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Abstract: In this paper, we study Kaplan-Meier V- and U-statistics re-
spectively defined as θ(F̂n) =

∑
i,j K(X[i:n], X[j:n])WiWj and θU (F̂n) =∑

i �=j K(X[i:n], X[j:n])WiWj/
∑

i �=j WiWj , where F̂n is the Kaplan-Meier

estimator, {W1, . . . ,Wn} are the Kaplan-Meier weights and K : (0,∞)2 →
R is a symmetric kernel. As in the canonical setting of uncensored data,
we differentiate between two asymptotic behaviours for θ(F̂n) and θU (F̂n).
Additionally, we derive an asymptotic canonical V-statistic representation
of the Kaplan-Meier V- and U-statistics. By using this representation we
study properties of the asymptotic distribution. Applications to hypothesis
testing are given.
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1. Introduction

Let F be a distribution on (0,∞) of interest. In this paper we study the es-
timation of parameters of the form θ(F ) =

∫∞
0

∫∞
0

K(x, y)dF (x)dF (y), where
K : (0,∞)2 → R is a measurable and symmetric function, commonly known as
kernel function. If we consider i.i.d. samples X1, . . . , Xn from F , the standard
estimators for θ(F ) are the canonical V- and U-statistics,

θ(F̃n) =
1

n2

n∑
i=1

n∑
j=1

K(Xi, Xj), and θU (F̃n) =
1

n(n− 1)

∑
i �=j

K(Xi, Xj),

respectively, where F̃n(t) =
1
n

∑n
i=1 1{Xi≤t} denotes the empirical distribution.
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Under some regularity conditions θ(F̃n) → θ(F ) and θU (F̃n) → θ(F ) almost
surely as n approaches infinity. It is of interest to study the limit distribution of
the differences θ(F̃n)−θ(F ) and θU (F̃n)−θ(F ). The standard theory of V- and U-
statistics distinguishes between two asymptotic behaviours for the distribution
of the errors θU (F̃n)−θ(F ) and θ(F̃n)−θ(F ) when the number of samples tends
to infinity. These two asymptotic regimes, widely known as degenerate and non-
degenerate, are characterised by the behaviour of the variance of the projection
φ : R+ → R, defined as

φ(x) = E(K(x,X2)) =

∫ ∞

0

K(x, y)dF (y). (1.1)

Assume that E(K(X1, X2)
2) < ∞. On one hand, we say that we are in the

non-degenerate regime if Var(φ(X1)) > 0, where we have that

√
n(θU (F̃n)− θ(F ))

D→ N(0, 4Var(φ(X1))).

On the other hand, we are in the degenerate regime if Var(φ(X1)) = 0, where
it holds that

n(θU (F̃ )− θ(F ))
D→

∞∑
i=1

λi(ξ
2
i − 1),

where λ1, λ2, . . . are constants in R, and ξ1, ξ2, . . . are independent standard
Gaussian random variables. Similar results hold for V-statistics under slightly
stronger assumptions. Indeed, if the extra condition E(|K(X1, X1)|) < ∞ holds,
then the exact same limit is obtained in the non-degenerate regime, while for

the degenerate regime, n(θ(F̃n)−θ(F ))
D→ E(K(X1, X1))+

∑∞
i=1 λi(ξ

2
i −1). We

refer to the book of Koroljuk and Borovskich [19] for a comprehensive account
of the theory of V- and U- statistics.

In this paper, we study the analogue of V- and U-statistics in the setting
of right-censored data, that usually appears in Survival Analysis applications,
in which we observe samples of the form (Xi,Δi)

n
i=1 where Xi ∈ (0,∞) and

Δi ∈ {0, 1}. Here, Δi = 1 indicates that Xi is an actual sample from F , while
Δi = 0 indicates that Xi corresponds to a right-censored observation. Similar
to the uncensored setting, we are interested on estimating θ(F ), however, as the
data is right-censored, it is not possible to compute the canonical V- and U-
statistics as the empirical distribution F̃n is not available in this setting. Instead,
we propose to replace the empirical distribution by the Kaplan-Meier estimator
F̂n which is the standard estimator for F in the setting of right-censored data.

The Kaplan-Meier V- and U-statistics are defined as

θ(F̂n) =

n∑
i=1

n∑
j=1

WiWjK(X[i:n], X[j:n])

and

θU (F̂n) =

∑
i �=j WiWjK(X[i:n], X[j:n])∑

i �=j WiWj
,
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respectively, where Wi, are the so-called Kaplan-Meier weights and X[i:n] de-

notes the i-th order statistic. In this paper we conveniently write θ(F̂n) as

θ(F̂n) =

∫ ∞

0

∫ ∞

0

K(x, y)dF̂n(x)dF̂n(y),

which is known in the literature as a Kaplan-Meier double integral.
Asymptotic properties of Kaplan-Meier integrals have been studied by several

authors. For the simplest case of univariate functions, Central Limit Theorems
for

∫∞
0

K(x)dF̂n(x) were obtained in full generality by Stute [28] and Akritas
[2]. Stute [28] achieved the result by expressing the Kaplan-Meier estimator as
the sum of i.i.d. random variables plus some asymptotically negligible terms. By
using this representation, Stute was able to deal with more general functions K
than preceding approaches (e.g. [16, 29]), however the terms in the i.i.d. repre-
sentation are quite complicated, leading to strong assumptions. This problem
is aggravated in the case of distributions with atoms. Akritas [2] improved the
result of Stute [28], obtaining weaker conditions in a more general framework.
This was accomplished by using the martingale arguments developed by Gill
[15, 16], and the identities and inequalities developed by Ritov and Wellner [23]
and Efron and Johnstone [11].

Multiple Kaplan-Meier integrals were studied by Gijbels and Veraverbeke
[14] and by Bose and Sen [6]. Gijbels and Veraverbeke [14] studied a simpli-
fication of the problem which considers the class of truncated Kaplan-Meier
integrals

∫ t

0
. . .

∫ t

0
K(x1, . . . , xm)

∏m
j=1 F̂n(xj), where t is a fixed value, avoid-

ing integration over the whole support of the observations. Then, by using an
asymptotic i.i.d. sum representation of the Kaplan-Meier estimator F̂n together
with integration by parts, the authors derive an almost sure canonical V-statistic
representation of θ(F̂n)−θ(F ) up to an error of order O(n−1 log(n)). While this
result allows them to derive limiting distributions in the non-degenerate case
(by scaling by

√
n), it is not possible to obtain results for the degenerate case

since the error is too large to be scaled by n. Moreover, their representation
is restricted to continuous distribution functions F . Bose and Sen [6] analysed
Kaplan-Meier double integrals in a more general setting by using a generalisa-
tion of the i.i.d. representation of the Kaplan-Meier estimator derived by Stute
[28] for uni-dimensional Kaplan-Meier integrals. By using this representation,
Bose and Sen [6] were able to write the Kaplan-Meier double integral as a V-
statistic plus some error terms. Nevertheless, similar to the univariate case, the
error terms, that appear as consequence of using this approximation, are quite
complicated and thus, dealing with them requires very strong and somewhat
artificial conditions which are hard to verify in practice.

An alternative estimator of θ(F ) in the right-censored setting is obtained by
using the so-called Inverse Probability of censoring weighted (IPCW) estimator
of F introduced by [24], which can be seen as a simplification of the Kaplan-
Meier estimator. IPCW U-statistics coincide with Kaplan-Meier U-statistics
when the survival times are continuous and the largest sample point is un-
censored [24]. IPCW U-statistics were studied by Datta et al. [7], however, they
only provide results for the non-degenerate regime.
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There are several works that study limit distributions of V- and U-statistics
in the setting of dependent data (see [25, 9, 30, 10, 8, 3, 4]). Nevertheless, most
of these results are tailored for specific types of dependency and thus they are
not suitable or it is not clear how to translate these results into our setting.
The recent approach of Beutner and Zähle [4] provides a general framework
which can be applied to right-censored data, however its application is limited
to very well-behaved cases. This is mainly because such an approach is based
on an integration-by-parts argument, requiring the function K to be locally
of bounded variation, and thus denying the possibility of working with simple
kernels like K(x, y) = 1{x+y>1}. Also, it is required to establish convergence of√
n(F̂n−F ) to a limit process (under an appropriate metric), leading to stronger

conditions than the ones considered in our approach. Moreover, such a general
result is less informative about the limit distribution than ours.

In this paper, we obtain limit results for Kaplan-Meier V-statistics. Our proof
is based on two steps. First, we find an asymptotic canonical V-statistic represen-
tation of the Kaplan-Meier V-statistic, and second, we use such a representation
to obtain limit distributions under an appropriate normalisation. We also ob-
tain similar results for Kaplan-Meier U-statistics. Our results not only provide
convergence to the limit distribution, but we also find closed-form expressions
for the asymptotic mean and variance.

Applications to goodness-of-fit are provided. In particular, we study a slight
modification of the Cramer-von Mises statistic under right-censoring that can
be represented as a Kaplan-Meier V-statistic. Under the null hypothesis, we
find its asymptotic null distribution, and we obtain closed-form expressions for
the asymptotic mean and variance under a specific censoring distribution. Our
results agree with those obtained by Koziol and Green [20]. We also provide
an application to hypothesis testing using the Maximum Mean Discrepancy
(MMD), a popular distance between probability measures frequently used in the
Machine Learning community. Under the null hypothesis and assuming tractable
forms for F and G, we obtain the asymptotic limit distribution, as well as the
asymptotic mean and variance of the test-statistic.

Our results hold under conditions that are quite reasonable, in the sense that
they require integrability of terms that are very close to the variance of the limit
distribution. Compared to the closest works to ours, the approach of Bose and
Sen [6] and the IPCW approach [7], our conditions are much weaker and easy
to verify. We explicitly compare such conditions in Section 2.3.

1.1. Notation

We establish some general notation that will be used throughout the paper.
We denote R+ = (0,∞). Let f : R+ → R+ be an arbitrary right-continuous
function, we define f(x−) = limh→0 f(x − |h|) and (Δf)(x) = f(x) − f(x−).
In this work we make use of standard asymptotic notation [17] (e.g. Op, op,
Θp, etc.) with respect to the number of sample points n. In order to avoid
large parentheses, we write X = Op(1)Y instead of X = Op(Y ), especially
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if the expression for Y is very long. Given a sequence of stochastic processes
(Wn(x) : x ∈ X ), depending on the number of observations n, and a function
f(x) > 0, we say that Wn(x) = Op(f(x)) uniformly for all x ∈ An, if and only

if supx∈An

|Wn(x)|
f(x) = Op(1), where An ⊆ X is a set that may depend on n.

1.1.1. Right-censored data

Right-censored data consists of pairs ((Xi,Δi))
n
i=1, where Xi = min(Ti, Ci)

denotes the minimum between survival times of interest Ti
i.i.d.∼ F and censoring

times Ci
i.i.d.∼ G, and Δi = 1{Ti≤Ci} is an indicator of whether we actually

observe the survival time Ti or not, that is, Δi = 1 if Ti ≤ Ci, and Δi = 0
otherwise. We assume the survival times Ti’s are independent of the censoring
times Ci’s which is known as non-informative censoring, and it is a standard
assumption in applications.

We denote by S(x) = 1 − F (x) and by Λ(x) =
∫
(0,x]

S(t−)−1dF (t), re-

spectively, the survival and cumulative hazard functions associated with the
survival times Ti. The common distribution function associated with the ob-
served right-censored times Xi = min{Ti, Ci} is denoted by H. Note that
1 − H(x) = (1 − G(x))S(x) due to the non-informative censoring assumption.
For simplicity, we assume that F and G are measures on R+, otherwise, we
can apply an increasing transformation to the random variables, e.g. eXi . No-
tice that we do not impose any further restriction to the distribution functions,
particularly, F and G are allowed to share discontinuity points.

1.1.2. Kaplan-Meier estimator

The Kaplan-Meier estimator [18] is the non-parametric maximum likelihood es-

timator of F in the setting of right-censored data. It is defined as F̂n(x) =∑
X[i:n]≤x Wi, where Wi =

Δ[i:n]

n

∏i−1
j=1

(
1 +

1−Δ[j:n]

n−j

)
are the so-called Kaplan-

Meier weights, X[i:n] is the i-th order statistic of the sample X1, . . . , Xn, and
Δ[i:n] is its corresponding censor indicator. To be very precise, ties within uncen-
sored times or within censored times are ordered arbitrarily, while ties among
uncensored and censored times are ordered such that censored times appear
later. Observe that when all the observations are uncensored, that is, when
Δi = 1 for all i, each weight Wi becomes to 1/n and thus F̂n becomes the

empirical distribution of T1, . . . , Tn. Finally, we denote by Ŝn(x) = 1 − F̂n(x)
the corresponding estimator of S(x).

1.1.3. Counting processes notation

In this work we use standard Survival Analysis/Counting Processes notation.
For each i ∈ {1, . . . , n} we define the individual and pooled counting processes
by Ni(t) = 1{Xi≤t}Δi and N(t) =

∑n
i=1 Ni(t) respectively. Notice that the
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previous processes are indexed in t ≥ 0. Similarly, we define the individual and
pooled risk functions by Yi(t) = 1{Xi≥t} and Y (t) =

∑n
i=1 Yi(t), respectively.

We assume that all our random variables are defined in a common filtrated
probability space (Ω,F , (Ft)t≥0,P), where Ft is generated by

{1{Xi≤s,Δ=1},1{Xi≤s,Δ=0} : 0 ≤ s ≤ t, i ∈ {0, . . . , n}},

and the P-null sets of F . It is well-known that Ni(t), N(t) and the Kaplan-Meier

estimator F̂n(t) are adapted to (Ft)t≥0, and that Yi(t) and Y (t) are predictable
processes with respect to (Ft)t≥0. Yet another well-known fact is that Ni(t)
is increasing and its compensator is given by

∫
(0,t]

Yi(s)dΛ(s). We define the

individual and pooled (Ft)-martingales by Mi(t) = Ni(t)−
∫
(0,t]

Yi(s)dΛ(s) and

M(t) =
∑n

i=1 Mi(t), respectively.
For a martingale W , we denote by 〈W 〉 its predictable variation process, and

by [W ] its quadratic variation process.
Due to the simple nature of the processes that appear in this work, i.e. count-

ing processes, checking integrability and/or square-integrability is very simple
and thus we state these properties without giving an explicit proof. For more
information about counting processes in survival analysis we refer to [13].

1.1.4. Interior and exterior regions

Let IH = {t > 0 : H(t−) < 1} be the interval in which Xi = min{Ti, Ci} takes
values. Define τ = τH = sup{t : 1 − H(t) > 0} and notice that τ ∈ IH if and
only if H has a discontinuity at τ .

Define τn = max{X1, . . . , Xn}. We denote by I = (0, τn] the interior region
in which we observe data points, and by E = IH \ I the exterior the region.
Notice that both I and E depend on τn even if we do not explicitly write it.

In this work, the integral symbol
∫ b

a
means integration over the interval (a, b],

unless we state otherwise. An exception to this rule is when we integrate over
the interval IH , in which case, instead of writing

∫
IH

, we write
∫ τ

0
and define∫ τ

0
=

∫
(0,τ ]

if τ ∈ IH and
∫ τ

0
=

∫
(0,τ)

if τ �∈ IH .

Lastly, let g : R+ → R be an arbitrary function, then
∫
R+

g(x)dF̂n(x) =∫ τ

0
g(x)dF̂n(x) =

∫ τn
0

g(x)dF̂n(x) as F̂n(t) = F̂n(τn) for all t > τn. The same
holds when integrating with respect the martingale M(t).

1.1.5. Efron and Johnstone’s forward operator

We consider the forward operator A : L2(F ) → L2(F ), independently intro-
duced by Ritov and Wellner [23] and Efron and Johnstone [11], defined by

(Ag)(x) = g(x)− 1

S(x)

∫ ∞

x

g(s)dF (s).
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For a bivariate function g : R2
+ → R such that g ∈ L2(F × F ), we denote by

Ai, the operator A applied only to the i-th coordinate of the function g, e.g.
(A2g)(x, y) = g(x, y)− 1

S(y)

∫ τ

y
g(x, s)dF (s). Note that A1 and A2 commute.

Similarly, for g : R+ → R such that g ∈ L2(F ), we define Â : L2(F ) → L2(F ),
as

(Âg)(x) =

{
g(x)− 1

S(x)

∫ τn
x

g(s)dF (s), 0 < x ≤ τn

0, x > τn
.

Observe that the difference between Â and the forward operator A is the upper
limit of integration. For bivariate functions, we define Âi as the operator Â
applied only to the i-th coordinate.

Notice that for x ≤ τn,

((Â−A)g)(x) =
1

S(x)

(∫ ∞

x

g(s)dF (s)−
∫ τn

x

g(s)dF (s)

)
=

1

S(x)

∫ ∞

τn

g(s)dF (s). (1.2)

Also, notice that if g(x) = 1 is a constant function, then (Ag)(x) = 1 −
1

S(x)

∫∞
x

1dF (s) = 0, and (Âg)(x) = 1 − S(x)−S(τn)
S(x) = S(τn)

S(x) . Finally, observe

that the definitions of A and Â depend only on F and it does not consider the
censoring distribution G.

2. Main results

The Kaplan-Meier V-statistic associated with θ(F ) is defined by

θ(F̂n) =

∫ τn

0

∫ τn

0

K(x, y)dF̂n(x)dF̂n(y) =

n∑
i=1

n∑
j=1

WiWjK(X[i:n], X[j:n]),

where the second equality follows from the definition of the Kaplan-Meier esti-
mator F̂n.

Bose and Sen [5] proved that

θ(F̂n)
a.s.→ θ(F ; τ) =

∫ τ

0

∫ τ

0

K(x, y)dF (x)dF (y),

as n approaches infinity. Notice that the limit θ(F ; τ) has a dependency on τ
since the data is right-censored, and thus we do not observe any survival time
beyond the time τ . Consider the difference θ(F̂n)− θ(F ; τ), and notice it can be
decomposed into two error terms:

θ(F̂n)− θ(F ; τ) =

∫ τ

0

∫ τ

0

K(x, y)(dF̂n(x)dF̂n(y)− dF (x)dF (y))

= 2α(F, F̂n) + β(F, F̂n), (2.1)
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where

α(F, F̂n) =

∫ τ

0

φ(y)d(F̂n − F )(y),

where the projection φ is given by

φ(y) =

∫ τ

0

K(x, y)dF (x), (2.2)

and

β(F, F̂n) =

∫ τ

0

∫ τ

0

K(x, y)d(F̂n − F )(x)d(F̂n − F )(y). (2.3)

Note that in our setting, our definition of φ integrates up to τ , instead of the
whole support of F as in Equation (1.1) used in the uncensored setting. To ease

notation, we write α and β instead of α(F, F̂n) and β(F, F̂n), respectively. Each
error term α and β can be seen as a first and second order approximation of the
difference θ(F̂n)−θ(F ; τ). That being said, we expect that the error term α is of a
much larger order than β. Indeed, it holds that α = Op(n

−1/2) and β = Op(n
−1).

This suggests the use of two different scaling factors, splitting our main result
into two cases: the non-degenerate and the degenerate case. In the first case, we
will show that, under appropriate conditions,

√
n(θ(F̂n)− θ(F ; τ)) converges in

distribution to a zero-mean normal random variable when n approaches infinity.
This result will follow from proving a normal limit distribution for the scaled
error term

√
nα and an in-probability convergence to zero of the scaled error√

nβ. In the degenerate case, the error term α is trivially 0, and thus we only
care about the term β. We will show that nβ converges in distribution to a
linear combination of (potentially infinity) independent χ2 random variables
plus a constant. From these results, we will be able to derive analogue results
to those in the canonical V-statistics setting.

To express our results and conditions, we define the kernel K ′ : R2
+ → R as

K ′(x, y) = (A1A2K)(x, y), which, by the definition of the operators A1 and A2,
is equal to

K(x, y)−
∫ τ

x

K(s, y)
dF (s)

S(x)
−
∫ τ

y

K(x, t)
dF (t)

S(y)
+

∫ τ

x

∫ τ

y

K(s, t)
dF (s)

S(x)

dF (t)

S(y)
.

(2.4)

We introduce two sets of conditions, one for the non-degenerate case, and one
for the degenerate case.

Condition 2.1 (non-degenerate case: scaling factor
√
n). Assume the following

conditions hold:

i)
∫ τ

0

∫ τ

0
K(x,y)2

(1−G(x−))dF (y)dF (x) < ∞,

ii)
∫ τ

0

(
S(x−)

1−G(x−)

)1/2

|K ′(x, x)|dF (x) < ∞.
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Condition 2.2 (degenerate case: scaling factor n). Assume the following con-
ditions hold:

i)
∫ τ

0

∫ τ

0
K(x,y)2

(1−G(x−))(1−G(y−))dF (x)dF (y) < ∞,

ii)
∫ τ

0
|K′(x,x)|S(x)

1−H(x−) dF (x) < ∞.

Notice that Condition 2.2 implies Condition 2.1.

2.1. Results for Kaplan-Meier V-statistics

i) The non-degenerate case:
√
n-scaling: Equation (2.1) states

√
n(θ(F̂n)−

θ(F ; τ)) = 2
√
nα +

√
nβ. Recall that α is defined in terms of the projection φ

defined in Equation (2.2). Then, the main result follows under Condition 2.1
from a standard application of the Central Limit Theorem (CLT) derived by

Akritas [2] for univariate Kaplan-Meier integrals and by proving
√
nβ

P→ 0.
Akritas proved

√
nα

D→ N(0, σ2),

where

σ2 =

∫ τ

0

S(x)

1−H(x−)
(Aφ)2(x)dF (x). (2.5)

As noticed by Efron and Johnstone [11], σ2 is finite if
∫ τ

0
φ(x)2

1−G(x−)dF (x) < ∞,

which is implied by Condition 2.1.

Theorem 2.3. Under Condition 2.1, it holds

√
nα

D→ N(0, σ2), and
√
nβ

P→ 0,

and thus

√
n(θ(F̂n)− θ(F ))

D→ N(0, 4σ2),

where σ < ∞ is given in Equation (2.5).

ii) The degenerate case: n-scaling. The previous result considers that
σ2 > 0. Notice this is not satisfied if α = 0 as it implies σ2 = 0. In turn,
α = 0 can be deduced from either of the following conditions of the projection
φ defined in Equation (2.2): i) φ(x) = 0, F -a.s., or ii) φ(x) = c, F -a.s., for some

non-zero constant c and Ŝn(τ) = S(τ) a.s. for all n large enough. In the theory
of V- and U-statistics, these conditions are known as the degeneracy properties.
In such a case, the

√
n-scaling does not capture the nature of the asymptotic

distribution of θ(F̂n) − θ(F ; τ), suggesting that we need to consider a larger
scaling factor.

Recall α =
∫ τ

0
φ(x)(dF̂n − dF )(x). Then, it is straightforward to verify, that

i) φ(x) = 0, F -a.s., implies α = 0, and that ii) if φ(x) = c, F -a.s., with c �= 0,
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then α = c(F̂n(τ) − F (τ)) = 0 if and only if F̂n(τ) = F (τ) a.s. for all large n
(notice this condition is trivially satisfied in the uncensored case). In those cases
the information of the limit distribution is contained in the term β.

Define J : (IH × {0, 1})2 → R

J((x, r), (x′, r′)) =

∫ τ

0

∫ τ

0

K ′(s, t)

(1−G(s−))(1−G(t−))
dmx,r(s)dmx′,r′(t), (2.6)

where dmx,r(s) = rδx(s) − 1{x≥s}dΛ(s), and notice that dmXi,Δi = dMi, and
recall that Mi is the i-th individual martingale defined in Section 1.1.3.

Theorem 2.4. Under Condition 2.2, it holds that

nβ
D→

∫ τ

0

S(x)

1−H(x−)
K ′(x, x)dF (x) + Ψ,

where Ψ =
∑∞

i=1 λi(ξ
2
i − 1), ξi

i.i.d∼ N(0, 1) and the λi’s are the eigenvalues
associated with the integral operator T J : L2(X,Δ) → L2(X,Δ), defined as

(T Jf)(X1,Δ1) = E (J((X1,Δ1), (X2,Δ2))f(X2,Δ2)|(X1,Δ1)) ,

where L2(X,Δ) is the space of square-integrable functions with respect the mea-
sure induced by (X1,Δ1).

Moreover, E(Ψ) = 0 and

E(Ψ2) = 2

∫ τ

0

∫ τ

0

K ′(x, y)2S(x)S(y)

(1−H(x−))(1−H(y−))
dF (x)dF (y).

An immediate consequence of the previous Theorem is the asymptotic be-
haviour of the degenerate case for the Kaplan-Meier V-statistic.

Corollary 2.5. Suppose one of the following degeneracy conditions hold:

i) φ(x) = 0, F -a.s.,
ii) φ(x) = c, F -a.s. for some non-zero constant c, and exists N > 0 such that

Ŝn(τ) = S(τ) a.s. for all n ≥ N .

Then, under Condition 2.2,

n(θ(F̂n)− θ(F ; τ))
D→

∫ τ

0

S(x)

1−H(x−)
K ′(x, x)dF (x) + Ψ,

where Ψ =
∑∞

i=1 λi(ξ
2
i − 1) is defined as in Theorem 2.4.

As a part of the proof, we find an asymptotic representation of β as a canon-
ical V- statistic, this representation is as following.

Theorem 2.6. Under Condition 2.2 it holds that

β =
1

n2

n∑
i=1

n∑
j=1

J((Xi,Δi), (Xj ,Δj)) + op(n
−1).

All the results of this section are proved in Section 5 except for Theorem 2.6,
which is proved in Section 9.
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2.2. Kaplan-Meier U-statistics

The Kaplan-Meier U-statistic is defined by

θU (F̂n) =

∑
i �=j WiWjK(X[i:n], X[j:n])∑

i �=j WiWj
=

θ(F̂n)−
∑n

i=1 K(Xi, Xi)W
2
i∑

i �=j WiWj
,

where the second equality follows from adding and subtracting the diagonal
term (

∑n
i=1 K(Xi, Xi)W

2
i )/(

∑
i �=j WiWj).

Without loss of generality, assume θ(F ; τ) = 0. Then, the asymptotic distri-

bution of θU (F̂n) can be related to the one for θ(F̂n) by analysing the asymptotic
behaviour of

∑
i �=j WiWj and

∑n
i=1 K(Xi, Xi)W

2
i . For the first term, Bose and

Sen [5] proved that
∑

i �=j WiWj
a.s.→ F (τ)2. For the second term we enunciate

the following result, which is proved in Appendix D.

Lemma 2.7. If
∫ τ

0
|K(x, x)|

√
S(x−)

1−G(x−)dF (x) < ∞, then

√
n

n∑
i=1

K(Xi, Xi)W
2
i = op(1).

Additionally, if
∫ τ

0
|K(x,x)|
1−G(x−)dF (x) < ∞, then

n

n∑
i=1

K(Xi, Xi)W
2
i =

∫ τ

0

K(x, x)

1−G(x−)
dF (x) + op(1).

The previous Lemma combined with the results obtained in the previous
section allow us to deduce the following results for Kaplan-Meier U-statistics.

Corollary 2.8. Assume Condition 2.1, and additionally assume that we have∫ τ

0
|K(x, x)|

√
S(x−)

1−G(x−)dF (x) < ∞. Then, it holds that

√
nθU (F̂n)

D→ N
(
0, 4σ2/F (τ)4

)
.

Corollary 2.9. Suppose one of the following degeneracy conditions hold:

i) φ(x) = 0, F -a.s.,
ii) φ(x) = c, F -a.s. for some non-zero constant c, and exists N > 0 such that

Ŝn(τ) = S(τ) a.s. for all n ≥ N .

Assume Condition 2.2 and that
∫ τ

0
|K(x,x)|
1−G(x−)dF (x) < ∞. Then, it holds that

nθU (F̂n)
D→ 1

F (τ)2

(∫ τ

0

(
S(x)K ′(x, x)

1−H(x−)
− K(x, x)

1−G(x−)

)
dF (x) + Ψ

)
,

where Ψ is as in Theorem 2.4.
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2.3. Analysis of Conditions 2.1 and 2.2, and comparison with
related works

In this section we discuss our conditions, and we compare them with the work
of Bose and Sen [6] and Datta et al. [7].

We begin by analysing Condition 2.1, used in the non-degenerate regime,
which implies Theorem 2.3. Recall that Efron and Johnstone [11] showed that
the variance of the limit distribution in Theorem 2.3 is finite if∫ τ

0

(φ(x))
2

1−G(x−)
dF (x) =

∫ τ

0

1

1−G(x−)

(∫ τ

0

K(x, y)dF (y)

)2

dF (x) < ∞,

(2.7)

whereas our Condition 2.1.i requires∫ τ

0

∫ τ

0

K(x, y)2

1−G(x−)
dF (y)dF (x) < ∞,

which is very close to term in Equation (2.7). Indeed, there is just one Cauchy-
Schwarz inequality gap from the condition of Efron and Johnstone [11], sug-
gesting little room for improvement. On the other hand, Condition 2.1.ii is a
standard condition to deal with the diagonal term that appears in the V-statistic
representation. It is only used in Lemma 9.1 and it is usually much simpler to
verify due to the multiplicative factor

√
S(x−) that appears in the integral,

which makes the tail much lighter.

We compare our Condition 2.1 with the conditions of Theorem 1 of Bose
and Sen [6], which establishes the same limit result as our Theorem 2.3 under
different conditions. Theorem 1 of [6] requires our Condition 2.2.i (which implies
our Condition 2.1.i), together with three extra conditions involving the function

C(x) =

∫ x−

0

dG(s)

S(s)((1−G(s))2
. (2.8)

For example, one of the extra conditions required is∫ τ

0

∫ τ

0

|K(x, y)|C(x)C(y)

(1−G(x−))(1−G(y−))
dF (x)dF (y) < ∞, (2.9)

which, compared to our Condition 2.1.i, is much harder to satisfy as the function
C(x) grows much faster than (1−G(x−))−1 when x approaches infinity. Indeed,
by assuming that G and F are continuous distributions, it is not hard to verify
that ( ∂

∂xC(x))/( ∂
∂x (1−G(x))−1) = 1/S(x). Therefore, unless the kernel K(x, y)

decays very fast, Equation (2.9) is very hard to satisfy. In example 2.10 below,
we show that C(x) can grow exponentially faster than (1−G(x))−1.

We continue by comparing our Condition 2.1 with the ones of Theorem 1 of

Datta et al. [7]. Theorem 1 of [7] requires
∫ τ

0
φ(x)2

1−G(x−)dF (x) < ∞, which is the



1884 T. Fernández and N. Rivera

condition of Efron and Johnstone [11] for finiteness of the variance. However, it
also requires∫ τ

0

(
(φ−Aφ)(x)

1−G(x−)

)2
dG(x)

1−G(x−)
=

∫ τ

0

S(x)

1−G(x)
(φ−Aφ)(x)2dC(x) < ∞,

which is very hard to satisfy as it involves the function C(x) defined in Equa-
tion (2.8).

Example 2.10. Let K(x, y) = xy, S(x) = e−x and 1 − G(x) = S(x)a with
a > 0. Note that φ(x) = x, (Aφ)(x) = −1 and K ′(x, y) = (A1A2K)(x, y) = 1.

From Theorem 2.3, we have that
√
n(θ(F̂n) − θ(F ))

D→ N(0, 4σ2), where σ =∫∞
0

e−x+axdx (see Equation (2.5)) is finite if and only if a < 1.
In this setting, our Conditions 2.1.i and 2.1.ii are∫ ∞

0

∫ ∞

0

x2y2e−x+axe−ydxdy < ∞, and

∫ ∞

0

e−(3/2−a/2)x < ∞,

respectively, which are satisfied for a < 1. Hence, our conditions are the best
possible in this case, as the variance σ2 of the limit distribution is finite if and
only if a < 1.

Bose and Sen’s approach [6] requires the finiteness of the expression in Equa-

tion (2.9). In this example, C(x) = a ex+ax−1
1+a , then Equation (2.9) is equal to

∫ τ

0

∫ τ

0

|K(x, y)|C(x)C(y)

(1−G(x−))(1−G(y−))
dF (x)dF (y) =

(∫ ∞

0

x
a(ex+ax − 1)

(1 + a)e−ax
e−xdx

)2

,

which is infinite for all a > 0. We deduce that Theorem 1 of [6] cannot be applied
in this setting.

IPCW’s approach [7] requires∫ ∞

0

x2eaxe−xdx < ∞, and

∫ ∞

0

a(x+ 1)2e2axdx < ∞.

While the first equation is satisfied for a < 1, the second equation cannot be
satisfied for any a > 0. Hence, Theorem 1 of [7] does not hold in this setting.

In the previous example note that C(x) = a ex+ax−1
1+a grows exponentially fast

with x. Therefore, to use the respective theorems of [6] and [7] we will need to
use kernels that decay exponentially fast.

We continue by analysing Condition 2.2 which is used in the degenerate case.
Observe that the integral of Condition 2.2.ii is equal to the first moment of the
limit distribution of Theorem 2.4, thus this condition cannot be avoided. The
variance of the limit distribution in Theorem 2.4, is given by∫ τ

0

K ′(x, y)2S(x)S(y)

(1−H(x−))(1−H(y−))
dF (x)dF (y), (2.10)
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while our Condition 2.2.i requires∫ τ

0

K(x, y)2

(1−G(x−))(1−G(y−))
dF (x)dF (y) < ∞,

which ensures the finiteness of (2.10). Recall that K ′, defined in Equation (2.4),
is given by

K(x, y)−
∫ τ

x

K(s, y)
dF (s)

S(x)
−
∫ τ

y

K(x, t)
dF (t)

S(y)
+

∫ τ

x

∫ τ

y

K(s, t)
dF (s)

S(x)

dF (t)

S(y)
.

From here, if we consider continuous distributions, we observe that the ex-
pression in our condition is similar to the variance given in (2.10). If we consider
an appropriate kernelK, it may happen that some terms inK ′ cancel each other,
resulting in a kernel K ′ of much smaller order than K. An example of this is
the kernel K(x, y) = (x − c)(y − c), where c =

∫
xdF (x) and S(x) = e−x.

Note this kernel is similar to the previous example, but we subtract c to make
it degenerate. In this setting we have K ′(x, y) = 1, hence it is easier to have
finite variance than to satisfy our condition. However, in general cases we do
not expect to have cancellation between the terms in K ′ and thus K and K ′

should be of similar order, making our Condition 2.2.i sufficient and necessary.
Up to the best of our knowledge, the work of Bose and Sen [6] is the only one

that establishes results for the degenerate case in a general setting. Compared
to their result, our conditions are better since their Theorem 2 has the same
requirements as their Theorem 1, i.e. conditions involving the function C(x),
including Equation (2.9) which, as we saw in our previous example, is very
hard to satisfy. Indeed, if we repeat Example 2.10 with the kernel K(x, y) =
(x − c)(y − c), the conditions of Theorem 2.4 are satisfied for a < 1 (in which
case the asymptotic variance is well-defined), while the conditions of Bose and
Sen are not satisfied.

3. Applications

We give two examples of applications that motivated us to study Kaplan-Meier
V-statistics. First we analyse a slight variation of the Cramer-Von Mises statistic
that allows us to treat it as a Kaplan-Meier V-statistic. In our second applica-
tion, we measure goodness-of-fit via the Maximum Mean Discrepancy (MMD),
a popular distance between probability measures frequently used in the Machine
Learning community.

Example 3.1 (Cramér-von Mises test-statistic). Consider the problem of test-
ing the null hypothesis H0 : F = F0 against the general alternative H1 : F �= F0.
The Cramér-von Mises statistic measures the closeness between F and F0 by
computing ∫

R+

(F (x)− F0(x))
2dF0(x). (3.1)
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When F is a probability distribution function, it can be verified that Equation
(3.1) equals to

θ(F ) =

∫
R+

∫
R+

K(x1, x2)dF (x2)dF (x1), (3.2)

where

K(x, y) =

∫
R+

(1{x ≤ t} − F0(t))(1{y ≤ t} − F0(t))dF0(t).

Under the null hypothesis H0 : F = F0, we estimate θ(F ) = 0 by using Equation

(3.2), replacing F by the Kaplan-Meier estimator F̂n. Then, our test-statistic is

θ(F̂n) =

n∑
i=1

n∑
j=1

WiWjK(X[i:n], X[j:n]). (3.3)

Notice that the equality between Equations (3.1) and (3.2) is only valid when

F is a probability distribution, unfortunately, the Kaplan-Meier estimator F̂n is
not always a probability distribution, indeed, F̂n is a probability distribution if
and only if the largest observation is uncensored, thus θ(F̂n) is slightly different

from the Cramér-von Mises test-statistic
∫∞
0

(F̂n(x)− F0(x))
2dF0(x).

Under the null hypothesis, we observe two different asymptotic behaviours of
our test-statistic θ(F̂n), one for F0(τ) < 1 and the other for F0(τ) = 1. To see
this, for x ∈ IH , consider the projection φ defined in Equation (2.2), which in
this case is given by

φ(x) =

∫ τ

0

K(x, y)dF0(y)

=

∫ ∞

0

(F0(t ∧ τ)− F0(t)F0(τ)) (1{x ≤ t} − F0(t))dF0(t),

and notice that if F0(τ) < 1, then φ(x) does not satisfy the degeneracy condition

of Corollary 2.5. Thus, by Theorem 2.3, it holds that
√
n(θ(F̂n) − θ(F0, τ)) is

asymptotically normally distributed. On the other hand, if F0(τ) = 1, then
φ(x) satisfies the degeneracy condition of Corollary 2.5, indeed, we have that
φ(x) = 0 for all x ∈ IH . Hence, under Condition 2.2, Corollary 2.5 applies,

concluding that nθ(F̂n) is asymptotically distributed as the weighted sum of
i.i.d. χ2

1 random variables plus some constant term.
For comparison purposes, we consider the alternative formulation of the

Cramer-von Mises statistic by Koziol and Green [20]. They consider the random
integral Φn =

∫∞
0

(F̄n(t) − F0(t))
2dF0(t), where F̄n is exactly as the Kaplan-

Meier estimator, but they force F̄n(τn) = 1 even if the largest observation is
censored. For simplicity of the analysis, Koziol and Green [20] assumed that the
censoring distribution satisfies 1−G(t) = S0(t)

γ for γ < 2 and that F0 is a con-
tinuous distribution. Then, based on Gaussian processes arguments, they proved
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Fig 1. Empirical distribution functions of nθ(F̂n) for different sample sizes and values of γ.
Each empirical distribution was computed using 1000 independent realisations.

that nΦn
D→ Φ where Φ denotes (a potentially infinite) linear combination of

χ2
1 − 1 independent random variables, and that

E(Φ) =
1

3(2− γ)
, and Var(Φ) =

2

9(5− γ)(2− γ)
.

Using our techniques, we consider θ(F̂n) as in Equation (3.3). In this case, we get

K(x, y) = S0(max{x, y})+ F0(x)
2+F0(y)

2

2 − 2
3 and K ′(x, y) = S0(max{x,y})3

3S0(x)S0(y)
(recall

the definition of K ′ in Equation (2.4)). By choosing 1−G(t) = S0(t)
γ , it holds

F0(τ) = 1 which satisfies the degeneracy condition, as φ(x) =
∫ τ

0
K(x, s)dF0(s) =

0. Then, if γ < 1, the conditions of Corollary 2.5 are satisfied and thus

nθ(F̂n)
D→

∫ ∞

0

S0(x)

3S0(x)γ
dF0(x) + Ψ,

where Ψ is as in Theorem 2.4. Recall that E(Ψ) = 0, then the asymptotic mean
is given by 1

3(2−γ) and the asymptotic variance is given by

2

∞∑
k=1

λ2
k = 2

∫ τ

0

∫ τ

0

K ′(x, y)2

S0(x)γS0(y)γ
dF0(y)dF0(x) =

2

9(5− γ)(2− γ)
.

Our result suggests that our estimator and the one considered by Koziol and
Green [20] have similar behaviours, even when rescaled by n. In Figure 1, we

show simulations of the empirical distribution of nθ(F̂n) for different sample
sizes n, and γ ∈ {0.5, 1, 1.5}. For γ = 0.5 we can observe a clear convergence
of the distribution functions as predicted by our results. The plot for γ = 1.5
shows a shift of the distribution functions as the sample size increases, suggesting
divergence. The simulations for γ = 1 are, unfortunately, not very revealing.
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Example 3.2 (Maximum mean discrepancy). Let (H, 〈·, ·〉H) be a reproducing
kernel Hilbert space of real-valued functions with reproducing kernel denoted by
K. Denote by P the set of all probability distribution functions on R+, we define
the map μ· : P → H by μF (·) = EX∼F (K(·, X)) for any distribution function
F ∈ P . A reproducing kernel is called characteristic if the map μ is injective
[26]. It is worth mentioning that most of the standard positive-definite kernels
(e.g. Gaussian and Ornstein-Uhlenbeck) are characteristic. In such a case, the
map μ allows us to establish a proper distance between probability measures in
terms of the norm of the space H. That is, given two probability distributions
F and F0, we define their distance by

‖μF − μF0‖H =

√∫
R+

∫
R+

K(x, y)(dF (x)− dF0(x))(dF (y)− dF0(y)). (3.4)

Also, under the conditions stated above, such distance coincides with the Max-
imum mean discrepancy with respect to the unit ball of H, which is defined as
follows

MMDH(F, F0) = sup
f∈H,‖f‖H≤1

EF (f(X))− EF0(f(X)). (3.5)

In the uncensored setting, the Maximum mean discrepancy has been used
in a variety of testing problems. Indeed, in the simplest case, we can assess if
our data points are generated from a distribution F0 by comparing it with the
empirical distribution F̃n. By using the equivalency between Equation (3.4) and
(3.5), we deduce that MMD(F̃n, F0)

2 is a V-statistic. This fact allows us to
easily derive the relevant asymptotic results to construct a statistical test.

In the setting of right-censored data we study MMD(F̂n, F0)
2 using the

Kaplan-Meier estimator F̂n. By using Equations (3.4) and (3.5), our test-statistic
can be written as

MMD(F̂n, F0)
2 =

∫ τ

0

∫ τ

0

K(x, y)(dF̂n(x)− dF0(x))(dF̂n(y)− dF0(y)).

Notice that MMD(F̂n, F0)
2 coincides with β defined in Equation (2.3). Hence,

under the null hypothesis H0 : F = F0, and Condition 2.2, Theorem 2.4 states

nMMD(F̂n, F0)
2 = nβ(F̂n, F0)

D→
∫ τ

0

K ′(x, x)

1−G(x)
dF0(x) + Ψ,

where Ψ is as in Theorem 2.4. Notice that Theorem 2.4 does not require the
degeneracy condition of Corollary 2.5.

For the sake of simplicity, let us consider K as the Ornstein-Uhlenbeck kernel
given by K(x, y) = e−|x−y|, and let S0(x) = e−x and 1−G(x) = S0(x)

γ (notice
that for this choice of parameters τ = ∞). A tedious computation shows that

K ′(x, y) =

{
1
2 (1− (x− y))e−(x−y) x > y
1
2 (1− (y − x))e−(y−x) x ≤ y

.
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Fig 2. Empirical vs asymptotic mean of nMMD(F̂n, F0) for different values of γ < 1. For
each value of the mean μ and μ̂, we plot the intervals [μ− σ, μ+ σ] and [μ̂− σ̂, μ̂+ σ̂], where
σ̂2 and σ2 denote the empirical and asymptotic variance respectively. We use a fixed sample
size n = 3000.

Then, under the null hypothesis and Condition 2.2, which is satisfied for γ < 1,
it holds

nMMD(F̂n, F0)
2 D→ 1

2(1− γ)
+ Ψ.

Since E(Ψ) = 0, the asymptotic mean is given by 1
2(1−γ) and the asymptotic

variance corresponds to

2

∞∑
k=1

λ2
k = 2

∫
R+

∫
R+

K ′(x, y)2e−(1−γ)(x+y)dxdy =
5− 4γ + γ2

2(γ − 3)3(γ − 1)
.

In Figure 2, we compare the empirical mean and variance with the mean and
variance of the limit distribution. We repeat this experiment 1000 times for
different values of γ and a fixed sample size of 3000 data points. We observe
that as γ approaches 1 the empirical estimation starts to get far away from the
mean and variance predicted by our result, suggesting a slow convergence rate.

4. Conclusions and final remarks

In this work we studied the limit distribution of Kaplan-Meier V- and U-
statistics under two different regimes: the degenerate and the non-degenerate.
Our results hold under very simple conditions and, in practice, we just need to
check the finiteness of two simple integrals. Compared to previous approaches
our results are much simpler to state and the conditions required to apply them
are much easy to satisfy and verify. Additionally, our result gives more infor-
mation about the limit distribution, e.g. we give closed-form expressions for the
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asymptotic mean and variance, as well as an asymptotic canonical V-statistic
representation of the Kaplan-Meier V-statistic.

We give a few comments about our results. First, in the canonical case (un-
censored data), U-statistics are preferred over V-statistics due to several rea-
sons. Arguably, the most important reason is that U-statistics are unbiased
while V-statistics are, in general, biased. The bias of V-statistics implies that
limit theorems need to deal with the behaviour of the biased part of the esti-
mator, resulting in stronger conditions in the statement of the results. In the
right-censored setting, it does not seem to be a major difference between U- and
V-statistics, and indeed, V-statistics are easier to work with as they can be repre-
sented by an integral with respect to the Kaplan-Meier estimator. Furthermore,
due to the complex structure of the Kaplan-Meier weights, the Kaplan-Meier
U-statistics are usually biased as opposed to its canonical counterpart, losing
their main advantage over V-statistics.

Second, we think that our proof can be implemented in the settings of random
kernels Kn that depend on the data points (Xi,Δi)

n
i=1 as long certain regularity

conditions hold, namely, i) K ′
n is predictable in the sense of Definition 6.6, ii) it

exists a deterministic kernel K̄ such that supx,y≤τn |Kn(x, y)/K̄(x, y)| = Op(1),

iii) Kn converges in probability to some deterministic kernel K, iv) K̄ and K
satisfy Conditions 2.1 or 2.2, depending on the case of interest.

Third, our analysis can be extended to kernels of dimension greater than
two by using the same underlying ideas exposed in this work. Nevertheless, the
statements and proofs of the results become much more complicated due to long
computations that come from the fact that the core of our proof strategy relies
on decomposing the integration region into Interior and Exterior regions, thus,
as the number of integrals grows so do the possible combinations of these type
of regions. We do not include these type of results as they do not add much
value to the current work, especially because U- and V-statistics of dimension
two are the most common in applications.

Finally, after the publication of the first preprint of this paper a few works
have followed the path of using MMD distances to hypothesis testing in the
setting of right-censored data. Particularly, Matabuena and Padilla [21] imple-
mented our MMD example for the two-sample problem, and extended it to En-
ergy Distances, which are a generalisation of the MMD. Their analysis is a direct
application of Theorems 2.3 and 2.4, and Corollary 2.5. In a similar direction,
in [12] the authors studied MMD distances in the context of hazard functions,
obtaining as test-statistic a double integral with respect to the Nelson-Aalen
estimator. Due to the relationship between the Nelson-Aalen estimator and the
counting process martingale M(t), the asymptotic analysis of their test-statistic
is carried out by using the techniques of this paper. Somewhat related is the
work of Rindt et al. [22], where an MMD independent test for right-censored
data is presented. Their test-statistic is a Kaplan-Meier quadruple integral, how-
ever, under their null hypothesis, such a test-statistic becomes the product two
Kaplan-Meier double integrals, thus its asymptotic analysis follows from our
results.
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5. Proofs I: Road map

In order to keep our proofs as tidy as possible and to emphasise the key steps
without the distraction of messy computations, we give a list of intermediate
steps that are needed to carry out the proof of our main results.

Recall that Equation (2.1) states θ(F̂n) − θ(F ; τ) = 2α + β, where α =∫ τ

0
φ(x)d(F̂n−F )(x) and φ(x) =

∫ τ

0
K(x, y)dF (y). We analyse α and β individ-

ually.

5.1. Treatment of α

We distinguish between two cases, when φ(x), defines in Equation (2.2), satisfies
the degeneracy condition stated in the Corollary 2.5 and when it does not.
For the first case, observe that α = 0 holds trivially. For the second case, an
application of the Central Limit Theorem (CLT) of Akritas [2] gives us the
asymptotic behaviour of α.

Theorem 5.1 (Akritas [2]). Let φ : (0,∞) → R be such that
∫ τ

0
φ(x)2

1−G(x−)dF (x) <

∞, then

√
n

∫ τ

0

φ(x)d(F̂n − F )(x)
D→ N(0, σ2),

where σ2 =
∫ τ

0
S(s)

1−H(s−) (Aφ)
2(s)dF (s) < ∞.

Then, by applying the previous CLT, we obtain the following Corollary.

Corollary 5.2. Consider φ(x) =
∫ τ

0
K(x, y)dF (y). Then, under Condition 2.1,∫ τ

0
φ(x)2

1−G(x−)dF (x) < ∞, and thus

√
n2α

D→ N(0, 4σ2),

where σ2 =
∫ τ

0
S(s)

1−H(s−) (Aφ)
2(s)dF (s) < ∞.

5.2. Treatment of β

Let R1, R2 be two subsets of R+. Denote by βR1×R2 , the integral

βR1×R2 =

∫
R1

∫
R2

K(x, y)d(F̂n − F )(x)d(F̂n − F )(y).

Observe that β = βIH×IH = βI2
H
, and that β can be decomposed into β =

βI2 + β(I2)c , where (I2)c = (E × E) ∪ (I × E) ∪ (E × I). We recall that I, E
and IH are defined in Section 1.1.4. To avoid extra parentheses, we write I2c

instead of (I2)c.
In Section 7, we study the asymptotic properties of βI2c , obtaining as main

result the following Lemma.
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Lemma 5.3. Under Condition 2.1, it holds that
√
nβI2c = op(1), and under

Condition 2.2, it holds that nβI2c = op(1).

The handling of the term βI2 is far more complicated since it contains all the
important information about the limit distribution. In Section 8, we transform
βI2 into a more tractable object by performing a change of measure, where
instead of integrating with respect to d(F̂n − F ), we integrate with respect to
the measure dM = dN − Y dΛ. This is done by using Duhamel’s equations
(Proposition 6.3). The main result of Section 8 is the following.

Lemma 5.4. Under Condition 2.1, it holds that

√
nβI2 =

√
n

∫
I2

Ŝn(x−)Ŝn(y−)

Y (x)Y (y)
K ′(x, y)dM(x)dM(y) + op(1), (5.1)

and under Condition 2.2, it holds that

nβI2 = n

∫
I2

Ŝn(x−)Ŝn(y−)

Y (x)Y (y)
K ′(x, y)dM(x)dM(y) + op(1), (5.2)

where the kernel K ′ is defined in Equation (2.4).

5.3. Proof of Theorem 2.3

In order to prove Theorem 2.3, we require the following intermediate result,
which is formally proved in Section 9.

Lemma 5.5. Under Condition 2.1 it holds that

√
n

∫
I2

Ŝn(x−)Ŝn(y−)

Y (x)Y (y)
K ′(x, y)dM(x)dM(y) = op(1).

Proof of Theorem 2.3. Under Condition 2.1, Lemmas 5.3, 5.4 and 5.5 prove√
nβ

P→ 0, which together with Corollary 5.2 concludes the result.

5.4. Proof of Theorem 2.4

We proceed to give proof to Theorem 2.4 and Corollary 2.5. Observe that under
Condition 2.2, Lemma 5.3, and Equation (5.2) of Lemma 5.4 yield

nβ =
1

n

∫
I2

Ŝn(x−)Ŝn(y−)

(Y (x)/n)(Y (y)/n)
K ′(x, y)dM(x)dM(y) + op(1). (5.3)

Theorem 2.6, states that Ŝn(x−) and Y (x)/n in Equation (5.3) can be sub-
stituted by their respective limits, S(x−) and 1−H(x−), obtaining that

nβ =
1

n

n∑
i=1

n∑
j=1

∫
I2
H

K ′(x, y)

(1−G(x−))(1−G(y−))
dMi(x)dMj(y) + op(1). (5.4)

The proof of Theorem 2.4 follows by noticing that the leading term in Equa-
tion (5.4) is a degenerate V-statistic.
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Proof of Theorem 2.4. Equation (5.4) states

β =
1

n2

n∑
i=1

n∑
j=1

J((Xi,Δi), (Xj ,Δj)) + op(n
−1),

where J is the kernel defined in Equation (2.6), thus we deduce that β is a
canonical V-statistic up an error of order op(n

−1). From Condition 2.2, we can
deduce that E(J((X1,Δ1), (X2,Δ2))

2) < ∞, and that J satisfies the following
degeneracy condition

E(J((Xi,Δi), (x, r))) = 0,

for all (x, r) ∈ IH × {0, 1} (see Appendix C). Therefore, by applying standard
results for degenerate V-statistics, e.g. [19, Theorem 4.3.2.], it holds

nβ
D→ E(J((X1,Δ1), (X1,Δ1))) + Ψ,

where Ψ =
∑∞

i=1 λi(ξ
2
i − 1), ξ1, ξ2, . . . are i.i.d. standard normal random vari-

ables, and the λi’s are the eigenvalues of the integral operator TJ : L2(X,Δ) →
L2(X,Δ) associated with J .

Finally, note that E(Ψ) = 0, and that

E(Ψ2) = 2

∞∑
i=1

λ2
i = 2E(J((X1,Δ1), (X2,Δ2))

2)

= 2

∫ τ

0

∫ τ

0

S(x)S(y)K ′(x, y)2

(1−H(x−))(1−H(y−))
dF (x)dF (y),

where the last equality is formally verified in Appendix C.

The rest of the paper is devoted to prove Lemmas 5.3, 5.4 and 5.5, and
Theorem 2.6.

6. Proofs II: Preliminary results

The following results are going to be used several times in this paper.

6.1. Some results for counting processes

Proposition 6.1. The following results holds a.s.

i) limn→∞ supt≤τ |Ŝn(t)− S(t)| = 0,
ii) limn→∞ supt≤τ |Y (t)/n−H(t−)| = 0, and
iii) for every fixed t� > 0 such that 1−H(t�−) > 0,

sup
t≤t�

∣∣∣nŜn(t−)/Y (t)− 1/(1−G(t−))
∣∣∣ → 0.
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Item i. is due to Stute and Wang [27], item ii. is the Glivenko-Cantelli theo-
rem, and item iii. follows from the two previous items.

Proposition 6.2. Let β ∈ (0, 1), then the following results hold true:

i) P(Ŝn(t) ≤ β−1S(t), ∀t ≤ τn) ≥ 1− β,
ii) P (Y (t)/n ≥ β{1−H(t−)}, ∀t ≤ τn) ≥ 1− e(1/β)e−1/β,
iii) P

(
Y (t)/n ≤ β−1{1−H(t−)}, ∀t ≤ τn

)
≥ 1− β, and

iv) P
(
n(1−H(τn)) ≤ β−1

)
≥ 1− e−β−1

.

i.e. i) supt≤τn
Ŝn(t)
S(t) = Op(1), ii) and iii) supt≤τn Y (t)/(n(1−H(t−)) = Θp(1),

and iv) n(1−H(τn)) = Op(1).

Items i. and ii. are due to Gill [16]. Item iii. is from [15, Theorem 3.2.1], and
Item iv. is due to Yang [29].

Yet another useful result is the so-called Duhamel’s Equation.

Proposition 6.3 (Prop. 3.2.1 of [15]). For all x > 0 such that S(x) > 0,

dF̂n(x) = dF (x)−
(∫

(0,x)

Ŝn(s−)

S(s)Y (s)
dM(s)

)
dF (x) +

Ŝn(x−)

Y (x)
dM(x). (6.1)

Equation (6.1) allows us to deduce two important results. Firstly,∫ τn

0

φ(x)(dF̂n(x)− dF (x))

=

∫ τn

0

φ(x)
Ŝn(x−)

Y (x)
dM(x)−

∫ τn

0

∫
(0,x)

φ(x)
Ŝn(s−)

S(s)Y (s)
dM(s)dF (x)

=

∫ τn

0

Ŝn(x−)

Y (x)

(
φ(x)−

∫ τn

x

φ(s)
dF (s)

S(x)

)
dM(x)

=

∫ τn

0

Ŝn(x−)

Y (x)
(Âφ)(x)dM(x), (6.2)

where Â is the operator defined in Section 1.1. Secondly, for a 2-dimensional
kernel K, we obtain∫ τn

0

∫ τn

0

K(x, y)(dF̂n(x)− dF (x))(dF̂n(y)− dF (y))

=

∫ τn

0

∫ τn

0

Ŝn(x−)Ŝn(y−)

Y (x)Y (y)
(Â2Â1K)(x, y)dM(x)dM(y). (6.3)

6.2. Some convergence theorems

We state, without proof, the following elementary result that is useful to prove
that a sequence of (random) integrals converge to zero in probability.
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Lemma 6.4. Let (X ,B, μ) be a σ-finite measure space. Let (Rn(x) : x ∈ X ) be a
sequence of stochastic process indexed on X . We assume that Rn(·) is measurable
with respect to B (for any fixed realisation of Rn). Suppose that

i) For each x ∈ X , Rn(x) → 0 almost surely as n tends to infinity, and
ii) it exists a deterministic non-negative function R : X → [0,∞) such that

sup
x∈X

|Rn(x)|
R(x)

= Op(1),

and that
∫
x∈X R(x)μ(dx) < ∞.

Define the sequence of random integrals In =
∫
X Rn(x)μ(dx), then In = op(1).

6.3. Some martingale results

For a given martingale W , we denote by 〈W 〉 and [W ], respectively, the pre-
dictable and quadratic variation processes associated with W . It is particularly
useful to remember that for counting process martingales Mi and M we have
that

d〈Mi〉t = (1−ΔΛ(y))Yi(t)dΛ(t) and d〈M〉t = (1−ΔΛ(y))Y (t)dΛ(t),

and note that 1−ΔΛ(y) = S(y)/S(y−).
In our proofs we will constantly use the Lenglart-Rebolledo inequality [13,

Theorem 3.4.1], in particular, we will use the fact that if W is a submartingale
depending on the number of observations n, with compensator R, then the

Lenglart-Rebolledo inequality implies that supt≤T W (t)
P→ 0 for any stopping

time T such that R(T )
P→ 0. Here limits are taken as n approaches infinity.

Throughout the proofs, we may not explicitly write the dependence on n when
writing a stochastic process, e.g. the martingaleM(t) depends on all data points.

In this work we will often encounter (sub)martingales with extra parameters,
and we will integrate with respect to them. A particular case is stated in the
following lemma, whose proof is very simple (and thus omitted).

Lemma 6.5. Let (X ,B, μ) be a σ-finite measure space. Consider the stochastic
process (My(t) : t ≥ 0, y ∈ X ), and assume that

i) For every fixed y ∈ X , My(t) is a square-integrable (Ft)-martingale, and
ii) for every t ≥ 0, E

(∫
X My(t)

2μ(dy)
)
< ∞.

Then, for fixed B ∈ B, the stochastic process W (t) =
∫
B
My(t)

2dμ(y) is an (Ft)-
submartingale, and its compensator, R, is given by R(t) =

∫
B
〈My〉(t)dμ(y).

Another interesting type of stochastic processes that appear in our proofs are
double integrals with respect to martingales. Define the process

W (t) =

∫
Ct

h(x, y)dM(x)dM(y),
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where Ct = {(x, y) : 0 < x < y ≤ t}, and C0 = ∅. The natural questions are
whether W (t) defines a proper martingale with respect to (Ft)t≥0 and, if that is
the case, what is its predictable variation process (if it exists). We answer these
questions below.

Definition 6.6. Define the predictable σ- algebra P as the σ-algebra generated
by the sets of the form

(a1, b1]× (a2, b2]×X, where 0 ≤ a1 ≤ b1 < a2 ≤ b2, X ∈ Fa2 ,

and {0} × {0} ×X with X ∈ F0.

Let C = {(x, y) : 0 < x < y < ∞}. A process (h(x, y) : (x, y) ∈ C) is called
elementary predictable if it can be written as a finite sum of indicator functions
of sets belonging to the predictable σ-algebra P . On the other hand, if a process
h is P-measurable then it is the almost sure limit of elementary predictable
functions.

Straightforwardly from Definition 6.6 we get the following proposition.

Proposition 6.7. If h1(t) and h2(t) are predictable w.r.t. (Ft)t≥0, then h(x, y) =
h1(x)h2(y) is P-measurable. Also, all deterministic functions are P-measurable.

Theorem 6.8. Let h be a P-measurable process, and suppose that for all t ≥ 0
it holds that

E

(∫
Ct

|h||dM(x)dM(y)|
)

< ∞. (6.4)

Then,

W (t) =

∫
Ct

h(x, y)dM(x)dM(y)

is a martingale on R+ with respect to the filtration (Ft)t≥0.

Moreover, if

E

⎛⎝∫
(0,t]

(∫
(0,y)

|h(x, y)||dM(x)|
)2

d〈M〉(y)

⎞⎠ < ∞, (6.5)

then W (t) is a square-integrable (Ft)-martingale with predictable variation pro-
cess 〈W 〉 given by

〈W 〉(t) =
∫
(0,t]

(∫
(0,y)

h(x, y)dM(x)

)2
Y (y)S(y)

S(y−)2
dF (y).

The proof of Theorem 6.8 is given in Appendix B.
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6.4. Forward operators

Lemma 6.9. Under Condition 2.1, it holds that

∫ τ

0

∫ τ

0

(A1K)2(x, y)S(x)

1−H(x−)
dF (x)dF (y) < ∞, (6.6)

and that ∫ τ

0

∫ τ

0

(A1A2K)2(x, y)S(x)S(y)

1−H(x−)S(y−)
dF (x)dF (y) < ∞, (6.7)

Under Condition 2.2, it holds that

∫ τ

0

∫ τ

0

(A1K)2(x, y)S(x)

(1−H(x−))(1−G(y−))
dF (x)dF (y) < ∞, (6.8)

and that ∫ τ

0

∫ τ

0

(A1A2K)2(x, y)S(x)S(y)

(1−H(x−))(1−H(y−))
dF (x)dF (y) < ∞. (6.9)

The proof of Lemma 6.9 is given in Appendix A.

7. Proofs III: Exterior region

7.1. Proof of Lemma 5.3

In this section we prove Lemma 5.3. Recall that I2c = (E ×E)∪ (E × I)∪ (I ×
E), and, by the symmetry of the kernel K, βI2c = βE×E + 2βE×I . Then, the
result holds by Lemma 7.1 which states βE×E = op(n

−1/2) under Condition 2.1,
and βE×E = op(n

−1) under Condition 2.2, and by Lemmas 7.2 and 7.3, which
state that βE×I = op(n

−1/2) under Condition 2.1, and βE×I = op(n
−1) under

Condition 2.1, respectively.
In the rest of Section 7, we enunciate and prove Lemmas 7.1, 7.2 and 7.3.

Lemma 7.1. Under Condition 2.1, it holds that βE×E = op(n
−1/2). Moreover,

under Condition 2.2, it holds that βE×E = op(n
−1).

Proof. First, we prove βE×E = op(n
−1/2) under Condition 2.1. Observe that

dF̂n(t) = 0 for all t > τn, thus d(F̂ − F )(x)d(F̂ − F )(y) = dF (x)dF (y) in the
region E × E. Then, by the Cauchy-Schwartz’s inequality, it holds

βE×E =

∫ τ

τn

∫ τ

τn

K(x, y)dF (x)dF (y) ≤ S(τn)

√∫ τ

τn

∫ τ

τn

K(x, y)2dF (x)dF (y).
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Multiplying by
√

(1−G(τn))/(1−G(τn)) = 1, we get

√
nβE×E ≤

√
n
(1−H(τn))S(τn)

1−G(τn)

∫ τ

τn

∫ τ

τn

K(x, y)2dF (x)dF (y)

≤
√
n(1−H(τn))S(τn)

∫ τ

τn

∫ τ

τn

K(x, y)2

1−G(x−)
dF (x)dF (y) = op(1),

where the last equality follows from the facts that n(1 − H(τn)) = Op(1) by
Proposition 6.2.iv, and that the double integral tends to 0 since τn → τ when
n tends to infinity, and by Condition 2.1.

Following the same argument, under Condition 2.2, we get

nβE×E ≤ n(1−H(τn))

√∫ τ

τn

∫ τ

τn

K(x, y)2dF (x)dF (y)

(1−G(x−))(1−G(y−))
= op(1),

since n(1−H(τn)) = Op(1), and since the double integral tends to 0 by Condi-
tion 2.2, together with the fact that τn → τ .

Lemma 7.2. Under Condition 2.2, it holds that βE×I = op(n
−1).

Proof. We start by noticing that if τ is a point of discontinuity of H then τn = τ
almost surely for a sufficiently large n. Consequently, the set E × I is empty
and thus the statement above holds trivially. Therefore, we assume that τ is a
continuity point of H.

Replacing Equation (6.2) in βE×I yields

|nβE×I | =
∣∣∣∣∣n

∫ τ

τn

∫ τn

0

Ŝn(x−)

Y (x)

(
Â1K

)
(x, y)dM(x)dF (y)

∣∣∣∣∣
=

∣∣∣∣∣n
∫ τ

τn

∫ τn

0

Ŝn(x−)

Y (x)

((
Â1 −A1 +A1

)
K
)
(x, y)dM(x)dF (y)

∣∣∣∣∣ .
Recall that Equation (1.2) states that for x ≤ τn,((

Â1 −A1

)
K
)
(x, y) =

1

S(x)

∫ τ

τn

K(s, y)dF (s),

then

n

∫ τ

τn

∫ τn

0

Ŝn(x−)

Y (x)

((
Â1 −A1

)
K
)
(x, y)dM(x)dF (y)

= n

∫ τ

τn

∫ τn

0

Ŝn(x−)

S(x)Y (x)

∫ τ

τn

K(s, y)dF (s)dM(x)dF (y)

= L(τn)

(
n

∫ τ

τn

∫ τ

τn

K(s, y)dF (s)dF (y)

)
= L(τn)βE×E = op(1), (7.1)
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where we define L(τn) =
∫ τn
0

Ŝn(x−)
S(x)Y (x)dM(x). To verify the last equality, we use

Lemma 7.1, and the fact that L(τn) = Op(1), which follows from Lemma 2.4

of Gill [16] that states that L(τn) = 1 − Ŝn(τn)/S(τn), and then by Proposi-
tion 6.2.i, we get L(τn) = Op(1).

Therefore, from Equation (7.1), we deduce

|nβE×I | =
∣∣∣∣∣n

∫ τ

τn

∫ τn

0

Ŝn(x−)

Y (x)
(A1K)(x, y)dM(x)dF (y)

∣∣∣∣∣+ op(1) (7.2)

=

∣∣∣∣n∫ τ

τn

M�
y (τn)dF (y)

∣∣∣∣+ op(1),

where

M�
y (t) =

∫ t

0

Ŝn(x−)

Y (x)
(A1K)(x, y)dM(x).

We proceed to show that n
∫ τ

τn
M�

y (τn)dF (y) = op(1) which implies that nβE×I =

op(1).
Notice that for any fixed y ∈ R+,M

�
y (t) is a square-integrable (Ft)-martingale.

By applying the Cauchy-Schwartz’s inequality, we obtain∣∣∣∣n∫ τ

τn

M�
y (τn)dF (y)

∣∣∣∣ ≤ n1/2S(τn)
1/2

(
n

∫ τ

τn

M�
y (τn)

2dF (y)

)1/2

≤ n1/2 (1−H(τn))
1/2

(1−G(τn))1/2

(
n

∫ τ

τn

M�
y (τn)

2dF (y)

)1/2

≤ n1/2(1−H(τn))
1/2

(
n

∫ τ

τn

M�
y (τn)

2

1−G(y−)
dF (y)

)1/2

= Op(1)

(
n

∫ τ

τn

M�
y (τn)

2

1−G(y−)
dF (y)

)1/2

,

where the last equality follows from Proposition 6.2.iv. We proceed to prove
that

n

∫ τ

τn

M�
y (τn)

2

1−G(y−)
dF (y) = op(1).

Notice that the previous equation considers random integration limits. Our first
step will be to prove that τn can be replaced by a deterministic value, say Tn,
without affecting the result we wish to prove.

Let C > 0 be a large constant, define Tn = inf{t > 0 : H(t) ≥ 1− C/n} and
the event Bn = {1 − C/n ≤ H(τn)}. By Proposition 6.2.iv, it holds P(Bn) ≥
1 − e−C and, by the definition of Tn, we have that {τn ≥ Tn} ⊆ Bn. Since
limC→∞ P(Bn) = 1, it is enough to prove that

n

∫ τ

Tn

M�
y (τn)

2

1−G(y−)
dF (y) = op(1).
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Observe that by Lemma 6.5, the process

t → n

∫ τ

Tn

M�
y (t)

2

1−G(y−)
dF (y)

is an (Ft)-submartingale with compensator, evaluated at t = τn, given by

n

∫ τ

Tn

〈M�
y 〉(τn)

1−G(y−)
dF (y) = n

∫ τ

Tn

∫ τn

0

(A1K)2(x, y)
Ŝn(x−)2S(x)

Y (x)S(x−)2
dF (x)dF (y)

(1−G(y−))

= Op(1)

∫ τ

Tn

∫ τn

0

(A1K)2(x, y)
S(x)

(1−H(x−))

dF (x)dF (y)

(1−G(y−))

= op(1),

where the second equality is due to Propositions 6.2.i and 6.2.ii, and the third
equality holds by noticing that Tn → τ and that∫ τ

0

∫ τ

0

(A1K)2(x, y)
S(x)

(1−H(x−))

dF (x)dF (y)

(1−G(y−))
< ∞,

by Equation (6.8) of Lemma 6.9 under Condition 2.2. We conclude then that

n

∫ τ

Tn

〈M�
y 〉(τn)

1−G(y−)
dF (y) = op(1),

which, by the Lenglart-Rebolledo inequality, implies

n

∫ τ

Tn

M�
y (τn)

2

1−G(y−)
dF (y) = op(1).

Since the previous result is valid in the event Bn, which can be chosen with
arbitrarily large probability, we conclude

nβE×I = Op(1)

(
n

∫ τ

τn

M�
y (τn)

2

1−G(y−)
dF (y)

)1/2

+ op(1) = op(1),

finishing our proof.

Lemma 7.3. Under Assumption 2.1 it holds that βE×I = op(n
−1/2).

Proof. Following the same steps of the proof of Lemma 7.2, it holds

n1/2βE×I = n1/2

∫ τ

τn

∫ τn

0

Ŝn(x)

Y (x)
(A1K)(x, y)dM(x)dF (y) + op(1)

= n1/2

∫ τ

τn

M�
y (τn)dF (y) + op(1).
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where M�
y (t) =

∫ t

0
Ŝn(x−)
Y (x) (A1K)(x, y)dM(x) is an (Ft)-martingale for every

fixed y ∈ R+. Let Tn be the same deterministic sequence used in the proof
of Lemma 7.2. Then, it suffices to show that

n1/2

∫ τ

Tn

M�
y (τn)dF (y) = op(1).

By the Cauchy-Schwartz’s inequality

|n1/2βE×I | ≤ n1/2

∫ τ

Tn

M�
y (τn)dF (y) + op(1)

≤
(
n

∫ τ

Tn

M�
y (τn)

2dF (y)

)1/2

+ op(1). (7.3)

Moreover, by Lemma 6.5, n
∫ τ

Tn
M�

y (t)
2dF (y) is an (Ft)-submartingale with

compensator, evaluated at t = τn, given by

n

∫ τ

Tn

〈M�
y 〉(τn)dF (y) =

∫ τ

Tn

∫ τn

0

Ŝ(x−)2

Y (x)/n
(A1K)2(x, y)

S(x)

S(x−)2
dF (x)dF (y)

= Op(1)

∫ τ

Tn

∫ τn

0

(A1K)2(x, y)
S(x)

1−H(x−)
dF (x)dF (y),

where the second equality holds by Propositions 6.2.i and 6.2.ii. We prove that
the compensator in the previous equation converges to zero by noticing that
Tn → τ , and that∫ τ

0

∫ τ

0

(A1K)2(x, y)
S(x)

1−H(x−)
dF (x)dF (y) < ∞,

which holds due to Equation (6.6) of Lemma 6.9 under Condition 2.1.
The previous result implies that n

∫ τ

Tn
〈M�

y 〉(τn)dF (y) = op(1). By the Lenglart-

Rebolledo inequality, we deduce n
∫ τ

Tn
M�

y (τn)
2dF (y) = op(1), and by substitut-

ing this result in Equation (7.3) we get n1/2βE×I = op(1).

8. Proofs IV: Interior region

8.1. Proof of Lemma 5.4

Proof. We start by proving Equation (5.2) under Condition 2.2. Observe that,
by Equation (6.3), it holds that

βI2 =

∫ τn

0

∫ τn

0

Ŝn(x−)Ŝn(y−)

Y (x)Y (y)
(Â2Â1K)(x, y)dM(x)dM(y).

We proceed to prove that Â1 and Â2 can be replaced in the previous equation
by the operators A1 and A2, respectively. After that, Equation (5.2) follows
immediately by recalling that K ′(x, y) = (A1A2K)(x, y).
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We begin with the following equality,

Â2Â1 −A2A1 = (Â2 −A2)(Â1 −A1) +A2(Â1 −A1) +A1(Â2 −A2),

then, by the symmetry of K, we just need to prove that

n

∫ τn

0

∫ τn

0

Ŝn(x−)Ŝn(y−)

Y (x)Y (y)
(A1(Â2 −A2)K)(x, y)dM(x)dM(y) = op(1), (8.1)

and

n

∫ τn

0

∫ τn

0

Ŝn(x−)Ŝn(y−)

Y (x)Y (y)
((Â2 −A2)(Â1 −A1)K)(x, y)dM(x)dM(y) = op(1).

(8.2)

We begin by proving Equation (8.1). From Equation (1.2) we get

(A1(Â2 −A2)K)(x, y) =
1

S(y)

∫ τ

τn

(A1K)(x, s)dF (s). (8.3)

Let L(τn) =
∫ τn
0

Ŝ(x−)
S(x)

dM(x)
Y (x) , then substituting Equation (8.3) in Equation (8.1)

yields

n

∫ τn

0

∫ τn

0

Ŝn(x−)Ŝn(y−)

Y (x)Y (y)
(A1(Â2 −A2)K)(x, y)dM(x)dM(y)

= n

∫ τn

0

∫ τn

0

Ŝn(x−)Ŝn(y−)

Y (x)Y (y)

(
1

S(y)

∫ τ

τn

(A1K)(x, s)dF (s)

)
dM(x)dM(y)

= nL(τn)

∫ τn

0

Ŝn(x−)

Y (x)

∫ τ

τn

(A1K)(x, s)dF (s)dM(x)

= Op(1)n

∣∣∣∣∣
∫ τ

τn

∫ τn

0

Ŝn(x−)

Y (x)
(A1K)(x, s)dM(x)dF (s)

∣∣∣∣∣ = n|βE×I |+ op(1),

where the third equality holds as L(τn) = Op(1) (which is proved in Lemma 7.2),
and the last equality is exactly Equation (7.2). Hence, by Lemma 7.2, we deduce
that Equation (8.1) holds true.

For Equation (8.2), a similar computation yields

n

∫ τn

0

∫ τn

0

Ŝn(x−)Ŝn(y−)

Y (x)Y (y)
((Â2 −A2)(Â1 −A1)K)(x, y)dM(x)dM(y)

= nL(τn)
2

∫ ∞

τn

∫ ∞

τn

K(s, t)dF (s)dF (t)

= Op(1)n

∣∣∣∣∫ ∞

τn

∫ ∞

τn

K(s, t)dF (s)dF (t)

∣∣∣∣ = Op(1)n|βE×E | = op(1),

where the last equality holds by Lemma 7.1.
To finish the proof of Lemma 5.4 we need to check Equation (5.1) holds under

Condition 2.1, which follows from repeating the same steps but replacing the
scaling factor n by

√
n.
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9. Proofs V: Double stochastic integral

In this section we prove Lemma 5.5 and Theorem 2.6. To begin with, from
Lemmas 5.3 and 5.4, we deduce that

β =

∫ τn

0

∫ τn

0

Ŝn(x−)Ŝn(y−)

Y (x)Y (y)
K ′(x, y)dM(x)dM(y) + op(n

−c) (9.1)

holds for c = 1/2 under Condition 2.1, and for c = 1 under Condition 2.2. The
form of β suggests that we need to study the double stochastic integral process
given by

Q(t) =

∫ t

0

∫ t

0

Ŝn(x−)Ŝn(y−)

Y (x)Y (y)
K ′(x, y)dM(x)dM(y).

The strategy to study Q(t) is to consider its decomposition into a diagonal and
an off-diagonal term, and to analyse them individually. To this end, we define
the sets D(t) = {(x, y) : x = y, 0 < x ≤ t} and C(t) = {(x, y) : 0 < x < y ≤ t},
and define the processes

QD(t) =

∫
D(t)

Ŝn(x−)Ŝn(y−)

Y (x)Y (y)
K ′(x, y)dM(x)dM(y),

and

QC(t) =

∫
C(t)

Ŝn(x−)Ŝn(y−)

Y (x)Y (y)
K ′(x, y)dM(x)dM(y).

Notice that Q(t) = QD(t)+2QC(t) follows by the symmetry of K ′ = (A1A2K).
The proofs of Lemma 5.5 and Theorem 2.6 are an immediate consequence of

the following results concerning the process Q(t).

Lemma 9.1. Under Condition 2.1 it holds that
√
nQD(τn)

P→ 0.

Lemma 9.2. Under Condition 2.2 it holds that

nQD(τn) =
1

n

∫ τn

0

K ′(x, x)

(1−G(x−))2
d[M ](x) + op(1).

Lemma 9.3. Under Condition 2.1 it holds that
√
nQC(τn)

P→ 0.

Lemma 9.4. Under Condition 2.2 it holds that

nQC(τn) =
1

n

∫ τn

0

∫
(0,y)

K ′(x, y)

(1−G(x−))(1−G(y−))
dM(x)dM(y) + op(1).

Proof of Lemma 5.5. Starting from Equation (9.1), we get
√
nβ =

√
nQ(τn)+

op(1) =
√
nQD(τn)+2

√
nQC(τn)+op(1). Then, the result follows from Lemmas

9.1 and 9.3.
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Proof of Theorem 2.6. From Equation (9.1) it holds that nβ = nQ(τn) +
op(1) = nQD(τn)+ 2nQC(τn) + op(1). Then a direct application of Lemmas 9.2
and 9.4 yields

nβ = nQD(τn) + 2nQC(τn) + op(1)

=
1

n

∫ τn

0

∫ τn

0

K ′(x, y)

(1−G(x−))(1−G(y−))
dM(x)dM(y) + op(1)

=
1

n

n∑
i=1

n∑
j=1

∫ τn

0

∫ τn

0

K ′(x, y)

(1−G(x−))(1−G(y−))
dMi(x)dMj(y) + op(1).

It just remains to prove Lemmas 9.1, 9.2, 9.3, and 9.4.

9.1. Integral over diagonal D(t): Proof of Lemmas 9.1 and 9.2

Observe that QD(t) satisfies

QD(t) =

∫ t

0

Ŝn(x−)2

Y (x)2
K ′(x, x)d[M ](x).

The latter can be checked by noticing that the measure dM(x)dM(y) of a small
square whose main diagonal goes from (a, a) to (b, b) is (M(b)−M(a))2. When b
approaches a from above, we have that (M(b)−M(a))2 → (ΔM(a))2 (the limit is
well-defined forM). SinceM is the difference of two increasing processes we have

that the number of discontinuities is at most countable, then
∫ t

0
f(x)d[M ](x) =∑

x≤t f(x)(ΔM(x))2.
To analyse the processQD(t), recall that [M ] is a submartingale with compen-

sator given by 〈M〉. Thus, for any predictable process H ≥ 0,
∫ t

0
H(x)d[M ](x)

is a submartingale with compensator given by
∫ t

0
H(x)d〈M〉(x). Finally, by the

Lenglart-Rebolledo inequality, if we have
∫ τn
0

H(x)d〈M〉(x) P→ 0, then we get

that
∫ τn
0

H(x)d[M ](x)
P→ 0.

Proof of Lemma 9.1. Define the (Ft)-submartingale

W (t) =

∫ t

0

Ŝn(x−)2

Y (x)2
|K ′(x, x)|d[M ](x),

and observe that |√nQD(t)| ≤ √
nW (t). Thus, it is enough to prove that√

nW (t) = op(1). Abusing notation, denote by 〈W 〉(t) the compensator of
W (t). Then we will prove that

√
n〈W 〉(τn) = op(1), and thus, by the Lenglart-

Rebolledo inequality, we will get
√
nW (τn) = op(1).

Observe that

√
n〈W 〉(τn) =

√
n

∫ τn

0

Ŝn(x−)2

Y (x)2
|K ′(x, x)|d〈M〉(x)



Kaplan-Meier V- and U-statistics 1905

=
√
n

∫ τn

0

Ŝn(x−)2

Y (x)2
|K ′(x, x)|Y (x)S(x)

S(x−)2
dF (x)

=

∫ τn

0

Ŝn(x−)2

S(x−)2
S(x)

Y (x)/
√
n
|K ′(x, x)|dF (x)

= Op(1)

∫ τ

0

1{x≤τn}√
Y (x)

√
S(x)

1−G(x−)
|K ′(x, x)|dF (x),

where the fourth equality follows from Propositions 6.2.i and 6.2.ii. Finally,

we claim that
∫ τ

0
1√
Y (x)

√
S(x)

1−G(x−) |K ′(x, x)|dF (x) = o(1). This is verified by

applying Dominated Convergence Theorem. Indeed, notice that
1{x≤τn}√

Y (x)
→ 0

for each fixed x ∈ IH , thus the integrand tends to zero. Moreover, by using that
Y (x) ≥ 1 for x ≤ τn, the integrand is bounded by an integrable function due to
Condition 2.1.

Proof of Lemma 9.2. Observe that it is enough to prove that

1

n

∫ τn

0

∣∣∣∣∣ Ŝn(x−)2

Y (x)2/n2
− 1

(1−G(x−))2

∣∣∣∣∣ |K ′(x, x)|d[M ](x) = op(1).

Write Un(x) =
∣∣∣ Ŝn(x−)2

Y (x)2/n2 − 1
(1−G(x−))2

∣∣∣, which is predictable w.r.t. (Fx)x≥0.

Also, define the process W (t) = 1
n

∫ t

0
Un(x)|K ′(x, x)|d[M ](x), and observe that

it corresponds to an (Ft)-submartingale. We prove that W (τn) = op(1) by
using the Lenglart-Rebolledo inequality. For such, we have to prove that its
compensator, which by abusing notation we denote by 〈W 〉, satisfies 〈W 〉(τn) =
op(1). A simple computation shows

〈W 〉(τn) =
1

n

∫ τn

0

Un(x)|K ′(x, x)|d〈M〉(x)

=
1

n

∫ τn

0

Un(x)|K ′(x, x)|Y (x)S(x)

S(x−)2
dF (x)

= Op(1)

∫ τ

0

1{x≤τn}Un(x)|K ′(x, x)| (1−G(x−))S(x)

S(x−)
dF (x)

= op(1),

where the third equality follows from Proposition 6.2.iii, and the last equality
follows from applying Lemma 6.4, whose conditions we proceed to verify: for

the first condition, Proposition 6.1 yields Un(x) =
∣∣∣ Ŝn(x−)2

Y (x)2/n2 − 1
(1−G(x−))2

∣∣∣ → 0

for every fixed x ∈ IH . For the second condition, set R(x) = |K′(x,x)|S(x)
1−H(x−) ,

which is integrable by Condition 2.2, then, Propositions 6.2.i and 6.2.ii give
Un(x) = Op(1)

1
(1−G(x−))2 , uniformly for all x ≤ τn. Then

1{x≤τn}Un(x)|K ′(x, x)| (1−G(x−))S(x)

S(x−)
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= Op(1)|K ′(x, x)| S(x)

(1−G(x−))S(x−)
= Op(1)R(x),

uniformly for all x ≤ τ .

9.2. Integral over off-diagonal C(t): Proof of Lemmas 9.3 and 9.4

Proof of Lemma 9.3. From Theorem 6.8, QC(t) is a square-integrable (Ft)-
martingale with mean 0. Then, by the Lenglart-Rebolledo inequality, it is enough
to prove its predictable variation process, denoted by 〈QC〉(t), satisfies the equal-
ity n〈QC〉(τn) = op(1).

From Theorem 6.8 we have that n〈Q〉(τn) is equal to

n

∫ τn

0

Ŝn(y−)2S(y)

Y (y)S(y−)2

⎛⎜⎝ ∫
(0,y)

Ŝn(x−)

Y (x)
K ′(x, y)dM(x)

⎞⎟⎠
2

dF (y)

= Op(1)

∫ τ

0

S(y)

1−H(y−)

(∫ τn

0

Ŝn(x−)

Y (x)
K ′(x, y)1{x<y}dM(x)

)2

dF (y)

= Op(1)

∫ τ

0

S(y)

1−H(y−)
M�

y (τn)
2dF (y), (9.2)

where the first equality is due to Propositions 6.2.i and 6.2.ii, and in the second

equality we define M�
y (t) =

∫ t

0
Ŝn(x−)
Y (x) K ′(x, y)1{x<y}dM(x), which is a square-

integrable (Ft)-martingale for any fixed y ∈ IH .

Define the process Z(t) =
∫ τ

0
S(y)

1−H(y−)M
�
y (t)

2dF (y), and notice that the in-

tegral in Equation (9.2) corresponds to Z(τn). By Lemma 6.5, Z(t) is an (Ft)-
submartingale, hence we shall use the Lenglart-Rebolledo inequality to prove
Z(τn) = op(1) by proving that the compensator of Z(t), which by abusing no-
tation we denote by 〈Z〉(t), satisfies 〈Z〉(τn) = op(1). From Lemma 6.5, and
Propositions 6.2.i and 6.2.ii, we have that

〈Z〉(τn) =
∫ τ

0

∫ τn

0

S(y)

1−H(y−)

Ŝn(x−)2

Y (x)
K ′(x, y)21{x<y}

S(x)

S(x−)2
dF (x)dF (y)

= Op(1)

∫ τ

0

∫ τ

0

1{x≤τn}S(y)S(x)

Y (x)(1−H(y−))
K ′(x, y)21{x<y}dF (x)dF (y).

We claim that the previous quantity tends to 0 as n approaches infinity by
an application of the Dominated Convergence Theorem. Indeed, notice that
1{x≤τn}
Y (x) → 0 for any fixed x ∈ IH , and that

1{x≤τn}
Y (x)

S(y)S(x)

(1−H(y−))
K ′(x, y)21{x<y} ≤ S(y)S(x)

(1−H(y−))
K ′(x, y)2,

which is integrable by Equation (6.7) of Lemma 6.9 (Recall that K ′ = A1A2K).
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Proof of Lemma 9.4. The result follows from proving that

1

n

∫
C(τn)

(
Ŝn(x−)Ŝn(y−)K ′(x, y)

(Y (x)/n)(Y (y)/n)
− K ′(x, y)

(1−G(x−))(1−G(y−))

)
dM(x)dM(y)

is op(1), which is equivalent to prove that

1

n

∫ τn

0

∫
(0,y)

(
Ŝn(x−)

Y (x)/n
− 1

1−G(x−)

)
Ŝn(y−)K ′(x, y)

Y (y)/n
dM(x)dM(y) = op(1),

(9.3)

and that

1

n

∫ τn

0

∫
(0,y)

(
Ŝn(y−)

Y (y)/n
− 1

1−G(y−)

)
K ′(x, y)

(1−G(x−))
dM(x)dM(y) = op(1).

(9.4)

We only prove Equation (9.3), as Equation (9.4) follows by similar arguments.

Define Un(x) =
(

Ŝn(x−)
Y (x)/n − 1

1−G(x−)

)
which is predictable w.r.t. (Fx)x≥0, and

define the process W (t) as

W (t) =

∫ t

0

∫
(0,y)

Un(x)
Ŝn(y−)K ′(x, y)

Y (y)
dM(x)dM(y),

which, by Theorem 6.8, is a square-integrable (Ft)-martingale. We just need to
prove that W (τn) = op(1). By the Lenglart-Rebolledo inequality, it is enough to
check that the predictable variation process ofW (t), 〈W 〉(t), satisfies 〈W 〉(τn) =
op(1). From Theorem 6.8, we have

〈W 〉(τn) =
∫ τn

0

(∫
(0,y)

Un(x)K
′(x, y)dM(x)

)2
Ŝn(y−)2S(y)

Y (y)S(y−)2
dF (y)

= Op(1)
1

n

∫ τ

0

(∫ τn

0

Un(x)K
′(x, y)1{x<y}dM(x)

)2
S(y)

1−H(y−)
dF (y),

= Op(1)
1

n

∫ τ

0

M�
y (τn)

2 S(y)

1−H(y−)
dF (y), (9.5)

where the second equality is due to Propositions 6.2.i and 6.2.ii, and in the third
equality we define M�

y (t) =
∫ t

0
Un(x)K

′(x, y)1{x<y}dM(x).
We proceed to check that Equation (9.5) is op(1). Observe that for any fixed

y ∈ IH , M�
y (t) =

∫ t

0
Un(x)K

′(x, y)1{x<y}dM(x) is a square-integrable (Ft)-

martingale, thus, by Lemma 6.5, the process Z(t) = 1
n

∫ τ

0
M�

y (t)
2 S(y)dF (y)
1−H(y−) is an

(Ft)-submartingale. Note that 〈W 〉(τn) = Z(τn). We check that Z(τn) = op(1)
by verifying that the compensator of Z, which by abusing notation we denote
by 〈Z〉(t), satisfies 〈Z〉(τn) = op(1). From Lemma 6.5, 〈Z〉(τn) is given by
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1

n

∫ τ

0

∫ τn

0

Un(x)
2K ′(x, y)2

Y (x)S(x)

S(x−)2
dF (x)

S(y)

1−H(y−)
dF (y)

= Op(1)

∫ τ

0

∫ τ

0

1{y≤τn}Un(x)
2K ′(x, y)2

(1−H(x−))S(x)S(y)

(1−H(y−))S(x−)2
dF (x)dF (y),

(9.6)

where the equality follows from Proposition 6.2.iii. We shall verify the con-
ditions of Lemma 6.4 to prove that Equation (9.6) is op(1). Set R(x, y) =

K′(x,y)2S(x)S(y)
(1−H(x−)(1−H(y−)) and Rn(x, y) as the integrand in Equation (9.6). To ver-

ify the first condition of Lemma 6.4, note that Rn(x) → 0 for each x ∈ IH , since
Un(x) → 0 by Proposition 6.1. To verify the second condition, Propositions 6.2.i
and 6.2.ii yield Un(x) = Op(1)(1−G(x−))−1 uniformly for all x ≤ τn, thus the
integrand satisfies

Rn(x, y) = 1{y≤τn}Un(x)
2K ′(x, y)2

(1−H(x−))S(x)S(y)

(1−H(y−))S(x−)2

= Op(1)
K ′(x, y)2S(x)S(y)

(1−H(x−))(1−H(y−))
= Op(1)R(x, y),

uniformly in x. Finally, the function R(x, y) = K′(x,y)2S(x)S(y)
(1−H(y−))(1−H(x−)) is integrable

due to Equation (6.9) of Lemma 6.9 (recall that K ′ = A1A2K).
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Appendix A: Proof of Lemma 6.9

In order to prove Lemma 6.9, we introduce the operator R : L2(F ) → L2(F ),

(Rg)(x) =
1

S(x)

∫ ∞

x

g(t)dF (t).

Note that the operator A can be written as A = Id−R, where Id is the identity
operator. Additionally, for bivariate functions K : R2

+ → R, we define R1K
and R2K as the operator R applied on the first and second coordinate of K,
respectively. Note that R1 and R2 commute

Let X ∼ F and g ∈ L2(F ), then we claim the operator R satisfies that

E

(
S(X)

S(X−)
(Rg)(X)2

)
≤ 4E(g(X)2). (A.1)

The previous equation follows from Equation (4.3) of Efron and Johnstone [11],
which states that

Var(g(X)) = E

(
S(X)

S(X−)
(Ag)(X)2

)
. (A.2)

Then, by using that (Rg)2(X) ≤ 2(g(X)2 + (Ag)(X)2), we get

E

(
S(X)

S(X−)
(Rg)(X)2

)
≤ 2E

(
S(X)

S(X−)
g(X)2

)
+ 2E

(
S(X)

S(X−)
(Ag)(X)2

)
≤ 2E

(
g(X)2

)
+ 2Var(g(X)2) ≤ 4E(g(X)2),

where in the last step we used Equation (A.2).

Let Γ(x, y) = |K(x,y)|√
1−G(x−)

and Σ(x, y) = |K(x,y)|√
(1−G(x−))(1−G(y−))

, and notice that

Conditions 2.1 and 2.2 imply Γ ∈ L2(F × F ) and Σ ∈ L2(F × F ), respectively.
Assume Condition 2.1 holds, then a simple computation shows∫ τ

0

∫ τ

0

(R1K)(x, y)2S(x)

1−H(x−)
dF (x)dF (y)

=

∫ τ

0

∫ τ

0

S(x)

1−H(x−)

(
1

S(x)

∫ τ

x

K(s, y)dF (s)

)2

dF (x)dF (y)

≤
∫ τ

0

∫ τ

0

S(x)

S(x−)

(
1

S(x)

∫ τ

x

|K(s, y)|√
1−G(s−)

dF (s)

)2

dF (x)dF (y)

=

∫ τ

0

∫ τ

0

S(x)

S(x−)
(R1Γ)(x, y)

2dF (x)dF (y)

≤ 4

∫ τ

0

∫ τ

0

Γ(x, y)2dF (x)dF (y) < ∞, (A.3)

where the last equation follows from Equation (A.1), and Condition 2.1. An-
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other similar computation shows

∫ τ

0

∫ τ

0

(R2R1K)(x, y)2S(x)S(y)

(1−H(x−))S(y−)
dF (y)dF (x)

≤ 4

∫ τ

0

∫ τ

0

(R1K)(x, y)2S(x)

(1−H(x−))
dF (y)dF (x)

≤ 16

∫ τ

0

∫ τ

0

Γ(x, y)2dF (y)dF (x) < ∞ (A.4)

where the first inequality follows from Equation (A.1) applied on R2 (i.e. applied
on y). The second inequality is exactly Equation (A.3).

Similar computations, show that under Condition 2.2, we have∫ τ

0

∫ τ

0

(R1K)(x, y)2S(x)

(1−H(x−))(1−G(y−))
dF (x) ≤ 4

∫ τ

0

∫ τ

0

Σ(x, y)2dF (x)dF (y) < ∞,

(A.5)

and that ∫ τ

0

(R2R1K)(x, y)2S(x)S(y)

(1−H(x−))(1−H(y−))
dF (x)dF (y)

≤ 4

∫ τ

0

∫ τ

0

S(y)

1−H(y−)
(R2Γ(x, y))

2dF (x)dF (y)

≤ 16

∫ τ

0

∫ τ

0

Σ(x, y)2dF (x)dF (y) < ∞. (A.6)

From here, under Condition 2.1, Equation (6.6) is a straightforward consequence
of Equation (A.3), since∫ τ

0

∫ τ

0

(A1K)2(x, y)S(x)

1−H(x−)
dF (x)dF (y)

≤ 2

∫ τ

0

∫ τ

0

(K(x, y)2 + (R1K)(x, y)2)S(x)

1−H(x−)
dF (x)dF (y).

Also, Equation (6.7) follows directly from Equations (A.3) and (A.4) since

∫ τ

0

∫ τ

0

(A1A2K)2(x, y)S(x)S(y)

(1−H(x−))S(y−))
dF (x)dF (y)

≤ 4

∫ τ

0

∫ τ

0

Φ(x, y)S(x)S(y)

(1−H(x−))S(y−))
dF (x)dF (y),

where

Φ(x, y) = K(x, y)2 + (R1K)(x, y)2 + (R2K)(x, y)2 + (R1R2K)(x, y)2.

Condition 2.2, together with Equations (A.5) and (A.6), yields Equations
(6.8) and (6.9) by following the exact same procedure.
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Appendix B: Proof of Theorem 6.8

We proceed to prove Theorem 6.8. Let h be P-measurable. As M(x) is the
difference between two right-continuous increasing processes, we have∫

Ct

h(x, y)dM(x)dM(y) =

∫ t

0

∫
(0,y)

h(x, y)dM(x)dM(y).

We proceed to prove that the process φ(y) =
∫
(0,y)

h(x, y)dM(x) is predictable

with respect to the sigma-algebra (Fy)y≥0. For this, it is enough to verify the
claim for elementary functions of P , and then we extend the result to general
functions in P .

If h(x, y) = X1{(x,y)∈(a1,b1]×(a2,b2]} with X ∈ Fa2 and 0 ≤ a1 ≤ b1 ≤ a2 ≤ b2,
then ∫

(0,y)

h(x, y)dM(x) = X1(a2,b2](y)

∫
(0,y)

1(a1,b1](x)dM(x),

which is predictable with respect to (Fy)y≥0 since both processes, X1(a2,b2](y)
and

∫
(0,y)

1(a1,b1](x)dM(x), are adapted to (Fy)y≥0 and left-continuous. For the

first process note that it is important that X ∈ Fa2 to ensure it is adapted, and
for the second one it is key that we are integrating on (0, y) instead of (0, y] to
ensure it is left-continuous. Therefore, the process

Z(t) =

∫ t

0

∫
(0,y)

h(x, y)dM(x)dM(y)

is the integral of a predictable process, and thus Zt is an (Ft)-martingale. By
using Equation (6.4) together with Lebesgue Dominated Convergence theorem,
we extend the result to general functions h of the predictable sigma algebra P .
From Equation (6.5), we get that Z(t) is a square-integrable process, and its
predictable variation process is given by

〈Z〉(t) =
∫ t

0

(∫
(0,y)

h(x, y)dM(x)

)2
Y (y)S(y)

S(y−)2
dF (y).

Appendix C: Properties of J

In this section we show

i. E(J((X1,Δ1), (x, r))) = 0 for any (x, r) ∈ IH × {0, 1}.
ii. E(J((X1,Δ1), (X1,Δ1))) =

∫ τ

0
S(x)

1−H(x−)K
′(x, x)dF (x)

iii. E(J((X1,Δ1), (X2,Δ2))
2) =

∫ τ

0

∫ τ

0
S(x)S(y)K′(x,y)2

(1−H(x−))(1−H(y−))dF (x)dF (y)

We start with item i. To ease notation, define K̃(x, y) = K ′(x, y)/((1 −
G(x−)(1−G(y−)) and let dm(s) = rδx(ds)− 1{x≥s}dΛ(s), then

J((X1,Δ1), (x, r)) =

∫ X1

0

(∫ x

0

K̃(s, t)dm(s)

)
dM1(t).
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As the term inside the parenthesis is a deterministic function of t, the previous
integral is just a stochastic integral with respect to the zero mean martingale
M1, then by the Optional Stopping Theorem, its expected value is 0.

We continue with item ii. Observe that

E(J((X1,Δ1), (X1,Δ1))

= E

(∫ τn

0

∫ τn

0

K ′(x, y)

(1−G(x−))(1−G(y−))
dM1(x)dM1(y)

)
= E

(∫ τn

0

K ′(x, x)

(1−G(x−))2
(dM1(x))

2

)
,

where the last equality follows from the fact that the integral in the off-diagonal,
that is, for x �= y, defines a zero-mean martingale (see Definition 6.6 and Theo-
rem 6.8). Then,

E

(∫ τn

0

K ′(x, x)

(1−G(x−))2
(dM1(x))

2

)
= E

(∫ τ

0

K ′(x, x)

(1−G(x−))2
d[M1](x)

)
= E

(∫ τ

0

K ′(x, x)

(1−G(x−))2
d〈M1〉(x)

)
= E

(∫ τ

0

K ′(x, x)

(1−G(x−))2
S(x)Y1(x)

S(x−)2
dF (x)

)
=

∫ τ

0

S(x)

1−H(x−)
K ′(x, x)dF (x),

where the first and second equalities are due to the properties of [M1] (see
beginning of Section 9.1). The third equality follows from the definition of 〈M1〉,
and the last equality follows by interchanging the integral and expectation.

We finalise with item iii. Let K̃(x, y) = K ′(x, y)/((1−G(x−)(1−G(y−)), by
conditional expectation, it holds

E(J((X1,Δ1), (X2,Δ2))
2)

= E(E(J((X1,Δ1), (X2,Δ2))
2|(X2,Δ2)))

= E

⎛⎝E

⎛⎝(∫ X1

0

∫ X2

0

K̃(x, y)dM2(y)dM1(x)

)2
∣∣∣∣∣∣(X2,Δ2)

⎞⎠⎞⎠ ,

= E

⎛⎝E

⎛⎝∫ X1

0

(∫ X2

0

K̃(x, y)dM2(y)

)2

d〈M1〉(x)

∣∣∣∣∣∣(X2,Δ2)

⎞⎠⎞⎠ , (C.1)

where the last equality follows from the fact that, conditioned on (X2,Δ2),∫ t

0

∫X2

0
K̃(x, y)dM2(y)dM1(x) is an (Ft)-martingale.

Replacing with the value of 〈M1(x)〉 in Equation (C.1), we have

E(J((X1,Δ1), (X2,Δ2))
2)
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= E

⎛⎝∫ X1

0

(∫ X2

0

K̃(x, y)dM2(y)

)2
S(x)Y1(x)

S(x−)2
dF (x)

⎞⎠
= E

⎛⎝∫ τ

0

(∫ X2

0

K̃(x, y)dM2(y)

)2
S(x)Y1(x)

S(x−)2
dF (x)

⎞⎠
=

∫ τ

0

E

⎛⎝(∫ X2

0

K̃(x, y)dM2(y)

)2
⎞⎠ S(x)(1−H(x−))

S(x−)2
dF (x)

=

∫ τ

0

E

(∫ τ

0

K̃(x, y)2
S(y)Y2(y)

S(y−)2
dF (y)

)
(1−H(x−))

S(x)

S(x−)2
dF (x)

=

∫ τ

0

∫ τ

0

K ′(x, y)2S(x)S(y)

(1−H(x−))(1−H(y−))
dF (x)dF (y),

where the third equality follows from the fact that (X1,Δ1) and (X2,Δ2) are
independent and by Fubini’s Theorem. The fourth inequality follows by noticing
that, for fixed x,

∫ t

0
K̄(x, y)dM2(y) is a square-integrable (Ft)-martingale with

predictable variation process given by
∫ t

0
K̄(x, y)2 S(y−)

S(y−)2Y2(y)dF (y).

Appendix D: Proof of Lemma 2.7

Equation (3.41) of Aalen et al. [1] states that

ΔF̂n(x) = Ŝn(x−)
ΔN(x)

Y (x)
,

hence a Kaplan-Meier weight Wi for an uncensored observation Xi is equal to
ΔF̂n(Xi) divided by all the uncensored observations that fall exactly in Xi, i.e.,

the weight Wi associated with Xi equals
ΔF̂n(Xi)
ΔN(Xi)

= Ŝn(Xi−)
Y (Xi)

. Then

n∑
i=1

K(Xi, Xi)W
2
i =

n∑
i=1

K(Xi, Xi)

(
Ŝn(Xi−)

Y (Xi)

)2

Δi

=

∫ τn

0

K(x, x)

(
Ŝn(x−)

Y (x)

)2

dN(x). (D.1)

We will first prove that
√
n
∑n

i=1 K(Xi, Xi)W
2
i = op(1) under Condition 2.1.

Note that the process
∫ t

0
|K(x, x)|

(
Ŝn(x−)
Y (x)

)2

dN(x) is an (Ft)-submartingale,

with compensator given by Z(t) =
∫ t

0
|K(x, x)|

(
Ŝn(x−)
Y (x)

)2
Y (x)
S(x−)dF (x). By the

Lenglart-Rebolledo inequality, it is enough to prove that
√
nZ(τn) = op(1). An

application of Propositions 6.2.i and 6.2.ii shows that

√
nZ(τn) =

∫ τn

0

|K(x, x)|
(
Ŝn(x−)

Y (x)

)2
Y (x)

S(x−)
dF (x)
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= Op(1)

∫ τ

0

1{x≤τn}√
Y (x)

|K(x, x)|
√

S(x−)

(1−G(x−)
dF (x).

Finally,
∫ τ

0

1{x≤τn}√
Y (x)

|K(x, x)|
√

S(x−)
1−G(x−)dF (x) = op(1) by the Dominated Conver-

gence Theorem since Y (x) → ∞ for each x ∈ IH , Y (x) ≥ 1 for x ≤ τn, and∫ τ

0
|K(x, x)|

√
S(x−)

(1−G(x−)dF (x) < ∞ by hypothesis.

We now prove that n
∑n

i=1 K(Xi, Xi)W
2
i =

∫ τ

0
K(x,x)

1−G(x−)dF (x) + op(1). We

start by proving the intermediate step

1

n

∫ τn

0

|K(x, x)|

∣∣∣∣∣∣
(

Ŝn(x−)

(Y (x)/n)

)2

− 1

(1−G(x−))2

∣∣∣∣∣∣ dN(x) = op(1). (D.2)

Denote by Un(x) =

∣∣∣∣( Ŝn(x−)
(Y (x)/n)

)2

− 1
(1−G(x−))2

∣∣∣∣ which is predictable with re-

spect to (Fx)x≥0. Then, observe that 1
n

∫ t

0
|K(x, x)|Un(x)dN(x) is an (Ft)-

submartingale with compensator, evaluated at τn, given by

1

n

∫ τn

0

|K(x, x)|Un(x)
Y (x)

S(x−)
dF (x)

= Op(1)

∫ τ

0

1{x≤τn}|K(x, x)|Un(x)(1−G(x−))dF (x), (D.3)

where the equality holds by Proposition 6.2.iii. We claim that Equation (D.3)
equals op(1) by Lemma 6.4, whose conditions we proceed to verify. Set R(x) =
|K(x,x)|
1−G(x−) , which is integrable, and set Rn(x) as the integrand in Equation (D.3).

For the first condition of Lemma 6.4, note that Un(x) → 0 for all x, due to
Proposition 6.1, hence Rn(x) → 0. For the second condition, Propositions 6.2.i
and 6.2.ii yield Un(x) = Op(1)(1 − G(x−))−2 uniformly in x ≤ τn, and thus
Rn(x) = Op(1)R(x).

Finally, the Lenglart-Rebolledo Inequality, we get that Equation (D.2) holds
true. Combining (D.1) and (D.2) yields

n

n∑
i=1

K(Xi, Xi)W
2
i =

1

n

n∑
i=1

K(Xi, Xi)

(1−G(Xi−))2
Δi + op(1),

hence, by the Law of Large numbers we obtain that n
∑n

i=1 K(Xi, Xi)W
2
i =∫ τ

0
K(x,x)

1−G(x−)dF (x) + op(1).
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