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Abstract

We prove polynomial decay of the mixing field of the Vertex Reinforced Jump Process
(VRJP) on Z2 with bounded conductances. Using [22] we deduce that the VRJP on
Z2 with any constant conductances is almost surely recurrent. It gives a counterpart
of the result of Merkl, Rolles [16] and Sabot, Zeng [22] for the 2-dimensional Edge
Reinforced Random Walk.
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Let G = (V,E) be an undirected graph with finite degree at each vertex. We note
i ∼ j if {i, j} is an edge of the graph. Let (Wi,j)i∼j be a set of positive conductances
on the edges, Wi,j > 0, Wi,j = Wj,i. The Vertex Reinforced Jump Process (VRJP) is the
continuous time process (Ys)s≥0 on V , starting at time 0 at some vertex i0 ∈ V , which,
conditionally on the past at time s, if Ys = i, jumps to a neighbour j of i at rate

Wi,jLj(s),

where

Lj(s) := 1 +

∫ s

0

1{Yu=j} du.

The VRJP was introduced by Davis and Volkov and investigated on Z in [6], then on
trees in [4, 2]. In [20], Sabot and Tarrès proved that this process is closely related to
the Edge Reinforced Random Walk (ERRW), and that on any finite graphs, after some
time-change, it is a mixture of Markov jump processes, the mixing law being the first
marginal of the supersymmetric hyperbolic sigma field introduced by Disertori, Spencer,
Zirnbauer [23, 10]. Using the exponential localization result of Disertori and Spencer
[9], it was proved in [20] that on any graph with bounded degree, there exists a value
W such that if Wi,j ≤W for all i ∼ j, the VRJP is positive recurrent, i.e. the VRJP visits
every point infinitely often and spends a positive portion of the time on all points (an
alternative proof of the localization of the VRJP was given by Angel, Crawford, Kozma
in [1] using the representation as a mixture proved in [20]). Using the delocalization
result of Disertori, Spencer, Zirnbauer [10], a phase transition was proved on Zd, d ≥ 3:
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Polynomial localization of the 2D-VRJP

there exists W (d), such that if Wi,j ≥W (d) for all i ∼ j, the VRJP is transient, and also
diffusive for (Wi,j) constant and large enough ([22]).

Similar results hold for the Edge Reinforced Random Walk (ERRW) (see [7, 5, 20, 1,
8]). Besides, on Z2, a polynomial localization of the mixing field of the ERRW (the so-
called magic formula of Coppersmith and Diaconis) was proved by Merkl and Rolles [15].
By itself, this polynomial localization does not entail recurrence of the ERRW (the
polynomial estimate was used in [16] to prove recurrence of the ERRW on a modification
of Z2 at weak reinforcement). However, together with the representation of the VRJP
and ERRW on infinite graphs as mixture of Markov jump processes provided in [21, 22],
it allows to prove recurrence of the ERRW on Z2 for all initial constants weights.

The aim of this paper is to provide a counterpart to the result of Merkl and Rolles
[15], i.e. to prove polynomial decay of the mixing field of the VRJP. By [22], it implies
recurrence of the VRJP with constant conductances on Z2, in the sense that any point is
a.s. visited infinitely often by the VRJP. The proof is based on a deformation of the field
by a deterministic harmonic function, it is in the spirit of the proof of Merkl and Rolles
for the ERRW, and earlier than that it takes its origin in Mermin Wagner type arguments
about conservation of continuous internal symmetries and polynomial decorrelation of
some 2D spin models (see e.g. [17, 14, 11, 19] and see [18] for more references and a
discussion about the history of the arguments).

Note: Gady Kozma and Ron Peled also have a proof of similar results, see [12]. From a
discussion with them, we concluded that our two approaches are rather different. We
thank them for communicating an early version of their manuscript.

1 Statement of the results

1.1 The mixing field of the VRJP

We first recall how the VRJP can be written as a mixture of Markov jump processes
and its relation with the first marginal of the supersymmetric hyperbolic sigma model.

We denote by ~E the set of corresponding directed edges associated with the undi-
rected edges E (i.e. with each edge of E we associated two edges with opposite
orientations). We denote ∑

i→j
· =

∑
(i,j)∈~E

·

the sum on directed edges of the network. For a function u : V 7→ R and for (i, j) ∈ ~E,
we denote the gradient of u on (i, j) by:

∇ui,j := uj − ui.

Assume V is finite. We introduce the mixing field of the VRJP. For a fixed set of
positive conductances (Wi,j){i,j}∈E , and a vertex i0 ∈ V , we denote by QWi0 (du) the
positive measure on {(ui)i∈V ∈ RV , ui0 = 0} defined by

QWi0 (du) = cV e
− 1

2

∑
i→jWi,j(e

∇ui,j−1)√Di0(W,u)(
∏
i6=i0

dui), (1.1)

where cV = 1/
√
2π
|V |−1

, and

Di0(W,u) =
∑
T∈Ti0

∏
(i,j)∈T

Wi,je
∇ui,j ,

where Ti0 is the set of directed spanning trees oriented towards the root i0. (The choice
of directed spanning trees with weights euj−ui , instead of eui+uj classically, explains that
the integration is with respect to the measure (

∏
i 6=i0 dui) instead of (

∏
i6=i0 e

−uidui).)
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Polynomial localization of the 2D-VRJP

The following fact was initially proved in [10] by supersymmetric arguments, then in
[20] by probabilistic arguments and in [21] by direct computation.

Theorem A. The measure QWi0 (du) is a probability measure on the set {(ui)i∈V , ui0 = 0}.

For simplicity, we will often write EQ
W
i0 (·) for

∫
· QWi0 (du). The following is a simple

consequence of the previous theorem.

Corollary 1.1. For any i0, j0 ∈ V :

E
QWi0 (euj0 ) = 1.

Proof. By simple computation, changing from variable (ui) to (ũi) = (ui − uj0), we get
that ∫

euj0QWi0 (du) =

∫
QWj0 (dũ) = 1.

The following result relates the mixing field QWi0 (du) with the VRJP and was proved in
[20].

Theorem B. After some time change (see [20], Theorem 2 ii) for details), the VRJP
starting from i0 ∈ V with conductances (Wi,j)i∼j is a mixture of Markov jump processes
with jump rates 1

2Wi,je
Uj−Ui , where (Ui)i∈V is distributed according to QWi0 (du). More

precisely, we have the following identity of distributions:

LV RJPi0 (·) =
∫
L(u)
i0

(·)QWi0 (du),

where LV RJPi0
is the law of the (time-changed) VRJP starting from i0 and L(u)

i0
is the law

of the Markov jump process starting from i0 and with jump rate from i to j ∼ i,

1

2
Wi,je

uj−ui .

1.2 Main results

We focus now on the lattice Z2 and its restriction to finite boxes. We denote by
GZ2 = (Z2, EZ2) the usual Z2 lattice where {i, j} ∈ EZ2 if |i − j|1 = 1. We assume that
the lattice is endowed with some positive conductances (Wi,j)i∼j .

For N a positive integer, we set VN := Z2∩ [−N,N ]2, and denote by GN the restriction
of GZ2 to [−N,N ]2 with wired boundary condition. More precisely, GN := (ṼN , Ẽn) where
ṼN := VN ∪ {δN} and ẼN are obtained by contracting all the vertices of Z2 \ VN to
the single point δN (the edges are obtained as the image of the edges of GZ2 by this
contraction and by removing all the loops created and identifying multiple edges).
The graph GN is naturally endowed with the conductances (WN

e )e∈ẼN obtained by this
restriction: the conductance of an edge is the sum of the conductances of the edges of
EZ2 mapped to it by the contraction. (See [22], section 4.1 for details of the construction.)
The estimates below are also valid for the free wired boundary condition, but the wired
boundary condition is useful for the application to recurrence. We denote by QNi0 the
mixing field associated with this graph with conductances (WN

e )e∈ẼN and simply by QN

when i0 = 0.
The main theorem proves polynomial decay of some exponential moments of the

mixing field under QN (du).

Theorem 1.2. Assume that the conductances are uniformly bounded: Wi,j ≤ W < ∞
for all i ∼ j, i, j ∈ Z2. Then, for 0 < s < 1, there exists η = η(W, s) > 0 such that for all
N ∈ N large enough, for all y ∈ VN ,

EQ
N

(esuy ) ≤ |y|−η.
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Remark 1.3. An explicit expression is provided for η, see (2.8).

As stated in Remark 7 of [22], such an estimate implies that the VRJP is recurrent on
Z2.

Theorem 1.4. On the graph Z2 with constant conductances on horizontal edges and on
vertical edges, the VRJP is recurrent, i.e. almost surely, the VRJP visits infinitely often
every point.

Remark 1.5. A weaker version of the recurrence was proved for the 2D-VRJP by Bauer-
schmidt, Helmuth and Swan in [3]: their result asserts that the expectation of the total
time spent at the origin is infinite. Their approach is based on a direct relation between
the VRJP at finite time and the full supersymmetric hyperbolic sigma model and by an
adaptation of the original Mermin-Wagner argument.

Proof. The proof of the theorem is the same as the proof of the corresponding theorem
for the ERRW, see Theorem 5 of [22]. In [22], a stationary ergodic function (ψ(i))i∈Z2 is
constructed, which is a.s. equal to 0 if and only if the VRJP is recurrent. The polynomial
decay of the mixing field EQ

N

(esuy ) implies that the function ψ is equal to 0 and thus
that the VRJP is recurrent.

2 Proof of Theorem 1.2

2.1 An a priori estimate

The proof is based on the following Mermin-Wagner type estimate. This estimate is
valid for any finite graph G = (V,E) with conductances (Wi,j)i∼j .

Lemma 2.1. Let i0 and y be two distinct vertices. Let v : V 7→ R be such that v(i0) = 0,
v(y) = 1. For 0 < s < 1, let q > 1 be such that s+ 1

q = 1. Let γ > 0 be such that

q2γ|∇vi,j | ≤
1

2
, ∀i ∼ j in V. (2.1)

Then,

E
QWi0 (esuy ) ≤ e−γs+γ

2q2
∑
i→j(Wi,j+1)|∇vi,j |2 .

In order to simplify the notations, we will simply write Q(du) for QWi0 (du) and D(W,u)

for Di0(W,u).

Proof. We start by a simple change of variables.

Proposition 2.2. For γ ∈ R we denote by Qγ the distribution of ũγ := u− γv when u is
distributed under Q(du). We have

dQ

dQγ
(u) = e

1
2

∑
i→jWi,je

∇ui,j (eγ∇vi,j−1)

√
D(W,u)

D(W,u+ γv)
,

Proof. If φ is a positive test function, by changing from variable u to ũ := u− γv,∫
φ(u− γv)Q(du) = cV

∫
φ(u− γv)e−

1
2

∑
i→jWi,j(e

∇ui,j−1)√D(W,u)du

= cV

∫
φ(ũ)e−

1
2

∑
i→jWi,j(e

∇ũi,j+γ∇vi,j−1)√D(W, ũ+ γv)dũ

=

∫
φ(ũ)e−

1
2

∑
i→jWi,je

∇ũi,j (eγ∇vi,j−1)

√
D(W, ũ+ γv)

D(W, ũ)
Q(dũ)
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Let us now prove the Lemma. We have by Corollary 1.1

EQ
γ

(euy ) = EQ
(
euy−γvy

)
= e−γEQ (euy ) = e−γ .

On the other hand, by the Hölder inequality with exponents q and 1
s ,

EQ (esuy ) = EQ
γ

(
dQ

dQγ
esuy

)
≤ EQ

γ

((
dQ

dQγ

)q)1/q

EQ
γ

(euy )
s

= e−γsEQ
γ

((
dQ

dQγ

)q)1/q

(2.2)

(It will be clear later that everything is integrable on the right-hand-side.)
Let us fix γ′ such that

γ′ := −γ(q − 1).

We have,

EQ
γ

((
dQ

dQγ

)q)
= EQ

((
dQ

dQγ

)q−1)
= EQ

γ′
((

dQ

dQγ

)q−1(
dQ

dQγ′

))
(2.3)

Then, by Proposition 2.2(
dQ

dQγ

)q−1(
dQ

dQγ′

)
(u) (2.4)

= e
1
2

∑
i→jWi,je

∇ui,j ((q−1)eγ∇vi,j+eγ
′∇vi,j−q)

√
D(W,u)

q√
D(W,u+ γv)

q−1√
D(W,u+ γ′v)

.

Using that

e∇ui,j ((q − 1)eγ∇vi,j + eγ
′∇vi,j − q) = qe∇ui,j+γ

′∇vi,j
(
(1− 1

q
)eqγ∇vi,j +

1

q
− e(q−1)γ∇vi,j

)
since γ′ := −γ(q − 1), and taking the logarithm of the determinantal terms, we get

(2.4) = exp

q
2

∑
i→j

Wi,je
∇ui,j+γ′∇vi,j

(
(1− 1

q
)eqγ∇vi,j +

1

q
− e(q−1)γ∇vi,j

)
· exp

(
q

2

(
lnD(W,u)− (1− 1

q
) lnD(W,u+ γv)− 1

q
lnD(W,u+ γ′v)

))
.

Let us consider the first line of the last expression: we make a second order expansion
of the term (1− 1

q )e
qγ∇vi,j + 1

q − e
(q−1)γ∇vi,j . The constant term vanishes, and the first

order is

(1− 1

q
)qγ∇vi,j − (q − 1)γ∇vi,j = 0

Hence we can bound by Taylor expansion:∣∣∣∣(1− 1

q
)eqγ∇vi,j +

1

q
− e(q−1)γ∇vi,j

∣∣∣∣
≤ 1

2
(qγ∇vi,j)2(1−

1

q
)eqγ|∇vi,j | +

1

2
((q − 1)γ|∇vi,j |)2e(q−1)γ|∇vi,j |

≤ q2γ2|∇vi,j |2eqγ|∇vi,j |

≤ 2q2γ2|∇vi,j |2 (2.5)

≤ 1

2
(2.6)
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where (2.5) and (2.6) comes from the fact that qγ|∇vi,j | ≤ q2γ|∇vi,j | ≤ 1
2 by assump-

tion (2.1), and that e
1
2 ≤ 2.

Concerning the second term we will use the following lemma.

Lemma 2.3. The application γ → lnD(W,u+ γv) is convex.

Remark 2.4. The property was already remarked in [10], remark 2.3, and a similar
statement was proved in the case of the ERRW, see the proof of Lemma 6.2 in [16].

Proof. Remind that Ti0 is the set of directed spanning trees oriented toward i0. We have

∂

∂γ
lnD(W,u+ γv) =

∑
T∈Ti0

(∏
(i,j)∈T Wi,je

∇ui,j+γ∇vi,j
)(∑

(i,j)∈T ∇vi,j
)

∑
T∈Ti0

∏
(i,j)∈T Wi,je∇ui,j+γ∇vi,j

∂2

∂γ2
lnD(W,u+ γv) =

∑
T∈Ti0

(∏
(i,j)∈T Wi,je

∇ui,j+γ∇vi,j
)(∑

(i,j)∈T ∇vi,j
)2

∑
T∈Ti0

∏
(i,j)∈T Wi,je∇ui,j+γ∇vi,j

−

∑T∈Ti0

(∏
(i,j)∈T Wi,je

∇ui,j+γ∇vi,j
)(∑

(i,j)∈T ∇vi,j
)

∑
T∈Ti0

∏
(i,j)∈T Wi,je∇ui,j+γ∇vi,j

2

We denote byM(W,u+ γv) the probability on the set Ti0 , which gives a weight∏
(i,j)∈T

Wi,je
∇ui,j+γ∇vi,j ,

to a spanning tree T ∈ Ti0 , suitably normalized. We denote by VarM(W,u+γv) the associ-
ated variance. With this notation, we get,

∂2

∂γ2
lnD(W,u+ γv) = VarM(W,u+γv)

 ∑
(i,j)∈T

∇vi,j

 ≥ 0.

As a consequence, since (1− 1
q )γ + 1

qγ
′ = 0, we have

(1− 1

q
) lnD(W,u+ γv) +

1

q
lnD(W,u+ γ′v)− lnD(W,u) ≥ 0.

Hence by (2.4) and (2.5)(
dQ

dQγ

)q−1(
dQ

dQγ′

)
(u) ≤ exp

q
2

∑
i→j

Wi,je
∇ui,j+γ′∇vi,j

(
2q2γ2|∇vi,j |2

)
Hence,

EQ
γ′
((

dQ

dQγ

)q−1(
dQ

dQγ′

))

≤ cV

∫
exp

−1

2

∑
i→j

Wi,j

(
(1− 2q3γ2|∇vi,j |2)e∇ui,j+γ

′∇vi,j − 1
)√D(W,u+ γ′v)du

≤ e
∑
i→jWi,jq

3γ2|∇vi,j |2cV

∫
exp

−1

2

∑
i→j

W̃i,j

(
e∇ui,j+γ

′∇vi,j − 1
)√D(W,u+ γ′v)du

with
W̃i,j :=Wi,j(1− 2q3γ2|∇vi,j |2)
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Remark that by assumption, we have 2q3γ2|∇vi,j |2 ≤ 2(q2γ|∇vi,j |)2 ≤ 1
2 , we have

W̃i,j ≥
1

2
Wi,j > 0,

hence the measure QW̃ := QW̃i0 defined by (1.1) with conductances (W̃i,j) is well-defined
as a probability. Changing back to coordinate ũ = u+ γ′v we get that

EQ
γ′
((

dQ

dQγ

)q−1(
dQ

dQγ′

))

≤ e
∑
i→jWi,jq

3γ2|∇vi,j |2cV

∫
exp

−1

2

∑
i→j

W̃i,j

(
e∇ũi,j − 1

)√D(W, ũ)dũ

= e
∑
i→jWi,jq

3γ2|∇vi,j |2
∫ √

D(W, ũ)

D(W̃ , ũ)
QW̃ (dũ)

Now, since 2q3γ2|∇vi,j |2 ≤ 1
2 and (1− h)−1 ≤ e2h if 0 ≤ h ≤ 1

2 ,

D(W, ũ)

D(W̃ , ũ)
≤

∏
{i,j}∈E

(1− 2q3γ2|∇vi,j |2)−1 ≤ exp

2
∑
{i,j}∈E

2q3γ2|∇vi,j |2


≤ exp

2
∑
i→j

q3γ2|∇vi,j |2
 .

It follows that

EQ
γ′
((

dQ

dQγ

)q−1(
dQ

dQγ′

))1/q

≤ exp

∑
i→j

(Wi,j + 1)q2γ2|∇vi,j |2
 .

Together with (2.2) and (2.3), it concludes the proof of the lemma.

2.2 Back to the Z2 lattice

We assume in this section that the graph is the graph GN = (ṼN , ẼN ) defined in
Section 1.2. We will apply the previous lemma in the case where i0 = 0 and y ∈ VN .

The next step to conclude the proof of Theorem 1.2 is to construct a good function
v which satisfies the hypothesis of Lemma 2.1 and with a good control on its l2 norm.
We denote by E the Dirichlet form on the graph GN with conductances 1 defined for
f : ṼN 7→ R by

E(f, f) = 1

2

∑
i→j
|∇fi,j |2.

Let v be the harmonic function between 0 and y ∈ VN , y 6= 0, for constant conductances
1: 

v(0) = 0,

v(y) = 1,∑
j,j∼z∇vz,j = 0, ∀z ∈ VN , z 6= 0, z 6= y.

By definition

E(v, v) = 1

R(0, y)
,
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where R(0, y) is the equivalent resistance between 0 and y for the graph GN with unit
conductances. Classically, by Nash-William criterion, there exists c0 > 0, independent of
N and y, such that

R(0, y) ≥ c0 ln |y|∞,

see e.g. [13], formula (2.7) Section 2.4 taking the annuli between 0 and y as cut-sets.
(Note that we can take c0 arbitrary close to 1/8 for |y|∞ large enough, since [13],

formula (2.7) implies that R(0, y) ≥
∑|y|∞−1
k=1

1
4(2k+1) ∼

1
8 ln |y|∞.) Moreover we have,

div(∇v)(z) = 1

R(0, y)
(1z=0 − 1z=y),

where div(∇v) is the divergence of ∇v defined by div(∇v)(z) =
∑
j,j∼z∇vz,j . This

implies that R(0, y)∇v is a unit flow between 0 and y, in fact it is the current flow, see
[13] Section 2.4. In particular it implies, by [13] Proposition 2.2 and exercise 2.37, that

R(0, y)|∇vi,j | ≤ 1, ∀i ∼ j.

Take

γ = γ̃R(0, y), with γ̃ ≤ 1

2q2
, (2.7)

γ̃ to be fixed later. We have that

γq2|∇vi,j | = γ̃q2(R(0, y)|∇vi,j |) ≤
1

2
,

and v satisfies the hypothesis of Lemma 2.1. Hence, we can apply Lemma 2.1 to γ and v:
since Wi,j ≤W for all i ∼ j, we get

EQ (esuy ) ≤ e−γs+2γ2q2(W+1)E(v,v) = e−R(0,y)γ̃s+2γ̃2R(0,y)2q2(W+1)E(v,v)

= e−R(0,y)(γ̃s−2γ̃2q2(W+1)),

since E(v, v) = 1/R(0, y). The infimum on γ̃ of the right-hand side is obtained for

γ̃ =
s

4q2(W + 1)
≤ 1

2q2
.

Choosing γ̃ as above, it satisfies the condition (2.7), so that we get

EQ (esuy ) ≤ e−R(0,y) s2

8q2(W+1) ≤ e−
c0s

2

8q2(W+1)
ln |y|

. (2.8)

Taking η(s,W ) := c0s
2

8q2(W+1)
concludes the proof of the lemma.

Remark 2.5. Note that when W → 0, we cannot get an arbitrary large exponent η(s,W ).
This is rather surprising since, by a different argument, at small W it is known that the
field is exponentially localized (see [9]). The same phenomenon appears in the proof of
Merkl and Rolles of the polynomial localisation of the mixing field of the ERRW (see [16]),
where a Mermin-Wagner argument is also used. This is what prevented them to prove
recurrence of the 2D-ERRW at strong disorder. Indeed, without extra considerations,
one needs an exponent η at least larger than 1 to get recurrence.
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