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Abstract

Generators of Markov processes on a countable state space can be represented as
finite or infinite matrices. One key property is that the off-diagonal entries correspond-
ing to jump rates of the Markov process are non-negative. Here we present stochastic
characterizations of the semigroup generated by a generator with possibly negative
rates. This is done by considering a larger state space with one or more particles and
antiparticles, with antiparticles being particles carrying a negative sign.
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1 Introduction

Consider the generator L of a Markov jump process (Xt)t≥0 on a countable state
space E. It is characterized by jump rates r(x, y) for jumps from x to y, x 6= y, r(x, x) = 0,
and for f : E → R

Lf(x) =
∑
y∈E

r(x, y)[f(y)− f(x)]. (1.1)

The relationship between the probabilistic process (Xt)t≥0, its semi-group (Pt)t≥0 with
Ptf(x) = Exf(Xt) and generator describing the rules for jumps is very fruitful. One
essential restriction is that the jump rates are non-negative. If r(x, y) < 0 is allowed,
then (1.1) is still a perfectly valid operator which under reasonable conditions will be
the generator of a semi-group St = etL, but the probabilistic interpretation is lost. The
aim of this note is to recover some probabilistic meaning.

Before we go into the details let us remind us of some basic facts. In the probabilistic
setting, the generator L is usually characterized via its jump rates r(x, y). If we consider
L as matrix, then its off-diagonal entries are given by r(x, y), while the diagonal is given
by −

∑
y:x 6=y r(x, y). The fact that a Markov generator as a matrix has zero sum rows

stems form the preservation of mass. The off diagonal entry r(x, y) is the parameter of
the exponential waiting time for a jump from x to y. When presented with a matrix A
where the diagonal entries do not match −

∑
y:x6=y r(x, y) but the off-diagonal entries are

non-negative, then the deviation can be split off into a potential V , writing

Af(x) = (L+ V )f(x) =
∑
y∈E

r(x, y)[f(y)− f(x)] + V (x)f(x) (1.2)
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with V a diagonal matrix and L a Markov generator. The potential term V (x) has the
probabilistic interpretation of a branching or killing rate, and the corresponding semi-
group has (assuming for simplicity finite row sum norm of A) the explicit probabilistic
form

etAf(x) = Exf(Xt)e
∫ t
0
V (Xu)du (1.3)

with Xt the Markov process generated by L. Equation (1.3) is sometimes referred to as
the Feynman-Kac formula. The basic intuition behind this formula is that it represents
the expectation of particles moving independently according to L, and which are killed
or branch into two at rate |V (x)|, with negative V implying killing.

We will build on this intuition to deal with negative jump rates, which should represent
both movement and killing. We can consider a regular jump event from x to y via
positive rates r(x, y) > 0 as the killing of a particle at x and creation of a particle at
y. Correspondingly we will see that a ‘jump’ event from negative rates r(x, y) < 0 is in
some sense the opposite, the destruction of a particle at y and the creation of one at x.
This runs into the problem that there might be no particle at y to destroy. We solve this
by introducing anti-particles, and consider killing a particle at y the same as creating an
anti-particle at y. In the following sections we will look at the details, with Theorem 2.1
corresponding to a single (anti-)particle like in (1.3) and Theorems 3.1 and Theorem 4.1
giving multi-particle formulations. Section 5 looks at an application to duality of Markov
processes and Section 6 gives the simple example of a double Laplacian.

2 Switching between particles and antiparticles

Let us write r+(x, y) = max(r(x, y), 0) and r−(x, y) = max(−r(x, y), 0), and consider
the Markov process (X̂t, Zt)t≥0 on E × {−1,+1} with generator

L̂f(x, s) =
∑
y∈E

r+(x, y) [f(y, s)− f(x, s)] +
∑
y∈E

r−(x, y) [f(y,−s)− f(x, s)] . (2.1)

We interpret X̂t as the position of the Markov process, and Zt indicates whether it is a
particle (Zt = +1) or an anti-particle (Zt = −1). Then the first sum describes just the
regular change of position via jumps utilizing the rates r+. The second sum similarly
describes movement, but whenever the particle jumps according to the rates r−, the
state also changes from particle to anti-particle or vice versa. We can now present a
stochastic representation of the semi-group generated by an arbitrary matrix with finite
supremum norm.

Theorem 2.1. Let A be of the form

Af(X) =
∑
y∈E

r(x, y)[f(y)− f(x)] + V (x)f(x)

and assume supx∈E
∑
y∈E |r(x, y)| < ∞, supx∈E |V (x)| < ∞, r(x, x) = 0. Then A is a

bounded operator w.r.t. the supremum-norm, St = etA is well-defined and for any
f : E → R bounded, we have

Stf(x) = Ex,+1

[
Ztf(X̂t)e

2
∫ t
0

∑
y∈E r

−(X̂u,y)+V (X̂u)du
]
. (2.2)

Proof. Write f̂(x, s) = sf(x) and V̂ (x, s) = 2
∑
y∈E r

−(x, y) + V (x). Then the right hand
side of (2.2) is the Feynman-Kac formulation of the solution of{

∂φt

∂t (x, s) = L̂φt(x, s) + V̂ (x, s)φt(x, s),

φ0 = f̂ .
(2.3)
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On the other hand, φ̃t(x, s) := sStf(x) also satisfies

∂φ̃t
∂t

(x, s) = sAStf(x) = L̂φ̃t(x, s) + V̂ (x, s)φ̃t(x, s),

and since φ̃0 = φ0 the claim (2.2) follows.

3 Branching particles and antiparticles

Consider a system of particles η+t ∈ NE0 and antiparticles η−t ∈ NE0 , where η±t (x)

is the number of particles/anti-particles at site x and time t. These particles move
independently with jump rates r+(x, y). Additionally there is the following branching
mechanism: a particle at site x branches into two particles at x and one anti-particle at
site y at rate r−(x, y). The same is true for antiparticles at x, which branch into two at x
plus a particle at y. The generator describing the movement and branching of particles
is

L↑+f(η+, η−) =
∑
x,y

r+(x, y)η+(x)[f(η+ + δy − δx, η−)− f(η+, η−)] (3.1)

+
∑
x,y

r−(x, y)η+(x)[f(η+ + δx, η
− + δy)− f(η+, η−)]. (3.2)

The first line of the generator describes the movement of particles. The rate r+(x, y)η+(x)

is the total rate that one of the η+(x) many particles at x jumps from x to y. After
this jump there is one less particle at x and one more at y, making the new particle
configuration η+ + δy − δx. The configuration of anti-particles η− is unchanged. The
second line describes the branching mechanism, with r−(x, y)η+(x) the aggregate rate
that one of the particles at x turns into two particles at x and one anti-particle at y. In
total the result is one more particle at x and one more anti-particle at y, resulting in the
change (η+, η−)→ (η+ + δx, η

− + δy).
The generator describing the movement and branching of anti-particles is analogous,

with the roles of particles and anti-particles reversed:

L↑−f(η+, η−) =
∑
x,y

r+(x, y)η−(x)[f(η+, η− + δy − δx)− f(η+, η−)] (3.3)

+
∑
x,y

r−(x, y)η−(x)[f(η+ + δy, η
− + δx)− f(η+, η−)]. (3.4)

The generator L↑ = L↑+ +L↑− then describes the total system. This system is well-defined
under the assumption that supx∈E

∑
y∈E |r(x, y)| = M <∞, which guarantees that there

is no explosion: if Nt =
∑
x η

+
t (x) +

∑
x η
−
t (x) is the total number of particles and anti-

particles in the system, then Nt is dominated by a jump process with jumps from n to
n + 2 at rate nM , which leads to exponential growth but no explosion. Also note that
under the dynamics the number

∑
x η

+
t (x)−

∑
x η
−
t (x) is preserved in time. In particular,

for the system starting with a single particle at x, i.e., η+0 = δx and η−0 = 0, the sum is
always 1.

Theorem 3.1. Assume supx∈E
∑
y∈E |r(x, y)| <∞. Given f : E → R bounded, define

f↑(η+, η−) =
∑
x∈E

(η+(x)− η−(x))f(x). (3.5)

Then the semigroup St generated by (1.1) has the stochastic description

Stf(x) = E(δx,0)f
↑(η+t , η

−
t ). (3.6)
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Proof. Let (η+,it , η−,it )t≥0, i = 1, ..., n be independent realizations of the particle sys-
tem started at (η+,i0 , η−,i0 ). Then, by the independence of the branching and move-
ment of particles, (

∑n
i=1 η

+,i
t ,

∑n
i=1 η

−,i
t )t≥0 has the same law as a system started in

(
∑n
i=1 η

+,i
0 ,

∑n
i=1 η

−,i
0 ). As a consequence, since f↑ is linear in η+, η−, and anti-symmetric

under exchange of η+ and η−,

Eη+0 ,η
−
0
f↑(η+t , η

−
t ) =

∑
x

η+0 (x)Eδx,0f
↑(η+t , η

−
t ) +

∑
x

η−0 (x)E0,δxf
↑(η+t , η

−
t ) (3.7)

=
∑
x

η+0 (x)Eδx,0f
↑(η+t , η

−
t )−

∑
x

η−0 (x)Eδx,0f
↑(η+t , η

−
t ) (3.8)

and in particular

E2δx,δyf
↑(η+t , η

−
t )− Eδx,0f↑(η+t , η−t ) = Eδx,0f

↑(η+t , η
−
t )− Eδy,0f↑(η+t , η−t ). (3.9)

If we write ut(x) = Eδx,0f
↑(η+t , η

−
t ), then

d

dt
ut(x) =

[
L↑E·f

↑(η+t , η
−
t )
]

(δx, 0) (3.10)

=
∑
y

r+(x, y)
[
Eδy,0f

↑(η+t , η
−
t )− Eδx,0f↑(η+t , η−t )

]
(3.11)

+
∑
y

r−(x, y)
[
E2δx,δyf

↑(η+t , η
−
t )− Eδx,0f↑(η+t , η−t )

]
(3.12)

=
∑
y

r+(x, y)
[
Eδy,0f

↑(η+t , η
−
t )− Eδx,0f↑(η+t , η−t )

]
(3.13)

+
∑
y

r−(x, y)
[
Eδx,0f

↑(η+t , η
−
t )− Eδy,0f↑(η+t , η−t )

]
(3.14)

= Lut(x). (3.15)

Hence ut(x) is the unique solution of{
∂ut

∂t (x) = Lut(x),

u0 = f(x).
(3.16)

Remark 3.2. Theorem 3.1 assumes for simplicity and readability that there is no po-
tential. The presence of a potential V like in Theorem 2.1 would mean that there is in
addition branching and annihilation of particles and antiparticles via

L↑V f(η+, η−) =
∑
x

V +(x)η+(x)[f(η+ + δx, η
−)− f(η+, η−)] (3.17)

+
∑
x

V +(x)η−(x)[f(η+, η− + δx)− f(η+, η−)] (3.18)

+
∑
x

V −(x)η+(x)[f(η+ − δx, η−)− f(η+, η−)] (3.19)

+
∑
x

V −(x)η−(x)[f(η+, η− − δx)− f(η+, η−)] (3.20)

meaning both particles and anti-particles individually branch into two at rate V + or are
killed at rate V −. It can be easily verified that [L↑V E·f

↑(η+t , η
−
t )](δx, 0) = V (x)ut(x).
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4 Branching and annihilating particles and antiparticles

The process in Section 3 tends to have an exponentially growing number of particles.
It turns out that we can introduce annihilation of particles and antiparticles to reduce
this number. We do so by letting any pair of particle and antiparticle which are at
the same site annihilate at rate λ ∈ [0,∞], where infinite rate corresponds to instant
annihilation. Let

L↑,λf(η+, η−) = L↑f(η+, η−) + λ
∑
x

η+(x)η−(x)
[
f(η+ − δx, η− − δx)− f(η+, η−)

]
(4.1)

be the generator of the particle system which includes annihilation.

Theorem 4.1. Theorem 3.1 is also valid when there is annihilation for any λ ∈ (0,∞].

Proof. Write P ↑,λt f(η+, η−) = Eη+,η−f(η+t , η
−
t ) for the semigroup generated by L↑,λ, with

λ = 0 being the system without annihilation. By (3.8), if η+(x) > 0 and η−(x) > 0,

P ↑,0t f↑(η+, η−) = P ↑,0t f↑(η+ − δx, η− − δx).

Hence

(L↑,λ − L↑,0)P ↑,0t f↑(η+, η−) = 0 (4.2)

and it follows that P ↑,λt f↑ = P ↑,0t f↑.

5 Applications to duality of Markov processes

A very brief introduction to duality of Markov processes is as follows. Two Markov
processes (Xt)t≥0 and (Yt)t≥0 on state spaces E and F are said to be dual with duality
function H : E × F → R, if for all x ∈ E and y ∈ F ,

ExH(Xt; y) = EyH(x;Yt). (5.1)

A sufficient condition is that the generators LX and LY satisfy

[LXH(·; y)](x) = [LYH(x; ·)](y), ∀ x ∈ E, y ∈ F. (5.2)

Duality has proven fruitful in many applications. For a survey on duality, see [2]. The
challenge with duality is that given a Markov process Xt of interest, how to find a Markov
process Yt and duality function H so that (5.1) holds. One can make an educated guess
on H, and then find a generator LY which satisfies (5.2). Or one can use symmetries
of LX to identify a suitable Lie algebra representation whose building blocks can build
LX , and then find a dual representation, which then allows to build LY , see [1] and
[3] for an introduction to this method. However, neither method guarantees that the
dual generator LY is actually a Markov generator. If F is countable, as is the case in
many applications of duality, then LY can be represented as a finite or infinite matrix. A
stochastic representation of the semigroup generated by such an LY is desirable, and
with Theorem 2.1, Theorem 3.1 or Theorem 4.1 this is possible.

Theorem 5.1. Assume that there is a duality function H and generator LY satisfy-
ing (5.2), with F countable. Further assume that the matrix representation of LY has
row sums 0, so that it can be written in the form of (1.1), and supy∈F

∑
z∈F |r(y, z)| <∞.

Then the Markov process (Xt)t≥0 is dual to the process (η+t , η
−
t )t≥0 with duality function

H↑(x; η+, η−) =
∑
y∈F

(η+(y)− η−(y))H(x; y).
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Here (η+t , η
−
t )t≥0 is the branching (and annihilating) particle system introduced in sec-

tions 3 and 4, with arbitrary annihilation rate λ ∈ [0,∞]. In other words

ExH
↑(Xt; (η+, η−)) = Eη+,η−H

↑(x; (η+t , η
−
t )). (5.3)

Proof. By the proof of Theorem 4.1 the right hand side of (5.3) does not depend on the
annihilation rate, so we can restrict ourself to the case of no annihilation. By (5.2) we
have ExH(Xt; y) = [StH(x; ·)](y), where St is the semigroup generated by LY . Then, by
Theorem 3.1, we have

ExH
↑(Xt; (δy, 0)) = ExH(Xt; y) = [StH(x; ·)](y) = Eδy,0H

↑(x; (η+t , η
−
t )). (5.4)

Finally, with (3.8) we can extend the above from (δy, 0) to arbitrary starting configura-
tions.

6 Example: double Laplacian on the integers

Let ∆f(x) = 1
2f(x+ 1)− f(x) + 1

2f(x− 1) be the discrete Laplacian on Z. Then the
double Laplacian is given by

∆∆f(x) =
1

4
(f(x+ 2)− f(x)) +

1

4
(f(x− 2)− f(x)) (6.1)

− (f(x+ 1)− f(x))− (f(x− 1)− f(x)), (6.2)

which is of the form (1.1) with negative rates. Let St be the semigroup generated by the
double Laplacian ∆∆. We will apply Theorem 2.1. So let X̂ be the random walk on Z
which performs the jumps ±1 at rate 1 and ±2 at rate 1

4 . Since jumps using the rates
r− involve flipping the sign of Zt, we have that Zt = (−1)Nt , where Nt is the number
of nearest neighbour jumps performed by X̂t. Note that Nt is even iff X̂t − X̂0 is even.
Hence

Zt = 21Nt is even − 1 = 21X̂t−X̂0 is even − 1. (6.3)

Finally we observe that by spatial homogeneity
∑
y r
−(x, y) = 2. By Theorem 2.1,

Stf(x) = e4tEx

(
Ztf(X̂t)

)
. (6.4)

Note that Nt is Poisson (2t)-distributed, and therefore P(Nt is even) = 1
2 (1 + e−4t) and

EZt = e−4t. Alternatively, EZt = e−4t follows from (6.4) applied to the constant function
1, since St1 = 1. For a more complex example consider f of the form f(x) = g(x)1x is even.
Then, by (6.3) and (6.4),

Stf(x) =

{
1
2 (e4t + 1)Ex

[
g(X̂t)

∣∣X̂t even
]
, x even;

− 1
2 (e4t − 1)Ex

[
g(X̂t)

∣∣X̂t odd
]
, x odd.

(6.5)

The conditional expectations are reasonably well approximated by integrating g against
a normal distribution with variance Var(X̂t) = 4t assuming g is smooth enough and t not
too small.

7 Example of all rates negative

Consider the operator of the form (1.2) with all r(x, y) ≤ 0. We make the simplifying
assumption that there are constants λ1, λ2 so that

∑
y r
−(x, y) = λ1 and V (x) = λ2 for all
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x. Then, by Theorem 2.1,

e−(2λ1+λ2)teAtf(x) = Ex,+1

(
Ztf(X̂t)

)
(7.1)

= Ex,+1

[
f(X̂t)

∣∣∣ Nt even
]
P(Nt even)− Ex,+1

[
f(X̂t)

∣∣∣ Nt odd
]
P(Nt odd), (7.2)

where Nt counts the number of jumps of X̂t. Since
∑
y r
−(x, y) = λ1 it follows that Nt is

Poisson (λ1t)-distributed and P(Nt even) = 1
2 (1 + e2λ1t).

If we assume that X̂t has a stationary distribution µ then it is reasonable to write

Ex,+1

[
f(X̂t)

∣∣∣ Nt even
]

= µ(f) + bet (x); (7.3)

Ex,+1

[
f(X̂t)

∣∣∣ Nt odd
]

= µ(f) + bot (x). (7.4)

If X̂t is converging exponentially fast to µ the error terms bet (x) and bot (x) will be decaying
exponentially at some rate 0 ≤ ν ≤ λ1 (if the Markov process is on a bipartite graph ν
can be 0 even if convergence to µ is exponentially fast, and the rate is no larger than λ1
since that the exit rate for a single site). Then, continuing from (7.1),

eAtf(x) = e(2λ1+λ2)t
bet (x)− bot (x)

2
+ eλ2t

(
µ(f) +

bet (x) + bot (x)

2

)
. (7.5)

Therefore typically the first term is the dominant term, and |eAtf | grows at rate at most
2λ1+λ2−ν, which is slower than what (7.1) or the supremum norm ‖A ‖∞ = |λ1+λ2|+λ1
suggest. More details depend on a more sophisticated analysis using specifics of f and
X̂t, for example by finding cancellations in bet (x)− bot (x).
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