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Abstract

We prove that the speed of a biased random walk on a supercritical Galton-Watson
tree conditioned to survive is analytic within the ballistic regime. This extends the
previous work [12] in which it was shown that the speed is differentiable within the
range of bias for which a central limit theorem holds.
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1 Introduction

The behaviour of biased random walks on Galton-Watson (GW) trees has been exten-
sively studied since Lyons, Pemantle and Peres [16] proved the existence of a limiting
speed. Since then, asymptotic properties of the walk have received considerable interest
in the form of sub-ballistic escape rates [6], central limit theorems [10, 18], large devia-
tions [13] and Einstein relations [8]. In this paper we are interested in the regularity
properties of the speed for which there are many open problems both in this model (see
[5]) and in the related models of biased random walks on percolation clusters [14] and
random walk in random environment [19].

A novel feature of the model is that, even without leaves, monotonicity of the speed
with respect to the bias (or offspring distribution) is non-trivial and remains an open
problem except when the bias is sufficiently strong [1, 7, 17]. This can be attributed
to the fact that certain sections of the tree will be exceptionally thin and the walk will
typically move through them much slower than it would elsewhere. These adverse
regions act as traps which may intensify as the bias away from the root is increased.
With leaves, dead-ends form traps which create a similar slowing effect. The competing
forces of the drift and the trapping result in a delicate relationship between the speed
and the bias.

In this paper we study the speed of a biased random walk on a supercritical GW tree
(with or without leaves) as a function of the bias. We prove that the speed is analytic
within the range of bias such that the speed is strictly positive. This builds on [12] where
it has been shown that the speed is differentiable and an expression for the derivative
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Figure 1: A sample section of a supercritical GW-tree conditioned to survive T with
solid lines representing the backbone Tg and dashed lines representing the traps. Here,
the root e is the parent of w (i.e. e = π(w)) which has children x, y, z where x, z are on
the backbone and y is a bud in the only trap rooted at w. Similarly, u, v are two of the
children of z, both of which are buds of individual traps rooted at z.

was given in terms of the covariance of a certain 2-dimensional Gaussian. For biased
random walks on subcritical GW trees conditioned to survive, an explicit expression for
the speed has been obtained in [11] which is analytic within the strictly positive speed
regime.

We briefly describe the supercritical GW-tree conditioned on survival via the Harris
decomposition; for more detail see [3, 15]. Let {pk}k≥0 denote the offspring distribution
of a GW-process Wn with a single progenitor, mean µ > 1 and probability generating
function f . The process Wn gives rise to a random tree Tf where individuals are
represented by vertices and edges connect individuals with their offspring. Let q denote
the extinction probability of Wn which is strictly less than 1 since µ > 1 and non-zero
only when p0 > 0. In this case we then define

g(s) :=
f((1− q)s+ q)− q

1− q
and h(s) :=

f(qs)

q

which are generating functions of a GW-process without deaths and a subcritical GW-
process respectively (cf. [3, Chapter I.12]). An f -GW-tree conditioned on nonextinction
T can be constructed by first generating a g-GW-tree Tg and then, to each vertex x of
Tg, appending a random number of independent h-GW-trees (see Figure 1). We refer to
Tg as the backbone of T, the finite trees appended to Tg as the traps and the vertices in
the first generation of the traps as the buds.

We now introduce the biased random walk on a fixed tree T . We denote by e(T )

the root, which is the vertex representing the unique progenitor. For x ∈ T , let π(x)

denote the parent of x and ν(x) the number of children of x. A λ-biased random walk
on T is a random walk (Zn)n≥0 on the vertices of T started from e(T ) with transition
probabilities

PT
λ (Zn+1 = y|Zn = x) :=


λ

λ+ν(x) , if y = π(x),
1

λ+ν(x) , if x = π(y) 6= e(T ),
1

ν(x) , if x = π(y) = e(T ),

0, otherwise.
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For x ∈ T we then write PT
λ,x(·) := PT

λ (·|Z0 = x) for the law of the walk on T started

from x. We use Pλ(·) :=
∫
PT
λ (·)P(dT) for the annealed law obtained by averaging the

quenched law PT
λ with respect to the law P on f -GW-trees conditioned to survive and

denote the expectation with respect to Pλ (resp. PT
λ ) by Eλ (resp. ET

λ ).
For x ∈ T, let d(x) denote the distance between x and the root of the tree and write

λc :=

{
0 if p0 = 0,

f ′(q) if p0 > 0.

In [16], Lyons, Pemantle and Peres showed that if λ ∈ (λc, µ) then the walk is ballistic;
that is, d(Zn)n−1 converges Pλ-a.s. to a deterministic constant υλ > 0 called the speed of
the walk. When λ ≥ µ the walk is recurrent and d(Zn)n−1 converges Pλ-a.s. to 0. When λ
is small and p0 > 0, the walk is transient but slowed by having to make long sequences of
movements against the bias in order to escape the traps; in particular, if λ ≤ λc then the
slowing effect is strong enough to cause d(Zn)n−1 to converge Pλ-a.s. to 0. This regime
has been studied further in [6] and [9] where polynomial scaling results are shown.

The aim of this paper is to study how the value of υλ depends on the parameter of
bias λ; specifically, our main result is the following.

Theorem 1.1. The function λ 7→ υλ is analytic on (λc, µ).

We now introduce a result shown in [2] which will play an important role in this
paper. Let (T+,i)i≥1 be independent random trees which have the law of Tf (and are
also independent of T). We will denote by T ∗ a new tree obtained by adding to the
graph T an edge connecting e(T ) and a new vertex e∗(T ). For x ∈ T ∗, define the first
return time σx by σx := inf{n ≥ 1 ; Zn = x}. We then define

β := PT∗

λ (σe∗ =∞) and β+,i := P
T∗+,i
λ (σe∗ =∞).

We note that these random variables depend on the bias λ; however, we omit this from
the notation for simplicity since we never include these at varying values of λ in the
same equation. In [2], Aïdekon showed that the speed can be expressed as

υλ = E

[
(ν − λ)β

λ− 1 + β +
∑ν
i=1 β+,i

]/
E

[
(ν + λ)β

λ− 1 + β +
∑ν
i=1 β+,i

]
. (1.1)

The variables β and (β+,i)i≥1 are independent of each other and also of ν. When the
tree T+,i is finite we have that β+,i = 0 whereas, conditioned on T+,i being infinite, we
have that β+,i is equal in distribution to β. In particular, since each of the trees T+,i is
infinite independently with probability 1− q we can rewrite (1.1) as

υλ = E

[
(ν − λ)β0

λ− 1 +
∑νq
i=0 βi

]/
E

[
(ν + λ)β0

λ− 1 +
∑νq
i=0 βi

]
(1.2)

where
βi := P

T∗i
λ (σe∗ =∞)

for independent trees (Ti)i≥0 with the law of T and νq has a binomial distribution with ν
trials of success probability 1− q.

We summarise below three properties of non-return probabilities which will be
frequently utilised in this paper. Firstly, the variables β, βi and β+,i are all P-almost surely
monotonically decreasing in λ. This fact can be easily seen by Rayleigh’s monotonicity
principle and Theorem 2.11 in [4]. Secondly, the distribution of β0 is same as that of

P
T∗g
λ (σe∗ =∞) since traps appended to the backbone do not affect the occurrence of the

event {σe∗ =∞}. Finally, βi ≥ 1− λ by a coupling with a biased random walk on Z+.
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The remainder of the paper is devoted to proving Theorem 1.1. We split the proof
into two parts; in Section 2 we study the return probability β and prove several technical
estimates then, in Section 3, we approximate the speed by a sequence of analytic
functions and show that this sequence converges compactly.

2 Return times

We first prove several technical results that will be useful throughout the proof of
Theorem 1.1. Let us note that, since (βi)i≥0 are i.i.d. and independent of ν and νq,

E

[
(ν ± λ)β0

λ− 1 +
∑νq
i=0 βi

]
= E

[
(ν ± λ)

∑νq
i=0 βi

(νq + 1)(λ− 1 +
∑νq
i=0 βi)

]
= E

[
ν ± λ
νq + 1

]
− E

[
(ν ± λ)(λ− 1)

(νq + 1)(λ− 1 +
∑νq
i=0 βi)

]
. (2.1)

Using that E
[
ν±λ
νq+1

]
in (2.1) is analytic, in order to prove Theorem 1.1 it suffices to prove

that

E

[
(ν − λ)(λ− 1)

(νq + 1)(λ− 1 +
∑νq
i=0 βi)

]
, E

[
(ν + λ)(λ− 1)

(νq + 1)(λ− 1 +
∑νq
i=0 βi)

]
are analytic. We restrict ourselves to showing analyticity of the second term in a fixed
interval [a, b] ⊂ (λc, µ) (without loss of generality we assume that a < 1 < b). The first
term follows by an identical argument and, since this holds for any such [a, b], analyticity
on (λc, µ) follows.

Note that, for λ ≥ 1 we have that

E

[
(ν + λ)

∑νq
i=0 βi

(νq + 1)(λ− 1 +
∑νq
i=0 βi)

]
≥ E

[∑νq
i=0 βi

µ+ νq

]
≥ µ−1P(νq = 0)E[β0] > 0.

By the monotonicity of β0 in λ, we obtain that the denominator in (1.2) is uniformly
bounded below in any compact interval contained in [1, µ). For λ ≤ 1

E

[
(ν + λ)

∑νq
i=0 βi

(νq + 1)(λ− 1 +
∑νq
i=0 βi)

]
≥ P(νq ≥ 1)

2
E

[ ∑νq
i=0 βi

λ− 1 +
∑νq
i=0 βi

∣∣νq ≥ 1

]
≥ P(νq ≥ 1)

2
> 0

since β0 ≥ 1− λ. We therefore have that the denominator in (1.2) is uniformly bounded
below in any compact interval contained in (λc, µ).

We next prove a technical lemma that will be used throughout to deal with the case
when νq = 0, which occurs only when p0 > 0. This case typically causes additional
difficulty because when νq = 0 and λ < 1 we do not have a lower bound on λ−1+

∑νq
i=0 βi

which is standard when νq ≥ 1 because β0, β1 ≥ 1− λ.

Lemma 2.1. Suppose that p0 6= 0 and [a, b] ⊂ (λc, µ) with a < 1. For any 1 < p <

log(λc)/ log(a) we have that

sup
λ∈[a,b]

E

[(
|λ− 1|

λ− 1 + β0

)p]
<∞.

Proof. For λ ≥ 1 we have that
|λ− 1|

λ− 1 + β0
≤ 1

and for λ < 1 we have that β0 ≥ 1− λ therefore

|λ− 1|
λ− 1 + β0

≤ β0

λ− 1 + β0
.
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It therefore suffices to show that

sup
λ∈[a,1)

E

[(
β0

λ− 1 + β0

)p]
<∞. (2.2)

For x ∈ Tg write β(x) := P
T∗g
λ,x(σπ(x) =∞) and c(x) := {y ∈ T∗g : π(y) = x} for the set

of children of x. By [2, (4.2)] we have that

β0 = β(e) =

∑
y∈c(e) β(y)

λ+
∑
y∈c(e) β(y)

and thus
β0

λ− 1 + β0
=

1

λ
·

∑
y∈c(e) β(y)

λ− 1 +
∑
y∈c(e) β(y)

. (2.3)

Using that β(x) ≥ 1− λ for any x we have that if ν(x) ≥ 2 then∑
y∈c(x) β(y)

λ− 1 +
∑
y∈c(x) β(y)

≤
∑
y∈c(x) β(y)∑

y∈c(x) β(y)−minz∈c(x) β(z)
≤ 2.

Let W g
n denote the nth generation size of T∗g starting from W g

0 = 1 representing e. Write
Cj := {W g

n = 1 ∀n ≤ j} for the event that the first j generations have only a single vertex
and on this event let xj denote that vertex. Repeatedly applying (2.3), we have that

β0

λ− 1 + β0
≤ λ−j β(xj)

λ− 1 + β(xj)
1Cj + 2

j−1∑
i=0

λ−i1Cci+1∩Ci .

Since p0 6= 0 we have that, for n ≥ 0,

P(W g
n+1 = 1|W g

n = 1) = g′(0) = f ′(q) = λc.

Therefore, for t > 0, we have that

P

(
β0

λ− 1 + β0
> t

)
≤ P

(
λ−j

β(xj)

λ− 1 + β(xj)
1Cj + 2

j−1∑
i=1

λ−i1Cci+1∩Ci > t

)
≤ P

(
Clog(t/2)/ log(λ−1)

)
≤ λ

⌊
log(t/2)

log(λ−1)

⌋
c .

Since λc < a < 1 we have that, for p ∈ [1, log(λc)/ log(a)],

sup
λ∈[a,1)

P

(
β0

λ− 1 + β0
> t

)
≤ Ct−p

which proves that (2.2) holds.

Let T∗g,i denote the backbone of T∗i and write

βi,n := P
T∗g,i
λ (σe∗ > n) = βi + P

T∗g,i
λ (n < σe∗ <∞)

for the probability that the first return to e∗ in T∗g,i occurs after time n. Note that, by
restricting to the backbone, the time spent in the finite traps in T∗i does not contribute
to σe∗ . Moreover, T∗g,i is a GW tree whose offspring distribution has no deaths and
mean µ. By [12, Lemma 4.7], for any [a, b] ⊂ (0, µ) we have that

lim
n→∞

sup
λ∈[a,b]

E
[
P

T∗g
λ (n < σe∗ <∞)

]
= 0. (2.4)
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Using (2.4) and Lemma 2.1, we now prove that the convergence in probability of
|λ−1|/(λ−1+β0,n) is uniform within compact intervals of (λc, µ). Similarly to Lemma 2.1,
this will be important when studying the case when νq = 0.

Lemma 2.2. Suppose that p0 6= 0 and [a, b] ⊂ (λc, µ). For any ε > 0 we have that

lim
n→∞

sup
λ∈[a,b]

P

(
|λ− 1|

λ− 1 + β0
− |λ− 1|
λ− 1 + β0,n

> ε

)
= 0.

Proof. We split into two cases. First, for λ ∈ [1, b] we have that

0 ≤ |λ− 1|
λ− 1 + β0

− |λ− 1|
λ− 1 + β0,n

=
|λ− 1|(β0,n − β0)

(λ− 1 + β0)(λ− 1 + β0,n)
≤ β0,n − β0

β0 + β0,n
≤ 1.

Therefore, for any ε, ϑ > 0 we have that

sup
λ∈[1,b]

P

(
|λ− 1|

λ− 1 + β0
− |λ− 1|
λ− 1 + β0,n

> ε

)
(2.5)

≤ sup
λ∈[1,b]

P

(
β0,n − β0

β0 + β0,n
> ε

)
≤ sup
λ∈[1,b]

P(β0,n − β0 > εϑ) + sup
λ∈[1,b]

P(β0 + β0,n < ϑ)

≤ 1

εϑ
sup
λ∈[1,b]

E[β0,n − β0] + P
(
P

T∗g
b (σe∗ =∞) < ϑ

)
since β0 is monotonically decreasing in λ and β0,n ≥ 0. By (2.4) we have that

sup
λ∈[1,b]

E[β0,n − β0] = sup
λ∈[1,b]

E
[
P

T∗g
λ (n < σe∗ <∞)

]
converges to 0 as n → ∞. Since b < µ we have that the walk with bias λ = b is P-a.s.

transient therefore P(P
T∗g
b (σe∗ =∞) < ϑ) converges to 0 as ϑ→ 0. It follows that (2.5)

converges to 0 as n→∞.
We now consider λ ∈ [a, 1]. Since the walk with bias λ = 1 is P-a.s. transient and β0

is monotonically decreasing in λ we have that for any η > 0 there exists ϑη, δη > 0 such
that

sup
λ∈[1−δη,1]

P(λ− 1 + β0 ≤ ϑη) ≤ P
(
P

T∗g
1 (σe∗ =∞) ≤ ϑη + δη

)
≤ η.

Using this with (2.4) and Markov’s inequality we then have that

lim
n→∞

sup
λ∈[1−δη,1]

P

(
|λ− 1|

λ− 1 + β0
− |λ− 1|
λ− 1 + β0,n

> ε

)
≤ lim
n→∞

sup
λ∈[1−δη,1]

P

(
(1− λ)(β0,n − β0)

(λ− 1 + β0)2
> ε

)
≤ η +

1

εϑ2
η

lim
n→∞

sup
λ∈[1−δη,1]

E [β0,n − β0]

≤ η. (2.6)

Fix p ∈ (1, log(λc)/ log(a)) and write Bη,λ := {λ − 1 + β0 > η1/p(1 − λ)}. Then, by
Markov’s inequality and Lemma 2.1,

sup
λ∈[a,1−δη]

P
(
Bcη,λ

)
≤ η sup

λ∈[a,1]

E

[(
|λ− 1|

λ− 1 + β0

)p]
≤ Cη. (2.7)
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Recalling that β0,n ≥ β0 we have that

sup
λ∈[a,1−δη ]

P

(
|λ− 1|

λ− 1 + β0
− |λ− 1|
λ− 1 + β0,n

> ε,Bη,λ
)

≤ sup
λ∈[a,1−δη ]

P

(
(1− λ)(β0,n − β0)1Bη,λ

(λ− 1 + β0)2
> ε

)
≤ ε−1 sup

λ∈[a,1−δη ]

E

[
(1− λ)(β0,n − β0)1Bη,λ

(λ− 1 + β0)2

]
≤ 1

εη2/pδη
sup
λ∈[a,1]

E [β0,n − β0]

which converges to 0 as n→∞ by (2.4). Combining with (2.6) and (2.7) we have that

lim
n→∞

sup
λ∈[a,1]

P

(
|λ− 1|

λ− 1 + β0
− |λ− 1|
λ− 1 + β0,n

> ε

)
≤ Cη

which completes the proof since η > 0 was arbitrary.

3 Approximations of the speed

We now show that we can approximate υλ by a sequence of analytic functions which
converge compactly to the speed. Our approximation is formed by replacing the random
variables βi with the approximations βi,n. We first show that this approximation is
analytic.

Lemma 3.1. For any n ≥ 1

λ 7→ E

[
(ν + λ)(λ− 1)

(νq + 1)(λ− 1 +
∑νq
i=0 βi,n)

]
(3.1)

is analytic on (λc, µ).

Proof. For a tree T write T [n] for the truncation of T up to level n and define

Am,n := {ν ≤ m} ∩
νq⋂
i=0

{max{ν(x) : x ∈ T∗i [n]} ≤ m}

to be the event that every vertex in some T∗i for i = 1, . . . , νq up to level n has degree at
most m and also that ν ≤ m.

For ν ≤ m there are only finitely many νq and families of trees {T∗i [n]}νqi=0 which
satisfy Am,n. Since each βi,n is an analytic function which only depends on the first n
steps of the walk we therefore have that

E

[
(ν + λ)(λ− 1)1Am,n

(νq + 1)(λ− 1 +
∑νq
i=0 βi,n)

]
(3.2)

is analytic. We wish to show that the expectation in (3.2) converges compactly to (3.1)
as m→∞.

We first show that limm→∞P(Acm,n) = 0. On the event Acm,n we must have that

ν +

νq∑
i=0

|T∗i [n]| > m.
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By Markov’s inequality it therefore follows that P(Acm,n) is bounded above by

m−1E

[
ν +

νq∑
i=0

|T∗i [n]|

]
≤ m−1E[ν + 1]

(
1 +

n∑
k=0

E[Wk]

)
≤ m−1E[ν + 1]

(
1 +

n∑
k=0

µk

)

which converges to 0 as m→∞.
Both (3.1) and (3.2) are equal to 0 when λ = 1 therefore we exclude this case and

write Λ := [a, b] \ {1}. Note that for λ > 1 we have∣∣∣∣ (ν + λ)(λ− 1)

(νq + 1)(λ− 1 +
∑νq
i=0 βi,n)

∣∣∣∣ ≤ ν + λ

νq + 1
≤ ν + λ.

For λ < 1 and νq ≥ 1 we have∣∣∣∣ (ν + λ)(λ− 1)

(νq + 1)(λ− 1 +
∑νq
i=0 βi,n)

∣∣∣∣ ≤ (ν + λ)(1− λ)

(νq + 1)
∑νq
i=1 βi,n

≤ ν + λ

since βi,n ≥ 1− λ. It therefore follows that

lim
m→∞

sup
λ∈Λ

∣∣∣∣∣E
[

(ν + λ)(λ− 1)1Acm,n1{νq 6=0}

(νq + 1)(λ− 1 +
∑νq
i=0 βi,n)

]∣∣∣∣∣ ≤ lim
m→∞

E[(ν + µ)1Acm,n ]

which converges to 0 as m→∞ by dominated converge since limm→∞P(Acm,n) = 0.
For the case where λ < 1 and νq = 0, using the Cauchy-Schwarz inequality and

independence of ν and νq with β0 we have that

sup
λ∈Λ

∣∣∣∣∣E
[

(ν + λ)(λ− 1)1Acm,n1{νq=0}

λ− 1 + β0,n

]∣∣∣∣∣
≤ P(Acm,n)

p−1
p E

[
(ν + µ)p1{νq=0}

] 1
p sup
λ∈Λ

E

[(
|λ− 1|

λ− 1 + β0

)p] 1
p

. (3.3)

If p0 = 0 then we cannot have that νq = 0 therefore we may assume that p0 6= 0.
Therefore, by Lemma 2.1, we have that

sup
λ∈Λ

E

[(
|λ− 1|

λ− 1 + β0

)p] 1
p

<∞

for p > 1 sufficiently close to 1. Moreover, since p0 6= 0 we have that q ∈ (0, 1) and
therefore

E
[
(ν + µ)p1{νq=0}

] 1
p =

∞∑
k=0

(k + µ)pP(ν = k)qk <∞.

We therefore have that (3.3) converges to 0 as m→∞ which completes the proof.

We now prove Theorem 1.1 by showing that our analytic approximation converges
compactly to the speed.

Proof of Theorem 1.1. To show analyticity of υλ on the interval [a, b] it remains to show
that

lim
n→∞

sup
λ∈[a,b]

E

[
(ν + λ)|λ− 1|

(νq + 1)(λ− 1 +
∑νq
i=0 βi)

− (ν + λ)|λ− 1|
(νq + 1)(λ− 1 +

∑νq
i=0 βi,n)

]
= 0.
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To begin, let us consider the case p0 = 0 which implies that νq = ν ≥ 1. For ε > 0,
write Bε := {

∑νq
i=1 βi > ε}. Since

0 ≤ (ν + λ)|λ− 1|
(νq + 1)(λ− 1 +

∑νq
i=0 βi,n)

≤ (ν + λ)|λ− 1|
(νq + 1)(λ− 1 +

∑νq
i=0 βi)

≤ 1 + µ

we have that

lim
n→∞

sup
λ∈[a,b]

E

[
(ν + λ)|λ− 1|1Bcε

(νq + 1)(λ− 1 +
∑νq
i=0 βi)

−
(ν + λ)|λ− 1|1Bcε

(νq + 1)(λ− 1 +
∑νq
i=0 βi,n)

]
≤ (1 + µ) sup

λ∈[a,b]

P(Bcε).

Note that ν ≥ 1 therefore P(Bcε) ≤ P(PT∗

λ (σe∗ =∞) ≤ ε) ≤ P(PT∗

b (σe∗ =∞) ≤ ε) for all
λ ≤ b since PT∗

λ (σe∗ =∞) is monotonically decreasing in λ. Since b < µ we have that the
walk with bias b is P-a.s. transient therefore limε→0P(PT∗

b (σe∗ =∞) ≤ ε) = 0. It follows
that supλ∈[a,b]P(Bcε) can be made arbitrarily small by choosing ε > 0 sufficiently small.

Recalling that 1− λ ≤ βi ≤ βi,n, we have that

lim
n→∞

sup
λ∈[a,b]

E

[
(ν + λ)|λ− 1|1Bε

(νq + 1)(λ− 1 +
∑νq
i=0 βi)

− (ν + λ)|λ− 1|1Bε
(νq + 1)(λ− 1 +

∑νq
i=0 βi,n)

]
= lim
n→∞

sup
λ∈[a,b]

E

[
(ν + λ)|λ− 1|

ν + 1

1Bε
∑νq
i=0(βi,n − βi)

(λ− 1 +
∑νq
i=0 βi)(λ− 1 +

∑νq
i=0 βi,n)

]
≤ µ(µ+ 1) lim

n→∞
sup
λ∈[a,b]

E

[
1Bε

∑νq
i=0(βi,n − βi)

(λ− 1 +
∑νq
i=0 βi)

2

]

≤ µ(µ+ 1)

ε2
lim
n→∞

sup
λ∈[a,b]

E

[
νq∑
i=0

(βi,n − βi)

]

≤ µ(µ+ 1)E[ν + 1]

ε2
lim
n→∞

sup
λ∈[a,b]

E
[
PT∗

λ (n < σe∗ <∞)
]

which is equal to 0 by (2.4).
We now extend to the setting where p0 6= 0. By independence of (ν, νq) with

(βi, βi,n)i≥0 we have that

E

[
(ν + λ)|λ− 1|

(νq + 1)(λ− 1 +
∑νq
i=0 βi)

− (ν + λ)|λ− 1|
(νq + 1)(λ− 1 +

∑νq
i=0 βi,n)

]
= E

[
(ν + λ)|λ− 1|

(νq + 1)

(
1

λ− 1 +
∑νq
i=0 βi

− 1

λ− 1 +
∑νq
i=0 βi,n

)]
= E

[
(ν + λ)|λ− 1|

(νq + 1)
E

[ ∑νq
i=0(βi,n − βi)(

λ− 1 +
∑νq
i=0 βi

) (
λ− 1 +

∑νq
i=0 βi,n

) ∣∣∣νq]]

≤ E

[
(ν + λ)|λ− 1|

(νq + 1)

νq∑
i=0

E

[
(βi,n − βi)

(λ− 1 + βi) (λ− 1 + βi,n)

∣∣∣νq]]

= E

[
(ν + λ)|λ− 1|

(
1

λ− 1 + β0
− 1

λ− 1 + β0,n

)]
= E [ν + λ]E

[
|λ− 1|

λ− 1 + β0
− |λ− 1|
λ− 1 + β0,n

]
where we have used that the pairs (βi, βi,n) are identically distributed for i ≥ 0. It
therefore suffices to show that

lim
n→∞

sup
λ∈[a,b]

E

[
|λ− 1|

λ− 1 + β0
− |λ− 1|
λ− 1 + β0,n

]
= 0.
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Fix p ∈ (1, log(λc)/ log(a)) and let q = p/(p− 1). For ε > 0, by Hölder’s inequality we
have

sup
λ∈[a,b]

E

[
|λ− 1|

λ− 1 + β0
− |λ− 1|
λ− 1 + β0,n

]
≤ ε+ sup

λ∈[a,b]

E

[(
|λ− 1|

λ− 1 + β0
− |λ− 1|
λ− 1 + β0,n

)
1 |λ−1|
λ−1+β0

− |λ−1|
λ−1+β0,n

>ε

]

≤ ε+ sup
λ∈[a,b]

E

[(
|λ− 1|

λ− 1 + β0

)p]1/p

P

(
|λ− 1|

λ− 1 + β0
− |λ− 1|
λ− 1 + β0,n

> ε

)1/q

.

The result then follows from Lemmas 2.1 and 2.2.
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