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Abstract

We compute the Wassertein-1 (or Kantorovitch-Rubinstein) distance between a random
walk in Rd and the Brownian motion. The proof is based on a new estimate of the
modulus of continuity of the solution of the Stein’s equation. As an application, we can
evaluate the rate of convergence towards the local time at 0 of the Brownian motion
and to a Brownian bridge.
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1 Motivations

For a complete, separable metric space W , the so-called Kantorovitch-Rubinstein or
Wasserstein-1 distance is defined by:

distKR(µ, ν) = sup
f∈Lip1(W )

(∫
W

f dµ−
∫
W

f dν

)
(1.1)

where

Lip1(W ) = {f : W → R, f bounded and |f(x)− f(y)| ≤ distW (x, y), ∀x, y ∈W} .

The formulation (1.1) is well suited to evaluate distance by the Stein’s method. First,
consider that we are interested in the convergence towards the standard Gaussian
measure µd on Rd. It is well known that the semi-group (Pt, t ≥ 0) defined by

Ptf : x ∈ Rd 7−→
∫
Rd

f(e−tx+
√

1− e−2t y) dµd(y),

admits µd as invariant and stationary measure. Let (Xn, n ≥ 1) be a sequence of
independent, centered, square integrable, and identically distributed Rd-valued random
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Donsker’s theorem in Wasserstein-1 distance

variables such that E [X1(i)X1(j)] = 1{i=j}. Let Tn = n−1/2
∑n
j=1Xj and T¬jn = Tn −

Xj/
√
n. Standard computations [5] yield, for f regular enough,

E [f(Tn)]−
∫
R

f dµd =
1

n

∫ ∞
0

E
[
trace(∇(2)Ptf)(T¬jn )− trace(∇(2)Ptf)(Tn)

]
dt

− 1

n

n∑
j=1

∫ ∞
0

∫ 1

0

E
[
〈Xj ⊗Xj ,

(
∇(2)(Ptf)(T¬jn + rXj/

√
n)−∇(2)(Ptf)(T¬jn )

)
〉Rd

]
dr dt.

(1.2)

The crux of the matter is then to find the regularity of f with which we can estimate
uniformly the Lipschitz modulus of ∇(2)Ptf . If we can prove that ∇(2)Ptf is uniformly
Lipschitz, we see that a factor 1/

√
n will pop-up in the right-hand-side of (1.2). Multiplied

by the already present 1/n, this gives a n−3/2 multiplicative factor, which is added n

times hence a rate of convergence which is proportional to n−1/2. The estimate of the
Lipschitz modulus of ∇(2)Ptf for f Lipschitz continuous is easily done when W = R but
it is only recently that the case W = Rd has been successfully handled (see [6, 8, 11]
and references therein). Now, if we are interested in the Donsker theorem, the process
under study is

Sn(t) =

n∑
j=1

Xjh
n
j (t) where hnj (t) =

√
n

∫ t

0

1[j/n,(j+1)/n)(s) ds.

In his seminal paper, Barbour [2] gave a convergence rate n−1/2 lnn when W is the
Skorohod space and the test functions are not Lipschitz but three times Fréchet differ-
entiable and satisfy some additional regularity assumptions. Recently, Kasprzak used
this approach to estimate the convergence rate of the diffusion approximation of the
Moran model [10]. In [3], we proved that the convergence rate for the Donsker theorem
in W = Wη,2 (see below for the definition) for some η < 1/2 is bounded by nη−1/2 for test
functions which are twice Fréchet differentiable. Unfortunately, Fréchet differentiability
is too stringent a condition for practical purposes. In [4], we weakened this hypothesis
by considering only weak differentiability. In fact, for reasons that will be explained
below, when working in a Wiener space, the analog of (1.2) involves terms like〈

hnj ⊗ hnj ,∇(2)(Ptf)(Sn)−∇(2)(Ptf)(Sn −Xjh
n
j )
〉
I⊗2
1,2

(1.3)

where ∇ is the Malliavin derivative and I1,2 is the Cameron-Martin space

I1,2 =

{
f, ∃!ḟ ∈ L2([0, 1], dt) with f(t) =

∫ t

0

ḟ(s) ds

}
and ‖f‖I1,2 = ‖ḟ‖L2 .

The difficulty is then that we do not have a n−1/2 factor in the definition of Sn and it
is easily seen that ‖hnj ‖I1,2 = 1, hence no multiplicative factor will pop up in (1.3). In
[4], we bypassed this difficulty by assuming that there exists c > 0 such that for any
g, h, ` ∈ I1,2,

sup
x∈W

∣∣∣∣〈∇(2)Ptf(x+ `)−∇2Ptf(x), h⊗ g
〉
I
⊗(2)
1,2

∣∣∣∣ ≤ c‖`‖W ‖h‖L2‖g‖L2 . (1.4)

Then, in the estimate of terms as those appearing in (1.3), it is the L2-norm of hnj which

appears and it turns out that ‖hnj ‖L2 ≤ c n−1/2, hence the presence of a factor n−1, which

saves the proof and yields a convergence rate bounded by n−1/2. The goal of this paper
is to weaken even more these hypothesis on f to be able to bound the true K-R distance
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between the distribution of Sn and the distribution of a Brownian motion. The space
W is a Banach space we can choose arbitrarily as far as it can be equipped with the
structure of an abstract Wiener space and it contains the sample paths of Sn and B. As
in [4], we chose here the fractional Sobolev spaces Wη,p.

The main technical result of this article is Theorem 4.4 which gives a new estimate of
the Lipschitz modulus of ∇(2)Ptf for t > 0. The main idea is to introduce a hierarchy of
approximations. There is a first scale induced by the time discretization coming from the
definition of Sn. Then, we consider a coarser discretization onto which we project our
approximations in order to benefit from the averaging effect of the ordinary CLT. It turns
out that the optimal ratio is obtained when the mesh of the coarser subdivision is roughly
the cubic root of the mesh of the reference partition. Moreover, after [3] and [4], we are
convinced that it is simpler and as efficient to stick to finite dimension as long as possible.
For, we consider the affine interpolation of the Brownian motion as an intermediary
process. The distance between the Brownian sample-paths and their affine interpolation
is well known. This reduces the problem to estimate the distance between Sn and the
affine interpolation of B, a task which can be handled by the Stein’s method. It turns out
that the bottleneck is in fact the rate of convergence of the Brownian interpolation to
the Brownian motion.

This paper is organized as follows. In Section 2, we show how to view fractional
Sobolev spaces as Wiener spaces. In Section 3, we explain the line of thoughts we used.
The main proofs are given in Section 4.

2 Preliminaries

2.1 Fractional Sobolev spaces

Let d ≥ 1 be a fixed integer. We consider the fractional Sobolev spaces Wη,p defined
for η ∈ (0, 1) and p ≥ 1 as the closure of C1 functions from [0, 1] to R with respect to the
norm

‖f‖pη,p =

∫ 1

0

|f(t)|p dt+

∫∫
[0,1]2

|f(t)− f(s)|p

|t− s|1+pη
dt ds.

For η = 1, W1,p is the completion of C1 for the norm:

‖f‖p1,p =

∫ 1

0

|f(t)|p dt+

∫ 1

0

|f ′(t)|p dt.

They are known to be separable Banach spaces and to satisfy the Sobolev embeddings [1]:

Wη,p ⊂ Hol(η − 1/p) for η − 1/p > 0,

where Hol(α) is the space of Rd-valued, Hölder continuous functions on [0, 1]. Recall the
following lemma proved in [4]:

Lemma 2.1. Let 0 ≤ s1 < s2 ≤ 1 and consider

hs1,s2(t) =

∫ t

0

1[s1,s2](r) dr.

For any η ∈ [0, 1/2), there exists cη > 0 such that for any p ≥ 1, for any s1, s2, we have

‖hs1,s2‖η,p ≤ cη |s2 − s1|1/2−η. (2.1)

We denote by W0,∞ the space of continuous (hence bounded) functions on [0, 1]

equipped with the uniform norm.
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2.2 Wiener spaces

In what follows, a couple (η, p) in Λ defined by:

Λ = {(η, p) ∈ (0, 1]× [1,∞), 0 < η − 1/p < 1/2} ∪ {(0,∞)},

is fixed. Consider Z = (Zn, n ≥ 1) a sequence of independent, standard Gaussian random
variables and let (zn, n ≥ 1) be a complete orthonormal basis of I1,2. Then, we know
from [9] that

N∑
n=1

Zn zn
N→∞−−−−→ B :=

∞∑
n=1

Zn zn in Wη,p with probability 1, (2.2)

where B is a Brownian motion. By taking d independent copies of the sequence Z, we
can construct the Wiener measure on W = Wη,p([0, 1];Rd), the space of functions from
[0, 1] into Rd, each component of which belongs to Wη,p. We clearly have the diagram

W ∗
e∗−→ (I⊗d1,2 )∗ ' I⊗d1,2 = H

e=e⊗dη,p−−−−→W, (2.3)

where eη,p is the embedding from I1,2 into Wη,p. Note that the space H is dense in W

since tensor products of polynomials do belong to H. Moreover, Eqn. (2.2) and the
Parseval identity entail that for any z ∈W ∗,

E
[
ei〈z,B〉W∗,W

]
= exp

(
−1

2
‖e∗(z)‖2H

)
. (2.4)

We denote by µ the law of B on W . Then, the diagram (2.3) and the identity (2.4) mean
that (I1,2,W, e) is a Wiener space.

Definition 2.2 (Wiener integral). The Wiener integral, denoted as δ, is the isometric
extension of the map

δ : e∗(W ∗) ⊂ H1,2 −→ L2(µ)

e∗(η) 7−→ 〈η, y〉W∗,W .

This means that if h = limn→∞ e∗(ηn) in H,

δh(y) = lim
n→∞

〈ηn, y〉W∗,W in L2(µ).

Definition 2.3. Let V be a Banach space. A function f : W → V is said to be cylindrical
if it is of the form

f(y) =

k∑
j=1

fj(δh1(y), · · · , δhk(y))xj

where for any j ∈ {1, · · · , k}, fj belongs to the Schwartz space on Rk, (h1, · · · , hk) are
elements of H and (x1, · · · , xk) belong to V . The set of such functions is denoted by C(V ).
The gradient of f is then given by

∇f =

k∑
j,l=1

∂jf(δh1(y), · · · , δhk(y))hl ⊗ xj .

The space D1,2 is the closure of C(V ) with respect to the norm of L2(W ;H ⊗ V ). This
construction can be iterated so that we can define higher order gradients (see [14] for
details).
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3 Donsker’s theorem in Wη,p(R
d)

For m ≥ 1, let Dm = {i/m, i = 0, · · · ,m}, the regular subdivision of the interval [0, 1].
Let

Am = {1, · · · , d} × {0, · · · ,m− 1}

and for a = (a1, a2) ∈ Am

hma (t) =
√
m

∫ t

0

1[a2/m,(a2+1)/m)(s) ds ea1 ,

where (el, 1 ≤ l ≤ d) is the canonical basis of Rd. Consider

Sm =
∑
a∈Am

Xa h
m
a

where (Xa, a ∈ Am) is a family of independent identically distributed, Rd-valued, random
variables. We denote by X a random variable which has their common distribution.
Moreover, we assume that E [X] = 0 and E

[
‖X‖2Rd

]
= 1. Remark that (hma , a ∈ Am) is an

orthonormal family in H. Let Vm = span(hma , a ∈ Am) ⊂ H. For any m > 0, the map πm

is the orthogonal projection from H onto Vm. Let 0 < N < m, for f ∈ Lip1(W ), we write

E [f(Sm)]−E [f(B)] =
(
E [f(Sm)]−E

[
f(πN (Sm)

])
+
(
E
[
f ◦ πN (Sm)

]
−E

[
f ◦ πN (Bm)

])
+
(
E
[
f ◦ πN (Bm)

]
−E [f(B)]

)
=

3∑
i=1

Ai, (3.1)

where Bm is the affine interpolation of the Brownian motion:

Bm(t) =
∑
a∈Am

√
m
(
Ba1(

a2 + 1

m
)−Ba1(

a2
m

)
)
hma (t).

The two terms A1 and A3 are of the same nature: We have to compare two processes
which live on the same probability space. Since f is Lipschitz, we can proceed by
comparison of their sample-paths. The term A2 is different as the two processes involved
live on different probability spaces. This is for this term that the Stein’s method will be
used. We know from [7] that

Theorem 3.1. We have the following inequality:

sup
N
N1/2−η E

[
‖BN −B‖pW

]1/p
<∞. (3.2)

The following upper-bound is far from being optimal and it is likely that it could
be improved to obtain a factor N1−η. However, in view of (3.2), it would bring no
improvement to our final result.

Theorem 3.2. There exists a constant c > 0 such that provided that X ∈ Lp(W ;Rd, µ),

sup
m,N

N
1
2−η E

[
‖Sm − πN (Sm)‖pW

]1/p ≤ c ‖X‖Lp .
The main technical result is the following theorem.

Theorem 3.3. There exists c > 0 such that provided that X ∈ Lp(W ;Rd, µ) with p ≥ 3,
for any f ∈ Lip1(W ),

E
[
f(πN (Sm))

]
−E

[
f(πN (Bm))

]
≤ c ‖X‖Lp

N1+η

√
m

ln(
N1+η

√
m

)· (3.3)

ECP 25 (2020), paper 27.
Page 5/13

http://www.imstat.org/ecp/

https://doi.org/10.1214/20-ECP308
http://www.imstat.org/ecp/


Donsker’s theorem in Wasserstein-1 distance

Combining these three theorems, the global upper-bound for (3.1) appears to be
proportional to Nη(1/

√
N +

√
N/m ln(N1+η/

√
m)). See N as a function of m and note

that this expression is minimal for N ∼ m1/3. Plug this into the previous expressions to
obtain the main result of this paper:

Theorem 3.4. There exists a constant c > 0 such provided that X ∈ Lp(W ;Rd, µ) with
p ≥ 3,

sup
f∈Lip1(Wη,p)

E [f(Sm)]−E [f(B)] ≤ c ‖X‖pLp m
− 1

6+
η
3 lnm. (3.4)

We now give two corollaries. These results are not accessible via the standard Stein’s
method since we do not know any characterization of the limit distributions.

Corollary 3.5. Let W = W0,∞, the space of continuous functions. Denote by L0, the
local time at 0 of the one dimensional standard Brownian motion and let Mm(t) =

sups≤t(S
m(s)−). We have

distKR

(
Mm, L0

)
≤ cm−1/6 lnm.

Proof. The map Θ : W −→ W , which sends a function f to the function (t 7−→
sups≤t f(s)−) is 1-Lipschitz continuous. Moreover, L0 has the distribution of Θ(B),
hence the result.

The number of customers in an M/GI/1 queue follows the recurrence equation

Z0 = 0, Zn+1 = (Zn − 1)+ +An+1

where (An, n ≥ 1) is a sequence of i.i.d. random variables which represent the number
of arrivals during a service. Let ρ = E [A1] and consider the sequences of processes:

Zm(t) =

m∑
j=1

(Zj − Zj−1) hmj (t) and Um(t) =

m∑
j=1

(Aj − ρ) hmj (t) + (ρ− 1)

m∑
j=1

hmj (t).

Solving the Skorohod reflection problem (see [12]), we know that

Zm = Um + Θ(Um).

Corollary 3.6. Let σ2 = var(A1). Then,

distKR(
Zm

σ
√
m
, Bρ + Θ(Bρ)) ≤ cm−1/6 lnm,

where Bρ(t) = B(t) + (ρ− 1)/σ t.

Proof. Remark that
∑m
j=1 h

m
j (t) =

√
mt and apply the previous corollary.

Corollary 3.7. Let B0 be the Brownian bridge, i.e. the Brownian motion conditioned to
be 0 at time 1. Let Ψ : Wη,p −→Wη,p be the linear map which sends a function f to the
function (t 7−→ f(t)− tf(1)). Then,

distKR

(
Ψ(Sm), B0

)
≤ c‖Ψ‖m−1/6+η/3,

where ‖Ψ‖ is the norm of Ψ as a continuous linear map.

Proof. Since Ψ is continuous linear map, it is Lipschitz continuous from Wη,p into itself
and its Lipschitz modulus coincides with its norm as a linear map.
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4 Proofs

In what follows, c denotes a non significant constant which may vary from line to line.
We borrow from the current usage in rough path theory the notation fs,t = f(t)− f(s).
As a preparation to the proof of Theorem 3.2, we need the following lemma.

Lemma 4.1. For all p ≥ 2, there exists a constant cp such that for any sequence of
independent, centered, identically distributed, R-valued random variables (Xi, i ∈ N)

with X ∈ Lp and any sequence (αi, i ∈ N).

E

[∣∣∣∣∣
n∑
i=1

αiXi

∣∣∣∣∣
p]
≤ cp

∣∣{i ≤ n, αi 6= 0}
∣∣p/2(

∑
i≤n

|αi|p) E(|X|p),

where |A| is the cardinality of the set A.

Proof. The Marcinkiewicz–Zygmund inequality yields

E

[∣∣∣∣∣
n∑
i=1

αiXi

∣∣∣∣∣
p]
≤ cpE

∣∣∣∣∣
n∑
i=1

α2
iX

2
i

∣∣∣∣∣
p/2
 .

Using Jensen inequality, we obtain

E

[∣∣∣∣∣
n∑
i=1

αiXi

∣∣∣∣∣
p]
≤ cp

∣∣{i ≤ n, αi 6= 0}
∣∣p/2−1 E

[
n∑
i=1

|αi|p|Xi|p
]
.

The proof is thus complete.

Proof of Theorem 3.2. Actually, we already proved in [4] that

E
[
‖Sms,t‖p

]
≤ c‖X‖Lp

(√
t− s ∧m−1/2

)
. (4.1)

Assume that s and t belong to the same sub-interval: There exists l ∈ {1, ..., N} such that

l − 1

N
≤ s < t ≤ l

N
·

Then we have

πN (Sm)s,t =
√
N

(
m∑
k=1

Xk (hmk , h
N
l )H

)
(t− s).

Using Lemma 4.1, there exists a constant c such that

‖πN (Sm)s,t‖Lp√
N |t− s|

≤ c ‖X‖Lp
∣∣{k, (hmk , h

N
l )H 6= 0}

∣∣1/2 sup
k

∣∣(hmk , hNl )H
∣∣ .

Note that |(hmk , hNl )H | ≤
√

N
m and there are at most m

N + 2 terms such that (hmk , h
l
N )H is

non zero. Thus,

‖πN (Sm)s,t‖Lp√
N |t− s|

≤ c ‖X‖Lp
(m
N

+ 2
)1/2√N

m
≤ c ‖X‖Lp ,

as m/N tends to infinity. Since |t− s| ≤ 1/N ,

‖πN (Sm)s,t‖Lp ≤ c ‖X‖Lp
√
|t− s|. (4.2)
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For 0 ≤ s ≤ t ≤ 1 let sN+ := min{l, s ≤ l
N } and tN− := sup{l, t ≥ l

N }. We have

πN (Sm)s,t − Sms,t =
(
πN (Sm)s,sN+ − S

m
s,sN+

)
+
(
πN (Sm)sN+ ,tN− − S

m
sN+ ,t

N
−

)
+
(
πN (Sm)tN− ,t − S

m
tN− ,t

)
.

Note that for all f ∈W , πN (f) is the linear interpolation of f along the subdivision DN ;
hence, for s, t ∈ DN , πN (Sm)s,t = Sms,t. Thus the median term vanishes and we obtain

E
[
‖πN (Sm)s,t − Sms,t‖p

]
≤ c
(
E
[
‖πN (Sm)s,sN+ ‖

p
]

+ E
[
‖Sms,sN+ ‖

p
]

+ E
[
‖πN (Sm)tN− ,t‖

p
]

+ E
[
‖SmtN− ,t‖

p
])
. (4.3)

From (4.2), we deduce that

E
[
‖πN (Sm)s,sN+ ‖

p
]1/p

≤ c ‖X‖Lp
√
sN+ − s ≤ c ‖X‖Lp N−1/2, (4.4)

and the same holds for E
[
‖πN (Sm)tN− ,t‖

p
]
. We infer from (4.1), (4.2) and (4.4) that

E
[
‖πN (Sm)s,t − Sms,t‖p

]1/p ≤ c ‖X‖Lp (√t− s ∧N−1/2) . (4.5)

A straightforward computation shows that∫∫
[0,1]2

[|t− s| ∧N−1]p/2

|t− s|1+ηp
ds dt ≤ cN−p(1/2−η). (4.6)

The result follows (4.5) and (4.6).

4.1 Stein method

We wish to estimate E
[
f(πN (Sm))

]
−E

[
f(πN (Bm))

]
, using the Stein’s method. For

the sake of simplicity, we set fN = f ◦ πN .
The Stein-Dirichlet representation formula [5] stands that, for any τ > 0,

E [fN (Bm)]−E [fN (Sm)] = E

[∫ ∞
0

d

du
PufN (Sm) du

]
= E [PτfN (Sm)− fN (Sm)] + E

[∫ ∞
τ

LPufN (Sm) du

]
,

where for g : Vm → R regular enough, for x ∈ Vm ⊂ H,

Lg(x) = −〈x,∇g(x)〉H +
∑
a∈Am

〈
∇(2)g(x), hma ⊗ hma

〉
H⊗2

.

It is straightforward (see [4, Lemma 4.1]):

Lemma 4.2. There exists a constant c > 0 such that for any τ > 0, for any sequence of
independent, centered random vectors (Xa, a ∈ Am) such that E [‖X‖p] < ∞, for any
g ∈ Lip1(W ), we have

E [g(Sm)]−E [Pτg(Sm)] ≤ c ‖X‖Lp
√

1− e−τ .

We now show, that as usual, the rate of convergence in the Stein’s method is related
to the Lipschitz modulus of the second order derivative of the solution of the Stein’s
equation. Namely, we have
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Donsker’s theorem in Wasserstein-1 distance

Lemma 4.3. For any f ∈ Lip1(W ), we have

E [LPτfN (Sm)] = − E

[ ∑
a∈Am

〈
∇(2)PτfN (Sm¬a)−∇(2)PτfN (Sm), hma ⊗ hma

〉
H⊗2

]

+ E

[∑
a∈A

X2
a

∫ 1

0

〈
∇(2)PτfN (Sm¬a + rXah

m
a )−∇(2)PτfN (Sm¬a), hma

⊗2
〉
H⊗2

dr

]
.

Proof of Lemma 4.3. Let Sm¬a = Sm −Xah
m
a . Since the Xa’s are independent,

E [〈∇PτfN , Sm〉H ] = E

[ ∑
a∈Am

Xa 〈∇PτfN (Sm), hma 〉H

]

= E

[ ∑
a∈Am

Xa 〈∇PτfN (Sm)−∇PτfN (Sm¬a), hma 〉H

]

= E

[ ∑
a∈Am

X2
a

〈
∇(2)PτfN (Sm¬a), hma ⊗ hma

〉
H⊗2

]

+ E

[∑
a∈A

X2
a

∫ 1

0

〈
∇(2)PτfN (Sm¬a + r Xah

m
a )−∇(2)PτfN (Sm¬a), hma

⊗2
〉
H⊗2

dr

]
,

according to the Taylor formula. Since E
[
X2
a

]
= 1, we have

E

[ ∑
a∈Am

X2
a

〈
∇(2)PτfN (Sm¬a), hma ⊗ hma

〉
H⊗2

]

= E

[ ∑
a∈Am

〈
∇(2)PτfN (Sm¬a), hma ⊗ hma

〉
H⊗2

]
.

The result follows by difference.

The main difficulty and then the main contribution of this paper is to find an estimate
of

sup
v∈Vm

〈
∇(2)PτfN (v)−∇(2)PτfN (v + εhma ), hma ⊗ hma

〉
H⊗2

.

Theorem 4.4. There exists a constant c > 0 such that for any τ > 0, for any ε > 0, for
any v ∈ Vm, for any f ∈ Lip(W ),∣∣∣〈∇(2)Pmτ fN (v + εhma )−∇(2)Pmτ fN (v), hma ⊗ hma

〉
H⊗2

∣∣∣ ≤ c e−5τ/2
β2
τ/2

εNη− 1
2

√
N3

m3
· (4.7)

Proof of Theorem 4.4. We know from [13, 4] that we have the following representation:
for any h ∈ H,〈

∇(2)Pmτ f(v), h⊗ h
〉
H⊗2

=
e−3τ/2

β2
τ/2

E
[
f
(
wτ (v,Bm, B̂m)

)
δh(Bm) δh(B̂m)

]
(4.8)

where
wτ (v, y, z) = e−τ/2(e−τ/2v + βτ/2y) + βτ/2z

and B̂m is an independent copy of Bm. Since the map v is linear with respect to its three
arguments,

fN

(
wτ (v, Bm, B̂m)

)
= fN

(
wτ (πNv, πNBm, πN B̂m)

)
.
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Donsker’s theorem in Wasserstein-1 distance

Hence,(
e−3τ/2

β2
τ/2

)−1 〈
∇(2)Pmτ fN (v), h⊗ h

〉
H⊗2

= E
[
fN

(
wτ (πNv, πNBm, πN B̂m)

)
E
[
δh(Bm) |πNBm

]
E
[
δh(B̂m) |πN B̂m

]]
(4.9)

From Lemma 4.7, we know that

Var
(
E
[
δh(B̂m) |πN B̂m

])
≤ c N

m
(4.10)

for m > 8N , and the same holds for the other conditional expectation. Use Cauchy-
Schwarz inequality in (4.9) and take (4.10) into account to obtain

(
e−3τ/2

β2
τ/2

)−1 ∣∣∣〈∇(2)Pmτ fN (v + εhma )−∇(2)Pmτ fN (v), hma ⊗ hma
〉
H⊗2

∣∣∣
≤ c

(
N

m

)2 ∥∥∥wτ (πNv, πNBm, πN B̂m)− wτ (πNv + επNhma , π
NBm, πN B̂m)

∥∥∥
W

= ce−τε

(
N

m

)2 ∥∥πNhma ∥∥W (4.11)

since fN belongs to Lip1(W ). Furthermore,

πN (hma ) =
∑
b∈AN

〈
hma , h

N
b

〉
H
hNb .

We already know that

0 ≤ |
〈
hma , h

N
b

〉
H
| ≤

√
N

m

and that at most two terms
〈
hma , h

N
b

〉
H

are non zero. Moreover, according to Lemma 2.1

‖hNb ‖W ≤ cNη− 1
2 .

Thus,

‖πN (hma )‖W ≤ c
√
N

m
Nη− 1

2 . (4.12)

Plug estimation (4.12) into estimation (4.11) yields estimate (4.7).

According to (4.7) and Lemma 4.3, since the cardinality of Am is md, we obtain the
following theorem.

Theorem 4.5. There exists c > 0 such that provided that X belongs to Lp, for any τ > 0,

E

[∫ ∞
τ

LPufN (Sm) du

]
≤ c ‖X‖Lp

N1+η

√
m

∫ ∞
τ

e−5u/2

1− e−u/2
du. (4.13)

If we combine Lemma 4.2 and (4.13), we get

|E [fN (Sm)]−E [fN (Bm)]| ≤ c‖X‖Lp
(

1− e−τ +
N1+η

√
m

∫ ∞
τ

e−5u/2

1− e−u/2
du

)1/2

.

Optimizing with respect to τ yields Theorem 3.3.
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Donsker’s theorem in Wasserstein-1 distance

It remains to prove (4.10). For the sake of simplicity, we give the proof for d = 1. The
general situation is similar but with more involved notations. We recall that

πN (Bm) =

N−1∑
b=0

Gm,Nb hNb .

where

Gm,Nb =

m−1∑
a=0

〈
hma , h

N
b

〉
H
δ(hma ). (4.14)

Lemma 4.6. The covariance matrix Γ of the Gaussian vector (Gm,Nb , b = 0, · · · , N − 1) is
invertible and satisfies

‖Γ−1‖∞ ≤ 2. (4.15)

Proof. Since the hma are orthogonal in L2, for any b, c ∈ {0, · · · , N − 1},

Γb,c =

m−1∑
a=0

〈
hma , h

N
b

〉
H

〈
hma , h

N
c

〉
H
. (4.16)

Since a sub-interval of Dm intersects at most two sub-intervals of DN , the matrix Γ is
tridiagonal. Furthermore, we know that

0 ≤
〈
hma , h

N
b

〉
H
≤
√
N

m
, (4.17)

and for each b, there are at least (N/m − 3) terms of this kind which are equal to
(N/m)−1/2. Hence,

Γb,b ≥ (
m

N
− 3)(

√
N

m
)2 ≥ 3

4
·

Since Γ is tridiagonal, this implies that it is invertible. Moreover, let D be the diagonal
matrix extracted from Γ. We have proved that ‖D‖∞ ≥ 3/4.

For |b− c| = 1, there is at most one term of the sum (4.16) which yields a non zero
scalar product, hence

|Γb,c| ≤
N

m
·

Set S = Γ−D. The matrix D−1S has at most two non null entries and

‖D−1S‖∞ ≤
8

3

N

m
≤ 1

3
,

if m > 8N . By iteration, we get for any k ≥ 1,

‖(D−1S)k‖∞ ≤
1

3k
·

Moreover,
∞∑
k=0

(−D−1S)k = (Id +D−1S)−1 = Γ−1D.

Thus,

‖Γ−1‖∞ ≤
4

3

∞∑
k=0

1

3k
= 2.

The proof is thus complete.
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Lemma 4.7. There exists a constant c which depends only on the dimension d such that
for all m,N with m > 8N , for any a ∈ AN

Var
[
E
[
δ(hma ) |πN (Bm)

]]
≤ c

N

m
·

Proof. Using the framework of Gaussian vectors, for all a ∈ {0, · · · ,m− 1}

E
[
δ(hma ) |πN (Bm)

]
=
∑
b∈AN

Cm,Na,b Gm,Nb . (4.18)

For any c ∈ {0, · · · , N − 1}, on the one hand

E
[
E
[
δ(hma ) |πN (Bm)

]
Gc
]

=

N−1∑
b=0

m−1∑
τ=0

Cm,Na,b

〈
hmτ , h

N
b

〉
H

〈
hmτ , h

N
c

〉
H

=

N−1∑
b=0

Cm,Na,b Γb,c.

and on the other hand,

E
[
E
[
δ(hma ) |πN (Bm)

]
Gc
]

= E [δ(hma )Gc] =
〈
hma , h

N
c

〉
H
.

This means that(〈
hma , h

N
c

〉
H
, c = 0, · · · , N − 1

)
=
(
Cm,Na,b , b = 0, · · · , N − 1

)
Γ.

In view of Lemma 4.6, this entails that(
Cm,Na,b , b = 0, · · · , N − 1

)
=
(〈
hma , h

N
c

〉
H
, c = 0, · · · , N − 1

)
Γ−1.

Once again we invoke (4.17) and the fact that at most two of the terms
〈
hma , h

N
c

〉
H

are
non zero for a fixed a, to deduce that

sup
a,b
|Cm,Na,b | ≤ 2‖Γ−1‖∞

√
N

m
= 4

√
N

m
· (4.19)

Now then, according to the very definition of the conditional expectation

Var
[
E
[
δ(hma )|πN (Bm)

]]
= E

[
δ(hma ) E

[
δ(hma )|πN (Bm)

]]
=

N−1∑
b=0

Cm,Na,b

〈
hma , h

N
b

〉
H
.

Hence,

Var
[
E
[
δ(hma )|πN (Bm)

]]
≤ 2 sup

a,b
|Cm,Na,b |

√
N

m
≤ 8

N

m
,

according to (4.19). The constant 8 has to be modified when d > 1.
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