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Abstract

For a given set of random variables X1, . . . , Xd we seek as large a family as possi-
ble of random variables Y1, . . . , Yd such that the marginal laws and the laws of the

sums match: Yi
d
=Xi and

∑
i Yi

d
=

∑
i Xi. Under the assumption that X1, . . . , Xd are

identically distributed but not necessarily independent, using a symmetry-balancing
approach we provide a universal construction with sufficient symmetry to satisfy the

more stringent requirement that, for any symmetric function g, g(Y )
d
= g(X). The

same ideas are shown to extend to the non-identically but “similarly” distributed case.
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1 Introduction

While the multivariate normal distribution is widely used for its tractability and
general applicability, there are many situations of great significance where departure
from normality is necessary. Such deviation may exist at the univariate level but may rest
solely with the dependence structure at hand. The latter refers to situations where the
marginal distributions are all normal without the multivariate distribution being normal.
Modelling such multivariate distributions is often achieved with the use of copulas. The
flexibility afforded by such a construction is limitless allowing, in the bivariate case, a
dependence structure that covers the entire spectrum from co-monotonicity (perfect
positive dependence) to counter-monotonicity (perfect negative dependence). See Sklar
(1959).

Beyond the normal setting, modelling dependencies between stochastic variables
is of interest to many areas of applications, notably insurance and finance. While the
assumption of independence is technically convenient, in reality it usually does not hold,
and one often resorts to copulas to generate more realistic dependence structures in a
variety of fields of application.

In a recent paper, GH (2020), the authors produced a characterisation, by means of
mean square expansions, of all multivariate distributions whose marginals and sums
coincide with those of a set of independent random variables that belong to the same
Meixner class. This characterisation is shown to enable specific constructions via finite
(truncated) expansions and appropriate compensations. The Meixner class was identified
in Meixner (1934) as the family of distributions for which the generating function of the
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Matching marginals and sums

associated orthogonal polynomials takes a specific form. It is made up of five types of
distributions: normal, generalised gamma, generalised Poisson, generalised (negative)
binomial and generalised hypergeometric. See Eagleson (1964); GH (2020) for more
details.

In this paper, we propose a universal construction that goes beyond the Meixner
class of distributions, beyond the independent setting and beyond the limitations of the
finite expansion method.

Given random variables X1, . . . , Xd, we seek random variables Y1, . . . , Yd, such that,

for each i Yi
d
=Xi, Y1 + . . . + Yd

d
=X1 + . . . + Xd and (Y1, . . . , Yd)

d

6= (X1, . . . , Xd). The
construction we use is universal in the sense that it produces a large family of copulas that
meet the above requirements irrespective of the marginals under consideration, albeit
under the assumption that the random variables X1, . . . , Xd are identically distributed.
A construction in the non-identically distributed case is given in Section 4. Section 2
contains the main (copula) construction and Section 3 provides the sought answer in the
case of identically distributed random variables.

To the best of our knowledge the only known construction, other than those given in
our recent paper, GH (2020), is due to Stoyanov (2013).

Example 1.1. Stoyanov (2013) (see Counterexample 10.5) suggests the following con-
struction of a pair (Y1, Y2) of dependent (but uncorrelated) standard normal random
variables such that Y1 + Y2 is normal with mean 0 and variance equal to 2:

ϕ(x1, x2) =
1

2π
exp

(
−1

2
(x2

1 + x2
2)

)(
1 + κx1x2(x2

1 − x2
2) exp

(
−1

2
(x2

1 + x2
2)

))
. (1.1)

Here κ is any positive constant that ensures that ϕ(x1, x2) ≥ 0; e.g. κ ≤ e2/8.

While the above example provides one specific construction in the two-dimensional
Gaussian and independent case, it does not shed any light on whether other solutions
exist and how to construct them, nor does it fulfil the aspiration to extend the problem
beyond the Gaussian and independent case.

In this paper, we propose to answer the question of matching marginals and sums
in considerable generality. After listing a few basic facts that guide our discovery,
we develop in Section 2 a symmetry-balancing approach that delivers sufficient sym-
metry to satisfy the more stringent requirement that, for any symmetric function g,

g(Y1, . . . , Yd)
d
= g(X1, . . . , Xd). The construction is universal in that it applies to any

(X1, . . . , Xd) as long as X1, . . . , Xd admit a joint density f .
We shall assume throughout this paper that all multivariate random variables admit

joint densities, denoted by f . We propose a generic construction under the assumption
that the random variables X1, X2, . . . , Xd are identically distributed and admit a joint
density but with no restriction on their dependence. An extension to non-identically
distributed random variables will be discussed in Section 4. This leads to the introduction
of the concept of similar distributions.

2 The “matching” copula

Let X1 and X2 be two identically distributed random variables with joint density f
and marginal density φ. Then, for any (measurable) ` such that 0 ≤ ` ≤ f ,

ϕ(x1, x2) =

{
f(x1, x2)− `(x1, x2) (x1, x2) ∈ D+

f(x1, x2) + `(x2, x1) (x1, x2) ∈ D−

where D± = {(x1, x2) : ±x2 < ±x1}, is the density of a pair (Y1, Y2) such that for any

symmetric g, g(Y1, Y2)
d
= g(X1, X2).
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Matching marginals and sums

While ϕ defines a pair that matches the law of g(X1, X2), for all symmetric functions
g, it does not necessarily preserve the marginal laws of f . To do so we need to also
“compensate” in the x1 and x2 directions. We call this a symmetry-balancing approach.
The proposed construction is universal in that it is described through the use of a “copula
perturbation” that can then be applied to any distribution. It offers a continuum of
settings that can be used to model a wide range of dependence structures, through
perturbations of varying types and sizes.

Let c be the copula density of f . For any measurable γ : [0, 1]× [0, 1]→ [0,+∞), the
function θγ described in the figure below, and supposed to be non-negative, is a copula
density we call the octal copula.

Δ1

Δ2

Δ3 Δ4

Δ5

Δ6

Δ7Δ8

c(u,v)-γ(u,v)

c(u,v)+γ(u,1-v)

c(1-v,u)-γ(1-v,u) c(u,v)+γ(1-v,1-u)

c(1-u,1-v)-γ(1-u,1-v)

c(u,v)+γ(1-u,v)

c(v,1-u)-γ(v,1-u)c(u,v)+γ(v,u)

0 0.5 1

0

0.5

1

Furthermore, for any bounded and symmetric g,
∫
g(u, v)θγ(u, v)dudv =∫

g(u, v)c(u, v)dudv.
The proof is given in Theorem 2.3 in the more general setting of the d-dimensional

case, d ≥ 2.
We note that the Stoyanov example has a copula that is of the octal form.
We are now ready to extend the construction of θγ to the d-dimensional hyper-

cube [0, 1]d. We shall retain from the two-dimensional case the idea that regions (i.e.
∆2, . . . ,∆8) are mapped onto a reference region (i.e. ∆1). Core to these mappings are
the reflections (u1, u2) ↪→ (1−u1, u2), (u1, u2) ↪→ (u1, 1−u2) and (u1, u2) ↪→ (1−u1, 1−u2)

as well as (u1, u2) ↪→ (u2, u1). Generalising these to the hypercube lead to the maps τα,
for the first three, and the maps σβ for the last one. These are introduced next.

• Sd denotes the space of permutations on [d] = {1, . . . , d}, and for β ∈ Sd, σβ denotes
the function defined on [0, 1]d, σβ(u) = (uβ(1), . . . , uβ(d)).

• id denotes the identity function.

• G(Rd) and G([0, 1]d), or simply Gd, denote the sets of symmetric real-valued func-
tions g on Rd and [0, 1]d, respectively; that is for any β ∈ Sd, g ◦ σβ = g.

• For α ∈ {0, 1}d and u = (u1, . . . , ud) ∈ [0, 1]d, τα(u) =
(
αi(1− ui) + (1− αi)ui

)d
i=1

.

• ∆(0) = (0, 1/2)d and for any other α ∈ {0, 1}d, ∆(α) = {u ∈ [0, 1]d : τα(u) ∈ ∆(0)}.
• ∆(0, id) = {u ∈ [0, 1]d : 0 < u1 < u2 < . . . < ud < 1/2} and, for any other pair

(α, β) ∈ {0, 1}d × Sd,

∆(α, β) = {u ∈ [0, 1]d : σβ(τα(u)) ∈ ∆(0, id)}.

In the two-dimensional case, ∆(0, id) was referred to as ∆1, ∆(0, (12)) was referred
to as ∆8, ∆((0, 1), id) was referred to as ∆2 etc.

• Ξd = [0, 1]d \
⋃

(α,β) ∆(α, β).
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Matching marginals and sums

The next lemma shows that we can essentially partition the hypercube into 2dd!

regions that all map onto the reference region ∆(0, id).

Lemma 2.1. 1. For (α, β) 6= (α′, β′), ∆(α, β) ∩∆(α′, β′) = ∅.
2. ∀ u ∈ [0, 1]d \ Ξd, ∃! (α, β) ∈ {0, 1}d × Sd such that q = σβ(τα(u)) satisfies the

condition 0 < q1 < . . . < qd < 1/2.

3. For any u ∈ [0, 1]d, τα′(τα(u)) = ττα′ (α)(u) and σβ(τα(u)) = τσβ(α)(σβ(u)).

4. τα(u) ∈ ∆(α′, β′)⇔ u ∈ ∆(τα(α′), β′). σβ(u) ∈ ∆(α′, β′)⇔ u ∈ ∆(σβ−1(α′), β′ ◦ β).

A necessary step in the construction is the embedding of the (d − 1)-dimensional
hypercube as a hyperplane in the d-dimensional hypercube and how the corresponding
partitions carry across. To that end, we need the following notations and results.

• For v ∈ [0, 1]d−1, r ∈ [0, 1] and k ∈ [d],

ωk(v, r) = (v1, . . . , vk−1, r, vk, . . . , vd−1),

with the obvious adjustments for the cases k = 1 and k = d.

• For b ∈ Sd−1 and j, k ∈ [d], β = χj(b, k) is the permutation in Sd

β(i) =


b(i) if i ≤ j − 1 and b(i) ≤ k − 1

b(i) + 1 if i ≤ j − 1 and b(i) ≥ k
k if i = j

b(i− 1) if i ≥ j + 1 and b(i− 1) ≤ k − 1

b(i− 1) + 1 if i ≥ j + 1 and b(i− 1) ≥ k

If permutation b is identified with the vector (b(1), . . . , b(d− 1)) and similarly for β,
and the definition of ωk is extended to Rd, then β can be written as ωj(b+ 1b≥k, k).

• For a ∈ {0, 1}d−1, b ∈ Sd−1, j ∈ [d] and r ∈ [0, 1], with a slight abuse of notation in
the use of τ and σ, ∆j(a, b, r) = {v ∈ [0, 1]d−1 : q0 < . . . < qj−1 < r̄ < qj < . . . < qd},
where r̄ = min(r, 1 − r) and, q stands for σb(τa(v)) and has been augmented with
the bounds q0 = 0 and qd = 1/2.

Lemma 2.2. Let a ∈ {0, 1}d−1, b ∈ Sd−1, j, k ∈ [d], r ∈ [0, 1], β = χj(b, k) and

α =

{
ωk(a, 0) r ∈ [0, 1/2]

ωk(a, 1) r ∈ (1/2, 1]

1. τα(ωk(v, r)) = ωk(τa(v), r̄) and σβ(τα(ωk(v, r))) = ωj(σb(τa(v)), r̄).

2. ωk(v, r) ∈ ∆(α, β) ⇔ v ∈ ∆j(a, b, r) ⇔ σb(τa(v)) ∈ ∆j(0, id, r).

Since Ξd has Lebesgue measure zero, any integral over [0, 1]d can be taken to mean
an integral on [0, 1]d \ Ξd.

Theorem 2.3. Let c be a density on [0, 1]d, U be a multivariate random variable with
density c, γ be an integrable non-negative function on ∆(0, id) and ε : {0, 1}d × Sd →

[−1, 1]. We assume that γ(u) ≤ min
ε(α,β)>0

c(τα(σβ−1(u)))

ε(α, β)
and define on [0, 1]d the function

θε,γ(u) = c(u)−
∑
α,β

ε(α, β)γ(σβ(τα(u)))1∆(α,β)(u). (2.1)

(D) θε,γ is a density if and only if
∑
α,β

ε(α, β) = 0.

Assume (D) and let V be a multivariate random variable with density θε,γ .

ECP 25 (2020), paper 78.
Page 4/12

https://www.imstat.org/ecp

https://doi.org/10.1214/20-ECP357
https://imstat.org/journals-and-publications/electronic-communications-in-probability/


Matching marginals and sums

(G) g(V )
d
= g(U), for any g ∈ Gd, if and only if ∀ α ∈ {0, 1}d,

∑
β

ε(σβ−1(α), β) = 0.

In particular, in this case, V1 + . . .+ Vd
d
=U1 + . . .+ Ud.

(M0) Fix k ∈ [d]. If ∀ j ∈ [d], ∀ a ∈ {0, 1}d−1, ∀ b ∈ Sd−1,
∑
ℵ=0,1

ε(ωk(a,ℵ), χj(b, k)) = 0,

then (V1, . . . , Vk−1, Vk+1, . . . , Vd)
d
= (U1, . . . , Uk−1, Uk+1, . . . , Ud).

(C0) Suppose c is a copula density. If ∀ j, k ∈ [d],
∑
a,b

ε(ωk(a, 0), χj(b, k)) = 0 and∑
a,b

ε(ωk(a, 1), χj(b, k)) = 0, then θε,γ is a copula density.

Proof. (D) Clearly, θε,γ(u) ≥ 0. Let us show that it integrates to 1 or equivalently that∑
α,β ε(α, β)γ(σβ(τα(u)))1∆(α,β)(u) integrates to 0. Applying (G) (below) to the case g = 1,

we get that θε,γ is a density if and only if

0 =
∑
α

∑
β

ε(σβ−1(α), β) =
∑
β

∑
α

ε(σβ−1(α), β) =
∑
α,β

ε(α, β).

(G) Let g ∈ Gd. g(V )
d
= g(U) if and only if for any bounded function G, E[G(g(V ))] =

E[G(g(U))]. Now g = G ◦ g is bounded and symmetric, and∫
∆(α,β)

g(u)γ(σβ(τα(u)))du =

∫
∆(0,id)

g(τα(σβ−1(u)))γ(u)du

=

∫
∆(0,id)

g(σβ−1(τσβ(α)(u)))γ(u)du =

∫
∆(0,id)

g(τσβ(α)(u))γ(u)du.

It follows that∫
[0,1]d

g(u)θε,γ(u)du−
∫

[0,1]d
g(u)c(u)du = −

∑
α,β

ε(α, β)

∫
∆(α,β)

g(u)γ(σβ(τα(u)))du

= −
∑
α

∫
∆(0,id)

g(τα(u))γ(u)du
∑
β

ε(σβ−1(α), β).

Clearly if (G) holds, then

∫
[0,1]d

g(u)θε,γ(u)du =

∫
[0,1]d

g(u)c(u)du and g(V )
d
= g(U).

Conversely, suppose that g(V )
d
= g(U), for any g ∈ Gd. Then for any bounded g ∈ Gd,∑

α

∫
∆(α,id)

Γ(α)g(u)γ(τα(u))du = 0,

where Γ(α) =
∑
β ε(σβ−1(α), β). Fix α0 ∈ {0, 1}d and let e0 be any bounded measurable

function. Define e as e(u) = e0(u)1∆(α0,id)(u) and define g by symmetrisation of e:

g(u) =
∑
β

e(σβ(u)). Then (g is symmetric and)

0 =
∑
α

∫
∆(α,id)

Γ(α)
(∑

β

e(σβ(u))
)
γ(τα(u))du

=
∑
α

∑
β

∫
∆(α,id)

Γ(α)e(σβ(u))γ(τα(u))du = Γ(α0)
∑
β

∫
∆(α0,id)

e(σβ(u))γ(τα0
(u))du,

where we use the fact that σβ(u) ∈ ∆(α0, id) if and only if u ∈ ∆(σβ−1(α0), β). We
conclude that Γ(α0) = 0. Repeating for all other α0 in {0, 1}d, we prove the result.
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(M0) Fix k ∈ [d], v ∈ [0, 1]d−1 \ Ξd−1 and let (a, b) ∈ {0, 1}d−1 × Sd−1 such that
q = σb(τa(v)) satisfies 0 < q1 < . . . < qd−1 < 1/2. Let q0 = 0, qd = 1/2.

Using Lemma 2.2, we get∫
[0,1]

θε,γ(ωk(v, r))dr −
∫

[0,1]

c(ωk(v, r))dr

= −
d−1∑
j=0

∫
[qj ,qj+1]

∑
α,β

ε(α, β)γ(σβ(τα(ωk(v, r))))1∆(α,β)(ωk(v, r))dr

−
d−1∑
j=0

∫
[1−qj+1,1−qj ]

∑
α,β

ε(α, β)γ(σβ(τα(ωk(v, r))))1∆(α,β)(ωk(v, r))dr

= −
d−1∑
j=0

∫
[qj ,qj+1]

ε(ωk(a, 0), χj+1(b, k))γ(ωj+1(σb(τa(v)), r))dr

−
d−1∑
j=0

∫
[1−qj+1,1−qj ]

ε(ωk(a, 1), χj+1(b, k))γ(ωj+1(σb(τa(v)), 1− r))dr

= −
d−1∑
j=0

∫
[qj ,qj+1]

γ(ωj+1(σb(τa(v)), r))dr
∑
ℵ=0,1

ε(ωk(a,ℵ), χj+1(b, k))

If (M0) holds, then for any k ∈ [d],

∫
[0,1]

θε,γ(ωk(v, r))dr =

∫
[0,1]

c(ωk(v, r))dr (a.e.); that is

(V1, . . . , Vk−1, Vk+1, . . . , Vd)
d
= (U1, . . . , Uk−1, Uk+1, . . . , Ud).

(C0) We fix k ∈ [d] and proceed to show that under (C0), Vk
d
=Uk. Fix r ∈ (0, 1).∫

[0,1]d−1

θε,γ(ωk(v, r))dv

=

∫
[0,1]d−1

c(ωk(v, r))dv −
∫

[0,1]d−1

∑
α,β

ε(α, β)γ(σβ(τα(ωk(v, r))))1∆(α,β)(ωk(v, r))dv

= 1−
∫

[0,1]d−1

∑
j,a,b

ε(α, β)γ(σβ(τα(ωk(v, r))))1∆j(a,b,r)(v)dv,

where α and β are defined as in Lemma 2.2. It follows that∫
[0,1]d−1

θε,γ(ωk(v, r))dv − 1 = −
∑
j,a,b

ε(α, β)

∫
∆j(a,b,r)

γ(σβ(τα(ωk(v, r))))dv

= −
∑
j,a,b

ε(α, β)

∫
∆j(a,b,r)

γ(ωj(σb(τa(v)), r̄))dv = −
∑
j,a,b

ε(α, β)

∫
∆j(0,id,r)

γ(ωj(v, r̄))dv,

which concludes the proof.

Example 2.4. When d = 2, (C0) produces 8 equations and (G) another 4. Solving these
we see that ε must take the form ε(α, β) = λ(−1)|α|sgn(β), where |α| = α1 + α2 and
sgn(β) is the signature of the permutation β, sgn(id) = 1 and sgn((12)) = −1. In other
words, θγ defined at the beginning of Section 2 is, up to a multiplicative factor, the only

copula such that, for any g ∈ G2, g(V )
d
= g(U).

On the other hand the equations in (M0) yield solutions of the form ε(α, id) = (−1)|α|λ

and ε(α, (12)) = (−1)|α|µ.
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(M0) and (C0) are sufficient to guarantee that marginal distributions match and that
θε,γ is a copula density, respectively. The next result shows that they are necessary if we
add the assumption that γ is bounded from above and away from 0.

Theorem 2.5. Further to the setting of Theorem 2.3, we assume that γ is bounded from
above and away from 0; i.e. we assume that

inf(γ) = inf
u∈∆(0,id)

γ(u) > 0 and sup(γ) = sup
u∈∆(0,id)

γ(u) < +∞. (2.2)

(M) Fix k ∈ [d]. (V1, . . . , Vk−1, Vk+1, . . . , Vd)
d
= (U1, . . . , Uk−1, Uk+1, . . . , Ud) if and only if

∀ j ∈ [d],∀ a ∈ {0, 1}d−1,∀ b ∈ Sd−1,
∑
ℵ=0,1

ε(ωk(a,ℵ), χj(b, k)) = 0. (2.3)

(C) Suppose c is a copula density. θε,γ is a copula density if and only if

∀ j, k ∈ [d],
∑
a,b

ε(ωk(a, 0), χj(b, k)) =
∑
a,b

ε(ωk(a, 1), χj(b, k)) = 0. (2.4)

Proof. The sufficiency of both statements was shown in Theorem 2.3.

(M) We know that (V1, . . . , Vk−1, Vk+1, . . . , Vd)
d
= (U1, . . . , Uk−1, Uk+1, . . . , Ud) if and only

if, ∀ a ∈ {0, 1}d−1, ∀ b ∈ Sd−1,

∀ q ∈ (0, 1/2)d−1 such that q1 < . . . < qd−1,

d∑
j=1

λj

∫
[qj−1,qj ]

γ(ωj(q, r))dr = 0,

where λj =
∑
ℵ=0,1

ε(ωk(a,ℵ), χj(b, k)), q0 = 0 and qd = 1/2. We reason by contradiction

and assume that {j ∈ [d] : λj 6= 0} 6= ∅. Then

d∑
j=1

λj

∫
[qj−1,qj ]

γ(ωj(q, r))dr ≥
∑
j:λj<0

λj sup(γ)(qj − qj−1) +
∑
j:λj>0

λj inf(γ)(qj − qj−1)

and shrinking qj − qj−1 whenever λj < 0 (and therefore expanding it whenever λj > 0)
shows that the right hand side can be made strictly positive, thus contradicting the
assumption that the left hand side is nil. Of course, if there is no j such that λj > 0,
then the inequality can be reversed and the left hand side shown to be strictly negative,
leading to a contradiction.

(C) We know that θε,γ is a copula density if and only if ∀ k ∈ [d],

∀ r ∈ (0, 1),

d∑
j=1

λj

∫
∆j(0,id,r)

γ(ωj(v, r̄))dv = 0, (2.5)

where λj =
∑
a,b

ε(α, β) and, α and β are as in Lemma 2.2. We also note that

Leb(∆j(0, id, r)) =
r̄j−1(1− 2r̄)d−j

2d−j(j − 1)!(d− j)!
∝ r̄j−1(1− 2r̄)d−j .

Again we reason by contradiction. First we assume that λ1 6= 0 and more specifically
(wlog) λ1 > 0. Then

d∑
j=1

λj

∫
∆j(0,id,r)

γ(ωj(v, r̄))dv ≥ λ1 inf(γ)Leb(∆1(0, id, r)) +

d∑
j=2

λj

∫
∆j(0,id,r)

γ(ωj(v, r̄))dv.

ECP 25 (2020), paper 78.
Page 7/12

https://www.imstat.org/ecp

https://doi.org/10.1214/20-ECP357
https://imstat.org/journals-and-publications/electronic-communications-in-probability/


Matching marginals and sums

Since limr→0 Leb(∆j(0, id, r)) = 0, for j ∈ {2, . . . , d}, and γ is bounded, by making r

approach 0, the second term in the right hand side can be made as small as we want,
while the first term is strictly positive. It follows that the left hand side can be made
strictly positive thus contradicting the fact that it must be nil for all r. We deduce that λ1

must be nil and (2.5) becomes

∀ r ∈ (0, 1),

d∑
j=2

λj
1

r

∫
∆j(0,id,r)

γ(ωj(v, r̄))dv = 0.

Again, we assume (wlog) that λ2 > 0. Then

d∑
j=2

λj
r

∫
∆j(0,id,r)

γ(ωj(v, r̄))dv ≥ λ2 inf(γ)
Leb(∆2(0, id, r))

r
+

d∑
j=3

λj
r

∫
∆j(0,id,r)

γ(ωj(v, r̄))dv

and the second term in the right hand side can be made as small as we want, while
the first term is strictly positive. It follows that the left hand side can be made strictly
positive thus showing that λ2 must be nil. We continue this way, adjusting (2.5) by
increasing powers of r, to prove that λ1 = . . . = λd−1 = 0 and finally that λd = 0 since

∀ r ∈ (0, 1), λd

∫
∆d(0,id,r)

γ(ωd(v, r̄))dv = 0.

Corollary 2.6. Suppose (2.2) holds and ε takes the form ε(α, β) = ζ(|α|)ψ(β), where
|α| = α1 + . . .+ αd.

(D′) θε,γ is a density if and only if either
∑
α

ζ(|α|) = 0 or
∑
β

ψ(β) = 0.

(G′) g(V )
d
= g(U), for any g symmetric, if and only if

∑
β

ψ(β) = 0.

(C′) Suppose c is a copula density (i.e. the marginals are uniform). θε,γ is a copula
density if and only if∑

a∈{0,1}d−1

ζ(|a|) =
∑

a∈{0,1}d−1

ζ(|a|+ 1) = 0 or ∀ j, k ∈ [d],
∑

b∈Sd−1

ψ(χj(b, k)) = 0.

Proposition 2.7. A necessary and sufficient condition for

∀ j, k ∈ [d],∀ a ∈ {0, 1}d−1,∀ b ∈ Sd−1,
∑
ℵ=0,1

ε(ωk(a,ℵ), χj(b, k)) = 0

is that
∀ α ∈ {0, 1}d,∀ β ∈ Sd ε(α, β) = (−1)|α|ε(0, β).

Proof. Sufficiency is immediate. We prove necessity by induction on d. First we observe
that for any β ∈ Sd, for any k ∈ [d], there exists j ∈ [d] and b ∈ Sd−1 such that β = χj(b, k).
Indeed, letting j = β−1(k) and

b(i) =


β(i) if i ≤ j − 1 and β(i) ≤ k − 1

β(i)− 1 if i ≤ j − 1 and β(i) ≥ k + 1

β(i+ 1) if i ≥ j and β(i+ 1) ≤ k − 1

β(i− 1) + 1 if i ≥ j and β(i+ 1) ≥ k + 1

we obtain the required identity. We shall therefore prove that, for any fixed β ∈ Sd, the
condition

∀ k ∈ [d],∀ a ∈ {0, 1}d−1, ε(ωk(a, 0), β) + ε(ωk(a, 1), β) = 0
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implies the desired statement. As β is fixed throughout, we write ζ(α) for ε(α, β).
The case d = 2 can easily be checked. Suppose the necessity true for d − 1. Then

setting the first component in α and a to 0 reduces the dimensionality of the problem by
1 and leads to

∀ α ∈ {0} × {0, 1}d−1, ζ(α) = (−1)|α|ζ(0).

Similarly, setting the first component in α and a to 1 again reduces the dimensionality of
the problem by 1 and leads to

∀ α ∈ {1} × {0, 1}d−1, ζ(α) = (−1)|α|−1ζ(ω1(0, 1)).

Now taking k = 1 and a = 0 leads to ζ(ω1(0, 1)) = −ζ(0) and concludes the proof.

Corollary 2.8. Suppose ε(α, β) = (−1)|α|ψ(β). If
∑
β ψ(β) = 0 then all conditions of

Theorem 2.3 are satisfied; that is, for any γ such that

γ(u) ≤ min
(−1)|α|ψ(β)>0

c(τα(σβ−1(u)))

|ψ(β)|
,

θε,γ is a copula density for which the (d− 1)-dimensional marginals coincide with those

of c and, for any g symmetric, g(V )
d
= g(U), where U and V have densities c and θε,γ ,

respectively.
In particular, this is true for ε(α, β) = (−1)|α|sgn(β), where sgn(β) is the signature of

the permutation β.

We end this section with a strong construction of the maximal perturbation of the
independence copula (i.e. c = 1).

Proposition 2.9. Let U1, . . . , Ud be independent uniform random variables on [0, 1].
Suppose ε(α, β) = (−1)|α|sgn(β) and define

V =
∑
α,β

ε(α,β)=−1

U1U∈∆(α,β) +
∑
α,β

ε(α,β)=+1

Rα,β(U)1U∈∆(α,β),

where Rα,β = τα ◦ σβ−1 ◦ σ(12) ◦ σβ ◦ τα. Then V has density θε,1. In particular, for

any k = 1, . . . , d, (V1, . . . , Vk−1, Vk+1, . . . , Vd)
d
= (U1, . . . , Uk−1, Uk+1, . . . , Ud) and V1 + . . . +

Vd
d
=U1 + . . .+ Ud.

Proof. Let A be a measurable subset of ∆(α′, β′). Then

P(V ∈ A) =
∑

ε(α,β)=−1

P(U ∈ A,U ∈ ∆(α, β)) +
∑

ε(α,β)=+1

P(Rα,β(U) ∈ A,U ∈ ∆(α, β))

= P(U ∈ A)1ε(α′,β′)=−1 + P(U ∈ Rα′,(12)◦β′(A))1ε(α′,(12)◦β′)=+1 = 2P(U ∈ A)1ε(α′,β′)=−1,

which proves that V has density θε,1.

3 The case of identically distributed random variables

We are now ready to deal with the case of d identically distributed arbitrary ran-
dom variables. We stress here that we do not assume that the random variables are
independent.

Proposition 3.1. Suppose that X1, . . . , Xd are identically distributed, that X =

(X1, . . . , Xd) has copula density c, marginal distribution function Φ and marginal density
φ, so that its density is

f(x) = c
(
Φ(x1), . . . ,Φ(xd)

) d∏
k=1

φ(xk).
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For any (ε, γ) satisfying conditions (G) and (C0) of Theorem 2.3,

ϕ(x) = θε,γ
(
Φ(x1), . . . ,Φ(xd)

) d∏
k=1

φ(xk)

generates a random variable Y = (Y1, . . . , Yd) that satisfies the requirements that, for

any k ∈ [d], Yk
d
=Xk, and, for any g ∈ Gd, g(Y )

d
= g(X).

Proof. Let Uk = Φ(Xk), g ∈ G(Rd) and

h(u) = g(Φ−1(u1), . . . ,Φ−1(ud)).

Then U has density c and h ∈ G([0, 1]d). Letting V be a random variable with density θε,γ ,
Yk = Φ−1(Vk), we get that

g(Y ) = g(Φ−1(V1), . . . ,Φ−1(Vd)) = h(V )
d
=h(U) = g(Φ−1(U1), . . . ,Φ−1(Ud)) = g(X).

Example 3.2. Let Φ be the distribution function and φ be the density of the standard
normal distribution. Then for any γ ≤ 1,

ϕ(x) = θγ
(
Φ(x1), . . . ,Φ(xd)

) d∏
k=1

φ(xk),

where

θγ(u) = 1−
∑
α,β

(−1)|α|sgn(β)γ(σβ(τα(u)))1∆(α,β)(u),

is the density of a d-dimensional random variable Y for which all (d − 1)-dimensional
marginals are independent and identically distributed standard normal random variables,
Y1 + . . .+ Yd is normal with mean 0 and variance d, and Y is non-Gaussian.

4 The case of non-identically distributed random variables

Can the above construction extend to the case of non-identically distributed (and
non-independent) random variables? To answer this question, we return to the two-
dimensional case. Let s1, s2 and s12 be the reflections

s1(u1, u2) = (1− u1, u2), s2(u1, u2) = (u1, 1− u2) and s12(u1, u2) = (u2, u1).

These three involutions are such that s1s2 = s2s1, s1s12 = s12s2 and s2s12 = s12s1. It
follows that they generate a finite group R = {id, s1, s2, s12, s1s2, s1s12, s2s12, s1s2s12},
the dihedral group of order 8.

Each element of R corresponds to one of the eight regions ∆(α, β), and ε(α, β) of
Section 2 is simply (−1)|s|, where |s| is the word length of s, that is the number of
generators in the decomposition of s (modulo 2).

In the case of non-identically distributed random variables, say with distribution func-
tions Φ1 and Φ2, for the construction to hold for symmetric functions, and in particular
for the sum, the generator s12 needs to be changed to

s12(u1, u2) = (Φ1(Φ−1
2 (u2)),Φ2(Φ−1

1 (u1)).
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One would then attempt a construction of the type

θ(u) = c(u)−
∑
s∈R

ε(s)γ(s(u))1∆(s(u)),

for an appropriate reference region ∆, one for which {s(∆), s ∈ R} forms a measurable
partition of [0, 1]2. The next example illustrates the difficulty we face in general.

Example 4.1. Suppose Φ2(x) = Φ1(x)2 (X2 has the distribution of the maximum of
two independent copies of X1) so that s12(u1, u2) = (

√
u2, u

2
1). Then s1s12s2s12(u1, u2) =(

1−
√

1− u2
1, u2

)
and (s1s12s2s12)n, obtained by iterating the map 1−

√
1− r2, yields an

infinite sequence.

In the above example the identity s1s12 = s12s2 fails resulting in R being infinite. This
identity translates in the language of the previous sections to σβ(τα(u)) = τσβ(α)(σβ(u))

which was crucial in our construction.
In order to retain the identity s1s12 = s12s2 we introduce the following notion.

Definition 4.2. Two random variables are said to be similarly distributed if their distri-
bution functions Φ1 and Φ2, assumed to be continuous and strictly increasing (on some
interval), satisfy the identity

Φ−1
1 (1− Φ1(x)) = Φ−1

2 (1− Φ2(x)).

Note that if a random variable X has a strictly increasing and continuous (on some
interval) distribution function Φ, then Ψ(x) = Φ−1(1−Φ(x)) is the only strictly decreasing

and continuous measure-preserving map of X: Ψ(X)
d
=X.

Proposition 4.3. Two identically distributed random variables are necessarily similarly
distributed and two symmetrical distributions around the same median are similarly
distributed.

For two similarly distributed random variables with distribution functions Φ1 and Φ2,
we let Ψ(x) = Φ−1

1 (1− Φ1(x)) = Φ−1
2 (1− Φ2(x)) and define

σ1(x1, x2) = (Ψ(x1), x2), σ2(x1, x2) = (x1,Ψ(x2)) and σ12(x1, x2) = (x2, x1). (4.1)

Proposition 4.4. The three involutions σ1, σ2 and σ12 are such that σ1σ2 = σ2σ1, σ1σ12 =

σ12σ2 and σ2σ12 = σ12σ1. As such, they generate a finite group R = {id, σ1, σ2, σ12, σ1σ2,

σ1σ12, σ2σ12, σ1σ2σ12}.
While it is possible to approach this situation via copulas, other than in the identically

distributed case, the resulting θ turns out to depend on Φ1 and Φ2 making it not universal
and therefore less desirable. Instead, we apply the symmetry-balancing approach directly
to the density.

Theorem 4.5. Let f be the joint density of two similarly distributed random variables,
X1 and X2, m be the common median, ∆ = {x ∈ R2 : x1 < x2 < m} and γ be such
that

ϕ(x1, x2) = f(x1, x2)−
∑
σ∈R

(−1)|σ|γ(σ(x1, x2))|Jσ(x1, x2)|1∆(σ(x1, x2)) (4.2)

is non-negative, where Jσ denotes the Jacobian determinant of σ and |σ| is the word
length of σ, that is the number of generators in the decomposition of σ (modulo 2).

Then ϕ generates (Y1, Y2) such that Y1
d
=X1, Y2

d
=X2 and, for any g ∈ G2,

g(Y1, Y2)
d
= g(X1, X2); in particular Y1 + Y2

d
=X1 +X2.

Proof. Let ψ(x) = Ψ′(x). We start by checking that
∫
ϕ(x1, x2)dx1 =

∫
f(x1, x2)dx1.

Suppose x2 < m. Then Ψ(x2) > m and the sum in (4.2) only contains four non-zero
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expressions, those for σ ∈ {id, σ1, σ12, σ12σ1}. Now,∑
σ∈{id,σ1}

(−1)|σ|
∫
γ(σ(x1, x2))|Jσ(x1, x2)|1∆(σ(x1, x2))dx1

=

∫
γ(x1, x2)1∆(x1, x2)dx1 −

∫
γ(σ1(x1, x2))|Jσ1

(x1, x2)|1∆(σ1(x1, x2))dx1

=

∫
(−∞,x2)

γ(x1, x2)dx1 −
∫

(Ψ(x2),+∞)

γ(Ψ(x1), x2)|ψ(x1)|dx1

=

∫
(−∞,x2)

γ(x1, x2)dx1 −
∫

(−∞,x2)

γ(z1, x2)dz1 = 0

and similarly for
∑

σ∈{σ12,σ12σ1}

(−1)|σ|
∫
γ(σ(x1, x2))|Jσ(x1, x2)|1∆(σ(x1, x2))dx1 = 0. Swap-

ping x1 and x2 leads to the conclusion that ϕ and f have the same marginal distributions.
Furthermore, if g is symmetric, G is bounded and g = G ◦ g, then∑

σ∈{id,σ12}

(−1)|σ|
∫
g(x)γ(σ(x))|Jσ(x)|1∆(σ(x))dx

=

∫
∆

g(x)γ(x)dx−
∫

∆

g(σ12(x))γ(x)dx =

∫
∆

g(x)γ(x)dx−
∫

∆

g(x)γ(x)dx = 0,

∑
σ∈{σ2,σ2σ12}

(−1)|σ|
∫
g(x)γ(σ(x))|Jσ(x)|1∆(σ(x))dx

= −
∫
g(x)γ(σ2(x))|ψ(x2)|1∆(σ2(x))dx+

∫
g(x)γ(σ2σ12(x))|ψ(x1)|1∆(σ2σ12(x))dx

= −
∫

∆

g(σ2(z))γ(z)dz +

∫
g(σ12σ2(z))γ(z)dz = 0,

and so on for the sums on {σ1, σ1σ12} and {σ1σ2, σ1σ2σ12}, which concludes the proof.

References

Eagleson, G. K. (1964). Polynomial expansions of bivariate distributions. Ann. Math. Statist. 35,
1208–1215. MR-0168055

Griffiths, R. and Hamza, K. (2020). Matching the distributions of the marginals and the sums for
the Meixner class. Accepted. Theory Probab. Appl. 15 pages.

Meixner, J. (1934). Orthogonale polynomsysteme mit einer besonderen Gestalt der erzeugenden
funktion. J. London Math. Soc. 9, 6–13. MR-1574715

Sklar, A. (1959), Fonctions de répartition à n dimensions et leurs marges, Publ. Inst. Statist. Univ.
Paris, 8: 229–231 MR-0125600

Stoyanov, J. M. (2013). Counterexamples in probability. Courier Corporation. MR-3837562

ECP 25 (2020), paper 78.
Page 12/12

https://www.imstat.org/ecp

https://mathscinet.ams.org/mathscinet-getitem?mr=0168055
https://mathscinet.ams.org/mathscinet-getitem?mr=1574715
https://mathscinet.ams.org/mathscinet-getitem?mr=0125600
https://mathscinet.ams.org/mathscinet-getitem?mr=3837562
https://doi.org/10.1214/20-ECP357
https://imstat.org/journals-and-publications/electronic-communications-in-probability/

	Introduction
	The ``matching'' copula
	The case of identically distributed random variables
	The case of non-identically distributed random variables

