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Abstract

This paper deals with the rate of convergence in 1-Wasserstein distance of the marginal
law of a Brownian motion with drift conditioned not to have reached 0 towards the
Yaglom limit of the process. In particular it is shown that, for a wide class of initial
measures including probability measures with compact support, the Wasserstein dis-
tance decays asymptotically as 1/t. Likewise, this speed of convergence is recovered
for the convergence of marginal laws conditioned not to be absorbed up to a horizon
time towards the Bessel-3 process, when the horizon time tends to infinity.
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Notation

For a general set F , we will use the following notation:

• M1(F ): Set of the probability measures defined on F .

• B(F ): Set of the measurable bounded functions defined on F .

• B1(F ): Set of the measurable bounded functions defined on F such that ||f ||∞ ≤ 1.

• For any µ ∈M1(F ) and f ∈ B(F ),

µ(f) :=

∫
F

f(x)µ(dx).

• For any family of probability measure (µt)t≥0 and µ ∈M1(F ), the notation

µt
L−→

t→∞
µ

refers to the weak convergence of (µt)t≥0 towards µ, that is: for any continuous
and bounded measurable function f ,

µt(f) −→
t→∞

µ(f).

For any x, L ∈ R+ × (0,+∞), denote by Lipx,L(R+) the set of the L-Liptschitz functions
defined on R+ such that f(0) = x.
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Polynomial convergence to the Yaglom limit for Brownian motion with drift

1 Introduction

Denote by (Xt)t≥0 a Brownian motion with constant drift, that is defined as

Xt := X0 +Bt − rt, ∀t ≥ 0, (1.1)

where X0 is a random variable on R, (Bt)t≥0 is a one-dimensional Brownian motion
starting from 0 independent from X0 and r > 0. Denote by (Px)x∈R+

a family of
probability measures such that, for any x > 0, Px(X0 = x) = 1. Then, for a given
µ ∈M1(R+ \ {0}), the probability measure Pµ :=

∫
(0,+∞)

Pxµ(dx) is such that Pµ(X0 ∈
·) = µ. Denote by Ex and Eµ the associated expectations.

Denote by τ0 the hitting time of (Xt)t≥0 at 0, i.e.

τ0 := inf{t ≥ 0 : Xt = 0}.

This paper will cope with the quasi-stationarity for the process (Xt)t≥0, that is the study
of the asymptotic behavior of the Markov process (Xt)t≥0 conditioned not to reach 0.
The main notion of this theory is the quasi-stationary distribution (QSD), which is a
probability measure α on (0,+∞) such that, for any t ≥ 0,

α = Pα(Xt ∈ ·|τ0 > t),

where, for any probability measure µ supported (0,+∞) and t ≥ 0,

Pµ(Xt ∈ ·|τ0 > t) :=
Pµ(Xt ∈ ·, τ0 > t)

Pµ(τ0 > t)
.

It is well known (see for example [3] or [9]) that to be a QSD is equivalent to the following
property: there exists µ ∈M1((0,+∞)) such that

Pµ(Xt ∈ ·|τ0 > t)
L−→

t→∞
α.

This paper will more specifically deal with the weak convergence of Pµ(Xt ∈ ·|τ0 > t)

towards the so-called Yaglom limit, denoted by αYaglom, which is defined as the unique
QSD such that, for any x > 0,

Px(Xt ∈ ·|τ0 > t)
L−→

t→∞
αYaglom. (1.2)

It is well known that such a probability measure exists for the Brownian motion with
drift (see further in Section 2). The goal of this paper is more precisely to study the
speed of convergence of the conditional probability measure Pµ(Xt ∈ ·|τ0 > t), for some
initial measures µ, towards the Yaglom limit when t goes to infinity.

In order to quantify the weak convergence (1.2), it is possible to use several distances
onM1((0,+∞)). One of them is the total variation distance, defined as follows:

||µ− ν||TV := sup
f∈B1((0,+∞))

|µ(f)− ν(f)|, ∀µ, ν ∈M1((0,+∞)). (1.3)

In particular, the convergence towards 0 of the total variation distance between the
conditional probability Pµ(Xt ∈ ·|τ0 > t) and αYaglom implies the weak convergence (1.2).

Another distance which can be used to quantify weak convergences is the 1-Wasserstein
distance, defined as

W1(µ, ν) := sup
f∈Lip1,1(R+)

|µ(f)− ν(f)|.

For this distance, the decay towards 0 implies a weak convergence and the convergence
of the first moment.
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Polynomial convergence to the Yaglom limit for Brownian motion with drift

For the most of the absorbed Markov processes, it is usually expected that the
distance ||Pµ(Xt ∈ ·|τ0 > t) − αYaglom||TV decreases exponentially fast. Especially, it is
well known (see for example [1, 2, 13]) that some conditions, based on Doeblin-type
condition or Lyapunov functions, entail an exponential decay of the total variation
distance. However, in our case, the Brownian motion with drift does not satisfy such
conditions.

It even seems that an exponential speed could be too fast for some initial laws and
that the expected rate of convergence is rather 1/t. In particular, it was shown by Polak
and Rolski in [12] that the L1 distance between the density function of Px[Xt ∈ ·|τ0 > t]

and the one of the Yaglom limit is equivalent, when t goes to infinity, to c/t, where c > 0

is a constant independent on the state x. In [11], Palmowski and Vlasiou showed that,
for a Lévy process satisfying some assumptions (see (SN) and (SP) in [11]) and taking, as
initial measure, the invariant measure of the associated reflected process, the difference
in absolute value between the density function of the conditional probability and the one
of the Yaglom limit decreases also as 1/t when t goes to infinity.

The aim of this note is to recover this speed of convergence considering a large class
of initial measures, improving therefore the result of Polak and Rolski, and using the
Wasserstein distanceW1 to quantify the convergence. In particular, it will be shown that,
if the initial measure µ has a compact support, there exists cµ, Cµ ∈ (0,∞) such that one
has asymptotically

cµ
t
≤ W1(Pµ(Xt ∈ ·|τ0 > t), αYaglom) ≤ Cµ

t
, (1.4)

The asymptotical inequalities (1.4) hold actually for a wider class of initial measures
which will be spelled out later in Theorem 3.1, and the same result can be also stated
replacing the Wasserstein distance by the total variation distance.

The Section 2 will begin by giving some useful and well-known generalities on the
quasi-stationarity for the Brownian motion with drift absorbed at 0. Then, the results
of this note will be more precisely presented in Section 3, one of which is an important
lemma on the asymptotic property of the Bessel-3 process. Finally, this note ends with
the polynomial convergence of the conditional law Pµ[Xs ∈ ·|τ0 > t] towards the marginal
law at time s of a Bessel-3 process, when t goes to infinity.

2 Preliminaries on the quasi-stationarity for a Brownian motion
with drift

The quasi-stationarity for the Brownian motion with drift absorbed at 0 has been
studied by Martinez and San Martin in [8]. In their paper, the authors showed that there
exists an infinity of quasi-stationary distributions, one of which is the Yaglom limit αYaglom.
Moreover, the density function of the Yaglom limit is explicitly given:

αYaglom(dx) = r2xe−rxdx.

In another paper ([7]), Martinez, Picco and San Martin are interested in the domain of
attraction of the Yaglom limit, that is the set of the initial laws for which the convergence
(1.2) holds. In particular, they showed that, when the initial law µ admits a density
function ρ with respect to the Lebesgue measure, the conditional probability measure
Pµ(Xt ∈ ·|τ0 > t) converges to αYaglom when

lim inf
x→∞

− 1

x
log(ρ(x)) ≥ r. (2.1)

Since αYaglom is a quasi-stationary distribution, it is well known (see [3, 9]) that there
exists λ0 > 0 such that, for any t ≥ 0,

PαYaglom(τ0 > t) = e−λ0t.
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For a Brownian motion with drift r, one has

λ0 =
r2

2
.

Moreover, λ0 is an eigenvalue for the infinitesimal generator of (Xt)t≥0, which is

Lf(x) :=
1

2
f ′′(x)− rf ′(x),

and one can associate to λ0 an eigenfunction η, which is unique up to a multiplicative
constant and proportional to the function x 7→ xerx. For example, one can choose

η(x) =
1

r2
xerx.

From these definitions, the so-called Q-process can be defined as the Markov process
whose the semi-group (Qt)t≥0 is defined by

Qtf(x) :=
eλ0t

η(x)
Ex(η(Xt)f(Xt)1τ0>t), ∀f measurable,∀t ≥ 0. (2.2)

For any positive measure µ supported on (0,+∞), one uses the notation

µQtf :=

∫
(0,+∞)

Qtf(x)µ(dx).

This Q-process is actually obtained from a Doob-transform of the sub-Markovian semi-
group Ptf(x) := Ex(f(Xt)1τ0>t). It corresponds to the process conditioned “never” to be
absorbed, in the following sense: the family of probability measure (Qx)x>0 defined as

Qx(Γ) = lim
T→∞

Px(Γ|τ0 > T ), ∀ t ≥ 0,∀ Γ ∈ σ(Xs, 0 ≤ s ≤ t)

is well-defined and, for any t ≥ 0 and any f measurable,

Qtf(x) = EQx (f(Xt)),

where EQx is the expectation associated to Qx.
Denote by (Yt)t≥0 the Q-process (i.e. Qtf(x) = Ex(f(Yt))). Then (Yt)t≥0 is actually a

Bessel-3 process, which is a diffusion process following

dYt = dBt +
1

Yt
dt.

Note that the Q-process does not depend on the drift r > 0 and one gets an explicit
formula for the density function of Px(Yt ∈ ·) (for any x > 0 and t ≥ 0), which is

y 7→ 2√
2πt

y

x
sinh

(xy
t

)
e−

x2+y2

2t . (2.3)

Moreover, the measure γ(dx) = x2dx is an invariant measure for the Bessel-3 process.

3 Polynomial convergence in Wasserstein distance

The main result of this paper is now clearly stated:

Theorem 3.1. If the initial law µ ∈M1((0,+∞)) satisfies∫ ∞
0

x3erxµ(dx) < +∞, (3.1)
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Polynomial convergence to the Yaglom limit for Brownian motion with drift

then

0 < lim inf
t→∞

t×W1(Pµ[Xt ∈ ·|τ0 > t], αYaglom)

≤ lim sup
t→∞

t×W1(Pµ[Xt ∈ ·|τ0 > t], αYaglom) < +∞. (3.2)

Before proving the theorem, let us have a few remarks about its statement:

Remark 3.2. In this paper, we will only focus on the Wasserstein distance, but it is also
possible to obtain the same result (3.2) for others distances. In particular, one gets the
same statement for Theorem 3.1 taking the total variation distance instead, as defined
in (1.3), or also the Kolmogorov distance defined as follows:

dKolm(µ, ν) := sup
x∈R
|µ((−∞, x])− ν((−∞, x])|, ∀µ, ν ∈M1((0,+∞)).

In the same way, the convergence in Kolmogorov distance implies the weak convergence
of measures, but in a weaker way than the total variation distance or the Wasserstein
distance.

Remark 3.3. Concerning the domain of attraction of αYaglom, the assumption on the
integrability of the initial measure (3.1) is slightly stronger than the assumption (2.1)
written previously. As a matter of fact, (3.1) holds when the density function ρ of the
initial measure satisfies

lim
x→∞

− 1

x
log ρ(x) > r,

but does not hold when one has equality instead. Remark in particular that, taking
µ = αYaglom, (3.1) is not satisfied, as well as (3.2). In a general way, the speed of
convergence of t 7→ W1(Pµ(Xt ∈ ·|τ0 > t), αYaglom) when limx→∞− 1

x log ρ(x) = r remains
an open question.

Remark 3.4. As written in the introduction, this speed of convergence was already
found out by Polak and Rolski in [12]. More precisely, the authors showed that there
exists c > 0 such that, for any x > 0,

lim
t→∞

t×
∫ ∞
0

|Px[Xt ∈ ·|τ0 > t]− αYaglom|(dy) = c.

In addition to the question concerning the choice of the distance, the main question
is whether this result holds for others initial laws than Dirac measures. The proof
of Polak and Rolski relies on the asymptotic expansion of the density function of the
sub-Markovian semi-group Ptf(x) = Ex[f(Xt)1τ0>t], which is obtained from the serie
expansion (3.7), written further. However, integrating this expansion over a probability
measure satisfying (3.1) (for example a probability measure admitting a density function
decaying as x 7→ e−r

′x, with r′ > r), Fubini’s theorem seems not to be well justified, so
that the asymptotic expansion of the density function for a general initial distribution
satisfying (3.1) is not obvious.

3.1 Asymptotic behavior for the Bessel-3 process

We will now proceed to the proof of Theorem 3.1.
To do so, the main strategy is to use the Q-process as a Doob transform for the

sub-Markovian semi-group Ptf(x) = Ex[f(Xt)1τ0>t]. In particular, it is well-known that
the asymptotic behavior of this Doob transform is very linked to the one of the conditional
probability measure Pµ[Xt ∈ ·|τ0 > t], for some µ ∈ M1((0,+∞)), as it was shown for
example in [5, 4, 10] in the context of absorbed Markov processes, or in [6] for exploding
Feynman-Kac semi-groups.
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Polynomial convergence to the Yaglom limit for Brownian motion with drift

Hence, before proving Theorem 3.1, the following lemma will be first stated and
proved:

Lemma 3.5. For any measurable function f such that

Cf :=
1

2

∫
R+

|f(x)|x2dx <∞ and C ′f :=
1

2

∫
R+

|f(x)|x4dx <∞,

for any t ≥ 0 and for any probability measure µ supported on (0,+∞) satisfying∫∞
0
x2µ(dx) < +∞, it holds

|γ(f)−KtµQtf | ≤
Cf
∫∞
0
x2µ(dx) + C ′f
t

,

where

Kt :=
t
√

2πt

2
.

If moreover f is positive,

t× (γ(f)−KtµQtf) −→
t→∞

∫ ∞
0

∫ ∞
0

f(y)
y2(x2 + y2)

2
dyµ(dx). (3.3)

Proof. Let f satisfying
∫
R+
|f(x)|x4dx < +∞ and

∫
R+
|f(x)|x2dx < +∞, then let x > 0.

By the explicit formula of the density function (2.3),

KtQtf(x) =

∫
R+

f(y)t
y

x
sinh

(xy
t

)
e−

x2+y2

2t dy.

As a result, for any t ≥ 0,

KtQtf(x)− γ(f) =

∫
R+

f(y)

[
t
y

x
sinh

(xy
t

)
e−

x2+y2

2t − y2
]
dy

=

∫
R+

f(y)t
y

x

[
sinh

(xy
t

)
e−

x2+y2

2t − xy

t

]
dy

Defining g : z 7→ e−z − 1 + z, one has

sinh
(xy
t

)
e−

x2+y2

2t − xy

t
=

1

2

(
g

[
(x− y)2

2t

]
− g

[
(x+ y)2

2t

])

= −1

2

∫ (x+y)2

2t

(x−y)2
2t

g′(z)dz, ∀y > 0,∀t ≥ 0. (3.4)

However, denoting h : z 7→ z2

2 , using that g′(z) = 1− e−z ≤ z = h′(z) for any z ≥ 0,∫ (x+y)2

2t

(x−y)2
2t

g′(z)dz ≤
∫ (x+y)2

2t

(x−y)2
2t

h′(z)dz =
(x+ y)4 − (x− y)4

8t2
=
xy(x2 + y2)

t2
.

As a result, for any y ∈ R+ and t ≥ 0,∣∣∣∣sinh
(xy
t

)
e−

x2+y2

2t − xy

t

∣∣∣∣ ≤ xy(x2 + y2)

2t2
.

Thus, for any t ≥ 0,

|KtQtf(x)− γ(f)| ≤
∫
R+

|f(y)|y
2(x2 + y2)

2t
dy

≤
Cfx

2 + C ′f
t

. (3.5)

ECP 25 (2020), paper 35.
Page 6/12

http://www.imstat.org/ecp/

https://doi.org/10.1214/20-ECP315
http://www.imstat.org/ecp/
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As a result, integrating over a probability measure µ(dx) supported on (0,+∞),

|KtµQtf − γ(f)| ≤
Cf
∫∞
0
x2µ(dx) + C ′f
t

, (3.6)

which is the first part of the lemma. Now, assume moreover that f is positive. Then,

since xy
t − sinh

(
xy
t

)
e−

x2+y2

2t ≥ 0 for any x, y > 0 (this is proved by (3.4)),

|KtQtf(x)− γ(f)| =
∫ ∞
0

f(y)t
y

x

(
xy

t
− sinh

(xy
t

)
e−

x2+y2

2t

)
dy,

and for any probability measure µ supported on (0,+∞),

γ(f)−KtµQtf =

∫ ∞
0

∫ ∞
0

f(y)t
y

x

(
xy

t
− sinh

(xy
t

)
e−

x2+y2

2t

)
dyµ(dx).

The function y 7→ sinh
(
xy
t

)
e−

x2+y2

2t can be expressed as a serie expansion and one has

xy

t
− sinh

(xy
t

)
e−

x2+y2

2t =
xy(x2 + y2)

2t2
+
∑
n≥3

an(x, y)

tn
, (3.7)

where, for any n ≥ 3,

an(x, y) :=
(−1)n

2nn!

(
(x+ y)2n − (x− y)2n

)
.

Hence, for any x, y > 0,

t2
y

x

(
xy

t
− sinh

(xy
t

)
e−

x2+y2

2t

)
−→
t→∞

y2(x2 + y2)

2
.

Thus, using (3.5), by Lebesgue’s theorem, one shows that if µ is a probability measure
supported on (0,∞) satisfying

∫∞
0
x2µ(dx) < +∞, then one has

t× (γ(f)−KtµQtf) −→
t→∞

∫ ∞
0

∫ ∞
0

f(y)
y2(x2 + y2)

2
dyµ(dx).

3.2 Proof of Theorem 3.1

Theorem 3.1 will now be proved. Let µ be a probability measure supported on (0,+∞)

satisfying ∫ ∞
0

x2η(x)µ(dx) < +∞.

Remark that this above-mentioned condition is exactly the condition (3.1). Also remark
that this condition implies that ∫ ∞

0

η(x)µ(dx) < +∞.

The first step is to prove that there exists tµ and Cµ < +∞ such that, for any t ≥ tµ,

W1(Pµ(Xt ∈ ·|τ0 > t), αY aglom) ≤ Cµ/t,

which will imply that lim supt→∞ t×W1(Pµ(Xt ∈ ·|τ0 > t), αY aglom) < +∞.
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In what follows, one will use the following notation

η ◦ µ(dx) :=
η(x)µ(dx)

µ(η)
.

Then, for any t ≥ 0 and f ∈ Lip1,1(R+),

Eµ[f(Xt)|τ0 > t] =

∫∞
0
Ex[f(Xt)1τ0>t]µ(dx)∫∞
0
Ex[1τ0>t]µ(dx)

=
Kt

∫∞
0

eλ0t

η(x)Ex[η(Xt)
f(Xt)
η(Xt)

1τ0>t]η(x)µ(dx)

Kt

∫∞
0

eλ0t

η(x)Ex[η(Xt)
1

η(Xt)
1τ0>t]η(x)µ(dx)

=
Kt

∫∞
0
Qt[f/η](x)η(x)µ(dx)

Kt

∫∞
0
Qt[1R+/η](x)η(x)µ(dx)

=
Kt(η ◦ µ)Qt[f/η]

Kt(η ◦ µ)Qt[1R+/η]
, (3.8)

where we recall that the semi-group (Qt)t≥0 was defined previously in (2.2). Then, let us
note that

sup
f∈Lip1,1(R+)

Cf/η = sup
f∈Lip1,1(R+)

∫ ∞
0

|f |(x)xe−rxdx ≤
∫ ∞
0

(1 + x)xe−rxdx =: C < +∞

and

sup
f∈Lip1,1(R+)

C ′f/η = sup
f∈Lip1,1(R+)

∫ ∞
0

|f |(x)x3e−rxdx ≤
∫ ∞
0

(1 + x)x3e−rxdx =: C ′ < +∞.

Thus, by Lemma 3.5 and noting that γ(f/η) = αYaglom(f), for any f ∈ Lip1,1(R+),

|Kt(η ◦ µ)Qt[f/η]− αYaglom(f)| ≤
C
∫∞
0
x2(η ◦ µ)(dx) + C ′

t
.

Since 1R+
∈ Lip1,1(R+), one has also

|Kt(η ◦ µ)Qt(1R+/η)− 1| ≤
C
∫∞
0
x2(η ◦ µ)(dx) + C ′

t
. (3.9)

Therefore, given (3.8), for any t > Cµ := C
∫∞
0
x2(η ◦ µ)(dx) + C ′,

αYaglom(f)− Cµ
t

1 +
Cµ
t

≤ Eµ(f(Xt)|τ0 > t) ≤
αYaglom(f) +

Cµ
t

1− Cµ
t

. (3.10)

Using that |αYaglom(f)| ≤ 1 + 2/r for any f ∈ Lip1,1(R+), for any t ≥ Cµ + 1,

αYaglom(f) +
Cµ
t

1− Cµ
t

=

(
αYaglom(f) +

Cµ
t

)(
1 +

Cµ
t

1− Cµ
t

)

≤ αYaglom(f) +
Cµ
t

+

(
1 + 2/r +

Cµ
Cµ + 1

) Cµ
t

1− Cµ
t

≤ αYaglom(f) +
C ′µ
t
,

where

C ′µ := Cµ

1 +
1 + 2/r +

Cµ
Cµ+1

1− Cµ
1+Cµ

 .
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In a same way, one can prove that, for any t ≥ Cµ + 1,

αYaglom(f)−
C ′′µ
t
≤
αYaglom(f)− Cµ

t

1 +
Cµ
t

with

C ′′µ := Cµ

(
2 + 2/r +

Cµ
Cµ + 1

)
.

As a result, using (3.10), for any t ≥ Cµ + 1,

W1(Pµ[Xt ∈ ·|τ0 > t], αYaglom) ≤
C ′µ ∨ C ′′µ

t
,

which concludes the first step.
Now, set f : x 7→ 1 + x. Then f ∈ Lip1,1(R+), positive on R+, and one has therefore

W1(Pµ(Xt ∈ ·|τ0 > t), αYaglom) ≥ |Eµ(f(Xt)|τ0 > t)− αYaglom(f)|.

Moreover, by the computation of the moments of αYaglom, f satisfies the following in-
equality: ∫ ∞

0

y2f(y)αYaglom(dy) > αYaglom(f)

∫ ∞
0

y2αYaglom(dy). (3.11)

Denote ψµ the positive measure defined by

ψµ : f 7→
∫ ∞
0

∫ ∞
0

f(y)
y2(x2 + y2)

2

η(x)

η(y)

µ(dx)

µ(η)
dy. (3.12)

Then, since y2

η(y)dy = αYaglom(dy), one has

ψµ(f) =

∫ ∞
0

∫ ∞
0

f(y)
(x2 + y2)

2
η(x)

µ(dx)

µ(η)
αYaglom(dy)

=
1

2
αYaglom(f)

∫ ∞
0

x2(η ◦ µ)(dx) +
1

2

∫ ∞
0

f(y)y2αYaglom(dy), (3.13)

and the condition (3.11) implies therefore that

ψµ(f) > αYaglom(f)ψµ(1R+).

Then, by the equation (3.8) and using the second part of Lemma 3.5, for any t ≥ 0,

Eµ(f(Xt)|τ0 > t) =
Kt(η ◦ µ)Qt[f/η]

Kt(η ◦ µ)Qt[1R+
/η]

=
αYaglom(f)− 1

tψµ(f) + o(1/t)

1− 1
tψµ(1R+

) + o(1/t)

=

[
αYaglom(f)− 1

t
ψµ(f) + o(1/t)

] [
1 +

1

t
ψµ(1R+

) + o(1/t)

]
= αYaglom(f) +

1

t

(
αYaglom(f)ψµ(1R+)− ψµ(f)

)
+ o(1/t).

So, for any ε ∈ (0, ψµ(f)− αYaglom(f)ψµ(1R+
)) and for t large enough,

t× |Eµ(f(Xt)|τ0 > t)− αYaglom(f)| ≥ ψµ(f)− αYaglom(f)ψµ(1R+
)− ε > 0,

which proves that

lim inf
t→∞

t×W1(Pµ(Xt ∈ ·|τ0 > t), αYaglom)

≥ lim inf
t→∞

t× |Eµ(f(Xt)|τ0 > t)− αYaglom(f)| > 0.

This ends the proof.
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4 Polynomial convergence to the Bessel-3 process

Now, let us state the following theorem:

Theorem 4.1. There exists s0 > 0 such that, for any µ ∈ M1((0,+∞)) satisfying∫∞
0
x4erxµ(dx) < +∞ and for any s ≥ s0,

0 < lim inf
t→∞

t×W1(Pµ[Xs ∈ ·|τ0 > t],Qη◦µ[Xs ∈ ·])

≤ lim sup
t→∞

t×W1(Pµ[Xs ∈ ·|τ0 > t],Qη◦µ[Xs ∈ ·]) < +∞.

Remark 4.2. Note that, in this theorem, the assumption of integrability on the initial
measure is slightly stronger than (3.1). This is due to the use of the 1-Wasserstein
distance. For the total variation distance, the condition (3.1) is suitable to obtain the
same statement as Theorem 4.1.

Before proving this theorem, the following lemma is needed:

Lemma 4.3. If µ is a probability measure such that
∫∞
0
x3erxµ(dx) < +∞, then, for any

s ≥ 0,
Eµ[X3

s e
rXs |τ0 > s] < +∞. (4.1)

Proof. Let s ≥ 0. Then, by (2.2), it is enough to prove that EQη◦µ[X2
s ] < +∞. For any

x > 0, under Qx, (Xt)t≥0 is a Bessel-3 process following

dXt = dWt +
1

Xt
dt,

given a one-dimensional Brownian motion (Wt)t≥0. Let x > 0 and, for any N > x, denote
TN := inf{t ≥ 0 : Xt = N}. Then, by Itô’s formula applied to s ∧ TN , for any N > x,

EQx [X2
s∧TN ] = x2 + EQx

[∫ s∧TN

0

2XudWu

]
+ 3EQx [s ∧ TN ].

Since EQx

[∫ s∧TN
0

X2
udu

]
< +∞ for any s ≥ 0, the process (

∫ s∧TN
0

2XudWu)s≥0 is a mar-

tingale under Qx, so EQx

[∫ s∧TN
0

2XudWu

]
= 0 for any N > x. As a result,

EQx [X2
s∧TN ] = x2 + 3EQx [s ∧ TN ], ∀N > x.

Now, by Fatou’s lemma and the monotone convergence theorem, for any s ≥ 0,

EQx [X2
s ] ≤ lim inf

N→+∞
EQx [X2

s∧TN ] = x2 + 3 lim inf
N→∞

EQx [s ∧ TN ] = x2 + 3s. (4.2)

Hence, for any probability measure µ such that
∫∞
0
x3erxµ(dx) < +∞,

EQη◦µ[X2
s ] =

∫ ∞
0

η(x)µ(dx)

µ(η)
EQx [X2

s ] ≤
∫ ∞
0

η(x)µ(dx)

µ(η)
(x2 + 3s) < +∞.

Now, let us prove Theorem 2.2:

Proof of Theorem 2.2. Let µ be a probability measure supported on (0,+∞) satisfying∫∞
0
x4erxµ(dx) < +∞ and s ≤ t. Then, by Markov property and using the notation

φs(µ) := Pµ(Xs ∈ ·|τ0 > s), for any f ∈ Lip0,1(R+),

Eµ[f(Xs)|τ0 > t] =
Eµ[f(Xs)1τ0>sPXs [τ0 > t− s]]
Eµ[1τ0>sPXs [τ0 > t− s]]

= Eµ

[
f(Xs)1τ0>s
Pµ[τ0 > s]

PXs [τ0 > t− s]
Pφs(µ)[τ0 > t− s]

]
.

(4.3)
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Then, by the definition of (Qt)t≥0 (2.2),

PXs [τ0 > t− s]
Pφs(µ)[τ0 > t− s]

=
η(Xs)

φs(µ)(η)

Kt−sQt−s[1R+
/η](Xs)

Kt−s(η ◦ φs(µ))Qt−s[1R+
/η]

. (4.4)

By Lemma 4.3, Cφs(µ) < +∞ (recalling that Cµ is defined in the proof of Theorem 3.1,
for any µ). Then, by (3.9), the following inequalities hold for t ≥ s+ Cφs(µ):

1− CXs
t−s

1 +
Cφs(µ)
t−s

≤
Kt−sQt−s[1R+

/η](Xs)

Kt−s(η ◦ φs(µ))Qt−s[1R+
/η]
≤

1 +
CXs
t−s

1− Cφs(µ)
t−s

.

As a result, for any f ∈ Lip0,1(R+) and for any t ≥ s+ Cφs(µ),∣∣Eµ[f(Xs)|τ0 > t]− EQη◦µ[f(Xs)]
∣∣ ≤ Eµ [ Xs1τ0>s

Pµ[τ0 > s]

η(Xs)

φs(µ)(η)

(
Cφs(µ) + CXs
t− s− Cφs(µ)

)]
=

(Cφs(µ) + C ′)EQη◦µ[Xs] + CEQη◦µ[X3
s ]

t− s− Cφs(µ)
. (4.5)

Mimicking the proof of Lemma 4.3, one can show that, for any x > 0,

EQx [X3
s ] ≤ x3 + 6EQx

[∫ s

0

Xudu

]
≤ x3 + 6

∫ s

0

√
x2 + 3udu = x3 +

4

3

[
(x2 + 3s)3/2 − x3

]
,

where the second inequality is due to a Cauchy-Schwartz’s inequality and (4.2). Hence,
since

∫∞
0
x4erxµ(dx) < +∞,

EQη◦µ[X3
s ] =

∫ ∞
0

(η ◦ µ)(dx)EQx [X3
s ] < +∞.

Thus lim supt→∞ t × W1(Pµ[Xs ∈ ·|τ0 > t],Qη◦µ[Xs ∈ ·]) < +∞. Now, set g : x 7→
(1− x) ∨ 0 ∈ Lip1,1(R+). By the previous computations (4.3), (4.4), and by (2.2), one has

Eµ[g(Xs)|τ0 > t]− EQη◦µ[g(Xs)]

= Eµ

[
g(Xs)1τ0>s
Pµ[τ0 > s]

η(Xs)

φs(µ)(η)

(
Kt−sQt−s[1R+/η](Xs)−Kt−s(η ◦ φs(µ))Qt−s[1R+/η]

Kt−s(η ◦ φs(µ))Qt−s[1R+
/η]

)]
=
E
Q
η◦µ
[
g(Xs)(Kt−sQt−s[1R+

/η](Xs)−Kt−s(η ◦ φs(µ))Qt−s[1R+
/η])

]
Kt−s(η ◦ φs(µ))Qt−s[1R+

/η]
.

Using again the notation ψµ in (3.12), by what we showed in the proof of theorem 3.1,

Kt−s(η ◦ φs(µ))Qt−s[1R+
/η] = 1− 1

t− s
ψφs(µ)(1R+

) + o

(
1

t− s

)
.

Likewise, for any y > 0, and using (3.13) for the third line,

Kt−sQt−s[1R+/η](y)−Kt−s(η ◦ φs(µ))Qt−s[1R+/η]

=
1

t− s
[ψφs(µ)(1R+)− ψδy (1R+)] + o

(
1

t− s

)
=

1

2(t− s)

[∫ ∞
0

x2(η ◦ φs(µ))(dx)− y2
]

+ o

(
1

t− s

)
=

1

2(t− s)
[
EQη◦µ[X2

s ]− y2
]

+ o

(
1

t− s

)
,
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where the last line is obtained from µPsη = e−λ0sµ(η), which implies that∫ ∞
0

x2(η ◦ φs(µ))(dx) =
Eµ[X2

s η(Xs)|τ0 > s]

Eµ[η(Xs)|τ0 > s]
=
Eµ[X2

s η(Xs)1τ0>s]
e−λ0sµ(η)

= EQη◦µ[X2
s ].

Then, by Lebesgue’s theorem (using (4.5)), one has

lim
t→+∞

2t×
(
Eµ[g(Xs)|τ0 > t]− EQη◦µ[g(Xs)]

)
= EQη◦µ[g(Xs)]E

Q
η◦µ[X2

s ]− EQη◦µ[g(Xs)X
2
s ].

Since g(Xs) = 0 if and only if Xs ≥ 1, one has

EQη◦µ[g(Xs)X
2
s ] ≤ EQη◦µ[g(Xs)].

Since Xt −→
t→+∞

+∞ Q0-almost surely, there exists s0 > 0 such that, for any s ≥ s0 and

µ ∈ M1((0,+∞)), EQη◦µ[X2
s ] > 1. Then, claiming moreover that EQη◦µ[g(Xs)] > 0 for any

µ ∈M1((0,+∞)) satisfying
∫∞
0
x4erxµ(dx) < +∞ and s ≥ s0, one obtains

EQη◦µ[g(Xs)X
2
s ] < EQη◦µ[g(Xs)]E

Q
η◦µ[X2

s ].

This allows to conclude that lim inft→+∞ t×W1(Pµ[Xs ∈ ·|τ0 > t], (η ◦ µ)Qs) > 0.
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