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Abstract

We address the non-linear strict value problem in the case of a general filtration
and a completely irregular pay-off process (ξt). While the value process (Vt) of the
non-linear problem is only right-uppersemicontinuous, we show that the strict value
process (V +

t ) is necessarily right-continuous. Moreover, the strict value process (V +
t )

coincides with the process of right-limits (Vt+) of the value process. As an auxiliary
result, we obtain that a strong non-linear f -supermartingale is right-continuous if and
only if it is right-continuous along stopping times in conditional f -expectation.
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1 Introduction

This note provides a useful complement on the non-linear optimal stopping problem
with f -evaluations.

Let T > 0 be a fixed terminal horizon and let (Ω,F , P ) be a probability space equipped
with a right-continuous complete filtration F = {Ft : t ∈ [0, T ]}. We will denote by T0 the
set of stopping times with values a.s. in [0, T ]. The notation S2 stands for the space of
optional processes (Xt) such that E[ess supτ∈T0 X

2
τ ] <∞. Let ξ = (ξt) be a given optional

pay-off process in S2.
Let us recall that, for a stopping time S ∈ T0, the non-linear optimal stopping problem

is defined by

V (S) := ess sup
τ∈TS

EfS,τ (ξτ ), (1.1)
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On the strict value of the non-linear optimal stopping problem

where TS denotes the set of stopping times valued a.s. in [S, T ] and EfS,τ (·) denotes the
(conditional) f -evaluation at time S when the terminal time is τ , induced by a BSDE with
Lipschitz driver f .

Problem (1.1) has been studied in [7] (in the case of a Brownian filtration and a
continuous pay-off process ξ), in [17] (in the case of a Brownian-Poisson filtration and a
cadlag pay-off), in [2] under an assumption of convexity on the non-linear operator, in [8]
in the case of right-uppersemicontinuos pay-off ξ and a Brownian-Poisson filtration, in [9]
in the case of completely irregular optional pay-off and a general filtration. Applications
of this problem to the pricing and hedging of American options in non-linear complete
market models have been studied in [7] (the case of continuous pay-off), [9] (the case
of completely irregular pay-off). We mention also that connections to Reflected BSDEs
have been provided in [7], [17], [8], [9].

In this short note, we are interested in the corresponding non-linear strict value
problem, defined by

V +(S) := ess sup
τ∈TS+

EfS,τ (ξτ ), (1.2)

where TS+ is the set of stopping times τ ∈ T0 with τ > S a.s. on {S < T} and τ = T a.s.
on {S = T}.

We note that V +(T ) = ξT . Moreover, V (S) ≥ V +(S) a.s., for all S ∈ T0. The purpose
of the note is to establish a non-trivial connection between the two problems (1.1) and
(1.2). This is done in Theorem 3.1, which is the main result of this note. The result is
useful in the treatment of more complex non-linear mixed control-stopping problems
such as the one appearing in the study of the superhedging price of an American option
in a non-linear incomplete market model (cf. [11]).

In Section 2 we give some preliminaries on the value family V (S) and the strict value
family V +(S). The main result is stated and proved in Section 3.

2 Preliminaries

The following properties of the (conditional) f -evaluations (which we also call f -
expectations) Ef are used for the results of this note1. For S ∈ T0, S′ ∈ T0, τ ∈ TS , for η,
η1, and η2 in L2(Fτ ), for (ξt) ∈ S2:

(i) EfS,τ : L2(Fτ ) −→ L2(FS)

(ii) (admissibility) EfS,τ (η) = EfS′,τ (η) a.s. on {S = S′}.
(iii) EfS,S(η) = η, for all η ∈ L2(FS),

(iv) (monotonicity) EfS,τ (η1) ≤ EfS,τ (η2) a.s., if η1 ≤ η2 a.s.

(v) (consistency) EfS,θ(E
f
θ,τ (η)) = EfS,τ (η), for all S, θ, τ in T0 such that S ≤ θ ≤ τ a.s.

(vi) (“generalized zero-one law”) IAEfS,τ (ξτ ) = IAEfS,τ ′(ξτ ′), for all A ∈ FS , τ ∈ TS ,
τ ′ ∈ TS such that τ = τ ′ on A.

(vii) (continuity with respect to terminal time and terminal condition) limn→∞ EfS,τn(ηn) =

EfS,τ (η), for (τn) ∈ T NS , such that limn→∞ τn = τ a.s. and for (ηn), η, such that
ηn ∈ L2(Fτn) and limn→∞ ηn = η a.s.

Let us emphasize that no assumptions of convexity or translation invariance of the
non-linear operators Ef are made.

Remark 2.1. It is well-known that the above properties (i)-(vii) of f -evaluations are
satisfied, for instance: in the case of a Brownian filtration and a Lipschitz driver f ; in
the case of a Brownian-Poisson filtration (or a strictly bigger general filtration) and a
Lipschitz driver f satisfying an additional assumption ensuring the monotonicity property

1Note that the notion of f -expectation of S. Peng [16] is a particular case.
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of the non-linear operators; in the case of a filtration generated by a Brownian motion
and a default martingale and a λ-admissible Lipschitz driver f (where λ is the default
intensity) satisfying an additional assumption ensuring the monotonicity.

The notion of a strong Ef -supermartingale will be often used in the sequel. The
definition is recalled for the convenience of the reader.

Definition 2.2. A process (Xt) ∈ S2 is said to be a strong Ef -supermartingale, if
EfS,τ (Xτ ) ≤ XS a.s. on S ≤ τ , for all S, τ ∈ T0.

The following lemma has been established in [9] (Lemma 8.2) for the value family
(V (S)). The proof for the strict value family V +(S) is similar and is given for the
convenience of the reader.

Lemma 2.3. There exists a maximizing sequence for V (S) in problem (1.1) (resp. V +(S)

in problem (1.2)).

Proof: It is sufficient to show that the family (EfS,τ (ξτ ))τ∈TS (resp. the family

(EfS,τ (ξτ ))τ∈TS+ ) is stable under pairwise maximization. Let τ ∈ TS and τ ′ ∈ TS . Set

A := {EfS,τ ′(ξτ ′) ≤ EfS,τ (ξτ )} and ν := τIA+ τ ′IAc . We have A ∈ FS and ν ∈ TS; also, ν = τ

on A, ν = τ ′ on Ac. By the “generalized zero-one law” for f -evaluations, we get

EfS,ν(ξν) = EfS,ν(ξν)IA + EfS,ν(ξν)IAc = EfS,τ (ξτ )IA + EfS,τ ′(ξτ ′)IAc

= max
(
EfS,τ (ξτ ), EfS,τ ′(ξτ ′)

)
.

(2.1)

This shows the stability under pairwise maximization of the value family (indexed by TS).
In the case where τ and τ ′ are moreover in TS+ , we have ν ∈ TS+ , and equation (2.1)
(which holds true as TS+ ⊂ TS) allows to conclude that the strict value family (indexed
by TS+) is stable.

We recall also the following result on the value family (V (S)), established in [9] (cf.
Lemma 8.1, and Theorems 8.1 and 8.2). The proof uses properties of the f -evaluations
and the maximizing sequence lemma (cf. Lemma 2.3), combined with a result of the
general theory of processes (due to C. Dellacherie and E. Lenglart) and is based on a
direct study of the value family (cf. the work by N. El Karoui [6] or [14] for the classical
case of linear expectations).

Proposition 2.4. The value family (V (S))S∈T0 is a strong Ef -supermartingale family2.
Moreover, there exists a unique right-uppersemicontinuous optional process, denoted by
(Vt)t∈[0,T ], which aggregates the family (V (S))S∈T0 .

3 The process (Vt)t∈[0,T ] is a strong
Ef -supermartingale.

The process (Vt) is called the value process. It is useful to recall also that, as (Vt) is a
strong Ef -supermartingale, (Vt) has right (and also left) limits4.

By using the same type of arguments as those used to prove the above proposition on
the value family, the following proposition on the strict value family can be shown.

Proposition 2.5. The strict value family (V +(S))S∈T0 is a strong Ef -supermartingale
family. There exists a unique right-uppersemicontinuous optional process, denoted by
(V +
t )t∈[0,T ], which aggregates the family (V +(S))S∈T0 . The process (V +

t )t∈[0,T ] is a strong
Ef -supermartingale.

The process (V +
t )t∈[0,T ] will be called the strict value process.

2That is, an admissible square-integrable family, such that EfS,τ (V (τ)) ≤ V (S) a.s. on S ≤ τ , for all
S, τ ∈ T0.

3That is, VS = V (S) a.s. for all S ∈ T0.
4The existence of right limits (and also left limits) of a strong Ef -supermartingale has been observed in [8]

and [9] as an immediate corollary of the non-linear Ef -decomposition. This has been also noticed in [3] based
on a down-crossing inequality (cf. Lemmas A.1 and A.2 in [3]).
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Proof of Proposition 2.5: The strict value family (V +(S))S∈T0 is admissible, that is, for
S ∈ T0, S′ ∈ T0, V (S) is FS-measurable and V (S) = V (S′) a.s. on the set {S = S′}. The
latter property is based on the “generalized zero-one law”, the admissibility property of
f -evaluations, and on a property of concatenation of the set TS+ . Indeed, let τ ∈ TS+ ,
and set τA := τIA + TIAc , where A := {S = S′}. We have τA ∈ TS+ ∩ T(S′)+ . By the
“generalized zero-one law” and the property of admissibility of f -evaluations,

IAEfS,τ (ξτ ) = IAEfS,τA(ξτA) = IAEfS′,τA
(ξτA) ≤ IAV (S′).

Hence, IAV (S) ≤ IAV (S′) (as τ ∈ TS+ is arbitrary). By exchanging the roles of S and
S′, we get the converse inequality, and hence the equality. The inequality EfS,T (ξT ) ≤
V +(S) ≤ V (S) a.s., implies that V +(S) is square-integrable. Let now S ∈ T0 (as before)
and θ ∈ FS . To show the Ef -supermartingale property of the strict value family, it remains
to show EfS,θ(V +(θ)) ≤ V +(S) a.s. By the maximizing sequence lemma (Lemma 2.3),
and the continuity and consistency properties of f -evaluations, there exists a sequence
(θp) ∈ (Tθ+)N such that

EfS,θ(V
+(θ)) = EfS,θ

(
lim
p→∞

Efθ,θp(ξθp)
)

= lim
p→∞

EfS,θ(E
f
θ,θp

(ξθp) = lim
p→∞

EfS,θp(ξθp) ≤ V +(S),

the last inequality being due to Tθ+ ⊂ TS+ . By Lemma 3.1 in [9], any Ef -supermartingale
family is a right-uppersemicontinuous (r.u.s.c.) family. By Theorem 4 in Dellacherie-
Lenglart [4], there exists a (unique) r.u.s.c. optional process (which we denote by (V +

t ))
aggregating the family. The aggregating process (V +

t ) is an (r.u.s.c.) Ef -supermartingale
(as the family (V +(S)) is an Ef -supermartingale family).

3 The main result and its proof

The following theorem is the main result of this note. It establishes in particular
the equality between the strict value process (V +

t )t∈[0,T ] and the process of right-limits
(Vt+)t∈[0,T ], where (Vt) denotes as before the value process of the non-linear problem
(1.1).

Theorem 3.1. (i) The strict value process (V +
t ) is right-continuous.

(ii) For all S ∈ T0, V +
S = VS+ a.s.

(iii) For all S ∈ T0, VS = V +
S ∨ ξS a.s.

We first show an auxiliary result on (non-linear) Ef -supermartingales, which will be
used in the proof of the main theorem. This auxiliary result, interesting on its own right,
allows also to emphasize some difficulties when dealing with non-linear supermartingales,
compared to the usual linear case.

In the sequel, a process (Xt) in S2 will be called right-continuous along stopping
times in Ef -conditional expectation if for each S ∈ T0 and for each sequence of stopping
times (Sn)n∈N belonging to TS+ such that Sn ↓ S, we have

lim
n→∞

EfS,Sn
(XSn

) = XS a.s. (3.1)

We will say that (Xt) in S2 is right-continuous along stopping times in Ef - expectation, if
for each S ∈ T0 and for each sequence of stopping times (Sn)n∈N belonging to TS+ such
that Sn ↓ S, we have

lim
n→∞

Ef0,Sn
(XSn) = Ef0,S(XS) a.s. (3.2)

Remark 3.2. Property (3.1) implies property (3.2) (by applying the continuity property
and the property of consistency of the non-linear operators). The converse statement is
not true in general.

ECP 25 (2020), paper 49.
Page 4/9

http://www.imstat.org/ecp/

https://doi.org/10.1214/20-ECP328
http://www.imstat.org/ecp/


On the strict value of the non-linear optimal stopping problem

Proposition 3.3. Let (Xt) be a strong Ef -supermartingale.
The following assertions are equivalent:

1. (Xt) is right-continuous.

2. (Xt) is right-continuous along stopping times in Ef -conditional expectation.

If, moreover, we assume that the non-linear operators Ef are strictly monotone5, then
each of the above assertions is equivalent to:

3. (Xt) is right-continuous along stopping times in Ef - expectation.

Proof of Proposition 3.3: We will use that, as (Xt) is a strong Ef -supermartingale,
(Xt) is right-upper-semicontinuous and right-limited. Hence, for all S ∈ T0, we have
XS ≥ XS+.

The implications 1.⇒ 2.⇒ 3. can be easily shown by using the continuity property of
(conditional) f -expectations (with respect to the terminal condition and to the terminal
time).

Let us now prove 2. ⇒ 1. Assume 2. Let S ∈ T0 and let (Sn) be a non-increasing
sequence of stopping times in TS+ with lim ↓ Sn = S a.s. Using the assumption of
right-continuity of (Xt) along stopping times in Ef -conditional expectation, and then the
continuity property of conditional f -expectations (with respect to the terminal condition
and to the terminal time), we get XS = limn→∞ EfS,Sn

(XSn
) = EfS,S(XS+) = XS+, (where

we have used that XS+ exists and is FS-measurable). Hence, XS = XS+. As S is
arbitrary, we conclude (by a well-known property from the general theory of processes)
that (Xt) coincides with (Xt+), and hence that (Xt) is right-continuous. Thus, 1. holds.

Let us now make the additional assumption of strict monotonicity of the non-linear
operators. We show the implication 3. ⇒ 1. Assume 3. As above, let S ∈ T0 and
let (Sn) be a non-increasing sequence of stopping times in TS+ with lim ↓ Sn = S

a.s. By the continuity property of f - expectations (with respect to terminal time and
terminal condition), we have limn→∞ Ef0,Sn

(XSn) = Ef0,S(XS+). On the other hand, by

the assumption of right-continuity along stopping times in Ef -expectation, we have
limn→∞ Ef0,Sn

(XSn
) = Ef0,S(XS). By uniqueness of the limit, we get Ef0,S(XS+) = Ef0,S(XS).

This, together with the fact XS ≥ XS+ and the additional assumption of strict mono-
tonicity of the non-linear operators, gives XS = XS+. We conclude as above that (Xt) is
right-continuous, which is assertion 1. The proof is completed.

Remark 3.4. (The linear case) In the particular linear case (the case where f = 0),
the non-linear strong supermartingales are reduced to the strong supermartingales
(well-understood in the general theory of processes since the work of Mertens). In
this case, the above proposition simplifies further to the following statement (cf., e.g.,
Dellacherie-Meyer [5, Appendix A]):

A strong (linear) supermartingale (Xt) is right-continuous if and only if it is
right-continuous along stopping times in (linear) expectation.

This result6 is often used in the literature to show that that the strict value process of
the linear optimal stopping problem is right-continuous (cf. [12] or [14, Proposition
1.12]). Note also that the continuity along stopping times in (linear) expectation of
(Xt) is trivially equivalent to the continuity along stopping times in conditional (linear)

5That is, for S ∈ T0, for τ ∈ TS , for η1 ∈ L2(Fτ ), η2 ∈ L2(Fτ ), if η1 ≤ η2 and EfS,τ (η1) = EfS,τ (η2), then
η1 = η2.

6or the following more general result: for each strong (linear) supermartingale family X = (X(τ))τ∈T0
,

which is right-continuous along stopping times in (classical) expectation, there exists an RCLL (linear)
supermartingale (Xt) aggregating the family X (cf., e.g., [6] or [15, Proposition 4.1]).

ECP 25 (2020), paper 49.
Page 5/9

http://www.imstat.org/ecp/

https://doi.org/10.1214/20-ECP328
http://www.imstat.org/ecp/


On the strict value of the non-linear optimal stopping problem

expectation (the linear expectation being strictly monotone). As illustrated in the above
proposition, the non-linear case is more involved and we cannot “reproduce” mutatis
mutandis the proof from the linear case (unless the additional assumption of strict
monotonicity is made, which is not the case in the present note).

In virtue of the above Proposition, in order to show that the strict value process (V +
t )

is right-continuous, it is sufficient to show that it is right-continuous along stopping
times in conditional Ef -expectation. This is the object of the following result.

Lemma 3.5. The strict value process (V +
t ) is right-continuous along stopping times in

conditional Ef -expectation.

For the proof, we recall the following classical statement:

Remark 3.6. Let (Ω,F , P ) be a probability space. Let A ∈ F . Let (Xn) be a sequence
of real valued random variables. Suppose that (Xn) converges a.s. on A to a random
variable X. Then, for each ε > 0, limn→+∞ P ({|X −Xn| < ε} ∩A) = P (A).

From this property, it follows that for each ε > 0, there exists n0 ∈ N such that for all
n ≥ n0, P ({|X −Xn| < ε} ∩A) ≥ P (A)

2 .

Proof of Lemma 3.5: Let n ∈ N. By the consistency property of Ef , we have

Efθ,θn(V +
θn

) = Efθ,θn+1

(
Efθn+1,θn

(V +
θn

)
)

a.s. (3.3)

Now, since the process (V +
t ) is a strong Ef - supermartingale, we have Efθn+1,θn

(V +
θn

) ≤
V +
θn+1

a.s. Using this inequality, together with equality (3.3) and the monotonicity of

Efθ,θn+1
, we obtain

Efθ,θn(V +
θn

) ≤ Efθ,θn+1
(V +
θn+1

) a.s.

Since this inequality holds for each n ∈ N, we derive that the sequence of random

variables
(
Efθ,θn(V +

θn
)
)
n∈N

is nondecreasing. Moreover, since the process (V +
t ) is a

strong Ef - supermartingale, we have Efθ,θn(V +
θn

) ≤ V +
θ a.s. for each n ∈ N. By taking the

limit as n tends to +∞, we thus get

lim
n→∞

↑ Efθ,θn(V +
θn

) ≤ V +
θ a.s.

It remains to show the converse inequality:

lim
n→∞

↑ Efθ,θn(V +
θn

) ≥ V +
θ a.s. (3.4)

Suppose, by way of contradiction, that this inequality does not hold. Then, there exists a
constant α > 0 such that the event A defined by

A := { lim
n→∞

↑ Efθ,θn(V +
θn

) ≤ V +
θ − α}

satisfies P (A) > 0. By definition of A, we have

lim
n→∞

↑ Efθ,θn(V +
θn

) + α ≤ V +
θ a.s. on A. (3.5)

By Lemma 2.3, there exists an optimizing sequence (τp)p∈N for the strict value V +
θ , that

is, such that, for each p ∈ N, τp ∈ Tθ+ , and such that

V +
θ = lim

p→∞
↑ Efθ,τp(ξτp) a.s.

By Remark 3.6 (applied with ε = α
2 ), we derive that there exists p0 ∈ N such that the

event B defined by

B := {V +
θ ≤ E

f
θ,τp0

(ξτp0 ) +
α

2
} ∩A
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satisfies P (B) ≥ P (A)
2 . Denoting τp0 by θ′, we have

V +
θ ≤ E

f
θ,θ′(ξθ′) +

α

2
a.s. on B.

By the inequality (3.5), we derive that

lim
n→∞

↑ Efθ,θn(V +
θn

) +
α

2
≤ Efθ,θ′(ξθ′) a.s. on B. (3.6)

Let us first consider the simpler case where θ < T a.s.
In this case, since θ′ ∈ Tθ+ , we have θ′ > θ a.s. Hence, we have Ω = ∪n∈N ↑ {θ′ > θn}

a.s.
Define the stopping time θn := θ′1{θ′>θn} + T1{θ′≤θn}. We note that θn ∈ Tθ +

n
for

each n ∈ N. Moreover, limn→∞ θn = θ′ a.s. and limn→∞ ξθn = ξθ′ a.s. By the continuity

property of Ef (with respect to terminal condition and terminal time), we get

lim
n→∞

Ef
θ,θn

(ξθn) = Efθ,θ′(ξθ′) a.s.

By Remark 3.6, we derive that there exists n0 ∈ N such that the event C defined by

C := {|Efθ,θ′(ξθ′)− E
f

θ,θn0

(ξθn0
)| ≤ α

4
} ∩B

satisfies P (C) > 0. By the inequality (3.6), we derive that

lim
n→∞

↑ Efθ,θn(V +
θn

) +
α

4
≤ Ef

θ,θn0

(ξθn0
) a.s. on C. (3.7)

Now, by the consistency of Ef , we have

Ef
θ,θn0

(ξθn0
) = Efθ,θn0

(
Ef
θn0 ,θn0

(ξθn0
)
)
≤ Efθ,θn0

(V +
θn0

) a.s.,

where the last inequality follows from the fact that θn0
∈ Tθ +

n0
and from the definition of

V +
θn0

. By (3.7), we thus derive that

lim
n→∞

↑ Efθ,θn(V +
θn

) +
α

4
≤ Efθ,θn0

(V +
θn0

) a.s. on C,

which gives a contradiction. Hence, the desired inequality (3.4) holds.
Let us now consider a general θ ∈ T0.
On the set {θ = T}, we have θn = θ a.s. for all n. Hence, on {θ = T}, we have

limn→∞ Efθ,θn(V +
θn

) = V +
θ a.s. On the set {θ < T}, using the same arguments as above

with θn = θ′1{θ′>θn}∩{T>θ} + T1{θ′≤θn}∪{T=θ}, we show the inequality (3.4). The proof is
thus complete.

Remark 3.7. If the additional assumption of strict monotonicity of the non-linear opera-
tors is made, then, in virtue of Proposition 3.3, instead of showing the right-continuity
along stopping times in Ef -conditional expectation, it is enough to show only the right-
continuity along stopping times in Ef -expectation, that is, the property

lim
n→∞

Ef0,θn(V +
θn

) = Ef0,θ(V
+
θ ). (3.8)

In this case, the above proof will become simpler and will follow that for the strict value
process associated with the classical linear optimal stopping problem (cf., e.g., the proof
of Proposition 1.12 in [14]), but where the classical expectation is replaced with the
f -expectation. However, in our general case, property (3.8) is not sufficient to ensure
the right-continuity of the process (V +

t ) (cf. also Remark 3.4).

ECP 25 (2020), paper 49.
Page 7/9

http://www.imstat.org/ecp/

https://doi.org/10.1214/20-ECP328
http://www.imstat.org/ecp/


On the strict value of the non-linear optimal stopping problem

We are now ready to prove the theorem.
Proof of Theorem 3.1: By Proposition 2.5, the process (V +

t ) is a strong Ef -supermartin-
gale. By applying the above Lemma 3.5 and Proposition 3.3 to (V +

t ), we obtain assertion
(i). We now show (ii). Let S ∈ T0. Let (Sn) be a non-increasing sequence of stopping
times in TS+ with lim ↓ Sn = S a.s. We know that Vτ ≥ V +

τ a.s., for all τ ∈ T0. Hence,
VSn
≥ V +

Sn
a.s., for all n. We derive that limn→∞ VSn

≥ limn→∞ V +
Sn

a.s. Using this and
the right-continuity of V + established in (i), gives VS+ ≥ V +

S a.s. In order to show the
converse inequality, we first show

EfS,Sn(VSn) ≤ V +
S a.s. for all n. (3.9)

We fix n and we take (τp) ∈ TSn
an optimizing sequence for the problem with value VSn

,
i.e. VSn

= limp→∞ EfSn,τp
(ξτp). We have

EfS,Sn
(VSn) = EfS,Sn

( lim
p→∞

EfSn,τp
(ξτp)) = lim

p→∞
EfS,Sn

(EfSn,τp
(ξτp)) a.s., (3.10)

where we have used the continuity property of EfS,Sn(·) with respect to the terminal

condition (recall that here n is fixed). Using the consistency property of Ef -expectations,
we get EfS,Sn

(EfSn,τp
(ξτp)) = EfS,τp(ξτp) ≤ V +

S a.s. (where for the inequality we have used
that τp ∈ TS+). From this, together with equation (3.10), we derive the desired inequality
(3.9). From inequality (3.9), together with the continuity of Ef -expectations with respect
to the terminal time and the terminal condition, we derive V +

S ≥ limn→∞ EfS,Sn(VSn
) =

EfS,S(VS+) = VS+ a.s. Hence, V +
S ≥ VS+ a.s., which, together with the previously shown

converse inequality, proves the equality VS+ = V +
S a.s.

Let us now show statement (iii). Let S ∈ T0. As VS ≥ ξS , there are two sub-cases:
(a) VS = ξS and (b) VS > ξS . By the right-uppersemicontinuity of the value process (Vt)

(Proposition 2.4) and by statement (ii), we have VS ≥ VS+ = V +
S . Hence, on the set {VS =

ξS}, we have VS = ξS ≥ VS+ = V +
S . Hence, on this set, VS = ξS∨V +

S . Let us now consider

sub-case (b). On the set {VS > ξS}, we have S < T and VS = ess supτ∈TS E
f
S,τ (ξτ ) > ξS =

EfS,S(ξS). Hence, on this set, VS = ess supτ∈TS E
f
S,τ (ξτ ) = ess supτ∈TS+

EfS,τ (ξτ ) = V +
S

(where we have used the definition of V +
S for the last equality). Thus, VS = ξS ∨ V +

S in
sub-case (b). Statement (iii) is thus shown, and the proof is completed.
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