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Abstract: In spatial statistics, the screening effect historically refers to the
situation when the observations located far from the predictand receive a
small (ideally, zero) kriging weight. Several factors play a crucial role in this
phenomenon: among them, the spatial design, the dimension of the spatial
domain where the observations are defined, the mean-square properties of
the underlying random field and its covariance function or, equivalently, its
spectral density.

The tour de force by Michael L. Stein provides a formal definition of
the screening effect and puts emphasis on the Matérn covariance function,
advocated as a good covariance function to yield such an effect. Yet, it is
often recommended not to use covariance functions with a compact support.
This paper shows that some classes of covariance functions being compactly
supported allow for a screening effect according to Stein’s definition, in
both regular and irregular settings of the spatial design. Further, numerical
experiments suggest that the screening effect under a class of compactly
supported covariance functions is even stronger than the screening effect
under a Matérn model.
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1. Introduction

Optimal unbiased linear prediction (kriging) is widely used in spatial statistics
to interpolate point observations of a mean-square continuous random field. The
notion of “screening effect” is used to describe a situation where the interpolant
depends mostly on those observations that are located nearest to the predic-
tand (Stein, 2002). The phenomenon has been of interest to geostatisticians for
decades (Matheron, 1963, 1965, 1971; Chilès and Delfiner, 2012) since it allows
reducing considerably the computational burden associated with the kriging
predictor when handling large data sets.

1.1. Context and state of the art

The screening effect historically refers to the situation when the observations
located far from the predictand receive a zero kriging weight. An early formal-
ization is proposed by Matheron (Matheron, 1963, 1965), who examined the
case when observations along a closed contour around the predictand perfectly
screen out the influence of observations located outside this contour. Such a
definition corresponds to the well-known Markov property in a one-dimensional
space, which occurs when kriging a stationary random field with an exponen-
tial covariance or an intrinsic random field with a linear variogram (Matheron,
1971; Chilès and Delfiner, 2012). In multi-dimensional spaces, however, it re-
quires defining a continuous version of kriging, with uncountably many obser-
vations located on a contour enclosing the predictand (Matheron, 1963, 1965).
When dealing with finitely many observations, the evidence of screening effect
has been mostly empirical, as well as a justification for the use of a moving
neighborhood in the practice of kriging (David, 1976; Rivoirard, 1987; Isaaks
and Srivastava, 1989). In the multivariate context, screening effects also arise
with specific models of the joint correlation structure of the random fields being
predicted (Rivoirard, 2004; Subramanyam and Pandalai, 2008).

Stein (1999, 2002, 2011, 2015) provides a slightly different formalization of the
screening effect, under an infill asymptotics approximation. The motivation of
this asymptotic approach to screening effect is the extreme difficulty in obtain-
ing useful and general results for any fixed set of observations. Several examples
in Stein (2011) demonstrate the complexity of the problem, which depends on
the spatial design (how to locate the observation points), the dimension of the
Euclidean space where the spatial domain is embedded, the covariance function
attached to a Gaussian spatial random field (or, equivalently, its spectral den-
sity) and the mean-square differentiability in all directions of the spatial random
field. A recent discussion about screening effect has been provided by Bao et al.
(2020).

Specifically, let {Z(x) : x ∈ D ⊂ R
m} be a mean-square continuous, zero

mean and weakly stationary Gaussian random field with covariance function
K : Rm → R having a spectral density

f(ω) =
1

(2π)m

∫
Rm

eiω·xK(x)dx, (1.1)
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where · denotes the inner product between two commensurate vectors and
i2 = −1. Throughout, we are interested in predicting Z at x = 0 ∈ R

m. Our
notation largely follows Stein (2002): we let Z(S) be a vector of observations
at a nonempty set S ⊂ R

m. Let Fε, Nε be two sets indexed by ε > 0 such that
Nε contains the nearest observations to the predictand, and Fε more distant
observations. Let e(S) be the error of the simple kriging interpolator to predict
Z at x = 0 based on Z(S). Stein (2002) says that Nε asymptotically screens out
Fε when

lim
ε↓0

Ee(Nε ∪ Fε)
2

Ee(Nε)2
= 1. (1.2)

Apparently, the configuration of points has a non-negligible impact on whether
condition (1.2) happens. Stein (2002) shows that, for some xo ∈ R

m not in the
integer lattice, if Fε = {ε(xo + j)}, for j ∈ Z

m and if Nε is the restriction of Fε

to some fixed region with 0 in its interior, then a sufficient condition for (1.2) to
hold is that the spectrum f varies regularly at infinity (Bingham et al., 1987) in
every direction with a common index of variation. This last aspect has been then
constructively criticized in Stein (2011) when referring to space-time covariance
models that exhibit different levels of differentiability in space and time. For
the remainder of the paper, we call the above setting a regular asymptotics
scheme, to distinguish formally from the irregular setting proposed by Stein
(2011): for x1, . . . , xn being distinct nonzero elements of Rm, y1, . . . , yN distinct
elements of Rm and y0 ∈ R

m being nonzero, we have Nε = εx1, . . . , εxn and
Fε = y0 + εy1, . . . , y0 + εyN . Stein (2011) starts from a reasonable condition on
f : for every R < ∞,

lim
‖ω‖→∞

sup
‖τ‖<R

∣∣∣∣f(ω + τ)

f(ω)
− 1

∣∣∣∣ = 0. (1.3)

Throughout, we refer to Stein Hypothesis (SH throughout) as being verified
when condition (1.3) is sufficient for (1.2) to happen under some mild additional
conditions on f and Nε. Indeed, Stein (2011) shows that SH is verified on m = 1
and m = 2 for mean-square continuous but non-differentiable random fields,
under some specific design on Nε.

Stein (2002, 2011) provides a wealth of examples showing when the screening
effect is likely to happen under regular or irregular settings. Apparently, the
Matérn model (Stein, 1999, see below for details) is a good candidate for both
settings. Covariance models being compactly supported on the unit ball of Rm

typically exhibit a lack of smoothness at ±1 and are purported as negative
examples for the screening effect to happen. The triangular and spherical models
(Chilès and Delfiner, 2012) are prominent examples of covariance models with
compact support in R

m for m = 1 and m = 3, respectively.

1.2. Our contribution

This paper addresses more comprehensively the problem of compact support
within the context of both regular and irregular settings for screening effects.
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Fig 1. Left: spectral density associated with the function Hμ,ν,2 in Equation (3.12) while
fixing ν = 0 and for increasing values of μ: μ = 1 (blue line), μ = 2 (orange) and μ = 3
(green). Right: spectral density associated with the function Hμ,ν,2 in Equation (3.12) while
fixing ν = 1 and for increasing values of μ: μ = 2.5 (blue line), μ = 3 (orange) and μ = 4
(green).

We make special emphasis on the Generalized Wendland class (Bevilacqua et al.,
2019) of compactly supported covariance functions, as well as on the Buhmann
class (Buhmann, 2000; Zastavnyi, 2002). Just like the Matérn class of covariance
functions, these classes allow for a continuous parameterization of smoothness of
the underlying Gaussian random field, being additionally compactly supported.

Stein (1999) argues that the triangular model of covariances with compact
support (being a special case of Generalized Wendland function) has poor per-
formance in terms of best linear prediction, when m = 1. He shows that the
poor behavior of this model is due to the tails of the spectral density, which
oscillates away from the origin.

Figure 1 illustrates the situation. On the left-hand side we depict the spec-
tral density of the Askey function (details are given in subsequent sections),
with the triangular model (the blue line) being a special case of it. The or-
ange and green lines illustrate how the behavior of the spectrum becomes more
regular when a single parameter is changed. On the right-hand side, we depict
the spectrum associated with the Generalized Wendland functions (details in
subsequent section) when fixing the smoothing parameter so that the associ-
ated Gaussian random field is once mean-square differentiable. These examples
motivate a deeper inspection of the properties of Generalized Wendland func-
tions: given the very promising results obtained for the Generalized Wendland
model under infill asymptotics (Bevilacqua et al., 2019), it makes sense to study
conditions for regular and irregular screening effects to hold for the General-
ized Wendland and Buhmann models. Specifically, we consider both classes as
parametric families of compactly supported covariance functions. We then show
under which restrictions on those parameters Stein’s conditions (for regular or
irregular settings) are met.

The plan of the paper is the following. Section 2 provides the necessary math-
ematical background and describes Stein’s conditions under regular and irregu-
lar infill asymptotics schemes. Section 3 deals with theoretical results involving
screening effect under Generalized Wendland and Buhmann classes of covariance
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functions. Section 4 provides an extensive simulation study that supports our
theoretical findings. A short section concludes the paper. Mathematical proofs
are deferred to the Appendix.

2. Mathematical background

2.1. Compactly supported covariance functions

For the remainder of the paper, m denotes a positive integer. A real-valued func-
tion K : Rm → R is positive semidefinite if, for any finite collection {xk}Nk=1 ⊂
R

m and constants {ck}Nk=1 ⊂ R, we have
∑N

k=1

∑N
h=1 ckK(xk − xh)ch ≥ 0.

There is a one-to-one correspondence between positive semidefinite functions
and the covariance functions of Gaussian random fields in R

m. The function K
is called isotropic when K(x) = K̃(‖x‖) for some function K̃ defined on [0,∞),

and where ‖ · ‖ denotes the Euclidean norm. The function K̃ is called the radial

part of K, and we shall be ambiguous when calling K̃ a covariance function.
Being the Fourier pair of K, the spectral density f defined according to Equa-
tion (1.1) is also isotropic (Daley and Porcu, 2014) and is related to K̃ through

the following: f(ω) = f̃m(‖ω‖), for ω ∈ R
m. Furthermore,

f̃m(‖ω‖) = ‖ω‖1−m/2

(2π)m

∫ ∞

0

um/2Jm/2−1(u‖ω‖)K̃(u)du, ω ∈ R
m, (2.4)

with Jm being a modified Bessel function (Abramowitz and Stegun, 1970).
Throughout, we use r for ‖x‖ and z for ‖ω‖. For details about isotropic co-
variance functions and spectral densities, the reader is referred to Daley and
Porcu (2014), with the references therein.

The isotropic Matérn covariance model, Mν , is defined as (Stein, 1999)

Mν(r) =
21−ν

Γ(ν)
rνKν (r) , r ≥ 0. (2.5)

Mν(r) is positive semidefinite on R
m (for all m) for any positive ν (Stein, 1999).

Here, Kν is a modified Bessel function of the second kind of order ν. The pa-
rameter ν characterizes the differentiability at the origin and, as a consequence,
the differentiability of the sample paths of a Gaussian random field with Matérn
covariance function. In particular for a positive integer k, the sample paths are
k times differentiable, in any direction, if and only if ν > k.

When ν = 1/2 + k and k is a nonnegative integer, the Matérn function
simplifies to the product of a negative exponential with a polynomial of degree
k, and for ν tending to infinity, a rescaled version of the Matérn converges to
a squared exponential model that is infinitely differentiable at the origin. Thus,
the Matérn function allows for a continuous parameterization of its associated
Gaussian random field in terms of smoothness.
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The isotropic spectral density associated with the Matérn function, M̂ν,m,
has expression

M̂ν,m(z) =
Γ(ν +m/2)

πd/2Γ(ν)
(1 + z2)−ν−m/2, z ≥ 0. (2.6)

Covariance functions with compact support are identically zero outside a ball
of Rm with a given radius. This paper works with functions being compactly
supported on a ball of Rm with unit radius, without loss of generality. We now
define the parametric classes that are used for the results coming subsequently.
Let μ, ν be strictly positive parameters. We define the Generalized Wendland
functions (Gneiting, 2002; Bevilacqua et al., 2019), denoted by ψμ,ν , through
the identity

ψμ,ν(r) :=

⎧⎪⎨⎪⎩
1

B(2ν,μ+1)

∫ 1

r
u(u2 − r2)ν−1(1− u)μ du, 0 ≤ r < 1,

0, r ≥ 1,

(2.7)

with B denoting the Beta function. We also define

ψμ,0(r) := (1− r)
μ
+ , r ≥ 0 (2.8)

which is known as the Askey function (Askey, 1973), and where (x)+ = 0 if
x > 0, and 0 elsewhere. The special case ψ1,0 is known as the triangular model
(Stein, 1999; Chilès and Delfiner, 2012).

Let Gμ,ν,m : [0,∞) → R be the function defined through (Zastavnyi, 2006)

Gμ,ν,m(z) = D(μ, ν,m)× (2.9)

1F2

(
m− 1

2
+ ν;

m− 1

2
+ ν +

μ

2
,
m− 1

2
+ ν +

μ+ 1

2
;−z2

4

)
,

z ≥ 0, where D(μ, ν,m) is a strictly positive constant and 1F2 is a hypergeomet-
ric function. Gμ,ν,m has to be nonnegative and integrable in R

m to ensure that
the related Fourier pair, obtained through (2.4), is the radial part of a positive
semidefinite function. (Zastavnyi, 2002, Theorem 11) shows that, for m = 1 and
ν ≥ 1, this happens if and only if μ ≥ ν. For m ≥ 2 and if ν > 1/2, it happens if
and only if μ ≥ (m− 1)/2+ ν, and the reader is referred to Zastavnyi (2000) as
well as to Remark 11 in Zastavnyi and Trigub (2002). In particular, Zastavnyi

(2002) finds that Gμ,ν,m is the radial Fourier transform (2π)mf̃m in (2.4) of the
function

hμ,ν(r) :=

∫ 1

r

(2u− r)gμ,ν(u)gμ,ν(u− r) du, r < 1; hμ,ν(r) := 0, r ≥ 1,

where gμ,ν(u) := uμ−1(1 − u2)ν−1, u ∈ (0, 1), for μ, ν > 0. The fact that (Zas-
tavnyi, 2002)

hμ,ν+1(r)

hμ,ν+1(0)
=

ψμ,ν(r)

ψμ,ν(0)
, r ≥ 0,
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Table 1

Special cases of Wendland functions ψμ,k and Matérn functions Mν(r). SP (k) means that
the sample paths of the associated Gaussian random field are k times differentiable.

Reported from Bevilacqua et al. (2019)

k ψμ,k(r) ν Mν(r) SP (k)

0 (1− r)μ+ 0.5 e−r 0

1 (1− r)μ+1
+ (1 + r(μ+ 1)) 1.5 e−r(1 + r) 1

2 (1− r)μ+2
+ (1 + r(μ+ 2) + r2(μ2 + 4μ+ 3) 1

3
) 2.5 e−r(1 + r + r2

3
) 2

3 (1− r)μ+3
+

(
1 + r(μ+ 3) + r2(2μ2 + 12μ+ 15) 1

5
3.5 e−r(1 + r

2
+ r2 6

15
+ r3

15
) 3

+r3(μ3 + 9μ2 + 23μ+ 15) 1
15

)

shows that the Fourier pair as in (2.4) associated with the Generalized Wendland
class ψμ,ν is positively proportional to Gμ,ν+1,m. This implies that ψμ,ν is the
radial part of a positive semidefinite function in R

m, m ≥ 1, if and only if
μ ≥ (m + 1)/2 + ν, for ν ≥ 0. For k a nonnegative integer, the functions ψμ,k

are known as Wendland functions (Wendland, 1995). Some special cases are
reported in Table 1, which also compares their behavior at the origin (for fixed
values of k) in comparison with the Matérn class (for fixed values of μ).

We finish this exposition with a general class of compactly supported covari-
ance functions. Let δ, μ, ν > 0 and α ∈ R. We refer to Buhmann functions as
the parametric class (Buhmann, 2000; Zastavnyi, 2006) defined by

ϕδ,μ,ν,α(r) :=

⎧⎨⎩
∫ 1

r
(s2 − r2)ν−1(1− sδ)μ−1sα−2ν+1 ds, r < 1

0, r ≥ 1.

(2.10)

An extensive inspection of the properties of this class can be found in Zastavnyi
(2006) and we report here the essential facts. The class ϕδ,μ,ν,α includes a wealth
of interesting special cases. For instance, ϕδ,μ,1,δ(r) is proportional to (1− rδ)μ+,
which implies that ϕ1,μ,1,1 is proportional to the Askey functions ψμ,0 (Askey,
1973). Thus, ϕ1,1,1,1(r) = ψ1,0 is the triangular model. Conditions for the radial
Fourier transform of ϕδ,μ,ν,α to be positive for general parameters δ, μ, ν and α
are provided by Zastavnyi (2006) and are not reported here to favor a simplified
exposition. Using again the arguments in Zastavnyi (2006) we have

ψμ,ν(r) =
ϕ1,μ+1,ν,2ν(r)

ϕ1,μ+1,ν,2ν(0)
=

ϕ1,μ,ν+1,2ν+1(r)

ϕ1,μ,ν+1,2ν+1(0)
, r ≥ 0 (2.11)

for μ, ν > 0. Arguments in Porcu et al. (2017) show that the Wu functions (Wu,
1995) and consequently the spherical model are special cases of the Buhmann
class.
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2.2. Stein’s spectral conditions

This part of the presentation avoids mathematical obfuscation and will instead
focus on intuitive interpretation of facts. For sharp statements, the reader is
referred to Stein (2002, 2011).

We need some further notation to proceed. For nonnegative-valued functions
a and b defined on a common domain D, write a(x) 
 b(x) if there exists a finite
C > 0 such that a(x) ≤ Cb(x) for all x ∈ D. Write a(x) � b(x) if a(x) 
 b(x)
and b(x) 
 a(x).

We start with what has been termed regular setting for asymptotic screening.
For this case, Stein (2002) elucidates the following assumptions. For a zero mean
Gaussian random field in R

m with spectral density f ,

(A.1) f � 1 on bounded subsets of Rm;
(A.2) f(ω) � g(ω) on R

m, f(ω) ∼ g(ω) as ‖ω‖ → ∞ and g(ω) =
g̃(‖ω‖)θ(ω/‖ω‖), ω ∈ R

m, for some functions g̃ : [0,∞) → R and θ being
defined on the unit ball of Rm, such that θ � 1 and, for some a > m,
g̃(z) = z−aL(z) when z > 1 and g̃(z) = L(1) when 0 ≤ z ≤ 1. Here, L is
slowly varying at infinity, i.e., L is positive on [0,∞) and for all r > 0,
L(rz)/L(z) → 1 as z → ∞.

Stein (2002) shows that if f obeys both (A.1) and (A.2), then Nε asymp-
totically screens out Fε, where both sets are specified in Theorem 1 of Stein
(2002).

When working under the irregular asymptotics setting, it is extremely difficult
to establish general results. Stein (2011) conjectures that, if f satisfies (1.3) and
for k = 1, ..., n, if all mean-square derivatives of Z at the origin in the direction
xk can be predicted based on Z(Nε) with mean-squared error tending to 0 as
ε ↓ 0, then Nε asymptotically screens out Fε, where again we refer to Stein
(2011) for an accurate assertion about the sets Nε and Fε.

Stein (2011) goes further and proves the conjecture in R and R
2 for mean-

square continuous but non-differentiable random fields, which simplifies things
considerably. In R, it is additionally required that f(ω) � (1 + ‖ω‖)−a−1, for
some a ∈ (0, 2).

3. Results

We start with two theoretical results. The former is rather general and does not
depend on any parametric form of the isotropic spectral density. The latter deals
instead with spectral densities associated with Generalized Wendland functions.

Theorem 3.1. Let m be a positive integer. Let the function G : [0,∞) → R be
continuous and positive, with G(z) ∼ Cz−γ as z → +∞, where C > 0, γ > m.
Let f(ω) := G(‖ω‖), ω ∈ R

m. Then, the following assertions are true:

1. f satisfies Stein’s conditions (A.1) and (A.2), with L ≡ 1, θ ≡ C and
a = γ;

2. f satisfies Stein’s condition in Equation (1.3).
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Theorem 3.2. Let m be a positive integer. Let Gμ,ν,m be the family of functions
defined through Equation (2.9) and f(ω) := Gμ,ν,m(‖ω‖), ω ∈ R

m. If, either:

(i) m = 1, 1/2 < ν < 1 and μ ≥ 1 or ν ≥ 1 and μ > ν;
(ii) m ≥ 2, ν > 1/2 and μ > (m− 1)/2 + ν,

then, the following assertions are true:

1. f satisfies Stein’s conditions (A.1) and (A.2), with L ≡ 1 and a =
m+ 2ν − 1 > m;

2. f satisfies Stein’s condition in Equation (1.3).

Some comments are in order. CallHμ,ν,m the radially symmetric spectral den-
sity associated with the Generalized Wendland functions as defined in Equation
(2.7). Using the expression of the spectral density Gμ,ν,m in Equation (2.9) in
concert with arguments in Zastavnyi (2002), one can show that hypergeometric
functions occur:

Hμ,ν,m(z) = C(μ, ν,m)× (3.12)

1F2

(
m+ 1

2
+ ν;

m+ 1

2
+ ν +

μ

2
,
m+ 1

2
+ ν +

μ+ 1

2
;−z2

4

)
,

z ≥ 0, where C(μ, ν,m) is a strictly positive constant. This implies the following:

(a) According to Conditions (A.1) and (A.2) in concert with Theorem 1 in
Stein (2002), we deduce that the Generalized Wendland model allows for
a regular asymptotic screening effect. The condition is that μ > (m +
1)/2+ ν. Observe that this condition is not restrictive: μ ≥ (m+1)/2+ ν
is already required for ψμ,ν to be positive semidefinite in R

m.
(b) The irregular setting for asymptotic screening effect is more intricate. When

m = 1 and for non-differentiable fields, Theorem 1 in Stein (2011) in
concert with our Theorem 3.2 explains that the Askey model ψμ,0(r) allows
for irregular screening effect provided that μ > 1. This finding does not
contradict Stein’s example (Stein, 2002) on the triangular model (μ = 1).
For m = 2, we can again make use of Theorem 2 in Stein (2011) to deduce
that the Askey model allows for screening provided that μ > 3/2.

(c) The Generalized Wendland model satisfies Stein’s condition (1.3) that is
the crux to verify SH.

(d) For the limit case μ = (m−1)/2+ν in Theorem 3.2, Condition (1.3) is not
true. This can be verified by letting

tn =
π

2

(
μ+

m− 1

2
+ ν

)
+ 2πn− π

2
, n ∈ N.

These facts, in concert with (A.15) below, allow deducing that, for s > 0,
sin s �= 0,

Gμ,ν,m(tn + s)

Gμ,ν,m(tn)
→ C sin s+ 1 �= 1, when n → ∞,

with C = 2−(m−3)/2−ν .
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A constructive proof of Theorem 3.2 is provided in the Appendix.
Our findings are now completed by reporting similar results for the Buhmann

functions ϕδ,μ,ν,α in Equation (2.10).

Theorem 3.3. Let m be a positive integer. Let δ, μ, ν, α be strictly positive. Let
Fm(ϕδ,μ,ν,α) be the radial Fourier transform (2π)mf̃m in (2.4) of the Buhmann
function ϕδ,μ,ν,α as defined in Equation (2.10) and f(ω) := Fm(ϕδ,μ,ν,α)(||ω||),
ω ∈ R

m. Let Fm(ϕδ,μ,ν,α)(z) be positive for all positive z. If, either,

(i1) μ+ ν > α+ (m+ 1)/2 and α < 2ν, or
(i2) α = 2ν, μ > 1, δ < 2 and μ > (m+ 1)/2 + δ + ν,

then, the following assertions are true:

1. f satisfies Stein’s conditions (A.1) and (A.2), with L ≡ 1 and a = γ >
m, where γ = m+ α for case (i1), and γ = m+ α+ δ for case (i2);

2. f satisfies Stein’s condition in Equation (1.3).

4. Numerical examples

This section explores, through numerical examples, the strength of the screening
effect when predicting a Gaussian random field using a Generalized Wendland
covariance function ψμ,ν(·/β), where β > 0 is a compact support. A comparison
with the screening effect under the Matérn model is also provided.

The simulation scenario we consider is similar to the one proposed in Stein
(2002), with m = 2. Specifically, we first define An = {−n,−n+1, . . . , n−1, n}2
and we compare the predictions of Z(0.5δ, 0.5δ) based on observing Z at δAn,
with predictions based on observing Z at δZ2. Let Ee(x, y)2 be the mean-squared
error associated with the kriging predictor of Z(x) using y. We consider how
the mean-squared error of the simple kriging predictor of Z(0.5δ, 0.5δ) behaves
as a function of n, δ, μ and ν. Let us define

Rψμ,ν,β
(n, δ) =

Ee(δ(0.5, 0.5), δAn)
2

Ee(δ(0.5, 0.5), δZ2)2
− 1.

Clearly, Rψμ,ν,β
measures the strength of the screening effect under the Gen-

eralized Wendland model ψμ,ν(·/β). Specifically, when Rψμ,ν,β
approaches zero,

then the screening effect is stronger. Our numerical results suggest that re-
placing Ee(δ(0.5, 0.5), δZ2)2 by Ee(δ(0.5, 0.5), δA40)

2 in Rψμ,ν,β
(n, δ) provides

a good approximation to Rψμ,ν,β
(n, δ) for the values of n, ν and μ considered

here. Figure 2 depicts our spatial setting: in particular δAn for δ = 0.01 and
n = 1, 4, 8, 12, 40.

We consider a Generalized Wendland function setting σ2 = 1, ν = 0, 0.5, 2, 15,
μ = (m + 1)/2 + ν + x with x = 0, 0.5, 2, 20 and m = 2. We note that the pa-
rameter ν characterizes the differentiability at the origin and, as a consequence,
the mean-square differentiability of a Gaussian random field having General-
ized Wendland covariance function. In particular, for a positive integer k, the
random field is k times differentiable, if and only if ν > k − 0.5.
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Fig 2. Spatial setting for the numerical experiment. The outer to inner boxes are, respectively,
δA40, δA12, δA8, δA4, δA1 with δ = 0.01. The red point (δ(0.5, 0.5)) is the target point.

As a comparison, we compute RMν,α(n, δ) for the Matérn covariance model
Mν(·/α), α > 0, setting ν = 0.5, 1, 2.5, 15.5. The parameter ν characterizes the
differentiability at the origin and, as a consequence, the mean-square differen-
tiability of the random field. In particular for a positive integer k, the random
field is k times differentiable, if and only if ν > k.

Note that the parameters of the Generalized Wendland and Matérn models
are chosen such that the associated random fields are 0, 2, 15 times mean-square
differentiable, respectively.

Finally, we fix the compact support of the Generalized Wendland function
β = 10δ and the scale parameter α of the Matérn model is fixed such that the
practical range is equal to 10δ. This choice has the effect of approximately fixing
the spatial dependence proportional to the size of δA40.

Figure 3 (second row) depicts Generalized Wendland correlation models with
ν = 0, 0.5, 2, μ = (m+ 1)/2 + ν + x with x = 0, 0.5, 2, 20 and compact support
equal to 0.1. The third row of the Figure depicts a Matérn correlation model
with κ = 0.5, 1, 2.5 and practical range equal to 0.1.

Table 2 shows Rψ1.5+ν+x,ν,β
(n, 0.01) for x = 0, 0.5, 2, 20, ν = 0, 0.5, 2, 15

and n = 1, . . . , 12 with β = 0.1 and Table 3 shows RMν,α(n, 0.01) for ν =
0.5, 1, 2.5, 15.5 and n = 1, . . . , 12 and α such that the practical range is 0.1.

Some comments are in order. For a given level of differentiability, the screen-
ing effect is stronger under the Generalized Wendland than under the Matérn
model. In particular, for the Generalized Wendland model, the screening effect
increases when the μ parameter increases. We do not have any theoretical justi-
fication for this fact, which looks a bit surprising. The difference in the strength
of the screening effect in-between the two models can be considerable, in par-
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Table 2. Rψ1.5+ν+x,ν,0.1
(n, 0.01) for the Generalized Wendland Model with different values of x, ν and n.

n 1 2 3 4 5 6 7 8 9 10 11 12

ν = 0 x = 0 5.092991e-02 4.484664e-02 4.476267e-02 4.476104e-02 4.476066e-02 4.472874e-02 4.229398e-02 3.433339e-02 2.429962e-02 1.167579e-02 3.370656e-03 2.125518e-03

ν = 0 x = 1
2

7.291579e-03 1.926657e-03 1.845781e-03 1.842660e-03 1.840822e-03 1.831735e-03 1.752503e-03 1.461902e-03 1.033833e-03 4.773155e-04 9.049519e-05 6.540115e-06

ν = 0 x = 2 4.174425e-03 8.287586e-05 7.529038e-06 4.160870e-06 3.168702e-06 2.829301e-06 2.386606e-06 1.682085e-06 9.402887e-07 3.078456e-07 1.539665e-08 4.961457e-09

ν = 0 x = 20 1.417199e-05 3.256056e-07 5.262073e-10 2.932099e-12 1.776357e-14 0.000000e+0 0.000000e+0 0.000000e+0 0.000000e+0 0.000000e+0 0.000000e+0 0.000000e+0

ν = 1
2

x = 0 1.238679e-01 2.518064e-02 2.186238e-02 2.170864e-02 2.170137e-02 2.165372e-02 2.038591e-02 1.704591e-02 1.136440e-02 5.399366e-03 1.854819e-03 7.696975e-04

ν = 1
2

x = 1
2

9.580829e-02 4.375047e-03 1.264624e-03 1.118026e-03 1.111418e-03 1.110505e-03 1.025747e-03 7.978657e-04 5.080492e-04 2.103344e-04 4.473505e-05 6.540464e-06

ν = 1
2

x = 2 7.928570e-02 2.774658e-03 1.326394e-04 7.421395e-06 1.772594e-06 1.464125e-06 1.262922e-06 1.015172e-06 6.801762e-07 3.475151e-07 1.177511e-07 1.548480e-08

ν = 1
2

x = 20 2.817677e-03 3.156572e-05 3.839977e-07 4.898443e-09 6.456302e-11 8.653078e-13 1.199041e-14 0.000000e+0 0.000000e+0 0.000000e+0 0.000000e+0 0.000000e+0

ν = 2 x = 0 1.906047e+0 2.298318e-01 4.936823e-02 1.376110e-02 6.211718e-03 4.427011e-03 3.911247e-03 3.374716e-03 2.740038e-03 2.027527e-03 1.289726e-03 6.921458e-04

ν = 2 x = 1
2

1.748272e+0 2.140837e-01 4.340609e-02 9.815036e-03 2.654434e-03 1.048069e-03 6.605041e-04 5.272317e-04 4.262353e-04 3.183656e-04 2.038321e-04 1.078267e-04

ν = 2 x = 2 1.367888e+0 1.789414e-01 3.558611e-02 7.572603e-03 1.638356e-03 3.571073e-04 7.710742e-05 1.591468e-05 3.079431e-06 6.402223e-07 1.813578e-07 6.325228e-08

ν = 2 x = 20 7.379256e-02 5.772543e-03 5.081329e-04 4.596307e-05 4.214214e-06 3.899937e-07 3.634979e-08 3.407452e-09 3.209182e-10 3.034262e-11 2.880141e-12 2.744471e-13

ν = 15 x = 0 1.284557e+01 2.725173e+0 9.531585e-01 4.084754e-01 1.919252e-01 9.425634e-02 4.731806e-02 2.401927e-02 1.226161e-02 6.277599e-03 3.218749e-03 1.651642e-03

ν = 15 x = 1
2

1.117221e+01 2.408608e+0 8.438059e-01 3.590051e-01 1.665825e-01 8.053529e-02 3.972315e-02 1.978863e-02 9.907069e-03 4.972322e-03 2.498739e-03 1.256494e-03

ν = 15 x = 2 7.646261e+0 1.712488e+0 5.981033e-01 2.476250e-01 1.102478e-01 5.071996e-02 2.369082e-02 1.114485e-02 5.260525e-03 2.487002e-03 1.176665e-03 5.569126e-04

ν = 15 x = 20 5.530243e-01 1.001050e-01 2.107670e-02 4.583492e-03 1.004122e-03 2.203619e-04 4.838269e-05 1.062475e-05 2.333417e-06 5.125118e-07 1.125772e-07 2.473042e-08
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Table 3. RMν,α (n, 0.01) for the Matérn Model with different values of ν and n with α such that the practical range is 0.1.

n 1 2 3 4 5 6 7 8 9 10 11 12

ν = 0.5 3.993871e-03 5.592063e-05 6.017734e-07 1.108406e-07 1.976435e-08 4.135736e-09 1.014062e-09 2.771223e-10 8.221135e-11 2.602474e-11 8.683720e-12 3.026690e-12

ν = 1.0 7.656900e-02 2.606023e-03 1.149040e-04 5.281975e-06 2.461492e-07 1.157238e-08 5.479242e-10 2.623302e-11 1.402434e-12 2.373657e-13 1.982858e-13 1.167955e-13

ν = 2.5 1.390118e+0 1.707814e-01 3.333572e-02 6.943729e-03 1.475033e-03 3.159579e-04 6.803041e-05 1.470515e-05 3.188743e-06 6.933220e-07 1.511040e-07 3.300342e-08

ν = 15.5 3.173124e+07 2.041359e+05 5.300267e+03 3.841679e+02 5.980949e+01 1.590339e+01 6.004259e+0 2.825557e+0 1.522168e+0 8.964182e-01 5.599226e-01 3.657309e-01
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Fig 3. Top: plots of Rψμ,ν,β
(n, δ, μ, ν) versus δn for n = 1, . . . , 12, with δ = 0.01, ν = 0, 0.5, 2

(from left to right) and μ = (m + 1)/2 + ν + x with x = 0, 0.5, 2, 20. Center: Generalized
Wendland correlation models with ν = 0, 0.5, 2 (from left to right), μ = (m + 1)/2 + ν + x
with x = 0, 0.5, 2, 20 and compact support equal to 0.1. Bottom: Matérn correlation models
with κ = 0.5, 1, 2.5 (from left to right) and practical range equal to 0.1.

ticular for high levels of differentiability (see the case 15 and 15.5. and n = 1).
On the other hand, as expected, when n increases, Rψμ,ν,β

(n, δ) decreases for
the Generalized Wendland model, regardless of μ and ν. This is also apparent
for RMν,α(n, δ).

Figure 3 (first row) shows the plot of Rψμ,ν,10δ
(n, δ) versus δn for n =

1, . . . , 12, with δ = 0.01, ν = 0, 0.5, 2 (from left to right) and μ = (m+1)/2+ν+x
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with x = 0, 0.5, 2, 20. Finally, we repeat our numerical experiments by chang-
ing the value of δ but, as in Stein (2002), the conclusions are not significantly
different.

5. Conclusion

The results provided in this paper, supported by numerical experiments, reha-
bilitate some compactly supported covariance models as being good candidates
to provide a screening effect in spatial prediction. As emphasized by Stein (2002,
2011), the theoretical analysis of the screening effect is extremely complex and
results can be stated only with respect to specific classes of covariance func-
tions. A future direction of research is to consider space-time Gaussian random
fields having different levels of regularity along different directions. In particu-
lar, a comparison between some classes of space-time covariance functions might
provide useful indications about the screening effect for space-time prediction.
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Appendix A: Mathematical proofs

A.1. Proof of Theorem 3.1

Proof. The assumptions on the function G imply

G(z) � (1 + z)−γ , z ≥ 0. (A.13)

Let us prove Assertion 1. Equation (A.13) implies that G(||ω||) � 1 on bounded
subsets of Rm. Thus, condition (A.1) holds. To show that (A.2) holds also, we
set L(r) := 1 for all r ≥ 0. Then,

g̃(z) =

⎧⎨⎩ z−γ , z ≥ 1

1, 0 ≤ z ≤ 1.

Thus, we have that the function g in (A.2) can be written as g(ω) =
g̃(‖ω‖)θ(ω/‖ω‖), ω ∈ R

m, where θ(u) ≡ C. The function g̃ is continuous and
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positive on [0,∞) and g̃(z) ∼ z−γ as z → +∞. It follows that g̃(z) � (1+ z)−γ ,
z ≥ 0 and therefore f(ω) = G(‖ω‖) ∼ g(ω) as ‖ω‖ → ∞ and f(ω) � g(ω) on
R

m (see Equation (A.13)).
To prove Assertion 2., we make use of the assumption G(z) ∼ Cz−γ as

z → ∞, to imply that

G(z) =
C

zγ
+

B(z)

zγ
, z > 0; lim

z→∞
B(z) = 0; B∗(z) := sup

u≥z

∣∣∣B(u)
∣∣∣ → 0

(A.14)
as z → ∞. Let R > 0, ω, τ ∈ R

m, z := ‖ω‖ ≥ R + 1, ‖τ‖ ≤ R and s :=
‖ω + τ‖ − ‖ω‖. Then, |s| ≤ ‖τ‖ ≤ R. From (A.14) we have∣∣∣G(‖ω+ τ‖)−G(‖ω‖)

∣∣∣ = ∣∣∣G(z+ s)−G(z)
∣∣∣ ≤ C

∣∣∣∣∣ 1

(z + s)γ
− 1

zγ

∣∣∣∣∣+ 2B∗(z −R)

(z −R)γ
.

By the mean-value theorem, there exists a point, ξ, between z and z + s such
that ∣∣∣∣∣ 1

(z + s)γ
− 1

zγ

∣∣∣∣∣ = γ |s|
ξγ+1

≤ γ R

(z −R)γ+1
,

where the inequality on the right-hand side follows from the fact that ξ ≥
min{z, z+ s} ≥ z−R. Thus, for R > 0 and z = ‖ω‖ ≥ R+1, we conclude that

sup
‖τ‖≤R

∣∣∣G(‖ω + τ‖)−G(‖ω‖)
∣∣∣ ≤ Cγ R

(z −R)γ+1
+

2B∗(z −R)

(z −R)γ
.

The proof is completed by noting that

sup
‖τ‖≤R

∣∣∣∣∣G(‖ω + τ‖)
G(‖ω‖) − 1

∣∣∣∣∣ ≤
(

Cγ R

(z −R)γ+1
+

2B∗(z −R)

(z −R)γ

)

× (1 + z)γ sup
u≥0

(1 + u)−γ

G(u)
−→ 0, z → ∞.

A.2. Proof of Theorem 3.2

Proof. We start by noting that, if m = 1, ν > 1/2, μ ≥ max{ν, 1} and (μ, ν) �=
(1, 1), or if m ≥ 2, ν > 1/2 and μ ≥ (m − 1)/2 + ν, then Gμ,ν,m(z) > 0 for
all z ≥ 0. These are well-known results (Fields and Ismail, 1975; Gasper, 1975;
Moak, 1987). Therefore, in both cases (i) and (ii) Gμ,ν,m(z) > 0 for all z ≥ 0.

We first note that, for μ, ν and z strictly positive, we have (Zastavnyi, 2006,
Proposition 6)

Gμ,ν,m(z) =
Γ(μ)Γ(ν)2ν−1/2

√
πzμ+(m−1)/2+ν

(
cos

(
z − π/2 (μ+ (m− 1)/2 + ν)

)
+O(1/z)

)

+
Cν,m

zm−1+2ν
+ o

(
1

zm−1+2ν

)
, z → ∞, (A.15)
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with

Cν,m =
Γ((m− 1)/2 + ν)Γ(ν)√

π
2m/2+2ν−2.

From (A.15) it follows that if μ > (m − 1)/2 + ν (this condition is satisfied
in both cases (i) and (ii)), then Gμ,ν,m(z) ∼ Cν,m z−γ as z → ∞, where γ =
m+ 2ν − 1 > m. We can thus use Theorem 3.1 to conclude the proof.

A.3. Proof of Theorem 3.3

Before providing a proof, we start with some preliminary remarks. If δ, μ, ν and
α are positive, then the function R � t �→ ϕδ,μ,ν,α(t) is continuous on R if and
only if μ + ν − 1 > 0 (see Zastavnyi, 2006, Theorem 1). Also, Theorem 3 in
Zastavnyi (2006), if δ, μ, ν, α > 0, then

Fm(ϕδ,μ,ν,α)(z) = 2ν−1Γ(ν)Iδ,μ,(m−1)/2+ν,m−1+α(z), z ≥ 0, (A.16)

where

Iδ,μ,ν,α(z) :=

∫ 1

0

(
1− xδ

)μ−1
xαjν−1/2(zx)dx, z > 0,

and jν(z) = Jν(z)/z
ν and Jν as defined in (2.4). The well-known cases for posi-

tiveness of the function Iδ,μ,ν,α were already given before Theorem 4 in Zastavnyi
(2006). Theorems 4, 5 and 6 in Zastavnyi (2006) assess conditions for positive-
ness of the function Iδ,μ,ν,α. In particular, we quote a necessary condition from
Theorem 5 of Zastavnyi (2006): if δ, μ, ν, α > 0, Iδ,μ,(m−1)/2+ν,m−1+α(z) ≥ 0 for
all z > 0, then necessary conditions are μ+ ν ≥ α+ (m− 1)/2 and, either,
(a) α < 2ν, or
(b) α = 2ν, μ > 1, δ < 2 and μ ≥ (m+ 1)/2 + ν + δ.

Proof. Using Equation (A.16) in concert with Proposition 6 in Zastavnyi (2006),
we have that

Fm(ϕδ,μ,ν,α)(z) =

Γ(ν)Γ(μ)δμ−1

√
π

· 2ν−1/2

zμ+(m−1)/2+ν
·
(
cos

(
z − π

2

(
μ+

m− 1

2
+ ν

))
+O

(
1

z

))
+

Γ((α+m)/2)Γ(ν)

Γ(ν − α/2)
· 2

α+m/2−1

zm+α
− Γ((α+m+ δ)/2)Γ(ν)(μ− 1)

Γ(ν − (α+ δ)/2)
· 2

α+m/2+δ−1

zm+α+δ

+ o

(
1

zm+α+δ

)
, z → ∞.

(A.17)

Equation (A.17) implies that in cases (i1) and (i2) from Theorem 3.3, as z → ∞,

Fm (ϕδ,μ,ν,α) (z) ∼

⎧⎪⎨⎪⎩
Γ((α+m)/2)Γ(ν)

Γ(ν−α/2) 2α+m/2−1 z−m−α, (i1)

Γ((2ν+m+δ)/2)Γ(ν)δ(μ−1)
Γ(1−δ/2) 22ν+m/2+δ−2 z−m−α−δ, (i2).
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In both cases Fm (ϕδ,μ,ν,α) (z) ∼ Cz−γ as z → ∞, where C > 0 and γ >
m. If, in addition, Fm(ϕδ,μ,ν,α)(z) > 0 for all z ≥ 0, then we can apply the
Theorem 3.1.
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