, . . . , λn are not

all zero because K is strictly positive definite.

From Proposition 1, any positive definite kernel on the Hilbert space L2(η)
yields a corresponding positive definite kernel on the set of continuous distribu-
tions in W2(R

p). While, most classically, covariance functions operating on Eu-
clidean spaces are considered, as can be seen in the general references discussed
in the introduction, there exists a fair amount of work dedicated to covari-
ance functions operating on (infinite dimensional) Hilbert spaces. One can for
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instance mention the covariance function of the isonormal process [41]. Further-
more, covariance functions which inputs belong to the Hilbert space of square
summable functions can be used for Gaussian process modelling of computer
experiments with functional input parameters [40, 11]. In this paper, we will fo-
cus on covariance functions which depend on the Hilbert norm of the difference
between their two inputs, when applying Proposition 1. These covariance func-
tions are called radial covariance functions. Section 3 is dedicated to these radial
covariance functions and the associated Gaussian processes. Before moving to
this topic, we first conclude Section 2.2 with a few remarks and then address
Wasserstein barycenters, in the aim of selecting the reference distribution η, in
Section 2.3.

Remark 2. Proposition 1 will still hold, even if T−1
μ is not exactly the inverse

of an optimal transport map. The only constraint for Proposition 1 to hold is
that T−1

μ is uniquely defined as a function of μ (and that the mapping μ �→ T−1
μ

is injective, for the strict positive definiteness part of Proposition 1). Hence, in
practice, we can use approximated optimal transport maps, and retain the posi-
tive definiteness, or strict positive definiteness, guarantee (see also Section 5).

Remark 3. Let us discuss the choice of the reference measure η. In the case
where input distributions μ1, . . . , μn are observed, we recommend to select their
empirical barycenter as the reference distribution, η = μn (see Section 2.3). If
these distributions are realizations from a distribution P ∈ W2(W2(R

p)) (see
Section 2.3), the barycenter μ of P (see Section 2.3) is also a good choice of
a reference distribution, from a theoretical point of view. In the theoretical and
numerical results in Sections 4 and 5, we use either the empirical barycenter μn

or its population counterpart μ as the reference distribution η.

Remark 4. In the one dimensional case, it is actually possible to create covari-
ance functions which values at μ, ν ∈ W2(R) are functions of W2(μ, ν) [8]. In-
deed, in this case, using a covariance based on the Wasserstein distance amounts
to using the following well-known optimal coupling (see [53]). For all μ ∈ P(R)
with finite second order moment, let

Zμ := F−1
μ (U), (2.5)

where F−1
μ is defined as

F−1
μ (t) = inf{u, Fμ(u) ≥ t},

and denotes the quantile function of the distribution μ, and where U is a uniform
random variable on [0, 1]. The stochastic process given by (Zμ)μ∈W2(R) can be
seen as a non-Gaussian random field indexed by the set of distributions on the
real line with finite second order moment. As such, its variogram

(μ, ν) �→ E(Zμ − Zν)
2 (2.6)

defines a conditionally negative definite kernel, equal to W 2
2 (μ, ν) since the cou-

pling (Zμ) is optimal. This kernel can be used to construct families of covariance
functions based on the one-dimensional Wasserstein distance, see [8].
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In general dimension p ≥ 2, however, this construction can not be extended
and it is not clear which functions F : R → R are such that (μ, ν) �→ F (W2(μ, ν))
are positive definite kernels. For instance, in Section 5 we provide simulations
where the function (μ, ν) �→ exp(−W2(μ, ν)

2) fails to be a positive definite ker-
nel in the case p = 2 (while it is indeed a valid kernel when p = 1, see [8]).
More precisely, we consider 900 distributions μ1, . . . , μ900 on R

2 that each are
the uniform probability measure over the union of 10 disjoint disks. These 900
distributions model the presence of circular inclusions in materials and can serve
as input parameters of the CASTEM simulation model (see Section 5.4). We
show that the 900 × 900 matrix (exp(−W2(μi, μj)

2))1≤i,j≤900 has strictly neg-
ative eigenvalues, implying that (μ, ν) �→ exp(−W2(μ, ν)

2) indeed fails to be a
positive definite kernel in the case p = 2.

2.3. Wasserstein barycenter and empirical barycenter

Two choices of reference distribution η that we advocate (see Remark 3) are
based on the notion of Wasserstein barycenter, that we now introduce. When
dealing with a collection of distributions μ1, . . . , μn, we can define a notion of
variation of these distributions. For any ν ∈ W2(R

p), set

Varμ1,...,μn(ν) =

n∑
i=1

W 2
2 (ν, μi).

Finding the distribution minimizing the variation of the distributions has been
tackled by defining the notion of barycenter of distributions with respect to the
Wasserstein distance in the seminal work of [2]. More precisely, given p ≥ 1, the
authors of [2] provide conditions to ensure the existence and uniqueness of the
barycenter of the probability measures (μi)1≤i≤n with weights (λi)1≤i≤n, i.e. a
minimizer of the following criterion

ν �→
n∑

i=1

λiW
2
2 (ν, μi). (2.7)

In the last years several works have studied the empirical properties of the
barycenters and their applications to several fields. We refer for instance to
[13, 15] and references therein. Hence the Wasserstein barycenter or Fréchet
mean of distributions appears to be a meaningful feature to represent the mean
behavior of a set of distributions.

This notion of Wasserstein barycenter has been recently extended to distri-
butions defined in W2(W2(R

p)), that is the set of measures on W2(R
p) such

that the corresponding (random) Wasserstein distance to any fixed distribution
in W2(R

p) has finite variance. Let P be a distribution in W2(W2(R
p)) and con-

sider μ1, . . . , μn i.i.d probabilities drawn according to the distribution P. In this
framework, the Wasserstein distance between a distribution P on W2(R

p) and
a Dirac distribution δν on W2(R

p) at a measure ν ∈ W2(R
p) is defined as

W2(P, δν) =

(∫
W 2

2 (ν, μ)dP(μ)

)1/2

. (2.8)
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If μ̃ is a random distribution obeying law P, this corresponds to

W2(P, δν) =
(
E{μ̃∼P}W

2
2 (μ̃, ν)

)1/2
.

Note that we use the same notations for the Wasserstein distances between
two distributions in W2(R

p) and between two distributions on distributions in
W2(W2(R

p)) (one of the two being a Dirac measure). The space W2(W2(R
p))

inherits the properties of the space W2(R
p) and is a good choice for considering

asymptotic properties of Wasserstein barycenteric sequences.
We define (if it exists) the Wasserstein barycenter of P as a probability mea-

sure μ in W2(R
p) such that∫

W 2
2 (μ, μ)dP(μ) = inf

{∫
W 2

2 (ν, μ)dP(μ), ν ∈ W2(R
p)

}
.

First, we point out that the notion of barycenter developed in (2.7) also
corresponds to the barycenter of the atomic probability P on the Wasserstein
space, defined by

P =

n∑
i=1

λiδμi .

We also recall some facts on the Wasserstein barycenter that are used in the
rest of the paper. The following theorem from [3] guarantees the existence and
uniqueness of this barycenter under some assumptions.

Theorem 1 (Existence of a Wasserstein Barycenter, [3]). Let P ∈ W2(W2(R
p)).

Assume that every distribution in the support of P is absolutely continuous with
respect to Lebesgue measure on R

p. Then there exists a unique distribution μ ∈
W2(R

p) such that∫
W 2

2 (μ, μ)dP(μ) = inf
ν∈W2(Rp)

{∫
W 2

2 (ν, μ)dP(μ)

}
or, in other words,

μ = argmin
ν∈W2(Rp)

{∫
W 2

2 (ν, μ)dP(μ)

}
. (2.9)

Using the expression (2.8), we can see that Theorem 1 can be reformulated as
stating the existence of the metric projection of P onto the subset ofW2(W2(R

p))
composed of Dirac measures.

Consider a sample of i.i.d random distributions μi, i = 1, . . . , n, drawn from
the distribution P and set μ to be the barycenter of P. Let for fixed n, μn be
the empirical barycenter of the μ1, . . . , μn, defined as

n∑
i=1

λiW
2
2 (μn, μi) = inf

{
n∑

i=1

λiW
2
2 (ν, μi), ν ∈ W2(R

p)

}
,
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with λ1 = . . . = λn = 1. This empirical barycenter exists and is unique as soon
as one of the μi is absolutely continuous w.r.t Lebesgue measure in R

p. This
result follows immediately from Proposition 6 in [34].

The following theorem, from [34], states that under uniqueness assumption
the empirical Wasserstein barycenter μn converges to the population Wasser-
stein barycenter μ.

Theorem 2 (Consistency of empirical barycenter, [34]). Assume that P be-
longs to W2(W2(R

p)) and that its barycenter is unique. Let μ1, . . . , μn be in-
dependently drawn from P and let μn be defined as above. Then the empirical
barycenter μn is a.s.-consistent, that is

lim
n→∞

W2(μ, μn) = 0, a.s.

The above consistency theorem for the empirical barycenter will be useful in
Section 4, where we will compare asymptotically two versions of our positive
definite kernel construction in Proposition 1: one where the reference measure is
the empirical barycenter and one where the reference measure is the population
barycenter.

As announced in Section 2.3, the next section is now dedicated to radial
covariance functions on Hilbert spaces and their associated Gaussian processes.

3. Radial kernels and associated Gaussian processes on Hilbert
spaces

We consider a real Hilbert space H with inner product 〈·, ·〉H and norm ‖·‖H . In
this section, we consider radial covariance functions on H×H, that is covariance
functions K defined by K(h1, h2) = F (‖h1 − h2‖H) for h1, h2 ∈ H and F :
[0,∞) → R. In the sequel, we use the short notation F (‖ · − · ‖H) for a radial
covariance function on H ×H.

In Section 3.1, we present a characterization of all the continuous functions
F such that F (‖ · − · ‖H) is positive definite (resp. strictly positive definite)
on H ×H. Specific examples that can readily be used in practice are provided
in (3.2) to (3.4).

More precisely, in Propositions 2 and 3, we explain that F (‖ · − · ‖H) is a
(strictly) positive definite kernel on any Hilbert space H, if and only if it is a
(strictly) positive definite kernel when H = R

d for any d ∈ N. Thanks to these
results, in Proposition 4, we revisit classical results on radial positive definite
functions on R

d [54], by showing that when F is continuous, F (‖ · − · ‖H) is
strictly positive definite if and only if F (

√·) is completely monotone and if and
only if F is an integral of negative square exponential functions with respect to
a finite measure.

Then, Section 3.2 is dedicated to the microergodicity of covariance param-
eters of families of radial covariance functions on Hilbert spaces. We show in
Theorem 3 that when H is of infinite dimension, virtually all covariance param-
eters are microergodic when considering Gaussian processes on bounded sets.
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3.1. Characterization of radial positive definite kernels

We consider kernels K : H ×H → R of the form

K(u, v) = F (‖u− v‖H), (3.1)

for u, v ∈ H. We call them radial kernels. The next proposition shows that F
provides a positive definite kernel on any Hilbert space H if and only if it does
so on finite dimensional Euclidean spaces.

Proposition 2. Let F : R+ → R. Then the two following statements are equiv-
alent.

1. For any d ∈ N, the kernel Kd : R
d × R

d → R defined by Kd(x, y) =
F (‖x− y‖) for x, y ∈ R

d is positive definite.
2. For any Hilbert space H, the kernel K of the form (3.1) is positive definite.

Next, we provide a similar characterization of the strict positive definitness
property.

Proposition 3. Let F : R+ → R. Then the two following statements are equiv-
alent.

1. For any d ∈ N, the kernel Kd : R
d × R

d → R defined by Kd(x, y) =
F (‖x− y‖) for x, y ∈ R

d is strictly positive definite.
2. For any Hilbert space H, the kernel K of the form (3.1) is strictly positive

definite.

In the case where F is continuous, we can use the existing work on radial
kernels on R

d (see e.g. [54]) to further characterize the functions F providing
strictly positive definite kernels in (3.1). In this view, we call a function f :
[0,∞) → R completely monotone if it is C∞ on (0,∞), continuous at 0 and
satisfies (−1)�f (�)(r) ≥ 0 for r > 0 and � ∈ N.

Proposition 4. Let F : R+ → R be continuous. Then the following statements
are equivalent.

1. For any Hilbert space H, the kernel K : H × H → R of the form (3.1),
defined by K(u, v) = F (‖u− v‖H), is strictly positive definite.

2. F (
√
.) is completely monotone on [0,∞) and not constant.

3. There exists a finite nonnegative Borel measure ν on [0,∞) that is not
concentrated at zero, such that

F (t) =

∫
R

e−ut2ν(du).

Proof. The proposition is a direct consequence of Proposition 3 and Theorem
7.14 in [54].

Remark 5. We remark that the version of Proposition 4 where strict positive
definiteness is replaced by positive definiteness, and where F (.) does not have
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to be non-constant, is provided by Schoenberg [47] (see also [9]). Compared to
these two references, Proposition 4 enables to provide a characterization of strict
positive definiteness on Hilbert spaces. In addition, the proof of Proposition 4
is here very short, after Propositions 2 and 3 are established. These two latter
propositions and their short proofs provide an useful interpretation of the rela-
tionship between (strict) positive definiteness on Euclidean spaces and on Hilbert
spaces.

The previous proposition ensures that the following choices of F can be used
in (3.1) to provide strictly positive definite covariance functions on H. The
square exponential covariance function is given by

Fσ2,�(t) = σ2e−(t/�)2 , (3.2)

with σ2, � ∈ (0,∞). The Matérn covariance function is given by

Fσ2,�,ν(t) =
σ2(t/�)ν

2ν−1Γ (ν)
Kν(t/�), (3.3)

where σ2, �, ν ∈ (0,∞), where Γ is the Gamma function and Kν is the modi-
fied Bessel function of the second kind [50, 35]. Finally, the power exponential
function

Fσ2,�,s(t) = σ2 exp(−(t/�)s), (3.4)

where σ2, � ∈ (0,∞) and s ∈ (0, 2], satisfies the condition of Proposition 4 (see
e.g. [8]).

One can also remark that, while Mercer’s theorem has become classic for
continuous positive definite kernels on compact sets of Rd [54], a similar con-
struction has not been shown to exist on bounded subsets of Hilbert spaces in
infinite dimension. This can be considered as a structural difficulty when tack-
ling Gaussian processes on infinite dimensional Hilbert spaces. On the other
hand, we now show that infinite dimensional Hilbert spaces provide more space,
so to speak, that enable to distinguish between distinct covariance functions
in a more stringent way. More precisely, we show next that, when considering
parametric sets of covariance functions, virtually all the covariance parameters
are microergodic.

3.2. Microergodicity results

Let H be a Hilbert space. Consider a set of functions {Fθ; θ ∈ Θ}, with Fθ :
R

+ → R for θ ∈ Θ and with Θ ⊂ R
q. To Fθ we associate the radial covariance

function on H ×H defined by Kθ(h1, h2) = Fθ(‖h1 − h2‖H) for h1, h2 ∈ H.
Let h0 ∈ H and 0 < L < ∞ be fixed and let B2,L = {h ∈ H; ||h−h0||H ≤ L}.

Let F = R
B2,L be the set of functions from B2,L to R. Let F be the cylinder

sigma algebra on F generated by the functions f �→ (f(h1), . . . , f(hr)) for any
r ∈ N and h1, . . . , hr ∈ H. For any θ ∈ Θ, let Pθ be the measure on (F ,F)
equal to the law of a Gaussian process on B2,L with mean function zero and
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covariance function (h1, h2) �→ Fθ(||h1−h2||H). Then, following [50], we say that
the covariance parameter θ is microergodic if, for any θ1, θ2 ∈ Θ with θ1 �= θ2,
the measures Pθ1 and Pθ2 are orthogonal, that is there exists A ∈ F such that
Pθ1(A) = 1 and Pθ2(A) = 0.

In the most classical case where H = R
d, microergodicity is an important

concept. Indeed, it is a necessary condition for consistent estimators of θ to
exist under fixed-domain asymptotics [50], and a fair amount of work has been
devoted to showing microergodicity or non-microergodicity of parameters, for
various models of covariance functions [50, 55, 5]. Typically, when H = R

d there
are several standard sets of functions {Fθ; θ ∈ Θ} for which θ is not microergodic.
A classical example is the set {Fσ2,�,ν} of the form (3.3) [55].

In contrast, we now show that, under very mild assumptions, all covariance
parameters θ are microergodic when H has infinite dimension.

Theorem 3. Assume that H has infinite dimension. Assume that there does
not exist θ1, θ2 ∈ Θ, with θ1 �= θ2, such that t �→ Fθ1(t)− Fθ2(t) is constant on
[0, 2L]. Then the covariance parameter θ is microergodic.

In Theorem 3, the condition on the parametric family {Fθ; θ ∈ Θ} holds for all
the commonly used families of functions Fθ that are used to construct covariance
functions on R

d as in Proposition 3. These commonly used families include
notably the Matérn covariance functions and the power exponential covariance
functions that are introduced above. They also include the generalizedWendland
covariance functions and the spherical covariance functions [12, 1].

Hence, Theorem 3 shows that it is possible that consistent estimators exist
for θ, in many parametric models of covariance functions of the form (3.1), for
infinite dimensional Hilbert spaces.

Let us conclude this section by putting Theorem 3 into perspective with the
case of finite-dimensional input spaces with increasing dimension. For d ∈ N and
u0 ∈ R

d, write Bd,2,L = {u ∈ R
d, ||u− u0|| ≤ L}. Consider the set of covariance

functions {Kd,θ; θ ∈ Θ} on Bd,2,L defined by Kd,θ(u1, u2) = Fθ(||u1 − u2||). In
the case where H = R

d, θ is microergodic if, for each θ1, θ2 ∈ Θ, θ1 �= θ2, there
exists a measurable set A of functions from Bd,2,L to R, for which Pd,θ1(A) = 0
and Pd,θ2(A) = 1, where Pd,θ is the distribution of a Gaussian process on Bd,2,L

with mean zero and covariance function Kd,θ. Let us say in this case that θ is
microergodic for the dimension d. We then have the following lemma.

Lemma 1. Assume that θ is microergodic for the dimension d1 ∈ N and let
d2 ∈ N, d2 ≥ d1. Then θ is microergodic for the dimension d2.

Hence, for families of functions {Fθ : R+ → R} applied to Euclidean dis-
tances in dimension d, a higher dimension d increases the possiblity that θ is
microergodic for the dimension d. In agreement with this fact, Theorem 3 can
be interpreted as follows: when d is infinite, θ is always microergodic.
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4. Statistical properties of our suggested positive definite kernels on
distributions

4.1. General consistency properties

Here, we consider the case where n i.i.d. random continuous distributions
μ1, . . . , μn are observed, from a distribution P ∈ W2(W2(R

p)). Hence, two pos-
sible reference distributions for our suggested construction of Proposition 1 are
the empirical barycenter μn of μ1, . . . , μn and the barycenter μ of P. We now
show that these two reference points will asymptotically give the same kernel
when n is large.

For μ ∈ W2(R
p), let Tμ, Tμ,n : Rp → R

p be the optimal transportation maps
defined by

Tμ�μ = μ , Tμ,n�μ = μn

and
||id− Tμ||L2(μ) = W2(μ, μ) , ||id− Tμ,n||L2(μ) = W2(μ, μn).

Let also, for i = 1, . . . , n, Ti = Tμi and Ti,n = Tμi,n.
We remark that, because of the assumption on P, both the barycenter and the

empirical barycenter are absolutely continuous w.r.t Lebesgue measure on R
p.

Hence, T1, . . . , Tn and T1,n, . . . , Tn,n are uniquely defined. For F : R+ → R, we
let

Kn(μ, ν) = F (‖T−1
μ,n − T−1

ν,n‖2L2(μn)
) (4.1)

be the empirical kernel and

K(μ, ν) = F (‖T−1
μ − T−1

ν ‖2L2(μ)) (4.2)

be the theoretical kernel. We now prove that the empirical kernel Kn provides
a good approximation of the kernel K. We will use the consistency property of
Theorem 2, stating that the empirical barycenter is a consistent estimate for μ.

Proposition 5 (Consistency of kernel). Let F in (4.1) and (4.2) be continuous.
The empirical kernel is a good approximation of the true covariance kernel in
the sense that, for any two fixed absolutely continuous measures μ and ν in
W2(R

p), we have

Kn(μ, ν)
P-a.s.−→ K(μ, ν),

when n goes to infinity.

Proof. Using the continuity of the function F , it is enough to show that

‖T−1
μ,n − T−1

ν,n‖2L2(μn)
− ‖T−1

μ − T−1
ν ‖2L2(μ)

P-a.s.−→ 0.

Lemma 3, whose proof is presented in the Appendix, leads to the result.

In the next Corollary, we show that the consistency result in Proposition 5
implies that the conditional means and variances based on the empirical kernel
asymptotically coincide with those based on the true kernel.



2756 F. Bachoc et al.

Corollary 1. Let N ∈ N and let ν1, . . . , νN , ν be fixed absolutely continu-
ous measures in W2(R

p). Let y = (y1, . . . , yN )� be fixed in R
N . Set R =

(K(νi, νj))1≤i,j≤N , with the notation (4.2), and assume that R is invertible.

Let Y = (Yμ) be a Gaussian process with zero mean function and covariance
function given by (4.2). Then

E(Yν |Yν1 = y1, . . . , YνN
= yN ) = r�ν R

−1y

with rν = (K(ν, ν1), . . . ,K(ν, νN ))�. Let

En(Yν |Yν1 = y1, . . . , YνN
= yN ) = r�ν,nR

−1
n y

with rν,n = (Kn(ν, ν1), . . . ,Kn(ν, νN ))� and Rn = (Kn(νi, νj))1≤i,j≤N , with the

notation (4.1). Also

Var(Yν |Yν1 = y1, . . . , YνN
= yN ) = K(ν, ν)− r�ν R

−1rν

and we let

Varn(Yν |Yν1 = y1, . . . , YνN
= yN ) = Kn(ν, ν)− r�ν,nR

−1
n rν,n.

Then, as n → ∞,

En(Yν |Yν1 = y1, . . . , YνN
= yN )

P-a.s.−→ E(Yν |Yν1 = y1, . . . , YνN
= yN )

Varn(Yν |Yν1 = y1, . . . , YνN
= yN )

P-a.s.−→ Var(Yν |Yν1 = y1, . . . , YνN
= yN ).

Proof. The Corollary is a direct consequence of the facts that N is fixed as
n → ∞ and that R is invertible.

Remark that consistency results similar to the one of Corollary 1 could be
obtained, for other statistical or machine learning applications of the empirical
and theoretical kernels in (4.1) and (4.2). In particular, the estimated Hilbert-
Schmidt independence criterion (HSIC) [27] enables to test if two random vari-
ables on W2(R

p) are independent. The estimated HSIC can be computed from a
kernel on W2(R

p) (or a subset of it) and from two samples from the two random
variables. Thus, the kernels (4.1) and (4.2) enable to test if two samples of dis-
tributions come from independent variables. In this setting, a convergence result
similar as Corollary 1 holds. Indeed, the two samples being fixed, it is clear from
the expression of the estimated HSIC (see (3) in [27]) that the estimated HSIC
computed from the empirical kernel (4.1) converges to the one computed from
the theoretical kernel (4.2).

Another standard application of positive definite kernels consists in the sup-
port vector machines binary classifiers [28, 10]. The classifier function obtained
from support vector machines is defined by parameters that are solution of
a convex optimization problem. The corresponding objective function depends
continuously on the kernel and on the data set. Hence, similarly as above, Corol-
lary 1 can be extended to show that the classifier obtained from the empirical
kernel (4.1) converges to the one obtained from the theoretical kernel (4.2).
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These types of convergence results also show that statistical applications
of our suggested kernels are robust to the choice of the reference measure, in
the sense that the statistical results depend continuously on the choice of this
reference measure.

Finally, the above arguments can be applied to other methods involving ker-
nels, see the examples in [28, 10]. Furthermore, we find our introduced kernel
construction technique to be of potential use for modelling Gaussian processes
on a family of Hi-C interaction matrices [33], as it suggests a convenient method
of information analysis related to gene expression. We also consider this subject,
and related consistency results, as a possible direction for further research.

4.2. Universality

Note that when considering a kernel K, a natural property to be studied would
be its universality. Actually, a kernel is said to be universal on Ω ⊂ W2(R

p) as
soon as the space generated by its linear combinations μ ∈ Ω �→∑n

i=1 αiK(μ, μi) ∈ R can generate all continuous functions on Ω. The general
form (4.2) of the kernel may provide universal kernels under regularity assump-
tions on the transportation maps Ti. More precisely, injectivity and continuity
are required as pointed out in [38] to get a universal kernel. In some particular
cases, it is possible to obtain such results. In the case of Gaussian distributions,
the transport map is linear and thus it entails the universality of the kernel in
this case. In [23], Proposition 1.4.1, derived from Theorem 1.1 from [24], some
conditions for the continuity of the transportation maps are provided but reg-
ularity of transportation maps in general dimensions is a difficult issue. It has
received a lot of attention in the last years see for instance [45]. These types
of conditions in [23] can not be guaranteed in a very general framework but
could only be studied for very particular classes of distributions, leading to too
restrictive cases, which are not at the heart of this paper.

4.3. Specific properties for Gaussian distributions

In some special cases, the optimal transportation maps can be written explic-
itly. Unfortunately, this holds only for a particular class of admissible transfor-
mations. An example of explicit calculations is given by a family of Gaussian
distributions. Let F = {N (0, S)}S ⊂ E, with E being all centred Gaussian
distributions with non-degenerated covariance matrices w.l.g. supported on R

d.

Further we assume the covariance matrices in F to be random: S
iid∼ P. This

setting is equivalent to the definition of some distribution P over F . We denote
as μ = N (0, S) the unique population barycenter of P.

Let {μi}i=1,...,n be a family of observed random Gaussian distributions with
zero mean and non-degenerated covariance Si: μi = N (0, Si), Si ∼ P. An em-
pirical barycenter is recovered uniquely: μn = N (0, Sn) with Sn a solution of

the following fixed-point equation Sn = 1
n

∑(
S
1/2
i SnS

1/2
i

)1/2
. This result is
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well known and has been described in many papers, see for instance the seminal
work [2]. The solution can be obtained by an iterative method presented in [4].

The Gaussian setting allows to write explicitly a formula for the optimal
transport map Ti between μi and the population barycenter μ = N (0, S) and
its inverse:

Ti = S
−1/2
i

(
S
1/2
i SS

1/2
i

)1/2
S
−1/2
i , T−1

i = S
−1/2(

S
1/2

SiS
1/2)1/2

S
−1/2

.

In this case, we can compute the distance between the transport maps in L2(μ)
using the expression in (4.3) ‖T−1

i − T−1
j ‖2L2(μ), as the distance is the variance

of a linear transform of a Gaussian random variable:

‖T−1
i − T−1

j ‖2L2(μ) =
∥∥∥S−1/2

[(
S
1/2

SiS
1/2)1/2 − (

S
1/2

SjS
1/2)1/2]1/2∥∥∥2

F
. (4.3)

Here and in what follows we use ‖ · ‖F to denote the Frobenius norm. The

same expression holds for
∥∥T−1

i,n − T−1
j,n

∥∥2
L2(μn)

by replacing the barycenter by

its empirical counterpart. We can see that in this case the kernel amounts to
compute a natural distance between the two distributions μi and μj obtained

by the scale deformations S
1/2
i X and S

1/2
j X of a Gaussian random variable

X ∼ N (0, Id). This distance is then used through any kernel which provides
some insights on a proper notion of covariance between processes indexed by
these two distributions.

We point out that in the Gaussian case, the rate of convergence of the co-
variance estimates can be made precise.

Proposition 6. Let F be s.t. ES∼Ptr(S) < ∞. Let Mn and M be respectively the
empirical and true N×N covariance matrices of a Gaussian process constructed
from the kernels Kn and K using a fixed grid N (0, Σ1), . . . ,N (0, ΣN ), and
the reference empirical barycenter μn, and the population one μ of P on F ,
respectively. The kernels Kn and K are constructed as in (4.1) and (4.2). Then
there exists a finite constant C such that with high probability

‖Mn −M‖2F ≤ C
N2

n
.

Finally, since we are dealing with Gaussian distributions, it is possible to
understand the stationarity property of the kernel. The following proposition
illustrates that in the Gaussian case the kernel is indeed invariant with respect
to orthogonal transformations.

Proposition 7. Let U be some predefined orthogonal matrix, and set φU be
a deterministic map, that sends any N (0, S) to N (0, USUT ). For any i =
1, . . . , n denote as Ti,φ the optimal transportation map Ti,φ�φU (N (0, Si)) =
φU

(
N (0, S)

)
. Then it holds∥∥∥T−1

i,φ − T−1
j,φ

∥∥∥
L2(φU (μ))

=
∥∥T−1

i − T−1
j

∥∥
L2(μ)

. (4.4)

Equality (4.4) ensures the stationarity of the kernels under application of
transformation φU .
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5. Numerical simulations

5.1. Computational aspects

In practice, finding analytical representations of optimal transportation maps
is a difficult issue, especially if the dimension of the problem grows. A possi-
ble solution consists in approximating an optimal transportation map by its
empirical counterpart. Let μm and νm be empirical measures sampled from μ
and ν respectively. Then the optimal Monge map T�μ = ν can be replaced by
Tm
� μm = νm, see e.g. [19] or [14]. In this case, the problem of finding Tm is

reduced to the solution of assignment problem with quadratic cost and can be
solved by the adagio R-package by [17].

In dimension p = 2 or p = 3, it is also possible to represent the distributions
by their matrices of probability weights on regular grids. Optimal transport
maps can then be approximated, by means of various numerical procedures
[36, 26, 37]. In our practical implementations, we tend to use the packages [49]
and [30], with the R programming language.

5.2. Numerical study of the kernel consistency on a subspace of
Gaussian measures

In what follows we present some simulations to highlight the consistency of
the empirical kernel obtained in the Gaussian case from the empirical barycen-
ter. We consider a distribution supported on a family F of 100000 centred
Gaussians on R

d with covariance Si = AiA
′
i, with i = 1, . . . , 100000, where

Ai = (ajk)1≤j,k≤d, ajk ∼i.i.d. Unif[5, 15]. In these experiments we consider
d = (4, 7, 15, 30).

Hence, for d = 4, 7, 15, 30 we construct kernels on the set E ⊂ W2(R
d)

composed of Gaussian distributions with mean vector zero. Our data set is
composed of realizations from the distribution P ∈ W2(W2(R

d)) that is an
average of 100000 Dirac distributions on the 100000 Gaussian distributions
N (0, S1), . . . ,N (0, S100000) described above. We compute the true barycenter
N (0, S) of P for which the whole F is used, while Sn is computed as a Wasser-
stein-mean of a random n-sample taken with replacement from F . Let M and
Mn be the covariance matrices, obtained from the kernelsK andKn constructed
using (3.2) with parameters l = σ = 1 on a grid of N = 30 randomly selected
measures from F .

Table 1 illustrates the mean approximation error rate ‖Mn − M‖F for the
cases n = (20, 140, 260, 380, 500, 620).

As expected, we can see the convergence of the empirical kernel towards the
theoretical one in all cases.

5.3. Prediction experiments on synthetic data

We consider the following simulations for the 2 dimensional case. We simulate
100 random two-dimensional Gaussian distributions split into a training sample
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Table 1

Error: ‖Mn −M‖F for centred Gaussians on R
d.

n = 20 n = 140 n = 260 n = 380 n = 500 n = 620
d = 4 1.52 0.69 0.16 0.29 0.24 0.14
d = 7 2.08 0.59 0.17 0.19 0.11 0.14
d = 15 0.91 0.12 0.09 0.08 0.05 0.05
d = 30 0.90 0.13 0.05 0.03 0.04 0.02

of 50 and a test sample of 50. Both mean vectors and covariance matrices are
chosen randomly. The mean vector follows a uniform distribution over [0.2, 0.8]2.
The covariance matrix is isotropic and the standard deviation is uniform over
[0.012, 0.022]. The value of the random field Y for a Gaussian distribution μ,
given by its mean (m1,m2)

T and variance σ2, is given by

Y (μ) =
(m1 −m2

2)

1 + σ
.

We then carry out our suggested Gaussian process model, based on the kernels
suggested in Proposition 1. Hence, we construct kernels on the set E ⊂ W2(R

2)
composed of Gaussian distributions with mean vector in [0.2, 0.8]2 and covari-
ance matrix of the form σ2Id with σ ∈ [0.012, 0.022]. Our data set is com-
posed of realizations from the distribution P ∈ W2(W2(R

2)) that corresponds
to sampling the mean vector uniformly in [0.2, 0.8]2 and sampling the standard
deviation uniformly in [0.012, 0.022].

Optimal transport maps T−1
μ , from the barycenter to the Gaussian measures

μ, are calculated using the package [49] and barycenters are calculated using
the package [30] with parameter λ = 20 to balance computational time and
similarity between the penalized transport and the optimal transport without
regularization.

More precisely, the Gaussian distributions are discretized over a grid of 50×50
cells on [0, 1]2. The Gaussian distributions are thus approximated by discrete
distributions on the grid. We remark that the package [49] does not exactly pro-
vide deterministic transport maps. Indeed, the probability mass of a given input
grid point can be split and mapped to several output grid points. Numerically,
in this case, we transport all the probability mass of the input grid point to the
output grid point that is assigned the most mass by the package [49]. Hence,
to each discretized input Gaussian measure μ, we associate a transport map
T−1
μ from the barycenter that is an approximation of the inverse of the optimal

transport map from μ to the barycenter. Nevertheless, since the mapping from
μ to T−1

μ is uniquely defined in our procedure, Remark 2 applies and we are
guaranteed to obtain positive definite kernels.

The kernel we choose is Kθ given by

Kθ(μ, ν) := θ21 ∗ exp(−θ2
∥∥T−1

μ − T−1
ν

∥∥θ3
L2(μ)

) + θ41‖T−1
μ −T−1

ν ‖
L2(μ)

=0

for θ1 ∈ [0.05, 10], θ2 ∈ [0.01, 10], θ3 ∈ [0.5, 2] and θ4 ∈ [10−5, 1]. We will
use the kernel with the parameters chosen to maximize the likelihood but also
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Table 2

Prediction results for Gaussian simulations.

RMSE Q2 CI Coverage
Kernel Smoothing 0.15 0.61 NA
Gaussian process 0.10 0.81 0.87
Gaussian process CV 0.10 0.81 0.88

parameters chosen to minimize the sum of the cross-validation square errors
[6, 7]. For cross-validation, the total variance parameter θ21 + θ4 is estimated as
suggested in [6].

We compare our kernel methods with the kernel smoothing procedure of
[43]. This procedure consists in predicting Y (μ) ∈ R by a weighted average
of Y (μ1), . . . , Y (μ50) where the weights are computed by applying a kernel to
the distances D(μ, μ1), . . . , D(μ, μ50) where D, as suggested in [43] is the L1

distances between the probability density functions. The kernel is the triangular
kernel as in [43], and its bandwidth is selected by minimizing an empirical mean
square error based on sample splitting (see [43]). We remark that there is no

estimate of the prediction error Y (μ)− Ŷ (μ) which is a downside compared to
the Gaussian process model considered in this paper.

We present hereafter in Table 2 the results obtained, with 50 observations
and 50 values to be predicted. We study the Root Mean Square Error (RMSE)
of the form √√√√ 1

50

50∑
i=1

(Ŷi − Yi),

where the Yi are the values to be predicted and the Ŷi are the predictions. We
also study the Q2 criterion which is equal to 1− RMSE2/var, where var is the
empirical variance of the values to be predicted. Finally we study the Confidence
Interval Coverage (CIC) which corresponds to the frequency of the event that
the predicted value belongs to the 90% confidence interval from the Gaussian
process model. From the table, one observes that the GP process model based on
the kernel we suggest provides a better accuracy, catching better the variability
of the underlying process.

5.4. Experiments on real data: stress response to traction for
materials in nuclear safety

We focus on a computer code called CASTEM code (see [29]) from the French
Atomic Energy Commission (CEA) designed to calculate equivalent stresses on
biphasic materials subjected to uni-axial traction. The system is modelled as a
unit square containing m= 10 circular inclusions, all with the same radius R at
random locations associated to a numerical value which is the stress response.
The simulations are performed in two dimensions over [0, 1]2 and the radius is
R = 0.0564. The input of the code is composed of m disks located at m points
{c1, . . . , cm} while the stress response is a scalar numerical value provided by



2762 F. Bachoc et al.

Table 3

Prediction of the CASTEM code output.

RMSE Q2 CI Coverage
Kernel Smoothing 0.96 0.03 NA
Gaussian process 0.93 0.10 0.92
Gaussian process CV 0.92 0.11 1

the CASTEM code. As pointed out in [25], finding a proper distance between
the inputs to forecast the stress is a very difficult task.

In this framework, we propose to consider each input as a uniform distribution
μ on the union of the disks. For all the inputs i = 1, . . . , n, we let c(i) =

(c
(i)
1 , . . . , c

(i)
m ) be the vector of dimension 2m composed by the m centers of the

disks and we let D
(i)
j be the disk with center c

(i)
j and radius R. Then we let μi

be the uniform distribution over ∪m
j=1D

(i)
j . Then the stress is considered as a

Gaussian random field indexed by the μi’s.

As previously, to compute the barycenter, we use the package provided in
[30]. We use a grid over [0, 1]2 that discretizes the set into 50 × 50 cells. The
uniform distribution on the set of disks is evaluated onto these cells and is
approximated by a discrete distribution that is considered as an image. The
optimal transport maps from the distributions to the barycenters are calculated
using [49], similarly as in Section 5.3. We provide a comparison with the kernel
smoothing procedure also as in Section 5.3.

The results are presented in Table 3 in the same way as in Table 2. In Table 3,
the methods use 500 ouputs of the CASTEM code and predict 400 other outputs.

The total 900 outputs of the Castem code correspond to 900 distribution
inputs that were generated randomly and independently. To generate a dis-
tribution input, letting D(c, R) be the disk with center c ∈ [0, 1]2 and radius
R, we sample c1 uniformly on [R, 1 − R]2, then we sample c2 uniformly on
[R, 1−R]2\D(c1, 2R), then we sample c3 uniformly on [R, 1−R]2\(D(c1, 2R)∪
D(c2, 2R)) and so on until cm. Hence, we construct kernels on the set E ⊂
W2(R

2) of all the uniform distributions on [0, 1]2, which support is the union
of ten disks of radius R that are included in [0, 1]2 and non-overlapping. Our
data set is composed of realizations from the distribution P ∈ W2(W2(R

2)) that
corresponds to the sampling mechanism described above.

From the poor Q2 scores observed in Table 3 for all the methods, forecasting
the CASTEM code appears to be a very hard task. Indeed, the inputs are very
complex. Yet the method proposed in this work provides some improvements
with respect to the state of the art method from [43]. We point out that cross
validation of the parameters for the Gaussian process provides a very small
improvement of the prediction but at the expense of overly large confidence
intervals.

We remark that the kernel we provide is a positive definite kernel as required
to use the Gaussian process modelling framework. Using directly a kernel by
computing the exponential of minus the squareW2 Wasserstein distance between
the distributions does not lead to a positive definite kernel. Actually Figure 1
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Fig 1. Distribution of the eigenvalues of the 900 × 900 matrix obtained by the kernel of the
form exp(−W 2

2 (μ, ν)). Many eigenvalues are negative, which shows that this kernel is not
positive definite.

shows the repartition of the eigenvalues of the 900×900 covariance matrix based
on this kernel. We observe that many eigenvalues are negative (before the red
line in the figure where we plot the logarithm of 1 plus the eigenvalues).

6. Conclusion and future directions

In this work, we have provided a theoretical way to use Wasserstein barycenters
in order to define general positive definite kernels using optimal transportation
maps. Considering the distance between the optimal transportation maps pro-
vides a natural way to quantify correlations between the values of a process
indexed by distributions and provides a generalization to the multi-dimensional
case of the work in [8].

Our suggested positive definite kernels then enable one to use the whole ar-
senal of kernel methods for statistical and machine learning applications. In
Section 5, we provide numerical results related to regression and predictive con-
fidence intervals, with Gaussian processes. In Section 4, we detail two other
applications: the HSIC for independence test and support vector machines for
binary classification.
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Using a barycenter requires the distributions to be drawn according to the
same measure over the set of distributions. This restricts the framework of the
study to the case where the Gaussian process is defined on the support of this
measure. For applications, this does not play a too important feature since in-
puts are often simulated according to a specified distribution. Yet for theoretical
issues, this sets the frame of this study to the infill asymptotic framework and
not the increasing-domain one. In this case, we have proved that parameters of
families of covariance functions on multidimensional distributions, indexed by
the distance between optimal transport maps, are microergodic. In order to ob-
tain our microergodicity results, we show that, for all natural parametric families
of radial covariance functions on Hilbert spaces, the covariance parameters are
microergodic. This opens the perspective of studying the statistical consistency
of specific estimators of these parameters. These consistency results would be
relevant not only for statistical applications of Gaussian processes indexed by
multidimensional distributions, but also in applications of Gaussian processes
indexed by Hilbert spaces in general, for instance with functional inputs in
computer experiments [40, 11]. We have also discussed how our microergodicity
results enable to interpret that, for families of radial covariance functions, in-
formally, the statistical estimation of the covariance parameters becomes easier
as the dimension of the input space grows.

Finally contrary to the one-dimensional case, computational issues arise nat-
urally when the Wasserstein distance is required. Hence the computation of a
barycenter with respect to the Wasserstein distance is a difficult optimization
program, unless the distributions are Gaussian, leading to tractable computa-
tions as shown in Section 4. Yet this idea of linearization around the barycenter
to obtain a valid covariance kernel could be used and generalized to regularized
Wasserstein distance using methods proposed in [22] for instance to provide a
more tractable way of building kernels.

Appendix A: Proofs

Proof of Propositions 2 and 3

Proof. For both propositions, only the fact that 1. implies 2. needs to be proved.
Let us now do this.

Let f1, . . . , fn in H and consider the matrix C̃ = (〈fi, fj〉H)1≤i,j≤n. This
matrix is a Gram matrix in R

n×n hence there exists a non negative diagonal
matrix D and an orthogonal matrix P such that

C̃ = PDP ′ = PD1/2D1/2P ′.

Let e1, . . . , en be the canonical basis of Rn. Then

eiC̃e′j = uiu
′
j

where ui = eiPD1/2. Note that the ui’s are vectors in R
n that depend on the

f1, . . . , fn. By polarization, we hence get that 〈fi, fj〉H = 〈ui, uj〉 where 〈·, ·〉
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denotes the usual scalar product on R
n. Hence we get that for any elements

f1, . . . , fn in H there are u1, . . . , un in R
n such that ‖fi − fj‖H = ‖ui − uj‖.

So any covariance matrix that can be written as (F (‖fi − fj‖H))i,j can be seen

as a covariance matrix (F (‖ui − uj‖))i,j on R
n and inherits its properties. The

invertibility and non-negativity of this covariance matrix entail the invertibility
and non-negativity of the first one, which proves the results.

Proof of Theorem 3

Proof. Without loss of generality, we can assume that h0 = 0 ∈ H. Let θ1, θ2 ∈
Θ, with θ1 �= θ2. Then, there exists t∗ ∈ [0, L] such that Fθ1(0) − Fθ1(2t

∗) �=
Fθ2(0)− Fθ2(2t

∗).
For any n ∈ N, let e1, . . . , en ∈ H satisfy 〈ei, ej〉H = 1i=j . Consider the 2n

elements (f1, . . . , f2n) made by the pairs (−t∗ei, t
∗ei) for i = 1, . . . , n. Consider

a Gaussian process Y on B2,L with mean function zero and covariance function
Kθ1 . Then, the Gaussian vector Z = (Y (fi))i=1,...,2n has covariance matrix C
given by

Ci,j =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Fθ1(0), if i = j

Fθ1(2t
∗), if i odd and j = i+ 1

Fθ1(2t
∗), if i even and j = i− 1

Fθ1(
√
2t∗), else.

Hence, we have C = D +M where M is the matrix with all components equal
to Fθ1(

√
2t∗) and where D is block diagonal, composed of n blocks of size 2× 2,

with each block equal to

B =

(
Fθ1(0)− Fθ1(

√
2t∗) Fθ1(2t

∗)− Fθ1(
√
2t∗)

Fθ1(2t
∗)− Fθ1(

√
2t∗) Fθ1(0)− Fθ1(

√
2t∗)

)
.

Hence, in distribution, Z = Q + E, with Q and E independent, Q = (z, . . . , z)
where z ∼ N (0, Fθ1(

√
2t∗)) and where the n pairs (E2k+1, E2k+2), k = 0, . . . , n−

1, are independent, with distribution N (0, B). Hence, with Z1 = (1/n) ×∑n−1
k=0 Z2k+1, Z2 = (1/n)

∑n−1
k=0 Z2k+2 and E = (1/n)

∑n−1
k=0(E2k+1, E2k+2)

t,
we have

B̂ :=
1

n

n−1∑
i=0

(
Z2i+1 − Z1

Z2i+2 − Z2

)(
Z2i+1 − Z1

Z2i+2 − Z2

)t

=
1

n

n−1∑
i=0

(
E2i+1

E2i+2

)(
E2i+1

E2i+2

)t

− EE
t

→p
n→∞ B.

Hence, there exists a subsequence n′ → ∞ such that, almost surely, B̂ → B
as n′ → ∞. For i, j = 1, 2, let us write B̂i,j for the element i, j of the 2 × 2

matrix B̂. Then, almost surely, B̂1,1−B̂1,2 → Fθ1(0)−Fθ1(2t
∗) as n′ → ∞. Write
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B̂1,1 − B̂1,2 = Δ̂n′(Y (f1), . . . , Y (f2n′)), where Δ̂n′ is a deterministic function

from R
2n′

to R. Then, the set

A =
{
g ∈ F ; Δ̂n′ (g(f1), . . . , g(f2n′)) →n′→∞ Fθ1(0)− Fθ1(2t

∗)
}

satisfies Pθ1(A) = 1. With the same arguments, we can show Pθ2(B) = 1, where

B =
{
g ∈ F ; Δ̂n′′ (g(f1), . . . , g(f2n′′)) →n′′→∞ Fθ2(0)− Fθ2(2t

∗)
}

where n′′ is a subsequence extracted from n′. Since A ∩ B = ∅, it follows that
Pθ2(A) = 0. Hence, θ is microergodic.

Proof of Lemma 1

Proof. For θ1, θ2 ∈ Θ, θ1 �= θ2, let Ad1 be the set described before the lemma
such that Pd1,θ1(Ad1) = 0 and Pd1,θ2(Ad1) = 1. Let now Ad2 be the set of
functions defined by Ad2 = {f : Bd2,2,L → R;Pd1(f) ∈ Ad1}. Here Pd1(f) is the
function g from Bd1,2,L to R such that g(x) = f((x, 0)), where (x, 0) ∈ R

d2 has its
subvector of first d1 coefficients equal to x and its other coefficients equal to zero.
Then, when Z is a Gaussian process on Bd2,2,L with mean zero and covariance
function Kd2,θ, one can see that Pd1(Z) is a Gaussian process on Bd1,2,L with
mean zero and covariance function Kd1,θ. Consequently, Pd2,θ1(Ad2) = 0 and
Pd2,θ2(Ad2) = 1. Hence, θ is microergodic for the dimension d2.

For the proof of Proposition 5

Recall that the empirical barycenters (μn)n are a sequence of continuous mea-
sures converging to μ in 2-Wasserstein distance: W2(μn, μ) → 0 as n → ∞ and
Rn�μ = μn with W2(μ, μn) = ||Rn||L2(μ).

Lemma 2. Fix some distribution ν absolutely continuous with respect to
Lebesgue measure and let T = Tν and Tn = Tν,n. Then it holds a.s.∥∥T − Tn

∥∥2
L2(ν)

−→ 0, as n → ∞.

Proof. Fix n s.t. W2(μn, μ) = εn. Consider
∥∥id − Rn ◦ T

∥∥
L2(ν)

. By change of

variables and triangle inequality one obtains∥∥id−Rn ◦ T
∥∥
L2(ν)

=
∥∥T−1 −Rn

∥∥
L2(μ)

≤
∥∥T−1 − id

∥∥
L2(μ)

+
∥∥Rn − id

∥∥
L2(μ)

≤ W2(ν, μ) + εn ≤ W2(ν, μn) + 2εn.

Since Tn is the optimal transport map from ν to μn we recall that W2(ν, μn) =∥∥id− Tn

∥∥
L2(ν)

. So due to the arbitrary choice of n it follows∣∣∣∥∥id−Rn ◦ T
∥∥
L2(ν)

−
∥∥id− Tn

∥∥
L2(ν)

∣∣∣ −→
n→∞

0. (A.1)



Gaussian processes via optimal transport 2767

Now we are ready to prove, that
∥∥Tn − T

∥∥
L2(ν)

n→∞−→ 0. Assume the claim is
wrong:

Tn
n→∞−→ T1, Rn ◦ T n→∞−→ T2, ‖T1 − T2‖ > ε.

Thus∥∥id− Tn

∥∥
L2(ν)

n→∞−→
∥∥id− T1

∥∥
L2(ν)

,
∥∥id−Rn ◦ T

∥∥
L2(ν)

n→∞−→
∥∥id− T2

∥∥
L2(ν)

,

which contradicts to (A.1)

The next lemma is a key ingredient in the proof of the fact that the true
kernel can be replaced by its empirical counterpart.

Lemma 3. Consider two fixed absolutely continuous measures μ and ν in
W2(R

p). We have a.s.∣∣∣∥∥T−1
μ − T−1

ν

∥∥2
L2(μ)

−
∥∥T−1

μ,n − T−1
ν,n

∥∥2
L2(μn)

∣∣∣ −→ 0, as n → ∞.

Proof. Consider
∥∥T−1

μ,n−T−1
ν,n

∥∥
L2(μn)

. Change of variables and triangle inequality

yield∥∥T−1
μ,n − T−1

ν,n

∥∥
L2(μn)

=
∥∥T−1

μ,n ◦Rn − T−1
ν,n ◦Rn

∥∥
L2(μ)

≤
∥∥T−1

μ,n ◦Rn − T−1
μ

∥∥
L2(μ)

+
∥∥T−1

ν,n ◦Rn − T−1
ν

∥∥
L2(μ)

+
∥∥T−1

μ − T−1
ν

∥∥
L2(μ)

.

Therefore one obtains∥∥T−1
μ,n − T−1

ν,n

∥∥
L2(μn)

−
∥∥T−1

μ − T−1
ν

∥∥
L2(μ)

≤
∥∥T−1

ν,n ◦Rn − T−1
ν

∥∥
L2(μ)

+
∥∥T−1

μ,n ◦Rn − T−1
μ

∥∥
L2(μ)

n→∞−→ 0

where the last relation holds due to Lemma 2.

Proof of Proposition 6

Proof. Actually using Lemma A.2 together with Theorem 2.2 in [32], we obtain,
with Rn defined as before Lemma 2, that

‖Rn − Id‖L2(μ) = OP

(
1√
n

)
,

and that the empirical transportation maps can be linearized as

T−1
i,n = T−1

i +D(Sn − S) + o(‖Sn − S‖F ),

where D is a linear self-adjoint bounded operator acting on the space of sym-
metric matrices. Here for i = 1, . . . , N , Ti and Ti,n are as in Section 4.3 but
with Si replaced by Σi. Use the following decomposition

‖T−1
i,n ◦Rn − T−1

i ‖L2(μ) ≤ ‖T−1
i ◦Rn − T−1

i + (T−1
i,n − T−1

i ) ◦Rn‖L2(μ)
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≤ ‖T−1
i ◦Rn − T−1

i ‖L2(μ) + ‖(T−1
i,n − T−1

i ) ◦Rn‖L2(μ)

≤ OP

(
1√
n

)
.

This entails that ‖T−1
i,n − T−1

j,n ‖L2(μn)
− ‖T−1

i − T−1
j ‖L2(μ) is also of order 1√

n

since ∥∥T−1
i,n − T−1

j,n

∥∥
L2(μn)

−
∥∥T−1

i − T−1
j

∥∥
L2(μ)

≤
∥∥T−1

i,n ◦Rn − T−1
i

∥∥
L2(μ)

+
∥∥T−1

j,n ◦Rn − T−1
j

∥∥
L2(μ)

.

Since for all (i, j) ∈ {1, . . . , N}2,

Mn(i, j) = F (‖T−1
i,n − T−1

j,n ‖2L2(μn)
)

as soon as F is continuously differentiable with bounded derivative, then we get
that for a finite constant

N∑
i,j=1

|Mn(i, j)−M(i, j)|2 ≤ N2 sup
i,j

|Mn(i, j)−M(i, j)|2 ≤ C
N2

n
,

which concludes the proof.

Proof of Proposition 7

Proof. Note, that for any orthogonal matrix U the following set of inequalities
hold:

W 2
2 (N (0, S),N (0, Q)) := tr(S) + tr(Q)− 2tr

(
Q1/2SQ1/2

)1/2

= W 2
2

(
N (0, USUT ),N (0, UQUT )

)
= W 2

2 (φU (N (0, S)), φU (N (0, Q))) .

Thus, map φU preserves 2-Wasserstein distance. Equality (4.4) follows from (4.3)
by substituting Si, Sj , and S by USiU

T , USjU
T , and USUT respectively.
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and radon Wasserstein barycenters of measures. Journal of Mathematical
Imaging and Vision, 51(1):22–45, 2015. MR3300482

[17] Hans Werner Borchers. adagio: Discrete and global optimization routines.
URL http://CRAN.R-project.org/package=adagio, 2016.

[18] Yann Brenier. Polar factorization and monotone rearrangement of vector-
valued functions. Communications on Pure and Applied Mathematics,
44(4):375–417, 1991. MR1100809

[19] Victor Chernozhukov, Alfred Galichon, Marc Hallin, and Marc Henry.
Monge–kantorovich depth, quantiles, ranks and signs. The Annals of Statis-
tics, 45(1):223–256, 2017. MR3611491

[20] Nello Cristianini and John Shawe-Taylor. Support Vector Machines. Cam-
bridge University Press, 2000.

[21] Juan Antonio Cuesta and Carlos Matrán. Notes on the Wasserstein metric
in Hilbert spaces. Ann. Probab., 17(3):1264–1276, 1989. ISSN 0091-1798.
MR1009457

[22] Marco Cuturi and Arnaud Doucet. Fast computation of Wasserstein
barycenters. In International Conference on Machine Learning, pages 685–
693, 2014.

[23] Eustasio del Barrio, Juan Antonio Cuesta-Albertos, Marc Hallin, and Car-
los Matrán. Center-outward distribution functions, quantiles, ranks, and
signs in R

d. arXiv e-prints arXiv:1806.01238, Jun 2018.
[24] Alessio Figalli. On the continuity of center-outward distribution and quan-

tile functions. Nonlinear Analysis, 177:413–421, 2018. MR3886582
[25] David Ginsbourger, Jean Baccou, Clément Chevalier, and Frédéric Perales.

Design of computer experiments using competing distances between set-
valued inputs. In mODa 11-Advances in Model-Oriented Design and Anal-
ysis, pages 123–131. Springer, 2016.

[26] Carsten Gottschlich and Dominic Schuhmacher. The shortlist method for
fast computation of the Earth mover’s distance and finding optimal solu-
tions to transportation problems. PloS One, 9(10):e110214, 2014.

[27] Arthur Gretton, Olivier Bousquet, Alex Smola, and Bernhard Schölkopf.
Measuring statistical dependence with Hilbert-Schmidt norms. In Interna-
tional Conference on Algorithmic Learning Theory, pages 63–77. Springer,
2005. MR2255909

http://www.ams.org/mathscinet-getitem?mr=3909952
http://www.ams.org/mathscinet-getitem?mr=3872127
https://arxiv.org/abs/arXiv:1809.04090
http://www.ams.org/mathscinet-getitem?mr=3338645
http://www.ams.org/mathscinet-getitem?mr=3300482
http://CRAN.R-project.org/package=adagio
http://www.ams.org/mathscinet-getitem?mr=1100809
http://www.ams.org/mathscinet-getitem?mr=3611491
http://www.ams.org/mathscinet-getitem?mr=1009457
https://arxiv.org/abs/arXiv:1806.01238
http://www.ams.org/mathscinet-getitem?mr=3886582
http://www.ams.org/mathscinet-getitem?mr=2255909


Gaussian processes via optimal transport 2771

[28] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements
of Statistical Learning: Data Mining, Inference, and Prediction. Springer
Science & Business Media, 2009. MR2722294

[29] http://wwwcast3m.cea.fr. Cast3m software.
[30] Marcel Klatt. Regularized Wasserstein Distances and Barycenters,

2018. URL https://cran.r-project.org/web/packages/Barycenter/

Barycenter.pdf. R package version 1.3.1.
[31] Soheil Kolouri, Yang Zou, and Gustavo K. Rohde. Sliced Wasserstein ker-

nels for probability distributions. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 5258–5267, 2016.

[32] Alexey Kroshnin, Vladimir Spokoiny, and Alexandra Suvorikova. Sta-
tistical inference for Bures-Wasserstein barycenters. arXiv preprint
arXiv:1901.00226, 2019.

[33] Bryan R. Lajoie, Job Dekker, and Noam Kaplan. The hitchhiker’s guide to
hi-c analysis: practical guidelines. Methods, 72:65–75, 2015.

[34] Thibaut Le Gouic and Jean-Michel Loubes. Existence and consistency
of Wasserstein barycenters. Probability Theory and Related Fields, 168(3-
4):901–917, 2017. MR3663634

[35] Wei-Liem Loh. Estimating the smoothness of a gaussian random field from
irregularly spaced data via higher-order quadratic variations. The Annals
of Statistics, 43(6):2766–2794, 2015. MR3405611

[36] David G. Luenberger and Yinyu Ye. Linear and Nonlinear Programming,
volume 2. Springer, 1984. MR2423726
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